amd_iommu.c 103.0 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

106
static DEFINE_PER_CPU(struct flush_queue, flush_queue);
107

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120
static const struct dma_map_ops amd_iommu_dma_ops;
121

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
140
	bool use_vapic;			  /* Enable device to use vapic mode */
141 142

	struct ratelimit_state rs;	  /* Ratelimit IOPF messages */
143 144
};

145 146 147
/*
 * general struct to manage commands send to an IOMMU
 */
148
struct iommu_cmd {
149 150 151
	u32 data[4];
};

152 153
struct kmem_cache *amd_iommu_irq_cache;

154
static void update_domain(struct protection_domain *domain);
155
static int protection_domain_init(struct protection_domain *domain);
156
static void detach_device(struct device *dev);
157

158 159 160 161 162 163 164
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

165 166
	/* IOVA RB-Tree */
	struct iova_domain iovad;
167 168
};

169 170 171
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

172 173 174 175 176 177
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

178 179
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
180
{
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
196 197
}

198
static inline u16 get_pci_device_id(struct device *dev)
199 200 201 202 203 204
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

232 233 234 235 236
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

237 238 239 240 241 242
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

243
static struct iommu_dev_data *alloc_dev_data(u16 devid)
244 245 246 247 248 249 250 251
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

252
	dev_data->devid = devid;
253 254 255 256 257

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

258 259
	ratelimit_default_init(&dev_data->rs);

260 261 262
	return dev_data;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

282 283 284 285 286 287 288 289 290 291 292
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

293
	/* The callers make sure that get_device_id() does not fail here */
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
335
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
336 337 338 339 340 341 342 343
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

344 345 346 347 348 349 350 351 352 353 354 355
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

356 357 358 359 360
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

361 362 363 364
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
365
{
366
	struct acpihid_map_entry *p, *entry = NULL;
367
	int devid;
368 369 370 371 372 373 374 375 376 377 378 379

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
380 381
	else
		iommu_group_ref_get(entry->group);
382 383

	return entry->group;
384 385
}

386 387 388 389
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
390 391
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
392 393 394 395 396 397 398 399 400 401 402 403
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

404 405 406 407 408 409 410 411 412
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

413 414 415 416 417 418
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
419
	int devid;
420 421 422 423 424

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
425
	if (devid < 0)
426
		return false;
427 428 429 430 431 432 433 434 435 436 437

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

438
static void init_iommu_group(struct device *dev)
439 440 441
{
	struct iommu_group *group;

442
	group = iommu_group_get_for_dev(dev);
443 444 445 446
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
447 448 449 450 451
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
452
	struct amd_iommu *iommu;
453
	int devid;
454 455 456 457

	if (dev->archdata.iommu)
		return 0;

458
	devid = get_device_id(dev);
459
	if (devid < 0)
460 461
		return devid;

462 463
	iommu = amd_iommu_rlookup_table[devid];

464
	dev_data = find_dev_data(devid);
465 466 467
	if (!dev_data)
		return -ENOMEM;

468 469
	dev_data->alias = get_alias(dev);

470
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
471 472
		struct amd_iommu *iommu;

473
		iommu = amd_iommu_rlookup_table[dev_data->devid];
474 475 476
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

477 478
	dev->archdata.iommu = dev_data;

479
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
480

481 482 483
	return 0;
}

484 485
static void iommu_ignore_device(struct device *dev)
{
486 487
	u16 alias;
	int devid;
488 489

	devid = get_device_id(dev);
490
	if (devid < 0)
491 492
		return;

493
	alias = get_alias(dev);
494 495 496 497 498 499 500 501

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

502 503
static void iommu_uninit_device(struct device *dev)
{
504
	struct iommu_dev_data *dev_data;
505 506
	struct amd_iommu *iommu;
	int devid;
507

508
	devid = get_device_id(dev);
509
	if (devid < 0)
510
		return;
511

512 513
	iommu = amd_iommu_rlookup_table[devid];

514
	dev_data = search_dev_data(devid);
515 516 517
	if (!dev_data)
		return;

518 519 520
	if (dev_data->domain)
		detach_device(dev);

521
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
522

523 524
	iommu_group_remove_device(dev);

525
	/* Remove dma-ops */
526
	dev->dma_ops = NULL;
527

528
	/*
529 530
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
531
	 */
532
}
J
Joerg Roedel 已提交
533

534 535 536 537 538 539
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

540 541 542 543
static void dump_dte_entry(u16 devid)
{
	int i;

544 545
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
546 547 548
			amd_iommu_dev_table[devid].data[i]);
}

549 550 551 552 553 554 555 556 557
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

581
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
582
{
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
604

605 606 607 608 609 610
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
611 612 613 614 615

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
616
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617
		       address, flags);
618
		dump_dte_entry(devid);
619 620 621 622
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
623
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
624 625 626 627 628
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
629
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
630 631 632 633
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
634
		dump_command(address);
635 636 637 638 639 640 641 642
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
643
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
644 645 646 647 648
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
649
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650 651 652 653 654
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
655 656

	memset(__evt, 0, 4 * sizeof(u32));
657 658 659 660 661 662 663 664 665 666
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
667
		iommu_print_event(iommu, iommu->evt_buf + head);
668
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
669 670 671 672 673
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

674
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
719

720 721 722
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
723

724 725 726 727 728 729 730
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
731 732
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
733 734 735 736 737 738

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 740 741 742
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

803
irqreturn_t amd_iommu_int_thread(int irq, void *data)
804
{
805 806
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
807

808 809 810
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
811
			iommu->mmio_base + MMIO_STATUS_OFFSET);
812

813 814 815 816
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
817

818 819 820 821
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
822

823 824 825 826 827 828 829
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
845
	return IRQ_HANDLED;
846 847
}

848 849 850 851 852
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

853 854 855 856 857 858
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
877
			       struct iommu_cmd *cmd)
878 879 880
{
	u8 *target;

881 882 883 884
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
885 886 887 888 889

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
890
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
891
}
892

893
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
894
{
895 896
	WARN_ON(address & 0x7ULL);

897
	memset(cmd, 0, sizeof(*cmd));
898 899 900
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
901 902 903
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

904 905 906 907 908 909 910
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

911 912 913 914
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
915
	bool s;
916 917

	pages = iommu_num_pages(address, size, PAGE_SIZE);
918
	s     = false;
919 920 921 922 923 924 925

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
926
		s = true;
927 928 929 930 931 932 933 934 935 936 937
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
938
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
939 940 941
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

942 943 944 945
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
946
	bool s;
947 948

	pages = iommu_num_pages(address, size, PAGE_SIZE);
949
	s     = false;
950 951 952 953 954 955 956

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
957
		s = true;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

973 974 975 976 977 978 979
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

980
	cmd->data[0]  = pasid;
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
999
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1000 1001
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
1002
	cmd->data[1] |= (pasid & 0xff) << 16;
1003 1004 1005 1006 1007 1008 1009 1010
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1011 1012 1013 1014 1015 1016 1017
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1018
		cmd->data[1]  = pasid;
1019 1020 1021 1022 1023 1024 1025 1026
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1027 1028 1029 1030
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1031 1032
}

1033 1034 1035 1036 1037 1038 1039
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1040 1041
/*
 * Writes the command to the IOMMUs command buffer and informs the
1042
 * hardware about the new command.
1043
 */
1044 1045 1046
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1047
{
1048 1049
	bool read_head = true;
	u32 left, next_tail;
1050

1051
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1052
again:
1053
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1054

1055
	if (left <= 0x20) {
1056 1057
		struct iommu_cmd sync_cmd;
		int ret;
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		if (read_head) {
			/* Update head and recheck remaining space */
			iommu->cmd_buf_head = readl(iommu->mmio_base +
						    MMIO_CMD_HEAD_OFFSET);
			read_head = false;
			goto again;
		}

		read_head = true;

1069
		iommu->cmd_sem = 0;
1070

1071
		build_completion_wait(&sync_cmd, (u64)&iommu->cmd_sem);
1072
		copy_cmd_to_buffer(iommu, &sync_cmd);
1073

1074
		if ((ret = wait_on_sem(&iommu->cmd_sem)) != 0)
1075 1076 1077
			return ret;

		goto again;
1078 1079
	}

1080
	copy_cmd_to_buffer(iommu, cmd);
1081 1082

	/* We need to sync now to make sure all commands are processed */
1083
	iommu->need_sync = sync;
1084

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1097
	spin_unlock_irqrestore(&iommu->lock, flags);
1098

1099
	return ret;
1100 1101
}

1102 1103 1104 1105 1106
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1107 1108 1109 1110
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1111
static int iommu_completion_wait(struct amd_iommu *iommu)
1112 1113
{
	struct iommu_cmd cmd;
1114
	unsigned long flags;
1115
	int ret;
1116

1117
	if (!iommu->need_sync)
1118
		return 0;
1119

1120

1121 1122 1123 1124 1125 1126 1127
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1128
	if (ret)
1129 1130 1131 1132 1133 1134
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1135

1136
	return ret;
1137 1138
}

1139
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1140
{
1141
	struct iommu_cmd cmd;
1142

1143
	build_inv_dte(&cmd, devid);
1144

1145 1146
	return iommu_queue_command(iommu, &cmd);
}
1147

1148 1149 1150
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1151

1152 1153
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1154

1155 1156
	iommu_completion_wait(iommu);
}
1157

1158 1159 1160 1161 1162 1163 1164
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1165

1166 1167 1168 1169 1170 1171
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1172

1173
	iommu_completion_wait(iommu);
1174 1175
}

1176
static void iommu_flush_all(struct amd_iommu *iommu)
1177
{
1178
	struct iommu_cmd cmd;
1179

1180
	build_inv_all(&cmd);
1181

1182 1183 1184 1185
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1205 1206
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1207 1208 1209 1210
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1211
		iommu_flush_irt_all(iommu);
1212
		iommu_flush_tlb_all(iommu);
1213 1214 1215
	}
}

1216
/*
1217
 * Command send function for flushing on-device TLB
1218
 */
1219 1220
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1221 1222
{
	struct amd_iommu *iommu;
1223
	struct iommu_cmd cmd;
1224
	int qdep;
1225

1226 1227
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1228

1229
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1230 1231

	return iommu_queue_command(iommu, &cmd);
1232 1233
}

1234 1235 1236
/*
 * Command send function for invalidating a device table entry
 */
1237
static int device_flush_dte(struct iommu_dev_data *dev_data)
1238
{
1239
	struct amd_iommu *iommu;
1240
	u16 alias;
1241
	int ret;
1242

1243
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1244
	alias = dev_data->alias;
1245

1246
	ret = iommu_flush_dte(iommu, dev_data->devid);
1247 1248
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1249 1250 1251
	if (ret)
		return ret;

1252
	if (dev_data->ats.enabled)
1253
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1254 1255

	return ret;
1256 1257
}

1258 1259 1260 1261 1262
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1263 1264
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1265
{
1266
	struct iommu_dev_data *dev_data;
1267 1268
	struct iommu_cmd cmd;
	int ret = 0, i;
1269

1270
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1271

1272
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1273 1274 1275 1276 1277 1278 1279
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1280
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1281 1282
	}

1283 1284
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1285
		if (!dev_data->ats.enabled)
1286 1287
			continue;

1288
		ret |= device_flush_iotlb(dev_data, address, size);
1289 1290
	}

1291
	WARN_ON(ret);
1292 1293
}

1294 1295
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1296
{
1297
	__domain_flush_pages(domain, address, size, 0);
1298
}
1299

1300
/* Flush the whole IO/TLB for a given protection domain */
1301
static void domain_flush_tlb(struct protection_domain *domain)
1302
{
1303
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1304 1305
}

1306
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1307
static void domain_flush_tlb_pde(struct protection_domain *domain)
1308
{
1309
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1310 1311
}

1312
static void domain_flush_complete(struct protection_domain *domain)
1313
{
1314
	int i;
1315

1316
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1317
		if (domain && !domain->dev_iommu[i])
1318
			continue;
1319

1320 1321 1322 1323 1324
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1325
	}
1326 1327
}

1328

1329
/*
1330
 * This function flushes the DTEs for all devices in domain
1331
 */
1332
static void domain_flush_devices(struct protection_domain *domain)
1333
{
1334
	struct iommu_dev_data *dev_data;
1335

1336
	list_for_each_entry(dev_data, &domain->dev_list, list)
1337
		device_flush_dte(dev_data);
1338 1339
}

1340 1341 1342 1343 1344 1345 1346
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1376
		      unsigned long page_size,
1377 1378 1379
		      u64 **pte_page,
		      gfp_t gfp)
{
1380
	int level, end_lvl;
1381
	u64 *pte, *page;
1382 1383

	BUG_ON(!is_power_of_2(page_size));
1384 1385 1386 1387

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1388 1389 1390 1391
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1392 1393

	while (level > end_lvl) {
1394 1395 1396 1397 1398
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1399 1400 1401
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1402 1403 1404

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1405 1406
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1407 1408 1409
				free_page((unsigned long)page);
				continue;
			}
1410 1411
		}

1412 1413 1414 1415
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1433 1434 1435
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1436 1437 1438 1439
{
	int level;
	u64 *pte;

1440 1441 1442
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1443 1444 1445
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1446

1447 1448 1449
	while (level > 0) {

		/* Not Present */
1450 1451 1452
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1453
		/* Large PTE */
1454 1455 1456
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1457 1458 1459 1460 1461

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1462 1463
		level -= 1;

1464
		/* Walk to the next level */
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1480 1481 1482 1483 1484
	}

	return pte;
}

1485 1486 1487 1488 1489 1490 1491
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1492 1493 1494
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1495
			  unsigned long page_size,
1496
			  int prot,
1497
			  gfp_t gfp)
1498
{
1499
	u64 __pte, *pte;
1500
	int i, count;
1501

1502 1503 1504
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1505
	if (!(prot & IOMMU_PROT_MASK))
1506 1507
		return -EINVAL;

1508
	count = PAGE_SIZE_PTE_COUNT(page_size);
1509
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1510

1511 1512 1513
	if (!pte)
		return -ENOMEM;

1514 1515 1516
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1517

1518
	if (count > 1) {
1519 1520 1521 1522
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1523 1524 1525 1526 1527 1528

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1529 1530
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1531

1532 1533
	update_domain(dom);

1534 1535 1536
	return 0;
}

1537 1538 1539
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1540
{
1541 1542
	unsigned long long unmapped;
	unsigned long unmap_size;
1543 1544 1545 1546 1547
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1548

1549 1550
	while (unmapped < page_size) {

1551 1552 1553 1554 1555 1556
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1557 1558 1559 1560 1561 1562 1563 1564
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1565
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1566

1567
	return unmapped;
1568 1569
}

1570 1571 1572
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1573
 * interface functions.
1574 1575
 *
 ****************************************************************************/
1576

1577

1578 1579 1580
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1581
{
1582
	unsigned long pfn = 0;
1583

1584
	pages = __roundup_pow_of_two(pages);
1585

1586 1587 1588
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1589

1590 1591
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1592

1593
	return (pfn << PAGE_SHIFT);
1594 1595
}

1596 1597 1598
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1599
{
1600 1601
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1602

1603
	free_iova_fast(&dma_dom->iovad, address, pages);
1604 1605
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1678
		/* PTE present? */				\
1679 1680 1681
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1682 1683 1684 1685 1686
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1699
static void free_pagetable(struct protection_domain *domain)
1700
{
1701
	unsigned long root = (unsigned long)domain->pt_root;
1702

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1726 1727 1728
	}
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1759 1760
static void free_gcr3_table(struct protection_domain *domain)
{
1761 1762 1763 1764
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1765 1766
	else
		BUG_ON(domain->glx != 0);
1767

1768 1769 1770
	free_page((unsigned long)domain->gcr3_tbl);
}

1771 1772 1773 1774
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1775 1776 1777 1778 1779
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1780 1781
	del_domain_from_list(&dom->domain);

1782
	put_iova_domain(&dom->iovad);
1783

1784
	free_pagetable(&dom->domain);
1785

1786 1787 1788
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1789 1790 1791
	kfree(dom);
}

1792 1793
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1794
 * It also initializes the page table and the address allocator data
1795 1796
 * structures required for the dma_ops interface
 */
1797
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1798 1799 1800 1801 1802 1803 1804
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1805
	if (protection_domain_init(&dma_dom->domain))
1806
		goto free_dma_dom;
1807

1808
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1809
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1810
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1811 1812 1813
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1814 1815 1816
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1817 1818 1819
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1820 1821
	add_domain_to_list(&dma_dom->domain);

1822 1823 1824 1825 1826 1827 1828 1829
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1830 1831 1832 1833 1834 1835 1836 1837 1838
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1839
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1840
{
1841
	u64 pte_root = 0;
1842
	u64 flags = 0;
1843

1844 1845 1846
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1847 1848 1849
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1850

1851 1852
	flags = amd_iommu_dev_table[devid].data[1];

1853 1854 1855
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1882 1883 1884 1885 1886
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1887 1888 1889 1890 1891
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1892 1893
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1894 1895

	amd_iommu_apply_erratum_63(devid);
1896 1897
}

1898 1899
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1900 1901
{
	struct amd_iommu *iommu;
1902
	u16 alias;
1903
	bool ats;
1904

1905
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1906
	alias = dev_data->alias;
1907
	ats   = dev_data->ats.enabled;
1908 1909 1910 1911 1912 1913 1914 1915 1916

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1917 1918 1919
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1920
		set_dte_entry(alias, domain, ats);
1921

1922
	device_flush_dte(dev_data);
1923 1924
}

1925
static void do_detach(struct iommu_dev_data *dev_data)
1926 1927
{
	struct amd_iommu *iommu;
1928
	u16 alias;
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1939
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1940
	alias = dev_data->alias;
1941 1942

	/* decrease reference counters */
1943 1944 1945 1946 1947 1948
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1949
	clear_dte_entry(dev_data->devid);
1950 1951
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1952

1953
	/* Flush the DTE entry */
1954
	device_flush_dte(dev_data);
1955 1956 1957 1958 1959 1960
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1961
static int __attach_device(struct iommu_dev_data *dev_data,
1962
			   struct protection_domain *domain)
1963
{
1964
	int ret;
1965

1966 1967 1968 1969 1970 1971
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1972 1973 1974
	/* lock domain */
	spin_lock(&domain->lock);

1975
	ret = -EBUSY;
1976
	if (dev_data->domain != NULL)
1977
		goto out_unlock;
1978

1979
	/* Attach alias group root */
1980
	do_attach(dev_data, domain);
1981

1982 1983 1984 1985
	ret = 0;

out_unlock:

1986 1987
	/* ready */
	spin_unlock(&domain->lock);
1988

1989
	return ret;
1990
}
1991

1992 1993 1994 1995 1996 1997 1998 1999

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2000 2001 2002 2003 2004 2005
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2006
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2007 2008 2009
	if (!pos)
		return -EINVAL;

2010 2011 2012
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2013 2014 2015 2016

	return 0;
}

2017 2018
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2019 2020 2021 2022 2023 2024 2025 2026
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2038 2039
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2040 2041 2042
	if (ret)
		goto out_err;

2043 2044 2045 2046 2047 2048
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2062
/* FIXME: Move this to PCI code */
2063
#define PCI_PRI_TLP_OFF		(1 << 15)
2064

J
Joerg Roedel 已提交
2065
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2066
{
2067
	u16 status;
2068 2069
	int pos;

2070
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2071 2072 2073
	if (!pos)
		return false;

2074
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2075

2076
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2077 2078
}

2079
/*
F
Frank Arnold 已提交
2080
 * If a device is not yet associated with a domain, this function
2081 2082
 * assigns it visible for the hardware
 */
2083 2084
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2085
{
2086
	struct pci_dev *pdev;
2087
	struct iommu_dev_data *dev_data;
2088
	unsigned long flags;
2089
	int ret;
2090

2091 2092
	dev_data = get_dev_data(dev);

2093 2094 2095 2096
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2097
	if (domain->flags & PD_IOMMUV2_MASK) {
2098
		if (!dev_data->passthrough)
2099 2100
			return -EINVAL;

2101 2102 2103
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2104

2105 2106 2107 2108
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2109 2110
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2111 2112 2113
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2114

2115
skip_ats_check:
2116
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2117
	ret = __attach_device(dev_data, domain);
2118 2119
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2120 2121 2122 2123 2124
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2125
	domain_flush_tlb_pde(domain);
2126 2127

	return ret;
2128 2129
}

2130 2131 2132
/*
 * Removes a device from a protection domain (unlocked)
 */
2133
static void __detach_device(struct iommu_dev_data *dev_data)
2134
{
2135
	struct protection_domain *domain;
2136

2137 2138 2139 2140 2141
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2142

2143 2144
	if (WARN_ON(!dev_data->domain))
		return;
2145

2146
	domain = dev_data->domain;
2147

2148
	spin_lock(&domain->lock);
2149

2150
	do_detach(dev_data);
2151

2152
	spin_unlock(&domain->lock);
2153 2154 2155 2156 2157
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2158
static void detach_device(struct device *dev)
2159
{
2160
	struct protection_domain *domain;
2161
	struct iommu_dev_data *dev_data;
2162 2163
	unsigned long flags;

2164
	dev_data = get_dev_data(dev);
2165
	domain   = dev_data->domain;
2166

2167 2168
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2169
	__detach_device(dev_data);
2170
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2171

2172 2173 2174
	if (!dev_is_pci(dev))
		return;

2175
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2176 2177
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2178
		pci_disable_ats(to_pci_dev(dev));
2179 2180

	dev_data->ats.enabled = false;
2181
}
2182

2183
static int amd_iommu_add_device(struct device *dev)
2184
{
2185
	struct iommu_dev_data *dev_data;
2186
	struct iommu_domain *domain;
2187
	struct amd_iommu *iommu;
2188
	int ret, devid;
2189

2190
	if (!check_device(dev) || get_dev_data(dev))
2191
		return 0;
2192

2193
	devid = get_device_id(dev);
2194
	if (devid < 0)
2195 2196
		return devid;

2197
	iommu = amd_iommu_rlookup_table[devid];
2198

2199
	ret = iommu_init_device(dev);
2200 2201 2202 2203
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2204

2205
		iommu_ignore_device(dev);
2206
		dev->dma_ops = &nommu_dma_ops;
2207 2208 2209
		goto out;
	}
	init_iommu_group(dev);
2210

2211
	dev_data = get_dev_data(dev);
2212

2213
	BUG_ON(!dev_data);
2214

2215
	if (iommu_pass_through || dev_data->iommu_v2)
2216
		iommu_request_dm_for_dev(dev);
2217

2218 2219
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2220
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2221
		dev_data->passthrough = true;
2222
	else
2223
		dev->dma_ops = &amd_iommu_dma_ops;
2224

2225
out:
2226 2227 2228 2229 2230
	iommu_completion_wait(iommu);

	return 0;
}

2231
static void amd_iommu_remove_device(struct device *dev)
2232
{
2233
	struct amd_iommu *iommu;
2234
	int devid;
2235 2236 2237 2238 2239

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2240
	if (devid < 0)
2241 2242
		return;

2243 2244 2245 2246
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2247 2248
}

2249 2250 2251 2252 2253 2254 2255 2256
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2257 2258 2259 2260 2261 2262
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2294
static void queue_flush_all(void)
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2310 2311 2312 2313 2314 2315
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2341 2342 2343 2344

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2345 2346 2347 2348
	put_cpu_ptr(&flush_queue);
}


2349 2350 2351 2352 2353 2354 2355
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2356
static struct protection_domain *get_domain(struct device *dev)
2357
{
2358
	struct protection_domain *domain;
2359

2360
	if (!check_device(dev))
2361
		return ERR_PTR(-EINVAL);
2362

2363
	domain = get_dev_data(dev)->domain;
2364
	if (!dma_ops_domain(domain))
2365
		return ERR_PTR(-EBUSY);
2366

2367
	return domain;
2368 2369
}

2370 2371
static void update_device_table(struct protection_domain *domain)
{
2372
	struct iommu_dev_data *dev_data;
2373

2374
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2375
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2376 2377 2378 2379 2380 2381 2382

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2383 2384 2385 2386 2387 2388 2389 2390
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2391 2392 2393

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2394 2395 2396 2397

	domain->updated = false;
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2409 2410
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2411 2412
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2413 2414
 * Must be called with the domain lock held.
 */
2415 2416 2417 2418
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2419
			       enum dma_data_direction direction,
2420
			       u64 dma_mask)
2421 2422
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2423
	dma_addr_t address, start, ret;
2424
	unsigned int pages;
2425
	int prot = 0;
2426 2427
	int i;

2428
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2429 2430
	paddr &= PAGE_MASK;

2431
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2432 2433
	if (address == DMA_ERROR_CODE)
		goto out;
2434

2435
	prot = dir2prot(direction);
2436

2437 2438
	start = address;
	for (i = 0; i < pages; ++i) {
2439 2440 2441
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2442 2443
			goto out_unmap;

2444 2445 2446 2447 2448
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2449
	if (unlikely(amd_iommu_np_cache)) {
2450
		domain_flush_pages(&dma_dom->domain, address, size);
2451 2452
		domain_flush_complete(&dma_dom->domain);
	}
2453

2454 2455
out:
	return address;
2456 2457 2458 2459 2460

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2461
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2462 2463
	}

2464 2465 2466 2467
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2468

2469
	return DMA_ERROR_CODE;
2470 2471
}

2472 2473 2474 2475
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2476
static void __unmap_single(struct dma_ops_domain *dma_dom,
2477 2478 2479 2480
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2481
	dma_addr_t flush_addr;
2482 2483 2484
	dma_addr_t i, start;
	unsigned int pages;

2485
	flush_addr = dma_addr;
2486
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2487 2488 2489 2490
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2491
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2492 2493 2494
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2495 2496 2497 2498 2499 2500 2501
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2502 2503
}

2504 2505 2506
/*
 * The exported map_single function for dma_ops.
 */
2507 2508 2509
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2510
			   unsigned long attrs)
2511
{
2512
	phys_addr_t paddr = page_to_phys(page) + offset;
2513
	struct protection_domain *domain;
2514
	struct dma_ops_domain *dma_dom;
2515
	u64 dma_mask;
2516

2517 2518
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2519
		return (dma_addr_t)paddr;
2520 2521
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2522

2523
	dma_mask = *dev->dma_mask;
2524
	dma_dom = to_dma_ops_domain(domain);
2525

2526
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2527 2528
}

2529 2530 2531
/*
 * The exported unmap_single function for dma_ops.
 */
2532
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2533
		       enum dma_data_direction dir, unsigned long attrs)
2534 2535
{
	struct protection_domain *domain;
2536
	struct dma_ops_domain *dma_dom;
2537

2538 2539
	domain = get_domain(dev);
	if (IS_ERR(domain))
2540 2541
		return;

2542 2543 2544
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2545 2546
}

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2573 2574 2575 2576
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2577
static int map_sg(struct device *dev, struct scatterlist *sglist,
2578
		  int nelems, enum dma_data_direction direction,
2579
		  unsigned long attrs)
2580
{
2581
	int mapped_pages = 0, npages = 0, prot = 0, i;
2582
	struct protection_domain *domain;
2583
	struct dma_ops_domain *dma_dom;
2584
	struct scatterlist *s;
2585
	unsigned long address;
2586
	u64 dma_mask;
2587

2588
	domain = get_domain(dev);
2589
	if (IS_ERR(domain))
2590
		return 0;
2591

2592
	dma_dom  = to_dma_ops_domain(domain);
2593
	dma_mask = *dev->dma_mask;
2594

2595 2596 2597 2598 2599 2600 2601 2602 2603
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2604
	for_each_sg(sglist, s, nelems, i) {
2605 2606 2607 2608 2609
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2610

2611 2612 2613 2614 2615
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2616

2617 2618
			mapped_pages += 1;
		}
2619 2620
	}

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2638

2639 2640 2641 2642 2643 2644
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2645 2646
	}

2647 2648 2649 2650
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2651
	return 0;
2652 2653
}

2654 2655 2656 2657
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2658
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2659
		     int nelems, enum dma_data_direction dir,
2660
		     unsigned long attrs)
2661 2662
{
	struct protection_domain *domain;
2663
	struct dma_ops_domain *dma_dom;
2664 2665
	unsigned long startaddr;
	int npages = 2;
2666

2667 2668
	domain = get_domain(dev);
	if (IS_ERR(domain))
2669 2670
		return;

2671
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2672
	dma_dom   = to_dma_ops_domain(domain);
2673 2674
	npages    = sg_num_pages(dev, sglist, nelems);

2675
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2676 2677
}

2678 2679 2680
/*
 * The exported alloc_coherent function for dma_ops.
 */
2681
static void *alloc_coherent(struct device *dev, size_t size,
2682
			    dma_addr_t *dma_addr, gfp_t flag,
2683
			    unsigned long attrs)
2684
{
2685
	u64 dma_mask = dev->coherent_dma_mask;
2686
	struct protection_domain *domain;
2687
	struct dma_ops_domain *dma_dom;
2688
	struct page *page;
2689

2690 2691
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2692 2693 2694
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2695 2696
	} else if (IS_ERR(domain))
		return NULL;
2697

2698
	dma_dom   = to_dma_ops_domain(domain);
2699
	size	  = PAGE_ALIGN(size);
2700 2701
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2702
	flag     |= __GFP_ZERO;
2703

2704 2705
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2706
		if (!gfpflags_allow_blocking(flag))
2707
			return NULL;
2708

2709
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2710
						 get_order(size), flag);
2711 2712 2713
		if (!page)
			return NULL;
	}
2714

2715 2716 2717
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2718
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2719
				 size, DMA_BIDIRECTIONAL, dma_mask);
2720

2721
	if (*dma_addr == DMA_ERROR_CODE)
2722
		goto out_free;
2723

2724
	return page_address(page);
2725 2726 2727

out_free:

2728 2729
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2730 2731

	return NULL;
2732 2733
}

2734 2735 2736
/*
 * The exported free_coherent function for dma_ops.
 */
2737
static void free_coherent(struct device *dev, size_t size,
2738
			  void *virt_addr, dma_addr_t dma_addr,
2739
			  unsigned long attrs)
2740 2741
{
	struct protection_domain *domain;
2742
	struct dma_ops_domain *dma_dom;
2743
	struct page *page;
2744

2745 2746 2747
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2748 2749
	domain = get_domain(dev);
	if (IS_ERR(domain))
2750 2751
		goto free_mem;

2752 2753 2754
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2755 2756

free_mem:
2757 2758
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2759 2760
}

2761 2762 2763 2764 2765 2766
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2767
	return check_device(dev);
2768 2769
}

2770
static const struct dma_map_ops amd_iommu_dma_ops = {
2771 2772 2773 2774 2775 2776 2777
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2778 2779
};

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2833
int __init amd_iommu_init_api(void)
2834
{
2835
	int ret, cpu, err = 0;
2836 2837 2838 2839

	ret = iova_cache_get();
	if (ret)
		return ret;
2840

2841 2842 2843 2844
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2857 2858 2859 2860 2861 2862 2863 2864
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2865 2866 2867
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2868
	return 0;
2869 2870 2871 2872 2873 2874 2875 2876 2877

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2878 2879
}

2880 2881
int __init amd_iommu_init_dma_ops(void)
{
2882 2883 2884
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2885
	swiotlb        = iommu_pass_through ? 1 : 0;
2886 2887
	iommu_detected = 1;

2888 2889 2890 2891 2892 2893 2894 2895 2896
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2897 2898 2899 2900 2901
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2902
	return 0;
2903

2904
}
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2918
	struct iommu_dev_data *entry;
2919 2920 2921 2922
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2923 2924 2925 2926
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2927
	}
2928 2929 2930 2931

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2932 2933 2934 2935 2936
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2937 2938
	del_domain_from_list(domain);

2939 2940 2941 2942 2943 2944
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2957
static struct protection_domain *protection_domain_alloc(void)
2958 2959 2960 2961 2962
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2963
		return NULL;
2964

2965
	if (protection_domain_init(domain))
2966 2967
		goto out_err;

2968 2969
	add_domain_to_list(domain);

2970 2971 2972 2973 2974 2975 2976 2977
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2978
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2979
{
2980
	struct protection_domain *pdomain;
2981
	struct dma_ops_domain *dma_domain;
2982

2983 2984 2985 2986 2987
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2988

2989 2990 2991 2992 2993 2994
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2995

2996 2997 2998
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2999

3000 3001 3002 3003 3004 3005 3006 3007 3008
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3009 3010 3011 3012
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3013

3014 3015
		pdomain->mode = PAGE_MODE_NONE;
		break;
3016 3017 3018
	default:
		return NULL;
	}
3019

3020
	return &pdomain->domain;
3021 3022
}

3023
static void amd_iommu_domain_free(struct iommu_domain *dom)
3024
{
3025
	struct protection_domain *domain;
3026
	struct dma_ops_domain *dma_dom;
3027

3028 3029
	domain = to_pdomain(dom);

3030 3031 3032 3033 3034
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3035 3036
	if (!dom)
		return;
3037

3038 3039
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3040 3041 3042 3043 3044 3045 3046
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
3047
		dma_dom = to_dma_ops_domain(domain);
3048 3049 3050 3051 3052
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3053

3054 3055 3056 3057 3058 3059
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3060 3061
}

3062 3063 3064
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3065
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3066
	struct amd_iommu *iommu;
3067
	int devid;
3068

3069
	if (!check_device(dev))
3070 3071
		return;

3072
	devid = get_device_id(dev);
3073
	if (devid < 0)
3074
		return;
3075

3076
	if (dev_data->domain != NULL)
3077
		detach_device(dev);
3078 3079 3080 3081 3082

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3083 3084 3085 3086 3087 3088
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3089 3090 3091
	iommu_completion_wait(iommu);
}

3092 3093 3094
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3095
	struct protection_domain *domain = to_pdomain(dom);
3096
	struct iommu_dev_data *dev_data;
3097
	struct amd_iommu *iommu;
3098
	int ret;
3099

3100
	if (!check_device(dev))
3101 3102
		return -EINVAL;

3103 3104
	dev_data = dev->archdata.iommu;

3105
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3106 3107 3108
	if (!iommu)
		return -EINVAL;

3109
	if (dev_data->domain)
3110
		detach_device(dev);
3111

3112
	ret = attach_device(dev, domain);
3113

3114 3115 3116 3117 3118 3119 3120 3121 3122
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3123 3124
	iommu_completion_wait(iommu);

3125
	return ret;
3126 3127
}

3128
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3129
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3130
{
3131
	struct protection_domain *domain = to_pdomain(dom);
3132 3133 3134
	int prot = 0;
	int ret;

3135 3136 3137
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3138 3139 3140 3141 3142
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3143
	mutex_lock(&domain->api_lock);
3144
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3145 3146
	mutex_unlock(&domain->api_lock);

3147
	return ret;
3148 3149
}

3150 3151
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3152
{
3153
	struct protection_domain *domain = to_pdomain(dom);
3154
	size_t unmap_size;
3155

3156 3157 3158
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3159
	mutex_lock(&domain->api_lock);
3160
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3161
	mutex_unlock(&domain->api_lock);
3162

3163
	domain_flush_tlb_pde(domain);
3164

3165
	return unmap_size;
3166 3167
}

3168
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3169
					  dma_addr_t iova)
3170
{
3171
	struct protection_domain *domain = to_pdomain(dom);
3172
	unsigned long offset_mask, pte_pgsize;
3173
	u64 *pte, __pte;
3174

3175 3176 3177
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3178
	pte = fetch_pte(domain, iova, &pte_pgsize);
3179

3180
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3181 3182
		return 0;

3183 3184
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3185

3186
	return (__pte & ~offset_mask) | (iova & offset_mask);
3187 3188
}

3189
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3190
{
3191 3192
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3193
		return true;
3194
	case IOMMU_CAP_INTR_REMAP:
3195
		return (irq_remapping_enabled == 1);
3196 3197
	case IOMMU_CAP_NOEXEC:
		return false;
3198 3199
	}

3200
	return false;
S
Sheng Yang 已提交
3201 3202
}

3203 3204
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3205
{
3206
	struct iommu_resv_region *region;
3207
	struct unity_map_entry *entry;
3208
	int devid;
3209 3210

	devid = get_device_id(dev);
3211
	if (devid < 0)
3212
		return;
3213 3214

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3215 3216
		size_t length;
		int prot = 0;
3217 3218 3219 3220

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3221 3222 3223 3224 3225 3226 3227 3228 3229
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3230 3231 3232 3233 3234 3235 3236
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3237 3238 3239

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3240
					 0, IOMMU_RESV_MSI);
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3251 3252
}

3253
static void amd_iommu_put_resv_regions(struct device *dev,
3254 3255
				     struct list_head *head)
{
3256
	struct iommu_resv_region *entry, *next;
3257 3258 3259 3260 3261

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3262
static void amd_iommu_apply_resv_region(struct device *dev,
3263
				      struct iommu_domain *domain,
3264
				      struct iommu_resv_region *region)
3265
{
3266
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3267 3268 3269 3270 3271 3272 3273 3274
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3275
const struct iommu_ops amd_iommu_ops = {
3276
	.capable = amd_iommu_capable,
3277 3278
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3279 3280
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3281 3282
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3283
	.map_sg = default_iommu_map_sg,
3284
	.iova_to_phys = amd_iommu_iova_to_phys,
3285 3286
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3287
	.device_group = amd_iommu_device_group,
3288 3289 3290
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3291
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3292 3293
};

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3316 3317 3318

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3319
	struct protection_domain *domain = to_pdomain(dom);
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3337 3338 3339

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3340
	struct protection_domain *domain = to_pdomain(dom);
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3401
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3418 3419 3420 3421 3422 3423
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3455
	struct protection_domain *domain = to_pdomain(dom);
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3475
	struct protection_domain *domain = to_pdomain(dom);
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3555
	struct protection_domain *domain = to_pdomain(dom);
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3569
	struct protection_domain *domain = to_pdomain(dom);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3597 3598 3599

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3600
	struct protection_domain *pdomain;
3601

3602 3603
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3604 3605 3606
		return NULL;

	/* Only return IOMMUv2 domains */
3607
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3608 3609
		return NULL;

3610
	return &pdomain->domain;
3611 3612
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3668 3669 3670 3671 3672 3673 3674 3675 3676

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3677 3678
static struct irq_chip amd_ir_chip;

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3713
		goto out_unlock;
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3727
		goto out_unlock;
3728

3729 3730 3731
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3732 3733 3734 3735 3736 3737 3738
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3739
		table = NULL;
3740
		goto out_unlock;
3741 3742
	}

3743 3744 3745 3746 3747 3748
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3749 3750 3751 3752 3753

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3754
			iommu->irte_ops->set_allocated(table, i);
3755 3756 3757 3758 3759 3760 3761
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3762
		set_dte_irq_entry(alias, table);
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3775
static int alloc_irq_index(u16 devid, int count)
3776 3777 3778 3779
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3780 3781 3782 3783
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3795
		if (!iommu->irte_ops->is_allocated(table, index))
3796 3797 3798 3799 3800 3801
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3802
				iommu->irte_ops->set_allocated(table, index - c + 1);
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3817 3818
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3819 3820 3821 3822
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3823
	struct irte_ga *entry;
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3834 3835 3836 3837 3838 3839 3840

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3841 3842
	if (data)
		data->ref = entry;
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3867
	table->table[index] = irte->val;
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3891
	iommu->irte_ops->clear_allocated(table, index);
3892 3893 3894 3895 3896 3897
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3898 3899
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3900
			 u8 vector, u32 dest_apicid, int devid)
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3914
			    u8 vector, u32 dest_apicid, int devid)
3915 3916
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3917
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3918 3919 3920

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3921
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3942
	modify_irte_ga(devid, index, irte, NULL);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3958
	modify_irte_ga(devid, index, irte, NULL);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3975
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3976

3977 3978 3979 3980 3981 3982
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3983 3984
}

3985
#define IRTE_ALLOCATED (~1U)
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4031
static int get_devid(struct irq_alloc_info *info)
4032
{
4033
	int devid = -1;
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4050

4051 4052
	return devid;
}
4053

4054 4055 4056 4057
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4058

4059 4060
	if (!info)
		return NULL;
4061

4062 4063 4064 4065 4066 4067
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4068

4069
	return NULL;
4070 4071
}

4072
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4073
{
4074 4075
	struct amd_iommu *iommu;
	int devid;
4076

4077 4078
	if (!info)
		return NULL;
4079

4080 4081 4082 4083
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4084
		if (devid < 0)
4085 4086
			return NULL;

4087 4088 4089
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4090 4091 4092 4093
		break;
	default:
		break;
	}
4094

4095 4096
	return NULL;
}
4097

4098 4099 4100 4101 4102 4103
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4104 4105 4106
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4107

4108 4109 4110 4111 4112 4113 4114 4115
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4116 4117 4118 4119
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4120

4121 4122
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4123 4124
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4125
				 irq_cfg->dest_apicid, devid);
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4141

4142 4143 4144 4145 4146 4147 4148
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4149

4150 4151 4152 4153
	default:
		BUG_ON(1);
		break;
	}
4154 4155
}

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4176 4177
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4178
{
4179 4180
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4181
	struct amd_ir_data *data = NULL;
4182
	struct irq_cfg *cfg;
4183 4184
	int i, ret, devid;
	int index = -1;
4185

4186 4187 4188 4189
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4190 4191
		return -EINVAL;

4192 4193 4194 4195 4196 4197
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4198

4199 4200 4201
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4202

4203 4204 4205
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4206

4207 4208 4209 4210 4211 4212
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4213
		index = alloc_irq_index(devid, nr_irqs);
4214 4215 4216
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4217
		ret = index;
4218 4219
		goto out_free_parent;
	}
4220

4221 4222 4223 4224 4225 4226 4227
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4228

4229 4230 4231 4232 4233
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4244 4245 4246 4247 4248 4249
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4250

4251
	return 0;
4252

4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4264 4265
}

4266 4267
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4268
{
4269 4270 4271 4272
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4273

4274 4275 4276 4277 4278 4279
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4280
			kfree(data->entry);
4281 4282 4283 4284 4285
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4286

4287 4288 4289 4290 4291
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4292
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4293

4294 4295 4296
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4297 4298
}

4299 4300
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4301
{
4302 4303
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4304
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4305

4306 4307 4308
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4309
}
4310

4311
static const struct irq_domain_ops amd_ir_domain_ops = {
4312 4313 4314 4315
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4316
};
4317

4318 4319 4320 4321 4322 4323 4324 4325
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4326 4327 4328 4329 4330 4331 4332 4333
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4382 4383 4384 4385 4386 4387 4388
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4389
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4390
	int ret;
4391

4392 4393 4394
	if (!iommu)
		return -ENODEV;

4395 4396 4397
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4398

4399 4400 4401 4402
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4403 4404
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4405

4406 4407 4408 4409 4410
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4411
	send_cleanup_vector(cfg);
4412 4413

	return IRQ_SET_MASK_OK_DONE;
4414 4415
}

4416
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4417
{
4418
	struct amd_ir_data *ir_data = irq_data->chip_data;
4419

4420 4421
	*msg = ir_data->msi_entry;
}
4422

4423 4424 4425
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4426
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4427 4428
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4429

4430 4431 4432 4433 4434
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4435

4436 4437
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4438 4439 4440

	return 0;
}
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4480
#endif