amd_iommu.c 103.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/dma-direct.h>
32
#include <linux/iommu-helper.h>
33
#include <linux/iommu.h>
34
#include <linux/delay.h>
35
#include <linux/amd-iommu.h>
36 37
#include <linux/notifier.h>
#include <linux/export.h>
38 39
#include <linux/irq.h>
#include <linux/msi.h>
40
#include <linux/dma-contiguous.h>
41
#include <linux/irqdomain.h>
42
#include <linux/percpu.h>
43
#include <linux/iova.h>
44 45 46 47
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
48
#include <asm/msidef.h>
49
#include <asm/proto.h>
50
#include <asm/iommu.h>
51
#include <asm/gart.h>
52
#include <asm/dma.h>
53 54 55

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
56
#include "irq_remapping.h"
57

58 59
#define AMD_IOMMU_MAPPING_ERROR	0

60 61
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

62
#define LOOP_TIMEOUT	100000
63

64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85
static DEFINE_SPINLOCK(pd_bitmap_lock);
86
static DEFINE_SPINLOCK(iommu_table_lock);
87

88
/* List of all available dev_data structures */
89
static LLIST_HEAD(dev_data_list);
90

91 92
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
93
LIST_HEAD(acpihid_map);
94

95 96 97 98
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
99
const struct iommu_ops amd_iommu_ops;
100

101
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
102
int amd_iommu_max_glx_val = -1;
103

104
static const struct dma_map_ops amd_iommu_dma_ops;
105

106 107 108
/*
 * general struct to manage commands send to an IOMMU
 */
109
struct iommu_cmd {
110 111 112
	u32 data[4];
};

113 114
struct kmem_cache *amd_iommu_irq_cache;

115
static void update_domain(struct protection_domain *domain);
116
static int protection_domain_init(struct protection_domain *domain);
117
static void detach_device(struct device *dev);
118
static void iova_domain_flush_tlb(struct iova_domain *iovad);
119

120 121 122 123 124 125 126
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

127 128
	/* IOVA RB-Tree */
	struct iova_domain iovad;
129 130
};

131 132 133
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

134 135 136 137 138 139
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

140 141
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
142
{
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
158 159
}

160
static inline u16 get_pci_device_id(struct device *dev)
161 162 163 164 165 166
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

194 195 196 197 198
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

199 200 201 202 203 204
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

205
static struct iommu_dev_data *alloc_dev_data(u16 devid)
206 207 208 209 210 211 212
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

213
	dev_data->devid = devid;
214 215
	ratelimit_default_init(&dev_data->rs);

216
	llist_add(&dev_data->dev_data_list, &dev_data_list);
217 218 219
	return dev_data;
}

220 221 222
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
223
	struct llist_node *node;
224

225 226
	if (llist_empty(&dev_data_list))
		return NULL;
227

228 229
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
230
		if (dev_data->devid == devid)
231
			return dev_data;
232 233
	}

234
	return NULL;
235 236
}

237 238 239 240 241 242 243 244 245 246 247
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

248
	/* The callers make sure that get_device_id() does not fail here */
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
290
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
291 292 293 294 295 296 297 298
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

299 300 301
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
302
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
303 304 305

	dev_data = search_dev_data(devid);

306
	if (dev_data == NULL) {
307
		dev_data = alloc_dev_data(devid);
308 309
		if (!dev_data)
			return NULL;
310

311 312 313 314
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

315 316 317
	return dev_data;
}

318
struct iommu_dev_data *get_dev_data(struct device *dev)
319 320 321
{
	return dev->archdata.iommu;
}
322
EXPORT_SYMBOL(get_dev_data);
323

324 325 326 327
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
328
{
329
	struct acpihid_map_entry *p, *entry = NULL;
330
	int devid;
331 332 333 334 335 336 337 338 339 340 341 342

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
343 344
	else
		iommu_group_ref_get(entry->group);
345 346

	return entry->group;
347 348
}

349 350 351 352
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
353 354
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
355 356 357 358 359 360 361 362 363 364 365 366
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

367 368 369 370 371 372 373 374 375
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

376 377 378 379 380 381
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
382
	int devid;
383 384 385 386 387

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
388
	if (devid < 0)
389
		return false;
390 391 392 393 394 395 396 397 398 399 400

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

401
static void init_iommu_group(struct device *dev)
402 403 404
{
	struct iommu_group *group;

405
	group = iommu_group_get_for_dev(dev);
406 407 408 409
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
410 411 412 413 414
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
415
	struct amd_iommu *iommu;
416
	int devid;
417 418 419 420

	if (dev->archdata.iommu)
		return 0;

421
	devid = get_device_id(dev);
422
	if (devid < 0)
423 424
		return devid;

425 426
	iommu = amd_iommu_rlookup_table[devid];

427
	dev_data = find_dev_data(devid);
428 429 430
	if (!dev_data)
		return -ENOMEM;

431 432
	dev_data->alias = get_alias(dev);

433
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
434 435
		struct amd_iommu *iommu;

436
		iommu = amd_iommu_rlookup_table[dev_data->devid];
437 438 439
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

440 441
	dev->archdata.iommu = dev_data;

442
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
443

444 445 446
	return 0;
}

447 448
static void iommu_ignore_device(struct device *dev)
{
449 450
	u16 alias;
	int devid;
451 452

	devid = get_device_id(dev);
453
	if (devid < 0)
454 455
		return;

456
	alias = get_alias(dev);
457 458 459 460 461 462 463 464

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

465 466
static void iommu_uninit_device(struct device *dev)
{
467
	struct iommu_dev_data *dev_data;
468 469
	struct amd_iommu *iommu;
	int devid;
470

471
	devid = get_device_id(dev);
472
	if (devid < 0)
473
		return;
474

475 476
	iommu = amd_iommu_rlookup_table[devid];

477
	dev_data = search_dev_data(devid);
478 479 480
	if (!dev_data)
		return;

481 482 483
	if (dev_data->domain)
		detach_device(dev);

484
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
485

486 487
	iommu_group_remove_device(dev);

488
	/* Remove dma-ops */
489
	dev->dma_ops = NULL;
490

491
	/*
492 493
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
494
	 */
495
}
J
Joerg Roedel 已提交
496

497 498 499 500 501 502
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

503 504 505 506
static void dump_dte_entry(u16 devid)
{
	int i;

507 508
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
509 510 511
			amd_iommu_dev_table[devid].data[i]);
}

512 513
static void dump_command(unsigned long phys_addr)
{
514
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
515 516 517 518 519 520
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

521 522 523 524 525 526
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

527 528
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

545
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
546
{
547
	struct device *dev = iommu->iommu.dev;
548
	int type, devid, pasid, flags, tag;
549 550 551 552 553 554 555
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
556
	pasid   = PPR_PASID(*(u64 *)&event[0]);
557 558 559 560 561 562 563 564 565 566 567 568
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
569

570
	if (type == EVENT_TYPE_IO_FAULT) {
571
		amd_iommu_report_page_fault(devid, pasid, address, flags);
572 573
		return;
	} else {
574
		dev_err(dev, "AMD-Vi: Event logged [");
575
	}
576 577 578

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
579
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
580
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
581
			pasid, address, flags);
582
		dump_dte_entry(devid);
583 584
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
585 586 587 588
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
589 590
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
591
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
592
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
593
			pasid, address, flags);
594 595
		break;
	case EVENT_TYPE_ILL_CMD:
596
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
597
		dump_command(address);
598 599
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
600 601
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
			address, flags);
602 603
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
604
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
605 606
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
607 608
		break;
	case EVENT_TYPE_INV_DEV_REQ:
609
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
610
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611
			pasid, address, flags);
612
		break;
613 614 615 616 617 618 619 620
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
		dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			pasid, address, flags);
		break;
621
	default:
622
		dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
623
			event[0], event[1], event[2], event[3]);
624
	}
625 626

	memset(__evt, 0, 4 * sizeof(u32));
627 628 629 630 631 632 633 634 635 636
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
637
		iommu_print_event(iommu, iommu->evt_buf + head);
638
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
639 640 641 642 643
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

644
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
689

690 691 692
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
693

694 695 696 697 698 699 700
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
701 702
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 704 705 706 707 708

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
709 710 711 712
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

773
irqreturn_t amd_iommu_int_thread(int irq, void *data)
774
{
775 776
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
777

778 779 780
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
781
			iommu->mmio_base + MMIO_STATUS_OFFSET);
782

783 784 785 786
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
787

788 789 790 791
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
792

793 794 795 796 797 798 799
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
815
	return IRQ_HANDLED;
816 817
}

818 819 820 821 822
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

823 824 825 826 827 828
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
847
			       struct iommu_cmd *cmd)
848 849 850
{
	u8 *target;

851 852 853 854
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
855 856 857 858 859

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
860
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
861
}
862

863
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
864
{
865 866
	u64 paddr = iommu_virt_to_phys((void *)address);

867 868
	WARN_ON(address & 0x7ULL);

869
	memset(cmd, 0, sizeof(*cmd));
870 871
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
872
	cmd->data[2] = 1;
873 874 875
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

876 877 878 879 880 881 882
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

883 884 885 886
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
887
	bool s;
888 889

	pages = iommu_num_pages(address, size, PAGE_SIZE);
890
	s     = false;
891 892 893 894 895 896 897

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
898
		s = true;
899 900 901 902 903 904 905 906 907 908 909
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
910
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
911 912 913
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

914 915 916 917
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
918
	bool s;
919 920

	pages = iommu_num_pages(address, size, PAGE_SIZE);
921
	s     = false;
922 923 924 925 926 927 928

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
929
		s = true;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

945 946 947 948 949 950 951
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

952
	cmd->data[0]  = pasid;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
971
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
972 973
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
974
	cmd->data[1] |= (pasid & 0xff) << 16;
975 976 977 978 979 980 981 982
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

983 984 985 986 987 988 989
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
990
		cmd->data[1]  = pasid;
991 992 993 994 995 996 997 998
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

999 1000 1001 1002
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1003 1004
}

1005 1006 1007 1008 1009 1010 1011
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1012 1013
/*
 * Writes the command to the IOMMUs command buffer and informs the
1014
 * hardware about the new command.
1015
 */
1016 1017 1018
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1019
{
1020
	unsigned int count = 0;
1021
	u32 left, next_tail;
1022

1023
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1024
again:
1025
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1026

1027
	if (left <= 0x20) {
1028 1029 1030 1031 1032 1033
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1034

1035 1036
			udelay(1);
		}
1037

1038 1039 1040
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1041 1042

		goto again;
1043 1044
	}

1045
	copy_cmd_to_buffer(iommu, cmd);
1046

1047
	/* Do we need to make sure all commands are processed? */
1048
	iommu->need_sync = sync;
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1060
	raw_spin_lock_irqsave(&iommu->lock, flags);
1061
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1062
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1063

1064
	return ret;
1065 1066
}

1067 1068 1069 1070 1071
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1072 1073 1074 1075
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1076
static int iommu_completion_wait(struct amd_iommu *iommu)
1077 1078
{
	struct iommu_cmd cmd;
1079
	unsigned long flags;
1080
	int ret;
1081

1082
	if (!iommu->need_sync)
1083
		return 0;
1084

1085

1086 1087
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1088
	raw_spin_lock_irqsave(&iommu->lock, flags);
1089 1090 1091 1092

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1093
	if (ret)
1094 1095 1096 1097 1098
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1099
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1100

1101
	return ret;
1102 1103
}

1104
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1105
{
1106
	struct iommu_cmd cmd;
1107

1108
	build_inv_dte(&cmd, devid);
1109

1110 1111
	return iommu_queue_command(iommu, &cmd);
}
1112

1113
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1114 1115
{
	u32 devid;
1116

1117 1118
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1119

1120 1121
	iommu_completion_wait(iommu);
}
1122

1123 1124 1125 1126
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1127
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1128 1129
{
	u32 dom_id;
1130

1131 1132 1133 1134 1135 1136
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1137

1138
	iommu_completion_wait(iommu);
1139 1140
}

1141
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1142
{
1143
	struct iommu_cmd cmd;
1144

1145
	build_inv_all(&cmd);
1146

1147 1148 1149 1150
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1151 1152 1153 1154 1155 1156 1157 1158 1159
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1160
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1161 1162 1163 1164 1165 1166 1167 1168 1169
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1170 1171
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1172
	if (iommu_feature(iommu, FEATURE_IA)) {
1173
		amd_iommu_flush_all(iommu);
1174
	} else {
1175 1176 1177
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1178 1179 1180
	}
}

1181
/*
1182
 * Command send function for flushing on-device TLB
1183
 */
1184 1185
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1186 1187
{
	struct amd_iommu *iommu;
1188
	struct iommu_cmd cmd;
1189
	int qdep;
1190

1191 1192
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1193

1194
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1195 1196

	return iommu_queue_command(iommu, &cmd);
1197 1198
}

1199 1200 1201
/*
 * Command send function for invalidating a device table entry
 */
1202
static int device_flush_dte(struct iommu_dev_data *dev_data)
1203
{
1204
	struct amd_iommu *iommu;
1205
	u16 alias;
1206
	int ret;
1207

1208
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1209
	alias = dev_data->alias;
1210

1211
	ret = iommu_flush_dte(iommu, dev_data->devid);
1212 1213
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1214 1215 1216
	if (ret)
		return ret;

1217
	if (dev_data->ats.enabled)
1218
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1219 1220

	return ret;
1221 1222
}

1223 1224 1225 1226 1227
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1228 1229
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1230
{
1231
	struct iommu_dev_data *dev_data;
1232 1233
	struct iommu_cmd cmd;
	int ret = 0, i;
1234

1235
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1236

1237
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1238 1239 1240 1241 1242 1243 1244
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1245
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1246 1247
	}

1248 1249
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1250
		if (!dev_data->ats.enabled)
1251 1252
			continue;

1253
		ret |= device_flush_iotlb(dev_data, address, size);
1254 1255
	}

1256
	WARN_ON(ret);
1257 1258
}

1259 1260
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1261
{
1262
	__domain_flush_pages(domain, address, size, 0);
1263
}
1264

1265
/* Flush the whole IO/TLB for a given protection domain */
1266
static void domain_flush_tlb(struct protection_domain *domain)
1267
{
1268
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1269 1270
}

1271
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1272
static void domain_flush_tlb_pde(struct protection_domain *domain)
1273
{
1274
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1275 1276
}

1277
static void domain_flush_complete(struct protection_domain *domain)
1278
{
1279
	int i;
1280

1281
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1282
		if (domain && !domain->dev_iommu[i])
1283
			continue;
1284

1285 1286 1287 1288 1289
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1290
	}
1291 1292
}

1293

1294
/*
1295
 * This function flushes the DTEs for all devices in domain
1296
 */
1297
static void domain_flush_devices(struct protection_domain *domain)
1298
{
1299
	struct iommu_dev_data *dev_data;
1300

1301
	list_for_each_entry(dev_data, &domain->dev_list, list)
1302
		device_flush_dte(dev_data);
1303 1304
}

1305 1306 1307 1308 1309 1310 1311
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1331
					iommu_virt_to_phys(domain->pt_root));
1332 1333 1334 1335 1336 1337 1338 1339 1340
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1341
		      unsigned long page_size,
1342 1343 1344
		      u64 **pte_page,
		      gfp_t gfp)
{
1345
	int level, end_lvl;
1346
	u64 *pte, *page;
1347 1348

	BUG_ON(!is_power_of_2(page_size));
1349 1350 1351 1352

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1353 1354 1355 1356
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1357 1358

	while (level > end_lvl) {
1359 1360 1361 1362 1363
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1364 1365 1366
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1367

1368
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1369

1370 1371
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1372 1373 1374
				free_page((unsigned long)page);
				continue;
			}
1375 1376
		}

1377 1378 1379 1380
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1398 1399 1400
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1401 1402 1403 1404
{
	int level;
	u64 *pte;

1405 1406 1407
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1408 1409 1410
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1411

1412 1413 1414
	while (level > 0) {

		/* Not Present */
1415 1416 1417
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1418
		/* Large PTE */
1419 1420 1421
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1422 1423 1424 1425 1426

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1427 1428
		level -= 1;

1429
		/* Walk to the next level */
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1445 1446 1447 1448 1449
	}

	return pte;
}

1450 1451 1452 1453 1454 1455 1456
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1457 1458 1459
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1460
			  unsigned long page_size,
1461
			  int prot,
1462
			  gfp_t gfp)
1463
{
1464
	u64 __pte, *pte;
1465
	int i, count;
1466

1467 1468 1469
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1470
	if (!(prot & IOMMU_PROT_MASK))
1471 1472
		return -EINVAL;

1473
	count = PAGE_SIZE_PTE_COUNT(page_size);
1474
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1475

1476 1477 1478
	if (!pte)
		return -ENOMEM;

1479 1480 1481
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1482

1483
	if (count > 1) {
1484
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1485
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1486
	} else
1487
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1488 1489 1490 1491 1492 1493

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1494 1495
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1496

1497 1498
	update_domain(dom);

1499 1500 1501
	return 0;
}

1502 1503 1504
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1505
{
1506 1507
	unsigned long long unmapped;
	unsigned long unmap_size;
1508 1509 1510 1511 1512
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1513

1514 1515
	while (unmapped < page_size) {

1516 1517 1518 1519 1520 1521
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1522 1523 1524 1525 1526 1527 1528 1529
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1530
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1531

1532
	return unmapped;
1533 1534
}

1535 1536 1537
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1538
 * interface functions.
1539 1540
 *
 ****************************************************************************/
1541

1542

1543 1544 1545
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1546
{
1547
	unsigned long pfn = 0;
1548

1549
	pages = __roundup_pow_of_two(pages);
1550

1551 1552
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1553
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1554

1555
	if (!pfn)
1556 1557
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1558

1559
	return (pfn << PAGE_SHIFT);
1560 1561
}

1562 1563 1564
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1565
{
1566 1567
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1568

1569
	free_iova_fast(&dma_dom->iovad, address, pages);
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1607 1608 1609 1610
static u16 domain_id_alloc(void)
{
	int id;

1611
	spin_lock(&pd_bitmap_lock);
1612 1613 1614 1615 1616 1617
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1618
	spin_unlock(&pd_bitmap_lock);
1619 1620 1621 1622

	return id;
}

1623 1624
static void domain_id_free(int id)
{
1625
	spin_lock(&pd_bitmap_lock);
1626 1627
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1628
	spin_unlock(&pd_bitmap_lock);
1629 1630
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1641
		/* PTE present? */				\
1642 1643 1644
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1645 1646 1647 1648 1649
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1662
static void free_pagetable(struct protection_domain *domain)
1663
{
1664
	unsigned long root = (unsigned long)domain->pt_root;
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1689 1690 1691
	}
}

1692 1693 1694 1695 1696 1697 1698 1699 1700
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1701
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1716
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1717 1718 1719 1720 1721

		free_gcr3_tbl_level1(ptr);
	}
}

1722 1723
static void free_gcr3_table(struct protection_domain *domain)
{
1724 1725 1726 1727
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1728 1729
	else
		BUG_ON(domain->glx != 0);
1730

1731 1732 1733
	free_page((unsigned long)domain->gcr3_tbl);
}

1734 1735 1736 1737
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1738 1739
}

1740
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1741
{
1742
	struct dma_ops_domain *dom;
1743

1744
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1745 1746 1747 1748

	dma_ops_domain_flush_tlb(dom);
}

1749 1750 1751 1752
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1753 1754 1755 1756 1757
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1758 1759
	del_domain_from_list(&dom->domain);

1760
	put_iova_domain(&dom->iovad);
1761

1762
	free_pagetable(&dom->domain);
1763

1764 1765 1766
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1767 1768 1769
	kfree(dom);
}

1770 1771
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1772
 * It also initializes the page table and the address allocator data
1773 1774
 * structures required for the dma_ops interface
 */
1775
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1776 1777 1778 1779 1780 1781 1782
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1783
	if (protection_domain_init(&dma_dom->domain))
1784
		goto free_dma_dom;
1785

1786
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1787
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1788
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1789 1790 1791
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1792
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1793

1794
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1795 1796
		goto free_dma_dom;

1797 1798
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1799

1800 1801
	add_domain_to_list(&dma_dom->domain);

1802 1803 1804 1805 1806 1807 1808 1809
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1810 1811 1812 1813 1814 1815 1816 1817 1818
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1819 1820
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1821
{
1822
	u64 pte_root = 0;
1823
	u64 flags = 0;
1824

1825
	if (domain->mode != PAGE_MODE_NONE)
1826
		pte_root = iommu_virt_to_phys(domain->pt_root);
1827

1828 1829
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1830
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1831

1832 1833
	flags = amd_iommu_dev_table[devid].data[1];

1834 1835 1836
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1837 1838 1839 1840 1841 1842 1843
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1844
	if (domain->flags & PD_IOMMUV2_MASK) {
1845
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1870
	flags &= ~DEV_DOMID_MASK;
1871 1872 1873 1874
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1875 1876 1877 1878 1879
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1880
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1881
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1882 1883

	amd_iommu_apply_erratum_63(devid);
1884 1885
}

1886 1887
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1888 1889
{
	struct amd_iommu *iommu;
1890
	u16 alias;
1891
	bool ats;
1892

1893
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1894
	alias = dev_data->alias;
1895
	ats   = dev_data->ats.enabled;
1896 1897 1898 1899 1900 1901 1902 1903 1904

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1905
	/* Update device table */
1906
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1907
	if (alias != dev_data->devid)
1908
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1909

1910
	device_flush_dte(dev_data);
1911 1912
}

1913
static void do_detach(struct iommu_dev_data *dev_data)
1914 1915
{
	struct amd_iommu *iommu;
1916
	u16 alias;
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1927
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1928
	alias = dev_data->alias;
1929 1930

	/* decrease reference counters */
1931 1932 1933 1934 1935 1936
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1937
	clear_dte_entry(dev_data->devid);
1938 1939
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1940

1941
	/* Flush the DTE entry */
1942
	device_flush_dte(dev_data);
1943 1944 1945 1946 1947 1948
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1949
static int __attach_device(struct iommu_dev_data *dev_data,
1950
			   struct protection_domain *domain)
1951
{
1952
	int ret;
1953

1954 1955 1956 1957 1958 1959
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1960 1961 1962
	/* lock domain */
	spin_lock(&domain->lock);

1963
	ret = -EBUSY;
1964
	if (dev_data->domain != NULL)
1965
		goto out_unlock;
1966

1967
	/* Attach alias group root */
1968
	do_attach(dev_data, domain);
1969

1970 1971 1972 1973
	ret = 0;

out_unlock:

1974 1975
	/* ready */
	spin_unlock(&domain->lock);
1976

1977
	return ret;
1978
}
1979

1980 1981 1982 1983 1984 1985 1986 1987

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1988 1989 1990 1991 1992 1993
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1994
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1995 1996 1997
	if (!pos)
		return -EINVAL;

1998 1999 2000
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2001 2002 2003 2004

	return 0;
}

2005 2006
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2007 2008 2009 2010 2011 2012 2013 2014
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2026 2027
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2028 2029 2030
	if (ret)
		goto out_err;

2031 2032 2033 2034 2035 2036
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2050
/* FIXME: Move this to PCI code */
2051
#define PCI_PRI_TLP_OFF		(1 << 15)
2052

J
Joerg Roedel 已提交
2053
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2054
{
2055
	u16 status;
2056 2057
	int pos;

2058
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2059 2060 2061
	if (!pos)
		return false;

2062
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2063

2064
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2065 2066
}

2067
/*
F
Frank Arnold 已提交
2068
 * If a device is not yet associated with a domain, this function
2069 2070
 * assigns it visible for the hardware
 */
2071 2072
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2073
{
2074
	struct pci_dev *pdev;
2075
	struct iommu_dev_data *dev_data;
2076
	unsigned long flags;
2077
	int ret;
2078

2079 2080
	dev_data = get_dev_data(dev);

2081 2082 2083 2084
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2085
	if (domain->flags & PD_IOMMUV2_MASK) {
2086
		if (!dev_data->passthrough)
2087 2088
			return -EINVAL;

2089 2090 2091
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2092

2093 2094 2095 2096
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2097 2098
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2099 2100 2101
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2102

2103
skip_ats_check:
2104
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2105
	ret = __attach_device(dev_data, domain);
2106
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2107

2108 2109 2110 2111 2112
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2113
	domain_flush_tlb_pde(domain);
2114 2115

	return ret;
2116 2117
}

2118 2119 2120
/*
 * Removes a device from a protection domain (unlocked)
 */
2121
static void __detach_device(struct iommu_dev_data *dev_data)
2122
{
2123
	struct protection_domain *domain;
2124

2125 2126 2127 2128 2129
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2130

2131 2132
	if (WARN_ON(!dev_data->domain))
		return;
2133

2134
	domain = dev_data->domain;
2135

2136
	spin_lock(&domain->lock);
2137

2138
	do_detach(dev_data);
2139

2140
	spin_unlock(&domain->lock);
2141 2142 2143 2144 2145
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2146
static void detach_device(struct device *dev)
2147
{
2148
	struct protection_domain *domain;
2149
	struct iommu_dev_data *dev_data;
2150 2151
	unsigned long flags;

2152
	dev_data = get_dev_data(dev);
2153
	domain   = dev_data->domain;
2154

2155
	/* lock device table */
2156
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2157
	__detach_device(dev_data);
2158
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2159

2160 2161 2162
	if (!dev_is_pci(dev))
		return;

2163
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2164 2165
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2166
		pci_disable_ats(to_pci_dev(dev));
2167 2168

	dev_data->ats.enabled = false;
2169
}
2170

2171
static int amd_iommu_add_device(struct device *dev)
2172
{
2173
	struct iommu_dev_data *dev_data;
2174
	struct iommu_domain *domain;
2175
	struct amd_iommu *iommu;
2176
	int ret, devid;
2177

2178
	if (!check_device(dev) || get_dev_data(dev))
2179
		return 0;
2180

2181
	devid = get_device_id(dev);
2182
	if (devid < 0)
2183 2184
		return devid;

2185
	iommu = amd_iommu_rlookup_table[devid];
2186

2187
	ret = iommu_init_device(dev);
2188 2189 2190 2191
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2192

2193
		iommu_ignore_device(dev);
2194
		dev->dma_ops = &dma_direct_ops;
2195 2196 2197
		goto out;
	}
	init_iommu_group(dev);
2198

2199
	dev_data = get_dev_data(dev);
2200

2201
	BUG_ON(!dev_data);
2202

2203
	if (iommu_pass_through || dev_data->iommu_v2)
2204
		iommu_request_dm_for_dev(dev);
2205

2206 2207
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2208
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2209
		dev_data->passthrough = true;
2210
	else
2211
		dev->dma_ops = &amd_iommu_dma_ops;
2212

2213
out:
2214 2215 2216 2217 2218
	iommu_completion_wait(iommu);

	return 0;
}

2219
static void amd_iommu_remove_device(struct device *dev)
2220
{
2221
	struct amd_iommu *iommu;
2222
	int devid;
2223 2224 2225 2226 2227

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2228
	if (devid < 0)
2229 2230
		return;

2231 2232 2233 2234
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2258
static struct protection_domain *get_domain(struct device *dev)
2259
{
2260
	struct protection_domain *domain;
2261
	struct iommu_domain *io_domain;
2262

2263
	if (!check_device(dev))
2264
		return ERR_PTR(-EINVAL);
2265

2266
	domain = get_dev_data(dev)->domain;
2267 2268 2269 2270 2271 2272
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2273 2274 2275
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2276
	if (!dma_ops_domain(domain))
2277
		return ERR_PTR(-EBUSY);
2278

2279
	return domain;
2280 2281
}

2282 2283
static void update_device_table(struct protection_domain *domain)
{
2284
	struct iommu_dev_data *dev_data;
2285

2286
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2287 2288
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2289 2290 2291 2292 2293

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2294 2295
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2296
	}
2297 2298 2299 2300 2301 2302 2303 2304
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2305 2306 2307

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2308 2309 2310 2311

	domain->updated = false;
}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2323

2324 2325
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2326 2327
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2328 2329
 * Must be called with the domain lock held.
 */
2330 2331 2332 2333
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2334
			       enum dma_data_direction direction,
2335
			       u64 dma_mask)
2336 2337
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2338
	dma_addr_t address, start, ret;
2339
	unsigned int pages;
2340
	int prot = 0;
2341 2342
	int i;

2343
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2344 2345
	paddr &= PAGE_MASK;

2346
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2347
	if (address == AMD_IOMMU_MAPPING_ERROR)
2348
		goto out;
2349

2350
	prot = dir2prot(direction);
2351

2352 2353
	start = address;
	for (i = 0; i < pages; ++i) {
2354 2355 2356
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2357 2358
			goto out_unmap;

2359 2360 2361 2362 2363
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2364
	if (unlikely(amd_iommu_np_cache)) {
2365
		domain_flush_pages(&dma_dom->domain, address, size);
2366 2367
		domain_flush_complete(&dma_dom->domain);
	}
2368

2369 2370
out:
	return address;
2371 2372 2373 2374 2375

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2376
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2377 2378
	}

2379 2380 2381 2382
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2383

2384
	return AMD_IOMMU_MAPPING_ERROR;
2385 2386
}

2387 2388 2389 2390
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2391
static void __unmap_single(struct dma_ops_domain *dma_dom,
2392 2393 2394 2395 2396 2397 2398
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2399
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2400 2401 2402 2403
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2404
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2405 2406 2407
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2408 2409 2410 2411 2412
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2413 2414
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2415
	}
2416 2417
}

2418 2419 2420
/*
 * The exported map_single function for dma_ops.
 */
2421 2422 2423
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2424
			   unsigned long attrs)
2425
{
2426
	phys_addr_t paddr = page_to_phys(page) + offset;
2427
	struct protection_domain *domain;
2428
	struct dma_ops_domain *dma_dom;
2429
	u64 dma_mask;
2430

2431 2432
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2433
		return (dma_addr_t)paddr;
2434
	else if (IS_ERR(domain))
2435
		return AMD_IOMMU_MAPPING_ERROR;
2436

2437
	dma_mask = *dev->dma_mask;
2438
	dma_dom = to_dma_ops_domain(domain);
2439

2440
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2441 2442
}

2443 2444 2445
/*
 * The exported unmap_single function for dma_ops.
 */
2446
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2447
		       enum dma_data_direction dir, unsigned long attrs)
2448 2449
{
	struct protection_domain *domain;
2450
	struct dma_ops_domain *dma_dom;
2451

2452 2453
	domain = get_domain(dev);
	if (IS_ERR(domain))
2454 2455
		return;

2456 2457 2458
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2459 2460
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2487 2488 2489 2490
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2491
static int map_sg(struct device *dev, struct scatterlist *sglist,
2492
		  int nelems, enum dma_data_direction direction,
2493
		  unsigned long attrs)
2494
{
2495
	int mapped_pages = 0, npages = 0, prot = 0, i;
2496
	struct protection_domain *domain;
2497
	struct dma_ops_domain *dma_dom;
2498
	struct scatterlist *s;
2499
	unsigned long address;
2500
	u64 dma_mask;
2501

2502
	domain = get_domain(dev);
2503
	if (IS_ERR(domain))
2504
		return 0;
2505

2506
	dma_dom  = to_dma_ops_domain(domain);
2507
	dma_mask = *dev->dma_mask;
2508

2509 2510 2511
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2512
	if (address == AMD_IOMMU_MAPPING_ERROR)
2513 2514 2515 2516 2517
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2518
	for_each_sg(sglist, s, nelems, i) {
2519 2520 2521 2522 2523
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2524

2525 2526 2527 2528 2529
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2530

2531 2532
			mapped_pages += 1;
		}
2533 2534
	}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2552

2553 2554 2555 2556 2557 2558
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2559 2560
	}

2561 2562 2563 2564
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2565
	return 0;
2566 2567
}

2568 2569 2570 2571
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2572
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2573
		     int nelems, enum dma_data_direction dir,
2574
		     unsigned long attrs)
2575 2576
{
	struct protection_domain *domain;
2577
	struct dma_ops_domain *dma_dom;
2578 2579
	unsigned long startaddr;
	int npages = 2;
2580

2581 2582
	domain = get_domain(dev);
	if (IS_ERR(domain))
2583 2584
		return;

2585
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2586
	dma_dom   = to_dma_ops_domain(domain);
2587 2588
	npages    = sg_num_pages(dev, sglist, nelems);

2589
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2590 2591
}

2592 2593 2594
/*
 * The exported alloc_coherent function for dma_ops.
 */
2595
static void *alloc_coherent(struct device *dev, size_t size,
2596
			    dma_addr_t *dma_addr, gfp_t flag,
2597
			    unsigned long attrs)
2598
{
2599
	u64 dma_mask = dev->coherent_dma_mask;
2600 2601 2602
	struct protection_domain *domain = get_domain(dev);
	bool is_direct = false;
	void *virt_addr;
2603

2604 2605
	if (IS_ERR(domain)) {
		if (PTR_ERR(domain) != -EINVAL)
2606
			return NULL;
2607
		is_direct = true;
2608
	}
2609

2610 2611 2612 2613
	virt_addr = dma_direct_alloc(dev, size, dma_addr, flag, attrs);
	if (!virt_addr || is_direct)
		return virt_addr;

2614 2615 2616
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2617 2618 2619
	*dma_addr = __map_single(dev, to_dma_ops_domain(domain),
			virt_to_phys(virt_addr), PAGE_ALIGN(size),
			DMA_BIDIRECTIONAL, dma_mask);
2620
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2621
		goto out_free;
2622
	return virt_addr;
2623 2624

out_free:
2625
	dma_direct_free(dev, size, virt_addr, *dma_addr, attrs);
2626
	return NULL;
2627 2628
}

2629 2630 2631
/*
 * The exported free_coherent function for dma_ops.
 */
2632
static void free_coherent(struct device *dev, size_t size,
2633
			  void *virt_addr, dma_addr_t dma_addr,
2634
			  unsigned long attrs)
2635
{
2636
	struct protection_domain *domain = get_domain(dev);
2637

2638 2639
	size = PAGE_ALIGN(size);

2640 2641
	if (!IS_ERR(domain)) {
		struct dma_ops_domain *dma_dom = to_dma_ops_domain(domain);
2642

2643 2644
		__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
	}
2645

2646
	dma_direct_free(dev, size, virt_addr, dma_addr, attrs);
2647 2648
}

2649 2650 2651 2652 2653 2654
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2655
	if (!dma_direct_supported(dev, mask))
2656
		return 0;
2657
	return check_device(dev);
2658 2659
}

2660 2661 2662 2663 2664
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2665
static const struct dma_map_ops amd_iommu_dma_ops = {
2666 2667 2668 2669 2670 2671 2672
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2673
	.mapping_error	= amd_iommu_mapping_error,
2674 2675
};

2676 2677 2678 2679 2680
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2681
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2728
int __init amd_iommu_init_api(void)
2729
{
2730
	int ret, err = 0;
2731 2732 2733 2734

	ret = iova_cache_get();
	if (ret)
		return ret;
2735

2736 2737 2738 2739
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2740 2741 2742 2743 2744 2745 2746 2747
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2748 2749 2750
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2751

2752
	return 0;
2753 2754
}

2755 2756
int __init amd_iommu_init_dma_ops(void)
{
2757
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2758 2759
	iommu_detected = 1;

2760 2761
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2762 2763 2764 2765 2766
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2767 2768
	 */
	if (!swiotlb)
2769
		dma_ops = &dma_direct_ops;
2770

2771 2772 2773 2774 2775
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2776
	return 0;
2777

2778
}
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2792
	struct iommu_dev_data *entry;
2793 2794
	unsigned long flags;

2795
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2796

2797 2798 2799 2800
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2801
	}
2802

2803
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2804 2805
}

2806 2807 2808 2809 2810
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2811 2812
	del_domain_from_list(domain);

2813 2814 2815 2816 2817 2818
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2831
static struct protection_domain *protection_domain_alloc(void)
2832 2833 2834 2835 2836
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2837
		return NULL;
2838

2839
	if (protection_domain_init(domain))
2840 2841
		goto out_err;

2842 2843
	add_domain_to_list(domain);

2844 2845 2846 2847 2848 2849 2850 2851
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2852
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2853
{
2854
	struct protection_domain *pdomain;
2855
	struct dma_ops_domain *dma_domain;
2856

2857 2858 2859 2860 2861
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2862

2863 2864 2865 2866 2867 2868
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2869

2870 2871 2872
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2873

2874 2875 2876 2877 2878 2879 2880 2881 2882
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2883 2884 2885 2886
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2887

2888 2889
		pdomain->mode = PAGE_MODE_NONE;
		break;
2890 2891 2892
	default:
		return NULL;
	}
2893

2894
	return &pdomain->domain;
2895 2896
}

2897
static void amd_iommu_domain_free(struct iommu_domain *dom)
2898
{
2899
	struct protection_domain *domain;
2900
	struct dma_ops_domain *dma_dom;
2901

2902 2903
	domain = to_pdomain(dom);

2904 2905 2906 2907 2908
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2909 2910
	if (!dom)
		return;
2911

2912 2913
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2914
		/* Now release the domain */
2915
		dma_dom = to_dma_ops_domain(domain);
2916 2917 2918 2919 2920
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2921

2922 2923 2924 2925 2926 2927
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2928 2929
}

2930 2931 2932
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2933
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2934
	struct amd_iommu *iommu;
2935
	int devid;
2936

2937
	if (!check_device(dev))
2938 2939
		return;

2940
	devid = get_device_id(dev);
2941
	if (devid < 0)
2942
		return;
2943

2944
	if (dev_data->domain != NULL)
2945
		detach_device(dev);
2946 2947 2948 2949 2950

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2951 2952 2953 2954 2955 2956
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2957 2958 2959
	iommu_completion_wait(iommu);
}

2960 2961 2962
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2963
	struct protection_domain *domain = to_pdomain(dom);
2964
	struct iommu_dev_data *dev_data;
2965
	struct amd_iommu *iommu;
2966
	int ret;
2967

2968
	if (!check_device(dev))
2969 2970
		return -EINVAL;

2971 2972
	dev_data = dev->archdata.iommu;

2973
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2974 2975 2976
	if (!iommu)
		return -EINVAL;

2977
	if (dev_data->domain)
2978
		detach_device(dev);
2979

2980
	ret = attach_device(dev, domain);
2981

2982 2983 2984 2985 2986 2987 2988 2989 2990
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

2991 2992
	iommu_completion_wait(iommu);

2993
	return ret;
2994 2995
}

2996
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2997
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
2998
{
2999
	struct protection_domain *domain = to_pdomain(dom);
3000 3001 3002
	int prot = 0;
	int ret;

3003 3004 3005
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3006 3007 3008 3009 3010
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3011
	mutex_lock(&domain->api_lock);
3012
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3013 3014
	mutex_unlock(&domain->api_lock);

3015
	return ret;
3016 3017
}

3018 3019
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3020
{
3021
	struct protection_domain *domain = to_pdomain(dom);
3022
	size_t unmap_size;
3023

3024
	if (domain->mode == PAGE_MODE_NONE)
3025
		return 0;
3026

3027
	mutex_lock(&domain->api_lock);
3028
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3029
	mutex_unlock(&domain->api_lock);
3030

3031
	return unmap_size;
3032 3033
}

3034
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3035
					  dma_addr_t iova)
3036
{
3037
	struct protection_domain *domain = to_pdomain(dom);
3038
	unsigned long offset_mask, pte_pgsize;
3039
	u64 *pte, __pte;
3040

3041 3042 3043
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3044
	pte = fetch_pte(domain, iova, &pte_pgsize);
3045

3046
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3047 3048
		return 0;

3049 3050
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3051

3052
	return (__pte & ~offset_mask) | (iova & offset_mask);
3053 3054
}

3055
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3056
{
3057 3058
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3059
		return true;
3060
	case IOMMU_CAP_INTR_REMAP:
3061
		return (irq_remapping_enabled == 1);
3062 3063
	case IOMMU_CAP_NOEXEC:
		return false;
3064 3065
	}

3066
	return false;
S
Sheng Yang 已提交
3067 3068
}

3069 3070
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3071
{
3072
	struct iommu_resv_region *region;
3073
	struct unity_map_entry *entry;
3074
	int devid;
3075 3076

	devid = get_device_id(dev);
3077
	if (devid < 0)
3078
		return;
3079 3080

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3081 3082
		size_t length;
		int prot = 0;
3083 3084 3085 3086

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3087 3088 3089 3090 3091 3092 3093 3094 3095
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3096 3097 3098 3099 3100 3101 3102
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3103 3104 3105

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3106
					 0, IOMMU_RESV_MSI);
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3117 3118
}

3119
static void amd_iommu_put_resv_regions(struct device *dev,
3120 3121
				     struct list_head *head)
{
3122
	struct iommu_resv_region *entry, *next;
3123 3124 3125 3126 3127

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3128
static void amd_iommu_apply_resv_region(struct device *dev,
3129
				      struct iommu_domain *domain,
3130
				      struct iommu_resv_region *region)
3131
{
3132
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3133 3134 3135
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3136
	end   = IOVA_PFN(region->start + region->length - 1);
3137 3138 3139 3140

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3141 3142 3143 3144 3145 3146 3147
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3161
const struct iommu_ops amd_iommu_ops = {
3162
	.capable = amd_iommu_capable,
3163 3164
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3165 3166
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3167 3168
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3169
	.map_sg = default_iommu_map_sg,
3170
	.iova_to_phys = amd_iommu_iova_to_phys,
3171 3172
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3173
	.device_group = amd_iommu_device_group,
3174 3175 3176
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3177
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3178
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3179 3180 3181
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3182 3183
};

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3206 3207 3208

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3209
	struct protection_domain *domain = to_pdomain(dom);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3227 3228 3229

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3230
	struct protection_domain *domain = to_pdomain(dom);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3291
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3308 3309 3310 3311 3312 3313
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3345
	struct protection_domain *domain = to_pdomain(dom);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3365
	struct protection_domain *domain = to_pdomain(dom);
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3398
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3399 3400
		}

3401
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3445
	struct protection_domain *domain = to_pdomain(dom);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3459
	struct protection_domain *domain = to_pdomain(dom);
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3487 3488 3489

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3490
	struct protection_domain *pdomain;
3491

3492 3493
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3494 3495 3496
		return NULL;

	/* Only return IOMMUv2 domains */
3497
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3498 3499
		return NULL;

3500
	return &pdomain->domain;
3501 3502
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3558 3559 3560 3561 3562 3563 3564 3565 3566

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3567 3568
static struct irq_chip amd_ir_chip;

3569 3570 3571 3572 3573 3574
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3575
	dte	|= iommu_virt_to_phys(table->table);
3576 3577 3578 3579 3580 3581 3582
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3622 3623 3624 3625 3626 3627 3628 3629
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3630
static struct irq_remap_table *alloc_irq_table(u16 devid)
3631 3632
{
	struct irq_remap_table *table = NULL;
3633
	struct irq_remap_table *new_table = NULL;
3634 3635 3636 3637
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3638
	spin_lock_irqsave(&iommu_table_lock, flags);
3639 3640 3641 3642 3643 3644 3645

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3646
		goto out_unlock;
3647 3648 3649 3650

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3651
		set_remap_table_entry(iommu, devid, table);
3652
		goto out_wait;
3653
	}
3654
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3655 3656

	/* Nothing there yet, allocate new irq remapping table */
3657 3658 3659
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3660

3661
	spin_lock_irqsave(&iommu_table_lock, flags);
3662

3663 3664
	table = irq_lookup_table[devid];
	if (table)
3665
		goto out_unlock;
3666

3667 3668 3669 3670
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3671 3672
	}

3673 3674
	table = new_table;
	new_table = NULL;
3675

3676 3677 3678
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3679

3680
out_wait:
3681 3682 3683
	iommu_completion_wait(iommu);

out_unlock:
3684
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3685

3686 3687 3688 3689
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3690 3691 3692
	return table;
}

3693
static int alloc_irq_index(u16 devid, int count, bool align)
3694 3695
{
	struct irq_remap_table *table;
3696
	int index, c, alignment = 1;
3697
	unsigned long flags;
3698 3699 3700 3701
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3702

3703
	table = alloc_irq_table(devid);
3704 3705 3706
	if (!table)
		return -ENODEV;

3707 3708 3709
	if (align)
		alignment = roundup_pow_of_two(count);

3710
	raw_spin_lock_irqsave(&table->lock, flags);
3711 3712

	/* Scan table for free entries */
3713
	for (index = ALIGN(table->min_index, alignment), c = 0;
3714
	     index < MAX_IRQS_PER_TABLE;) {
3715
		if (!iommu->irte_ops->is_allocated(table, index)) {
3716
			c += 1;
3717 3718
		} else {
			c     = 0;
3719
			index = ALIGN(index + 1, alignment);
3720 3721
			continue;
		}
3722 3723 3724

		if (c == count)	{
			for (; c != 0; --c)
3725
				iommu->irte_ops->set_allocated(table, index - c + 1);
3726 3727 3728 3729

			index -= count - 1;
			goto out;
		}
3730 3731

		index++;
3732 3733 3734 3735 3736
	}

	index = -ENOSPC;

out:
3737
	raw_spin_unlock_irqrestore(&table->lock, flags);
3738 3739 3740 3741

	return index;
}

3742 3743
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3744 3745 3746 3747
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3748
	struct irte_ga *entry;
3749 3750 3751 3752 3753

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3754
	table = get_irq_table(devid);
3755 3756 3757
	if (!table)
		return -ENOMEM;

3758
	raw_spin_lock_irqsave(&table->lock, flags);
3759 3760 3761 3762 3763 3764 3765

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3766 3767
	if (data)
		data->ref = entry;
3768

3769
	raw_spin_unlock_irqrestore(&table->lock, flags);
3770 3771 3772 3773 3774 3775 3776 3777

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3778 3779 3780 3781 3782 3783 3784 3785 3786
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3787
	table = get_irq_table(devid);
3788 3789 3790
	if (!table)
		return -ENOMEM;

3791
	raw_spin_lock_irqsave(&table->lock, flags);
3792
	table->table[index] = irte->val;
3793
	raw_spin_unlock_irqrestore(&table->lock, flags);
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3811
	table = get_irq_table(devid);
3812 3813 3814
	if (!table)
		return;

3815
	raw_spin_lock_irqsave(&table->lock, flags);
3816
	iommu->irte_ops->clear_allocated(table, index);
3817
	raw_spin_unlock_irqrestore(&table->lock, flags);
3818 3819 3820 3821 3822

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3823 3824
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3825
			 u8 vector, u32 dest_apicid, int devid)
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3839
			    u8 vector, u32 dest_apicid, int devid)
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3865
	modify_irte_ga(devid, index, irte, NULL);
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3881
	modify_irte_ga(devid, index, irte, NULL);
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3899
	if (!irte->lo.fields_remap.guest_mode) {
3900 3901 3902 3903
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3904 3905
}

3906
#define IRTE_ALLOCATED (~1U)
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3952
static int get_devid(struct irq_alloc_info *info)
3953
{
3954
	int devid = -1;
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3971

3972 3973
	return devid;
}
3974

3975 3976 3977 3978
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3979

3980 3981
	if (!info)
		return NULL;
3982

3983 3984 3985 3986 3987 3988
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3989

3990
	return NULL;
3991 3992
}

3993
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3994
{
3995 3996
	struct amd_iommu *iommu;
	int devid;
3997

3998 3999
	if (!info)
		return NULL;
4000

4001 4002 4003 4004
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4005
		if (devid < 0)
4006 4007
			return NULL;

4008 4009 4010
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4011 4012 4013 4014
		break;
	default:
		break;
	}
4015

4016 4017
	return NULL;
}
4018

4019 4020 4021 4022 4023 4024
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4025 4026 4027
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4028

4029 4030 4031 4032 4033 4034 4035 4036
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4037 4038 4039 4040
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4041

4042 4043
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4044 4045
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4046
				 irq_cfg->dest_apicid, devid);
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4062

4063 4064 4065 4066 4067 4068 4069
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4070

4071 4072 4073 4074
	default:
		BUG_ON(1);
		break;
	}
4075 4076
}

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4097 4098
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4099
{
4100 4101
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4102
	struct amd_ir_data *data = NULL;
4103
	struct irq_cfg *cfg;
4104
	int i, ret, devid;
4105
	int index;
4106

4107 4108 4109 4110
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4111 4112
		return -EINVAL;

4113 4114 4115 4116 4117 4118
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4119

4120 4121 4122
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4123

4124 4125 4126
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4127

4128
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4145
			index = info->ioapic_pin;
4146
		} else {
4147
			index = -ENOMEM;
4148
		}
4149
	} else {
4150 4151 4152
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4153 4154 4155
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4156
		ret = index;
4157 4158
		goto out_free_parent;
	}
4159

4160 4161 4162 4163 4164 4165 4166
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4167

4168 4169 4170 4171 4172
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4183 4184 4185 4186 4187 4188
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4189

4190
	return 0;
4191

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4203 4204
}

4205 4206
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4207
{
4208 4209 4210 4211
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4212

4213 4214 4215 4216 4217 4218
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4219
			kfree(data->entry);
4220 4221 4222 4223 4224
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4225

4226 4227 4228 4229 4230
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4231
static int irq_remapping_activate(struct irq_domain *domain,
4232
				  struct irq_data *irq_data, bool reserve)
4233 4234 4235
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4236
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4237
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4238

4239 4240 4241 4242 4243 4244
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4245
	return 0;
4246 4247
}

4248 4249
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4250
{
4251 4252
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4253
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4254

4255 4256 4257
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4258
}
4259

4260
static const struct irq_domain_ops amd_ir_domain_ops = {
4261 4262 4263 4264
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4265
};
4266

4267 4268 4269 4270 4271 4272 4273 4274
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4275 4276 4277 4278 4279 4280 4281 4282
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4305
		irte->lo.fields_vapic.ga_log_intr = 1;
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4348 4349 4350 4351 4352 4353 4354
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4355
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4356
	int ret;
4357

4358 4359 4360
	if (!iommu)
		return -ENODEV;

4361 4362 4363
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4364

4365
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4366 4367 4368 4369 4370
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4371
	send_cleanup_vector(cfg);
4372 4373

	return IRQ_SET_MASK_OK_DONE;
4374 4375
}

4376
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4377
{
4378
	struct amd_ir_data *ir_data = irq_data->chip_data;
4379

4380 4381
	*msg = ir_data->msi_entry;
}
4382

4383
static struct irq_chip amd_ir_chip = {
4384 4385 4386 4387 4388
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4389
};
4390

4391 4392
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4393 4394 4395 4396 4397 4398 4399
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4400 4401
	if (!iommu->ir_domain)
		return -ENOMEM;
4402

4403
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4404 4405 4406
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4407 4408
	return 0;
}
4409 4410 4411 4412 4413

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4414
	struct irq_remap_table *table;
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4428 4429
	table = get_irq_table(devid);
	if (!table)
4430 4431
		return -ENODEV;

4432
	raw_spin_lock_irqsave(&table->lock, flags);
4433 4434 4435 4436 4437 4438 4439 4440

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4441
	raw_spin_unlock_irqrestore(&table->lock, flags);
4442 4443 4444 4445 4446 4447

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4448
#endif