amd_iommu.c 92.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38 39 40 41
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
42
#include <asm/msidef.h>
43
#include <asm/proto.h>
44
#include <asm/iommu.h>
45
#include <asm/gart.h>
46
#include <asm/dma.h>
47 48 49

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
50
#include "irq_remapping.h"
51 52 53

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

54
#define LOOP_TIMEOUT	100000
55

56 57 58 59 60 61
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
62
 * 512GB Pages are not supported due to a hardware bug
63
 */
J
Joerg Roedel 已提交
64
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65

66 67
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

68 69 70 71
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

72 73 74
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

75 76 77 78
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
79
static const struct iommu_ops amd_iommu_ops;
80

81
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82
int amd_iommu_max_glx_val = -1;
83

84 85
static struct dma_map_ops amd_iommu_dma_ops;

86 87 88 89 90 91 92 93 94
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
95
	bool passthrough;		  /* Device is identity mapped */
96 97 98 99 100 101 102 103 104
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116

117 118 119 120 121 122
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

123 124
	spinlock_t bitmap_lock;

125 126
	/* address allocation bitmap */
	unsigned long *bitmap;
127
	unsigned long offset;
128
	unsigned long next_bit;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

149 150
	/* aperture index we start searching for free addresses */
	unsigned long next_index;
151 152 153 154 155

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];
};

156 157 158 159 160 161
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

162 163 164 165 166
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

167
static struct iommu_dev_data *alloc_dev_data(u16 devid)
168 169 170 171 172 173 174 175
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

176
	dev_data->devid = devid;
177 178 179 180 181 182 183 184

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

216 217 218 219
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

220
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
221 222
}

223 224 225 226 227
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

228 229 230 231
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
232 233
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
234 235 236 237 238 239 240 241 242 243 244 245
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

246 247 248 249 250 251 252 253 254
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

255
/*
256 257
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
258
 */
259 260
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
261
{
262
	u64 addr;
263

264 265 266 267 268
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
269
	}
270
}
271

272 273 274 275 276 277 278 279
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
280

281
	devid = get_device_id(dev);
282

283 284 285 286 287
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
288 289
}

290 291 292 293 294 295 296 297 298 299 300
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

301 302
	/* No PCI device */
	if (!dev_is_pci(dev))
303 304 305 306 307 308 309 310 311 312 313 314 315 316
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

317
static void init_iommu_group(struct device *dev)
318
{
319 320
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
321 322
	struct iommu_group *group;

323
	group = iommu_group_get_for_dev(dev);
324 325 326 327 328 329 330 331 332 333 334 335
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
336 337 338 339 340 341 342 343 344 345 346 347 348 349
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

350 351 352 353 354 355 356
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

357 358
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
359 360 361
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

362 363 364
	return 0;
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

379 380
static void iommu_uninit_device(struct device *dev)
{
381 382 383 384 385
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
386 387 388
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

389 390
	iommu_group_remove_device(dev);

391 392 393
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

394
	/*
395 396
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
397
	 */
398
}
J
Joerg Roedel 已提交
399

400 401 402 403 404 405
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

406
DECLARE_STATS_COUNTER(compl_wait);
407
DECLARE_STATS_COUNTER(cnt_map_single);
408
DECLARE_STATS_COUNTER(cnt_unmap_single);
409
DECLARE_STATS_COUNTER(cnt_map_sg);
410
DECLARE_STATS_COUNTER(cnt_unmap_sg);
411
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
412
DECLARE_STATS_COUNTER(cnt_free_coherent);
413
DECLARE_STATS_COUNTER(cross_page);
414
DECLARE_STATS_COUNTER(domain_flush_single);
415
DECLARE_STATS_COUNTER(domain_flush_all);
416
DECLARE_STATS_COUNTER(alloced_io_mem);
417
DECLARE_STATS_COUNTER(total_map_requests);
418 419 420 421 422
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
442
					 &amd_iommu_unmap_flush);
443 444

	amd_iommu_stats_add(&compl_wait);
445
	amd_iommu_stats_add(&cnt_map_single);
446
	amd_iommu_stats_add(&cnt_unmap_single);
447
	amd_iommu_stats_add(&cnt_map_sg);
448
	amd_iommu_stats_add(&cnt_unmap_sg);
449
	amd_iommu_stats_add(&cnt_alloc_coherent);
450
	amd_iommu_stats_add(&cnt_free_coherent);
451
	amd_iommu_stats_add(&cross_page);
452
	amd_iommu_stats_add(&domain_flush_single);
453
	amd_iommu_stats_add(&domain_flush_all);
454
	amd_iommu_stats_add(&alloced_io_mem);
455
	amd_iommu_stats_add(&total_map_requests);
456 457 458 459
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
460 461 462 463
}

#endif

464 465 466 467 468 469
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

470 471 472 473
static void dump_dte_entry(u16 devid)
{
	int i;

474 475
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
476 477 478
			amd_iommu_dev_table[devid].data[i]);
}

479 480 481 482 483 484 485 486 487
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

488
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
489
{
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
511

512
	printk(KERN_ERR "AMD-Vi: Event logged [");
513 514 515 516 517

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
518
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
519
		       address, flags);
520
		dump_dte_entry(devid);
521 522 523 524
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
525
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
526 527 528 529 530
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
531
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
532 533 534 535 536
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
537
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
538 539 540 541
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
542
		dump_command(address);
543 544 545 546 547 548 549 550
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
551
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
552 553 554 555 556
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
557
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
558 559 560 561 562
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
563 564

	memset(__evt, 0, 4 * sizeof(u32));
565 566 567 568 569 570 571 572 573 574
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
575
		iommu_print_event(iommu, iommu->evt_buf + head);
576
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
577 578 579 580 581
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

582
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
583 584 585
{
	struct amd_iommu_fault fault;

586 587
	INC_STATS_COUNTER(pri_requests);

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
629

630 631 632
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
633

634 635 636 637 638 639 640
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
641 642
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
643 644 645 646 647 648

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
649 650 651 652
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

653
irqreturn_t amd_iommu_int_thread(int irq, void *data)
654
{
655 656
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
657

658 659 660 661
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
662

663 664 665 666
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
667

668 669 670 671
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
688
	return IRQ_HANDLED;
689 690
}

691 692 693 694 695
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

696 697 698 699 700 701
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
722 723 724
{
	u8 *target;

725
	target = iommu->cmd_buf + tail;
726
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
727 728 729 730 731

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
732
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
733
}
734

735
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
736
{
737 738
	WARN_ON(address & 0x7ULL);

739
	memset(cmd, 0, sizeof(*cmd));
740 741 742
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
743 744 745
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

746 747 748 749 750 751 752
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

753 754 755 756
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
757
	bool s;
758 759

	pages = iommu_num_pages(address, size, PAGE_SIZE);
760
	s     = false;
761 762 763 764 765 766 767

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
768
		s = true;
769 770 771 772 773 774 775 776 777 778 779
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
780
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
781 782 783
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

784 785 786 787
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
788
	bool s;
789 790

	pages = iommu_num_pages(address, size, PAGE_SIZE);
791
	s     = false;
792 793 794 795 796 797 798

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
799
		s = true;
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

815 816 817 818 819 820 821
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

822
	cmd->data[0]  = pasid;
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
841
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
842 843
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
844
	cmd->data[1] |= (pasid & 0xff) << 16;
845 846 847 848 849 850 851 852
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

853 854 855 856 857 858 859
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
860
		cmd->data[1]  = pasid;
861 862 863 864 865 866 867 868
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

869 870 871 872
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
873 874
}

875 876 877 878 879 880 881
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

882 883
/*
 * Writes the command to the IOMMUs command buffer and informs the
884
 * hardware about the new command.
885
 */
886 887 888
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
889
{
890
	u32 left, tail, head, next_tail;
891 892
	unsigned long flags;

893
again:
894 895
	spin_lock_irqsave(&iommu->lock, flags);

896 897
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
898 899
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
900

901 902 903 904
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
905

906 907
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
908

909 910 911 912 913 914
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
915 916
	}

917 918 919
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
920
	iommu->need_sync = sync;
921

922
	spin_unlock_irqrestore(&iommu->lock, flags);
923

924
	return 0;
925 926
}

927 928 929 930 931
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

932 933 934 935
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
936
static int iommu_completion_wait(struct amd_iommu *iommu)
937 938
{
	struct iommu_cmd cmd;
939
	volatile u64 sem = 0;
940
	int ret;
941

942
	if (!iommu->need_sync)
943
		return 0;
944

945
	build_completion_wait(&cmd, (u64)&sem);
946

947
	ret = iommu_queue_command_sync(iommu, &cmd, false);
948
	if (ret)
949
		return ret;
950

951
	return wait_on_sem(&sem);
952 953
}

954
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
955
{
956
	struct iommu_cmd cmd;
957

958
	build_inv_dte(&cmd, devid);
959

960 961
	return iommu_queue_command(iommu, &cmd);
}
962

963 964 965
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
966

967 968
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
969

970 971
	iommu_completion_wait(iommu);
}
972

973 974 975 976 977 978 979
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
980

981 982 983 984 985 986
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
987

988
	iommu_completion_wait(iommu);
989 990
}

991
static void iommu_flush_all(struct amd_iommu *iommu)
992
{
993
	struct iommu_cmd cmd;
994

995
	build_inv_all(&cmd);
996

997 998 999 1000
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1020 1021
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1022 1023 1024 1025
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1026
		iommu_flush_irt_all(iommu);
1027
		iommu_flush_tlb_all(iommu);
1028 1029 1030
	}
}

1031
/*
1032
 * Command send function for flushing on-device TLB
1033
 */
1034 1035
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1036 1037
{
	struct amd_iommu *iommu;
1038
	struct iommu_cmd cmd;
1039
	int qdep;
1040

1041 1042
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1043

1044
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1045 1046

	return iommu_queue_command(iommu, &cmd);
1047 1048
}

1049 1050 1051
/*
 * Command send function for invalidating a device table entry
 */
1052
static int device_flush_dte(struct iommu_dev_data *dev_data)
1053
{
1054
	struct amd_iommu *iommu;
1055
	u16 alias;
1056
	int ret;
1057

1058
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1059
	alias = amd_iommu_alias_table[dev_data->devid];
1060

1061
	ret = iommu_flush_dte(iommu, dev_data->devid);
1062 1063
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1064 1065 1066
	if (ret)
		return ret;

1067
	if (dev_data->ats.enabled)
1068
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1069 1070

	return ret;
1071 1072
}

1073 1074 1075 1076 1077
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1078 1079
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1080
{
1081
	struct iommu_dev_data *dev_data;
1082 1083
	struct iommu_cmd cmd;
	int ret = 0, i;
1084

1085
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1086

1087 1088 1089 1090 1091 1092 1093 1094
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1095
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1096 1097
	}

1098 1099
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1100
		if (!dev_data->ats.enabled)
1101 1102
			continue;

1103
		ret |= device_flush_iotlb(dev_data, address, size);
1104 1105
	}

1106
	WARN_ON(ret);
1107 1108
}

1109 1110
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1111
{
1112
	__domain_flush_pages(domain, address, size, 0);
1113
}
1114

1115
/* Flush the whole IO/TLB for a given protection domain */
1116
static void domain_flush_tlb(struct protection_domain *domain)
1117
{
1118
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1119 1120
}

1121
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1122
static void domain_flush_tlb_pde(struct protection_domain *domain)
1123
{
1124
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1125 1126
}

1127
static void domain_flush_complete(struct protection_domain *domain)
1128
{
1129
	int i;
1130

1131 1132 1133
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1134

1135 1136 1137 1138 1139
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1140
	}
1141 1142
}

1143

1144
/*
1145
 * This function flushes the DTEs for all devices in domain
1146
 */
1147
static void domain_flush_devices(struct protection_domain *domain)
1148
{
1149
	struct iommu_dev_data *dev_data;
1150

1151
	list_for_each_entry(dev_data, &domain->dev_list, list)
1152
		device_flush_dte(dev_data);
1153 1154
}

1155 1156 1157 1158 1159 1160 1161
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1191
		      unsigned long page_size,
1192 1193 1194
		      u64 **pte_page,
		      gfp_t gfp)
{
1195
	int level, end_lvl;
1196
	u64 *pte, *page;
1197 1198

	BUG_ON(!is_power_of_2(page_size));
1199 1200 1201 1202

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1203 1204 1205 1206
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1207 1208

	while (level > end_lvl) {
1209 1210 1211 1212 1213
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1214 1215 1216
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1217 1218 1219 1220 1221 1222 1223

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1224 1225
		}

1226 1227 1228 1229
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1247 1248 1249
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1250 1251 1252 1253
{
	int level;
	u64 *pte;

1254 1255 1256
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1257 1258 1259
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1260

1261 1262 1263
	while (level > 0) {

		/* Not Present */
1264 1265 1266
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1267
		/* Large PTE */
1268 1269 1270
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1271 1272 1273 1274 1275

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1276 1277
		level -= 1;

1278
		/* Walk to the next level */
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1294 1295 1296 1297 1298
	}

	return pte;
}

1299 1300 1301 1302 1303 1304 1305
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1306 1307 1308
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1309
			  int prot,
1310
			  unsigned long page_size)
1311
{
1312
	u64 __pte, *pte;
1313
	int i, count;
1314

1315 1316 1317
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1318
	if (!(prot & IOMMU_PROT_MASK))
1319 1320
		return -EINVAL;

1321 1322
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1323

1324 1325 1326
	if (!pte)
		return -ENOMEM;

1327 1328 1329
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1330

1331
	if (count > 1) {
1332 1333 1334 1335
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1336 1337 1338 1339 1340 1341

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1342 1343
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1344

1345 1346
	update_domain(dom);

1347 1348 1349
	return 0;
}

1350 1351 1352
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1353
{
1354 1355
	unsigned long long unmapped;
	unsigned long unmap_size;
1356 1357 1358 1359 1360
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1361

1362 1363
	while (unmapped < page_size) {

1364 1365 1366 1367 1368 1369
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1370 1371 1372 1373 1374 1375 1376 1377
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1378
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1379

1380
	return unmapped;
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390 1391
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1392

1393
/*
1394
 * The address allocator core functions.
1395 1396 1397
 *
 * called with domain->lock held
 */
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1419 1420 1421 1422 1423
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1424
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1425 1426 1427
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1428
	unsigned long i, old_size, pte_pgsize;
1429 1430 1431
	struct aperture_range *range;
	struct amd_iommu *iommu;
	unsigned long flags;
1432

1433 1434 1435 1436
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1437 1438 1439
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

1440 1441
	range = kzalloc(sizeof(struct aperture_range), gfp);
	if (!range)
1442 1443
		return -ENOMEM;

1444 1445
	range->bitmap = (void *)get_zeroed_page(gfp);
	if (!range->bitmap)
1446 1447
		goto out_free;

1448
	range->offset = dma_dom->aperture_size;
1449

1450
	spin_lock_init(&range->bitmap_lock);
1451

1452 1453 1454 1455 1456 1457
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1458
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1459 1460 1461 1462
					&pte_page, gfp);
			if (!pte)
				goto out_free;

1463
			range->pte_pages[i] = pte_page;
1464 1465 1466 1467 1468

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1469 1470
	spin_lock_irqsave(&dma_dom->domain.lock, flags);

1471
	/* First take the bitmap_lock and then publish the range */
1472
	spin_lock(&range->bitmap_lock);
1473 1474 1475 1476

	old_size                 = dma_dom->aperture_size;
	dma_dom->aperture[index] = range;
	dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1490
	/* Initialize the exclusion range if necessary */
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1512
	     i += pte_pgsize) {
1513
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1514 1515 1516
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1517 1518
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1519 1520
	}

1521 1522
	update_domain(&dma_dom->domain);

1523 1524 1525
	spin_unlock(&range->bitmap_lock);

	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1526

1527 1528 1529
	return 0;

out_free:
1530 1531
	update_domain(&dma_dom->domain);

1532
	free_page((unsigned long)range->bitmap);
1533

1534
	kfree(range);
1535 1536 1537 1538

	return -ENOMEM;
}

1539 1540
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1541 1542 1543 1544 1545 1546 1547
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
					 unsigned long align_mask)
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1548
	bool flush = false;
1549 1550 1551 1552 1553 1554

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

	spin_lock_irqsave(&range->bitmap_lock, flags);
1555 1556
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1557
	if (address == -1) {
1558 1559 1560 1561
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1562 1563
		flush = true;
	}
1564 1565 1566 1567

	if (address != -1)
		range->next_bit = address + pages;

1568 1569
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1570 1571 1572 1573 1574
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1575 1576 1577
	return address;
}

1578 1579 1580 1581
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1582
					u64 dma_mask)
1583
{
1584
	unsigned long boundary_size, mask;
1585
	unsigned long address = -1;
1586 1587
	int start = dom->next_index;
	int i;
1588

1589 1590 1591 1592
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1593

1594 1595
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1596

1597 1598 1599 1600
		range = dom->aperture[(start + i) % APERTURE_MAX_RANGES];

		if (!range || range->offset >= dma_mask)
			continue;
1601

1602
		address = dma_ops_aperture_alloc(dom, range, pages,
1603 1604
						 dma_mask, boundary_size,
						 align_mask);
1605
		if (address != -1) {
1606
			address = range->offset + (address << PAGE_SHIFT);
1607
			dom->next_index = i;
1608 1609 1610 1611 1612 1613 1614
			break;
		}
	}

	return address;
}

1615 1616
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1617
					     unsigned int pages,
1618 1619
					     unsigned long align_mask,
					     u64 dma_mask)
1620
{
1621
	unsigned long address = -1;
1622

1623
#ifdef CONFIG_IOMMU_STRESS
1624
	dom->next_index = 0;
1625
#endif
1626

1627 1628 1629 1630
	while (address == -1) {
		address = dma_ops_area_alloc(dev, dom, pages,
					     align_mask, dma_mask);

1631
		if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1632 1633
			break;
	}
1634

1635
	if (unlikely(address == -1))
1636
		address = DMA_ERROR_CODE;
1637 1638 1639 1640 1641 1642

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1643 1644 1645 1646 1647
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1648 1649 1650 1651
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1652 1653
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1654
	unsigned long flags;
1655

1656 1657
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1658 1659 1660 1661
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1662

1663
	if (amd_iommu_unmap_flush) {
1664 1665 1666
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1667 1668

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1669

1670
	spin_lock_irqsave(&range->bitmap_lock, flags);
1671 1672
	if (address + pages > range->next_bit)
		range->next_bit = address + pages;
A
Akinobu Mita 已提交
1673
	bitmap_clear(range->bitmap, address, pages);
1674
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1675

1676 1677
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1750
		/* PTE present? */				\
1751 1752 1753
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1754 1755 1756 1757 1758
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1771
static void free_pagetable(struct protection_domain *domain)
1772
{
1773
	unsigned long root = (unsigned long)domain->pt_root;
1774

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1798 1799 1800
	}
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1831 1832
static void free_gcr3_table(struct protection_domain *domain)
{
1833 1834 1835 1836
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1837 1838
	else
		BUG_ON(domain->glx != 0);
1839

1840 1841 1842
	free_page((unsigned long)domain->gcr3_tbl);
}

1843 1844 1845 1846
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1847 1848
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1849 1850
	int i;

1851 1852 1853
	if (!dom)
		return;

1854 1855
	del_domain_from_list(&dom->domain);

1856
	free_pagetable(&dom->domain);
1857

1858 1859 1860 1861 1862 1863
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1864 1865 1866 1867

	kfree(dom);
}

1868 1869
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1870
 * It also initializes the page table and the address allocator data
1871 1872
 * structures required for the dma_ops interface
 */
1873
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1874 1875 1876 1877 1878 1879 1880
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1881
	if (protection_domain_init(&dma_dom->domain))
1882
		goto free_dma_dom;
1883

1884
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1885
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1886
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1887 1888 1889 1890
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1891 1892
	add_domain_to_list(&dma_dom->domain);

1893
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1894 1895
		goto free_dma_dom;

1896
	/*
1897 1898
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1899
	 */
1900
	dma_dom->aperture[0]->bitmap[0] = 1;
1901
	dma_dom->next_index = 0;
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1912 1913 1914 1915 1916 1917 1918 1919 1920
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1921
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1922
{
1923
	u64 pte_root = 0;
1924
	u64 flags = 0;
1925

1926 1927 1928
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1929 1930 1931
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1932

1933 1934
	flags = amd_iommu_dev_table[devid].data[1];

1935 1936 1937
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1964 1965 1966 1967 1968
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1969 1970 1971 1972 1973
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1974 1975
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1976 1977

	amd_iommu_apply_erratum_63(devid);
1978 1979
}

1980 1981
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1982 1983
{
	struct amd_iommu *iommu;
1984
	u16 alias;
1985
	bool ats;
1986

1987
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1988
	alias = amd_iommu_alias_table[dev_data->devid];
1989
	ats   = dev_data->ats.enabled;
1990 1991 1992 1993 1994 1995 1996 1997 1998

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1999 2000 2001 2002 2003
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
		set_dte_entry(dev_data->devid, domain, ats);

2004
	device_flush_dte(dev_data);
2005 2006
}

2007
static void do_detach(struct iommu_dev_data *dev_data)
2008 2009
{
	struct amd_iommu *iommu;
2010
	u16 alias;
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2021
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2022
	alias = amd_iommu_alias_table[dev_data->devid];
2023 2024

	/* decrease reference counters */
2025 2026 2027 2028 2029 2030
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2031
	clear_dte_entry(dev_data->devid);
2032 2033
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2034

2035
	/* Flush the DTE entry */
2036
	device_flush_dte(dev_data);
2037 2038 2039 2040 2041 2042
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2043
static int __attach_device(struct iommu_dev_data *dev_data,
2044
			   struct protection_domain *domain)
2045
{
2046
	int ret;
2047

2048 2049 2050 2051 2052 2053
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2054 2055 2056
	/* lock domain */
	spin_lock(&domain->lock);

2057
	ret = -EBUSY;
2058
	if (dev_data->domain != NULL)
2059
		goto out_unlock;
2060

2061
	/* Attach alias group root */
2062
	do_attach(dev_data, domain);
2063

2064 2065 2066 2067
	ret = 0;

out_unlock:

2068 2069
	/* ready */
	spin_unlock(&domain->lock);
2070

2071
	return ret;
2072
}
2073

2074 2075 2076 2077 2078 2079 2080 2081

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2082 2083 2084 2085 2086 2087
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2088
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2089 2090 2091
	if (!pos)
		return -EINVAL;

2092 2093 2094
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2095 2096 2097 2098

	return 0;
}

2099 2100
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2101 2102 2103 2104 2105 2106 2107 2108
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2120 2121
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2122 2123 2124
	if (ret)
		goto out_err;

2125 2126 2127 2128 2129 2130
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2144
/* FIXME: Move this to PCI code */
2145
#define PCI_PRI_TLP_OFF		(1 << 15)
2146

J
Joerg Roedel 已提交
2147
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2148
{
2149
	u16 status;
2150 2151
	int pos;

2152
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2153 2154 2155
	if (!pos)
		return false;

2156
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2157

2158
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2159 2160
}

2161
/*
F
Frank Arnold 已提交
2162
 * If a device is not yet associated with a domain, this function
2163 2164
 * assigns it visible for the hardware
 */
2165 2166
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2167
{
2168
	struct pci_dev *pdev = to_pci_dev(dev);
2169
	struct iommu_dev_data *dev_data;
2170
	unsigned long flags;
2171
	int ret;
2172

2173 2174
	dev_data = get_dev_data(dev);

2175
	if (domain->flags & PD_IOMMUV2_MASK) {
2176
		if (!dev_data->passthrough)
2177 2178
			return -EINVAL;

2179 2180 2181
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2182

2183 2184 2185 2186
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2187 2188
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2189 2190 2191
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2192

2193
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2194
	ret = __attach_device(dev_data, domain);
2195 2196
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2197 2198 2199 2200 2201
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2202
	domain_flush_tlb_pde(domain);
2203 2204

	return ret;
2205 2206
}

2207 2208 2209
/*
 * Removes a device from a protection domain (unlocked)
 */
2210
static void __detach_device(struct iommu_dev_data *dev_data)
2211
{
2212
	struct protection_domain *domain;
2213

2214 2215 2216 2217 2218
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2219

2220 2221
	if (WARN_ON(!dev_data->domain))
		return;
2222

2223
	domain = dev_data->domain;
2224

2225
	spin_lock(&domain->lock);
2226

2227
	do_detach(dev_data);
2228

2229
	spin_unlock(&domain->lock);
2230 2231 2232 2233 2234
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2235
static void detach_device(struct device *dev)
2236
{
2237
	struct protection_domain *domain;
2238
	struct iommu_dev_data *dev_data;
2239 2240
	unsigned long flags;

2241
	dev_data = get_dev_data(dev);
2242
	domain   = dev_data->domain;
2243

2244 2245
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2246
	__detach_device(dev_data);
2247
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2248

2249
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2250 2251
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2252
		pci_disable_ats(to_pci_dev(dev));
2253 2254

	dev_data->ats.enabled = false;
2255
}
2256

2257
static int amd_iommu_add_device(struct device *dev)
2258
{
2259
	struct iommu_dev_data *dev_data;
2260
	struct iommu_domain *domain;
2261
	struct amd_iommu *iommu;
2262
	u16 devid;
2263
	int ret;
2264

2265
	if (!check_device(dev) || get_dev_data(dev))
2266
		return 0;
2267

2268 2269
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2270

2271
	ret = iommu_init_device(dev);
2272 2273 2274 2275
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2276

2277
		iommu_ignore_device(dev);
2278
		dev->archdata.dma_ops = &nommu_dma_ops;
2279 2280 2281
		goto out;
	}
	init_iommu_group(dev);
2282

2283
	dev_data = get_dev_data(dev);
2284

2285
	BUG_ON(!dev_data);
2286

2287
	if (iommu_pass_through || dev_data->iommu_v2)
2288
		iommu_request_dm_for_dev(dev);
2289

2290 2291
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2292
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2293
		dev_data->passthrough = true;
2294
	else
2295
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2296

2297
out:
2298 2299 2300 2301 2302
	iommu_completion_wait(iommu);

	return 0;
}

2303
static void amd_iommu_remove_device(struct device *dev)
2304
{
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2331
static struct protection_domain *get_domain(struct device *dev)
2332
{
2333
	struct protection_domain *domain;
2334
	struct iommu_domain *io_domain;
2335

2336
	if (!check_device(dev))
2337
		return ERR_PTR(-EINVAL);
2338

2339
	io_domain = iommu_get_domain_for_dev(dev);
2340 2341
	if (!io_domain)
		return NULL;
2342

2343 2344
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2345
		return ERR_PTR(-EBUSY);
2346

2347
	return domain;
2348 2349
}

2350 2351
static void update_device_table(struct protection_domain *domain)
{
2352
	struct iommu_dev_data *dev_data;
2353

2354 2355
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2356 2357 2358 2359 2360 2361 2362 2363
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2364 2365 2366

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2367 2368 2369 2370

	domain->updated = false;
}

2371 2372 2373 2374 2375 2376
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2377
	struct aperture_range *aperture;
2378 2379
	u64 *pte, *pte_page;

2380 2381 2382 2383 2384
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2385
	if (!pte) {
2386
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2387
				GFP_ATOMIC);
2388 2389
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2390
		pte += PM_LEVEL_INDEX(0, address);
2391

2392
	update_domain(&dom->domain);
2393 2394 2395 2396

	return pte;
}

2397 2398 2399 2400
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2401
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2412
	pte  = dma_ops_get_pte(dom, address);
2413
	if (!pte)
2414
		return DMA_ERROR_CODE;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2425
	WARN_ON_ONCE(*pte);
2426 2427 2428 2429 2430 2431

	*pte = __pte;

	return (dma_addr_t)address;
}

2432 2433 2434
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2435
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2436 2437
				 unsigned long address)
{
2438
	struct aperture_range *aperture;
2439 2440 2441 2442 2443
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2444 2445 2446 2447 2448 2449 2450
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2451

2452
	pte += PM_LEVEL_INDEX(0, address);
2453

2454
	WARN_ON_ONCE(!*pte);
2455 2456 2457 2458

	*pte = 0ULL;
}

2459 2460
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2461 2462
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2463 2464
 * Must be called with the domain lock held.
 */
2465 2466 2467 2468
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2469
			       int dir,
2470 2471
			       bool align,
			       u64 dma_mask)
2472 2473
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2474
	dma_addr_t address, start, ret;
2475
	unsigned int pages;
2476
	unsigned long align_mask = 0;
2477 2478
	int i;

2479
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2480 2481
	paddr &= PAGE_MASK;

2482 2483
	INC_STATS_COUNTER(total_map_requests);

2484 2485 2486
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2487 2488 2489
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2490 2491
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2492

2493 2494
	if (address == DMA_ERROR_CODE)
		goto out;
2495 2496 2497

	start = address;
	for (i = 0; i < pages; ++i) {
2498
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2499
		if (ret == DMA_ERROR_CODE)
2500 2501
			goto out_unmap;

2502 2503 2504 2505 2506
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2507 2508
	ADD_STATS_COUNTER(alloced_io_mem, size);

2509
	if (unlikely(amd_iommu_np_cache)) {
2510
		domain_flush_pages(&dma_dom->domain, address, size);
2511 2512
		domain_flush_complete(&dma_dom->domain);
	}
2513

2514 2515
out:
	return address;
2516 2517 2518 2519 2520

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2521
		dma_ops_domain_unmap(dma_dom, start);
2522 2523 2524 2525
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2526
	return DMA_ERROR_CODE;
2527 2528
}

2529 2530 2531 2532
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2533
static void __unmap_single(struct dma_ops_domain *dma_dom,
2534 2535 2536 2537
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2538
	dma_addr_t flush_addr;
2539 2540 2541
	dma_addr_t i, start;
	unsigned int pages;

2542
	if ((dma_addr == DMA_ERROR_CODE) ||
2543
	    (dma_addr + size > dma_dom->aperture_size))
2544 2545
		return;

2546
	flush_addr = dma_addr;
2547
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2548 2549 2550 2551
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2552
		dma_ops_domain_unmap(dma_dom, start);
2553 2554 2555
		start += PAGE_SIZE;
	}

2556 2557 2558
	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2559 2560
}

2561 2562 2563
/*
 * The exported map_single function for dma_ops.
 */
2564 2565 2566 2567
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2568
{
2569
	phys_addr_t paddr = page_to_phys(page) + offset;
2570
	struct protection_domain *domain;
2571
	u64 dma_mask;
2572

2573 2574
	INC_STATS_COUNTER(cnt_map_single);

2575 2576
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2577
		return (dma_addr_t)paddr;
2578 2579
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2580

2581 2582
	dma_mask = *dev->dma_mask;

2583
	return __map_single(dev, domain->priv, paddr, size, dir, false,
2584
			    dma_mask);
2585 2586
}

2587 2588 2589
/*
 * The exported unmap_single function for dma_ops.
 */
2590 2591
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2592 2593 2594
{
	struct protection_domain *domain;

2595 2596
	INC_STATS_COUNTER(cnt_unmap_single);

2597 2598
	domain = get_domain(dev);
	if (IS_ERR(domain))
2599 2600
		return;

2601
	__unmap_single(domain->priv, dma_addr, size, dir);
2602 2603
}

2604 2605 2606 2607
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2608
static int map_sg(struct device *dev, struct scatterlist *sglist,
2609 2610
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2611 2612 2613 2614 2615 2616
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2617
	u64 dma_mask;
2618

2619 2620
	INC_STATS_COUNTER(cnt_map_sg);

2621
	domain = get_domain(dev);
2622
	if (IS_ERR(domain))
2623
		return 0;
2624

2625
	dma_mask = *dev->dma_mask;
2626 2627 2628 2629

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2630
		s->dma_address = __map_single(dev, domain->priv,
2631 2632
					      paddr, s->length, dir, false,
					      dma_mask);
2633 2634 2635 2636 2637 2638 2639 2640 2641

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2642

2643 2644 2645
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2646
			__unmap_single(domain->priv, s->dma_address,
2647 2648 2649 2650
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2651
	return 0;
2652 2653
}

2654 2655 2656 2657
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2658
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2659 2660
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2661 2662 2663 2664 2665
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2666 2667
	INC_STATS_COUNTER(cnt_unmap_sg);

2668 2669
	domain = get_domain(dev);
	if (IS_ERR(domain))
2670 2671
		return;

2672
	for_each_sg(sglist, s, nelems, i) {
2673
		__unmap_single(domain->priv, s->dma_address,
2674 2675 2676 2677 2678
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2679 2680 2681
/*
 * The exported alloc_coherent function for dma_ops.
 */
2682
static void *alloc_coherent(struct device *dev, size_t size,
2683 2684
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2685
{
2686
	u64 dma_mask = dev->coherent_dma_mask;
2687 2688
	struct protection_domain *domain;
	struct page *page;
2689

2690 2691
	INC_STATS_COUNTER(cnt_alloc_coherent);

2692 2693
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2694 2695 2696
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2697 2698
	} else if (IS_ERR(domain))
		return NULL;
2699

2700
	size	  = PAGE_ALIGN(size);
2701 2702
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2703
	flag     |= __GFP_ZERO;
2704

2705 2706
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2707
		if (!gfpflags_allow_blocking(flag))
2708
			return NULL;
2709

2710 2711 2712 2713 2714
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2715

2716 2717 2718
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2719
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2720
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2721

2722
	if (*dma_addr == DMA_ERROR_CODE)
2723
		goto out_free;
2724

2725
	return page_address(page);
2726 2727 2728

out_free:

2729 2730
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2731 2732

	return NULL;
2733 2734
}

2735 2736 2737
/*
 * The exported free_coherent function for dma_ops.
 */
2738
static void free_coherent(struct device *dev, size_t size,
2739 2740
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2741 2742
{
	struct protection_domain *domain;
2743
	struct page *page;
2744

2745 2746
	INC_STATS_COUNTER(cnt_free_coherent);

2747 2748 2749
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2750 2751
	domain = get_domain(dev);
	if (IS_ERR(domain))
2752 2753
		goto free_mem;

2754
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2755 2756

free_mem:
2757 2758
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2759 2760
}

2761 2762 2763 2764 2765 2766
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2767
	return check_device(dev);
2768 2769
}

2770
static struct dma_map_ops amd_iommu_dma_ops = {
2771 2772
	.alloc = alloc_coherent,
	.free = free_coherent,
2773 2774
	.map_page = map_page,
	.unmap_page = unmap_page,
2775 2776
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2777
	.dma_supported = amd_iommu_dma_supported,
2778 2779
};

2780
int __init amd_iommu_init_api(void)
2781
{
2782
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2783 2784
}

2785 2786
int __init amd_iommu_init_dma_ops(void)
{
2787
	swiotlb        = iommu_pass_through ? 1 : 0;
2788 2789
	iommu_detected = 1;

2790 2791 2792 2793 2794 2795 2796 2797 2798
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2799 2800
	amd_iommu_stats_init();

2801 2802 2803 2804 2805
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2806 2807
	return 0;
}
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2821
	struct iommu_dev_data *entry;
2822 2823 2824 2825
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2826 2827 2828 2829
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2830
	}
2831 2832 2833 2834

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2835 2836 2837 2838 2839
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2840 2841
	del_domain_from_list(domain);

2842 2843 2844 2845 2846 2847
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2860
static struct protection_domain *protection_domain_alloc(void)
2861 2862 2863 2864 2865
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2866
		return NULL;
2867

2868
	if (protection_domain_init(domain))
2869 2870
		goto out_err;

2871 2872
	add_domain_to_list(domain);

2873 2874 2875 2876 2877 2878 2879 2880
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2881
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2882
{
2883
	struct protection_domain *pdomain;
2884
	struct dma_ops_domain *dma_domain;
2885

2886 2887 2888 2889 2890
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2891

2892 2893 2894 2895 2896 2897
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2898

2899 2900 2901
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2902

2903 2904 2905 2906 2907 2908 2909 2910 2911
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2912 2913 2914 2915
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2916

2917 2918
		pdomain->mode = PAGE_MODE_NONE;
		break;
2919 2920 2921
	default:
		return NULL;
	}
2922

2923
	return &pdomain->domain;
2924 2925
}

2926
static void amd_iommu_domain_free(struct iommu_domain *dom)
2927
{
2928
	struct protection_domain *domain;
2929

2930
	if (!dom)
2931 2932
		return;

2933 2934
	domain = to_pdomain(dom);

2935 2936 2937 2938 2939
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2940 2941
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2942

2943 2944 2945
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

2946
	protection_domain_free(domain);
2947 2948
}

2949 2950 2951
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2952
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2953 2954 2955
	struct amd_iommu *iommu;
	u16 devid;

2956
	if (!check_device(dev))
2957 2958
		return;

2959
	devid = get_device_id(dev);
2960

2961
	if (dev_data->domain != NULL)
2962
		detach_device(dev);
2963 2964 2965 2966 2967 2968 2969 2970

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2971 2972 2973
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2974
	struct protection_domain *domain = to_pdomain(dom);
2975
	struct iommu_dev_data *dev_data;
2976
	struct amd_iommu *iommu;
2977
	int ret;
2978

2979
	if (!check_device(dev))
2980 2981
		return -EINVAL;

2982 2983
	dev_data = dev->archdata.iommu;

2984
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2985 2986 2987
	if (!iommu)
		return -EINVAL;

2988
	if (dev_data->domain)
2989
		detach_device(dev);
2990

2991
	ret = attach_device(dev, domain);
2992 2993 2994

	iommu_completion_wait(iommu);

2995
	return ret;
2996 2997
}

2998
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2999
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3000
{
3001
	struct protection_domain *domain = to_pdomain(dom);
3002 3003 3004
	int prot = 0;
	int ret;

3005 3006 3007
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3008 3009 3010 3011 3012
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3013
	mutex_lock(&domain->api_lock);
3014
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3015 3016
	mutex_unlock(&domain->api_lock);

3017
	return ret;
3018 3019
}

3020 3021
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3022
{
3023
	struct protection_domain *domain = to_pdomain(dom);
3024
	size_t unmap_size;
3025

3026 3027 3028
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3029
	mutex_lock(&domain->api_lock);
3030
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3031
	mutex_unlock(&domain->api_lock);
3032

3033
	domain_flush_tlb_pde(domain);
3034

3035
	return unmap_size;
3036 3037
}

3038
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3039
					  dma_addr_t iova)
3040
{
3041
	struct protection_domain *domain = to_pdomain(dom);
3042
	unsigned long offset_mask, pte_pgsize;
3043
	u64 *pte, __pte;
3044

3045 3046 3047
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3048
	pte = fetch_pte(domain, iova, &pte_pgsize);
3049

3050
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3051 3052
		return 0;

3053 3054
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3055

3056
	return (__pte & ~offset_mask) | (iova & offset_mask);
3057 3058
}

3059
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3060
{
3061 3062
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3063
		return true;
3064
	case IOMMU_CAP_INTR_REMAP:
3065
		return (irq_remapping_enabled == 1);
3066 3067
	case IOMMU_CAP_NOEXEC:
		return false;
3068 3069
	}

3070
	return false;
S
Sheng Yang 已提交
3071 3072
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3114
static const struct iommu_ops amd_iommu_ops = {
3115
	.capable = amd_iommu_capable,
3116 3117
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3118 3119
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3120 3121
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3122
	.map_sg = default_iommu_map_sg,
3123
	.iova_to_phys = amd_iommu_iova_to_phys,
3124 3125
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3126
	.device_group = pci_device_group,
3127 3128
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3129
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3130 3131
};

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3154 3155 3156

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3157
	struct protection_domain *domain = to_pdomain(dom);
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3175 3176 3177

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3178
	struct protection_domain *domain = to_pdomain(dom);
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3256 3257 3258 3259 3260 3261
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3287 3288
	INC_STATS_COUNTER(invalidate_iotlb);

3289 3290 3291 3292 3293 3294
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3295
	struct protection_domain *domain = to_pdomain(dom);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3309 3310
	INC_STATS_COUNTER(invalidate_iotlb_all);

3311 3312 3313 3314 3315 3316
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3317
	struct protection_domain *domain = to_pdomain(dom);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3397
	struct protection_domain *domain = to_pdomain(dom);
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3411
	struct protection_domain *domain = to_pdomain(dom);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3422 3423 3424 3425 3426 3427 3428 3429

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3430 3431
	INC_STATS_COUNTER(complete_ppr);

3432 3433 3434 3435 3436 3437 3438 3439 3440
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3441 3442 3443

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3444
	struct protection_domain *pdomain;
3445

3446 3447
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3448 3449 3450
		return NULL;

	/* Only return IOMMUv2 domains */
3451
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3452 3453
		return NULL;

3454
	return &pdomain->domain;
3455 3456
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3536 3537 3538 3539 3540
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3603 3604 3605
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3606 3607 3608 3609 3610 3611 3612
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3613
		table = NULL;
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3631
		set_dte_irq_entry(alias, table);
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3644
static int alloc_irq_index(u16 devid, int count)
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3728
static int get_devid(struct irq_alloc_info *info)
3729
{
3730
	int devid = -1;
3731

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3747

3748 3749
	return devid;
}
3750

3751 3752 3753 3754
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3755

3756 3757
	if (!info)
		return NULL;
3758

3759 3760 3761 3762 3763 3764
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3765

3766
	return NULL;
3767 3768
}

3769
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3770
{
3771 3772
	struct amd_iommu *iommu;
	int devid;
3773

3774 3775
	if (!info)
		return NULL;
3776

3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		if (devid >= 0) {
			iommu = amd_iommu_rlookup_table[devid];
			if (iommu)
				return iommu->msi_domain;
		}
		break;
	default:
		break;
	}
3790

3791 3792
	return NULL;
}
3793

3794 3795 3796 3797 3798 3799
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3800 3801 3802
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3803

3804 3805 3806 3807 3808 3809 3810 3811 3812
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3813

3814 3815
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3816

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3839

3840 3841 3842 3843 3844 3845 3846
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3847

3848 3849 3850 3851
	default:
		BUG_ON(1);
		break;
	}
3852 3853
}

3854 3855
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3856
{
3857 3858 3859
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3860
	struct irq_cfg *cfg;
3861 3862
	int i, ret, devid;
	int index = -1;
3863

3864 3865 3866 3867
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3868 3869
		return -EINVAL;

3870 3871 3872 3873 3874 3875
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3876

3877 3878 3879
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3880

3881 3882 3883
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3884

3885 3886 3887 3888 3889 3890
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3891
		index = alloc_irq_index(devid, nr_irqs);
3892 3893 3894 3895 3896
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3897

3898 3899 3900 3901 3902 3903 3904
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3905

3906 3907 3908 3909 3910
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3911 3912 3913 3914 3915 3916
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3917

3918
	return 0;
3919

3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3931 3932
}

3933 3934
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3935
{
3936 3937 3938 3939
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3940

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
3952

3953 3954 3955 3956 3957
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
3958

3959
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
3960 3961
}

3962 3963
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
3964
{
3965 3966 3967
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
3968

3969 3970 3971
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
3972

3973 3974 3975 3976 3977
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
3978
};
3979

3980 3981 3982 3983 3984 3985 3986 3987
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
3988

3989 3990 3991
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
3992

3993 3994 3995 3996 3997 3998 3999
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4000

4001 4002 4003 4004 4005
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4006
	send_cleanup_vector(cfg);
4007 4008

	return IRQ_SET_MASK_OK_DONE;
4009 4010
}

4011
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4012
{
4013
	struct amd_ir_data *ir_data = irq_data->chip_data;
4014

4015 4016
	*msg = ir_data->msi_entry;
}
4017

4018 4019 4020 4021 4022
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4023

4024 4025 4026 4027 4028
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4029

4030 4031
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4032 4033 4034

	return 0;
}
4035
#endif