amd_iommu.c 104.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/dma-direct.h>
32
#include <linux/iommu-helper.h>
33
#include <linux/iommu.h>
34
#include <linux/delay.h>
35
#include <linux/amd-iommu.h>
36 37
#include <linux/notifier.h>
#include <linux/export.h>
38 39
#include <linux/irq.h>
#include <linux/msi.h>
40
#include <linux/dma-contiguous.h>
41
#include <linux/irqdomain.h>
42
#include <linux/percpu.h>
43
#include <linux/iova.h>
44 45 46 47
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
48
#include <asm/msidef.h>
49
#include <asm/proto.h>
50
#include <asm/iommu.h>
51
#include <asm/gart.h>
52
#include <asm/dma.h>
53 54 55

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
56
#include "irq_remapping.h"
57

58 59
#define AMD_IOMMU_MAPPING_ERROR	0

60 61
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

62
#define LOOP_TIMEOUT	100000
63

64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85
static DEFINE_SPINLOCK(pd_bitmap_lock);
86

87
/* List of all available dev_data structures */
88
static LLIST_HEAD(dev_data_list);
89

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214
	ratelimit_default_init(&dev_data->rs);

215
	llist_add(&dev_data->dev_data_list, &dev_data_list);
216 217 218
	return dev_data;
}

219 220 221
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
222
	struct llist_node *node;
223

224 225
	if (llist_empty(&dev_data_list))
		return NULL;
226

227 228
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
229
		if (dev_data->devid == devid)
230
			return dev_data;
231 232
	}

233
	return NULL;
234 235
}

236 237 238 239 240 241 242 243 244 245 246
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

247
	/* The callers make sure that get_device_id() does not fail here */
248
	devid = get_device_id(dev);
249 250 251 252 253

	/* For ACPI HID devices, we simply return the devid as such */
	if (!dev_is_pci(dev))
		return devid;

254
	ivrs_alias = amd_iommu_alias_table[devid];
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 297 298 299 300 301 302 303
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

304 305 306
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
307
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308 309 310

	dev_data = search_dev_data(devid);

311
	if (dev_data == NULL) {
312
		dev_data = alloc_dev_data(devid);
313 314
		if (!dev_data)
			return NULL;
315

316 317 318 319
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

320 321 322
	return dev_data;
}

323
struct iommu_dev_data *get_dev_data(struct device *dev)
324 325 326
{
	return dev->archdata.iommu;
}
327
EXPORT_SYMBOL(get_dev_data);
328

329 330 331 332
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
333
{
334
	struct acpihid_map_entry *p, *entry = NULL;
335
	int devid;
336 337 338 339 340 341 342 343 344 345 346 347

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
348 349
	else
		iommu_group_ref_get(entry->group);
350 351

	return entry->group;
352 353
}

354 355 356 357
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
358 359
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
360 361 362
	};
	int i, pos;

G
Gil Kupfer 已提交
363 364 365
	if (pci_ats_disabled())
		return false;

366 367 368 369 370 371 372 373 374
	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

375 376 377 378 379 380 381 382 383
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

384 385 386 387 388 389
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
390
	int devid;
391 392 393 394 395

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
396
	if (devid < 0)
397
		return false;
398 399 400 401 402 403 404 405 406 407 408

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

409
static void init_iommu_group(struct device *dev)
410 411 412
{
	struct iommu_group *group;

413
	group = iommu_group_get_for_dev(dev);
414 415 416 417
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
418 419 420 421 422
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
423
	struct amd_iommu *iommu;
424
	int devid;
425 426 427 428

	if (dev->archdata.iommu)
		return 0;

429
	devid = get_device_id(dev);
430
	if (devid < 0)
431 432
		return devid;

433 434
	iommu = amd_iommu_rlookup_table[devid];

435
	dev_data = find_dev_data(devid);
436 437 438
	if (!dev_data)
		return -ENOMEM;

439 440
	dev_data->alias = get_alias(dev);

441
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
442 443
		struct amd_iommu *iommu;

444
		iommu = amd_iommu_rlookup_table[dev_data->devid];
445 446 447
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

448 449
	dev->archdata.iommu = dev_data;

450
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
451

452 453 454
	return 0;
}

455 456
static void iommu_ignore_device(struct device *dev)
{
457 458
	u16 alias;
	int devid;
459 460

	devid = get_device_id(dev);
461
	if (devid < 0)
462 463
		return;

464
	alias = get_alias(dev);
465 466 467 468 469 470 471 472

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

473 474
static void iommu_uninit_device(struct device *dev)
{
475
	struct iommu_dev_data *dev_data;
476 477
	struct amd_iommu *iommu;
	int devid;
478

479
	devid = get_device_id(dev);
480
	if (devid < 0)
481
		return;
482

483 484
	iommu = amd_iommu_rlookup_table[devid];

485
	dev_data = search_dev_data(devid);
486 487 488
	if (!dev_data)
		return;

489 490 491
	if (dev_data->domain)
		detach_device(dev);

492
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
493

494 495
	iommu_group_remove_device(dev);

496
	/* Remove dma-ops */
497
	dev->dma_ops = NULL;
498

499
	/*
500 501
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
502
	 */
503
}
J
Joerg Roedel 已提交
504

505 506 507 508 509 510
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

511 512 513 514
static void dump_dte_entry(u16 devid)
{
	int i;

515 516
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
517 518 519
			amd_iommu_dev_table[devid].data[i]);
}

520 521
static void dump_command(unsigned long phys_addr)
{
522
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
523 524 525 526 527 528
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

529 530 531 532 533 534
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

535 536
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

553
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
554
{
555
	struct device *dev = iommu->iommu.dev;
556
	int type, devid, pasid, flags, tag;
557 558 559 560 561 562 563
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
564
	pasid   = PPR_PASID(*(u64 *)&event[0]);
565 566 567 568 569 570 571 572 573 574 575 576
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
577

578
	if (type == EVENT_TYPE_IO_FAULT) {
579
		amd_iommu_report_page_fault(devid, pasid, address, flags);
580 581
		return;
	} else {
582
		dev_err(dev, "AMD-Vi: Event logged [");
583
	}
584 585 586

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
587
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
588
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589
			pasid, address, flags);
590
		dump_dte_entry(devid);
591 592
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
593 594 595 596
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
597 598
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
599
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601
			pasid, address, flags);
602 603
		break;
	case EVENT_TYPE_ILL_CMD:
604
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
605
		dump_command(address);
606 607
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
608 609
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
			address, flags);
610 611
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
612
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
613 614
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
615 616
		break;
	case EVENT_TYPE_INV_DEV_REQ:
617
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
618
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619
			pasid, address, flags);
620
		break;
621 622 623 624 625 626 627
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
		dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			pasid, address, flags);
628 629
		break;
	default:
630
		dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
631
			event[0], event[1], event[2], event[3]);
632
	}
633 634

	memset(__evt, 0, 4 * sizeof(u32));
635 636 637 638 639 640 641 642 643 644
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
645
		iommu_print_event(iommu, iommu->evt_buf + head);
646
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
647 648 649 650 651
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

652
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
697

698 699 700
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
701

702 703 704 705 706 707 708
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
709 710
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
711 712 713 714 715 716

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
717 718 719 720
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

781
irqreturn_t amd_iommu_int_thread(int irq, void *data)
782
{
783 784
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
785

786 787 788
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
789
			iommu->mmio_base + MMIO_STATUS_OFFSET);
790

791 792 793 794
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
795

796 797 798 799
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
800

801 802 803 804 805 806 807
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
823
	return IRQ_HANDLED;
824 825
}

826 827 828 829 830
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

831 832 833 834 835 836
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
855
			       struct iommu_cmd *cmd)
856 857 858
{
	u8 *target;

859 860 861 862
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
863 864 865 866 867

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
868
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
869
}
870

871
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
872
{
873 874
	u64 paddr = iommu_virt_to_phys((void *)address);

875 876
	WARN_ON(address & 0x7ULL);

877
	memset(cmd, 0, sizeof(*cmd));
878 879
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
880
	cmd->data[2] = 1;
881 882 883
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

884 885 886 887 888 889 890
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

891 892 893 894
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
895
	bool s;
896 897

	pages = iommu_num_pages(address, size, PAGE_SIZE);
898
	s     = false;
899 900 901 902 903 904 905

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
906
		s = true;
907 908 909 910 911 912 913 914 915 916 917
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
918
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
919 920 921
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

922 923 924 925
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
926
	bool s;
927 928

	pages = iommu_num_pages(address, size, PAGE_SIZE);
929
	s     = false;
930 931 932 933 934 935 936

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
937
		s = true;
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

953 954 955 956 957 958 959
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

960
	cmd->data[0]  = pasid;
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
979
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
980 981
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
982
	cmd->data[1] |= (pasid & 0xff) << 16;
983 984 985 986 987 988 989 990
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

991 992 993 994 995 996 997
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
998
		cmd->data[1]  = pasid;
999 1000 1001 1002 1003 1004 1005 1006
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1007 1008 1009 1010
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1011 1012
}

1013 1014 1015 1016 1017 1018 1019
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1020 1021
/*
 * Writes the command to the IOMMUs command buffer and informs the
1022
 * hardware about the new command.
1023
 */
1024 1025 1026
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1027
{
1028
	unsigned int count = 0;
1029
	u32 left, next_tail;
1030

1031
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1032
again:
1033
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1034

1035
	if (left <= 0x20) {
1036 1037 1038 1039 1040 1041
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1042

1043 1044
			udelay(1);
		}
1045

1046 1047 1048
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1049 1050

		goto again;
1051 1052
	}

1053
	copy_cmd_to_buffer(iommu, cmd);
1054

1055
	/* Do we need to make sure all commands are processed? */
1056
	iommu->need_sync = sync;
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1068
	raw_spin_lock_irqsave(&iommu->lock, flags);
1069
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1070
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1071

1072
	return ret;
1073 1074
}

1075 1076 1077 1078 1079
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1080 1081 1082 1083
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1084
static int iommu_completion_wait(struct amd_iommu *iommu)
1085 1086
{
	struct iommu_cmd cmd;
1087
	unsigned long flags;
1088
	int ret;
1089

1090
	if (!iommu->need_sync)
1091
		return 0;
1092

1093

1094 1095
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1096
	raw_spin_lock_irqsave(&iommu->lock, flags);
1097 1098 1099 1100

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1101
	if (ret)
1102 1103 1104 1105 1106
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1107
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1108

1109
	return ret;
1110 1111
}

1112
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1113
{
1114
	struct iommu_cmd cmd;
1115

1116
	build_inv_dte(&cmd, devid);
1117

1118 1119
	return iommu_queue_command(iommu, &cmd);
}
1120

1121
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1122 1123
{
	u32 devid;
1124

1125 1126
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1127

1128 1129
	iommu_completion_wait(iommu);
}
1130

1131 1132 1133 1134
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1135
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1136 1137
{
	u32 dom_id;
1138

1139 1140 1141 1142 1143 1144
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1145

1146
	iommu_completion_wait(iommu);
1147 1148
}

1149
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1150
{
1151
	struct iommu_cmd cmd;
1152

1153
	build_inv_all(&cmd);
1154

1155 1156 1157 1158
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1159 1160 1161 1162 1163 1164 1165 1166 1167
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1168
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1178 1179
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1180
	if (iommu_feature(iommu, FEATURE_IA)) {
1181
		amd_iommu_flush_all(iommu);
1182
	} else {
1183 1184 1185
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1186 1187 1188
	}
}

1189
/*
1190
 * Command send function for flushing on-device TLB
1191
 */
1192 1193
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1194 1195
{
	struct amd_iommu *iommu;
1196
	struct iommu_cmd cmd;
1197
	int qdep;
1198

1199 1200
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1201

1202
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1203 1204

	return iommu_queue_command(iommu, &cmd);
1205 1206
}

1207 1208 1209
/*
 * Command send function for invalidating a device table entry
 */
1210
static int device_flush_dte(struct iommu_dev_data *dev_data)
1211
{
1212
	struct amd_iommu *iommu;
1213
	u16 alias;
1214
	int ret;
1215

1216
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1217
	alias = dev_data->alias;
1218

1219
	ret = iommu_flush_dte(iommu, dev_data->devid);
1220 1221
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1222 1223 1224
	if (ret)
		return ret;

1225
	if (dev_data->ats.enabled)
1226
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1227 1228

	return ret;
1229 1230
}

1231 1232 1233 1234 1235
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1236 1237
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1238
{
1239
	struct iommu_dev_data *dev_data;
1240 1241
	struct iommu_cmd cmd;
	int ret = 0, i;
1242

1243
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1244

1245
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1246 1247 1248 1249 1250 1251 1252
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1253
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1254 1255
	}

1256 1257
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1258
		if (!dev_data->ats.enabled)
1259 1260
			continue;

1261
		ret |= device_flush_iotlb(dev_data, address, size);
1262 1263
	}

1264
	WARN_ON(ret);
1265 1266
}

1267 1268
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1269
{
1270
	__domain_flush_pages(domain, address, size, 0);
1271
}
1272

1273
/* Flush the whole IO/TLB for a given protection domain */
1274
static void domain_flush_tlb(struct protection_domain *domain)
1275
{
1276
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1277 1278
}

1279
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1280
static void domain_flush_tlb_pde(struct protection_domain *domain)
1281
{
1282
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1283 1284
}

1285
static void domain_flush_complete(struct protection_domain *domain)
1286
{
1287
	int i;
1288

1289
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1290
		if (domain && !domain->dev_iommu[i])
1291
			continue;
1292

1293 1294 1295 1296 1297
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1298
	}
1299 1300
}

1301

1302
/*
1303
 * This function flushes the DTEs for all devices in domain
1304
 */
1305
static void domain_flush_devices(struct protection_domain *domain)
1306
{
1307
	struct iommu_dev_data *dev_data;
1308

1309
	list_for_each_entry(dev_data, &domain->dev_list, list)
1310
		device_flush_dte(dev_data);
1311 1312
}

1313 1314 1315 1316 1317 1318 1319
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static void free_page_list(struct page *freelist)
{
	while (freelist != NULL) {
		unsigned long p = (unsigned long)page_address(freelist);
		freelist = freelist->freelist;
		free_page(p);
	}
}

static struct page *free_pt_page(unsigned long pt, struct page *freelist)
{
	struct page *p = virt_to_page((void *)pt);

	p->freelist = freelist;

	return p;
}

#define DEFINE_FREE_PT_FN(LVL, FN)						\
static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
{										\
	unsigned long p;							\
	u64 *pt;								\
	int i;									\
										\
	pt = (u64 *)__pt;							\
										\
	for (i = 0; i < 512; ++i) {						\
		/* PTE present? */						\
		if (!IOMMU_PTE_PRESENT(pt[i]))					\
			continue;						\
										\
		/* Large PTE? */						\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
		    PM_PTE_LEVEL(pt[i]) == 7)					\
			continue;						\
										\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
		freelist = FN(p, freelist);					\
	}									\
										\
	return free_pt_page((unsigned long)pt, freelist);			\
}

DEFINE_FREE_PT_FN(l2, free_pt_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1370 1371
static struct page *free_sub_pt(unsigned long root, int mode,
				struct page *freelist)
1372
{
1373
	switch (mode) {
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		freelist = free_pt_page(root, freelist);
		break;
	case PAGE_MODE_2_LEVEL:
		freelist = free_pt_l2(root, freelist);
		break;
	case PAGE_MODE_3_LEVEL:
		freelist = free_pt_l3(root, freelist);
		break;
	case PAGE_MODE_4_LEVEL:
		freelist = free_pt_l4(root, freelist);
		break;
	case PAGE_MODE_5_LEVEL:
		freelist = free_pt_l5(root, freelist);
		break;
	case PAGE_MODE_6_LEVEL:
		freelist = free_pt_l6(root, freelist);
		break;
	default:
		BUG();
	}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	return freelist;
}

static void free_pagetable(struct protection_domain *domain)
{
	unsigned long root = (unsigned long)domain->pt_root;
	struct page *freelist = NULL;

	free_sub_pt(root, domain->mode, freelist);

1408 1409 1410
	free_page_list(freelist);
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1430
					iommu_virt_to_phys(domain->pt_root));
1431 1432 1433 1434 1435 1436 1437 1438 1439
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1440
		      unsigned long page_size,
1441 1442 1443
		      u64 **pte_page,
		      gfp_t gfp)
{
1444
	int level, end_lvl;
1445
	u64 *pte, *page;
1446 1447

	BUG_ON(!is_power_of_2(page_size));
1448 1449 1450 1451

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1452 1453 1454 1455
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1456 1457

	while (level > end_lvl) {
1458 1459 1460 1461 1462
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1463 1464 1465
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1466

1467
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1468

1469 1470
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1471 1472 1473
				free_page((unsigned long)page);
				continue;
			}
1474 1475
		}

1476 1477 1478 1479
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1497 1498 1499
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1500 1501 1502 1503
{
	int level;
	u64 *pte;

1504 1505
	*page_size = 0;

1506 1507 1508
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1509 1510 1511
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1512

1513 1514 1515
	while (level > 0) {

		/* Not Present */
1516 1517 1518
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1519
		/* Large PTE */
1520 1521 1522
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1523 1524 1525 1526 1527

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1528 1529
		level -= 1;

1530
		/* Walk to the next level */
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1546 1547 1548 1549 1550
	}

	return pte;
}

1551 1552 1553 1554 1555 1556 1557
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1558 1559 1560
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1561
			  unsigned long page_size,
1562
			  int prot,
1563
			  gfp_t gfp)
1564
{
1565
	u64 __pte, *pte;
1566
	int i, count;
1567

1568 1569 1570
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1571
	if (!(prot & IOMMU_PROT_MASK))
1572 1573
		return -EINVAL;

1574
	count = PAGE_SIZE_PTE_COUNT(page_size);
1575
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1576

1577 1578 1579
	if (!pte)
		return -ENOMEM;

1580 1581 1582
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1583

1584
	if (count > 1) {
1585
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1586
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1587
	} else
1588
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1589 1590 1591 1592 1593 1594

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1595 1596
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1597

1598 1599
	update_domain(dom);

1600 1601 1602
	return 0;
}

1603 1604 1605
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1606
{
1607 1608
	unsigned long long unmapped;
	unsigned long unmap_size;
1609 1610 1611 1612 1613
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1614

1615 1616
	while (unmapped < page_size) {

1617 1618 1619 1620 1621 1622
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1623 1624 1625 1626 1627 1628 1629 1630
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1631
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1632

1633
	return unmapped;
1634 1635
}

1636 1637 1638
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1639
 * interface functions.
1640 1641
 *
 ****************************************************************************/
1642

1643

1644 1645 1646
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1647
{
1648
	unsigned long pfn = 0;
1649

1650
	pages = __roundup_pow_of_two(pages);
1651

1652 1653
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1654
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1655

1656
	if (!pfn)
1657 1658
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1659

1660
	return (pfn << PAGE_SHIFT);
1661 1662
}

1663 1664 1665
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1666
{
1667 1668
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1669

1670
	free_iova_fast(&dma_dom->iovad, address, pages);
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1708 1709 1710 1711
static u16 domain_id_alloc(void)
{
	int id;

1712
	spin_lock(&pd_bitmap_lock);
1713 1714 1715 1716 1717 1718
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1719
	spin_unlock(&pd_bitmap_lock);
1720 1721 1722 1723

	return id;
}

1724 1725
static void domain_id_free(int id)
{
1726
	spin_lock(&pd_bitmap_lock);
1727 1728
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1729
	spin_unlock(&pd_bitmap_lock);
1730 1731
}

1732 1733 1734 1735 1736 1737 1738 1739 1740
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1741
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1756
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1757 1758 1759 1760 1761

		free_gcr3_tbl_level1(ptr);
	}
}

1762 1763
static void free_gcr3_table(struct protection_domain *domain)
{
1764 1765 1766 1767
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1768 1769
	else
		BUG_ON(domain->glx != 0);
1770

1771 1772 1773
	free_page((unsigned long)domain->gcr3_tbl);
}

1774 1775 1776 1777
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1778 1779
}

1780
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1781
{
1782
	struct dma_ops_domain *dom;
1783

1784
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1785 1786 1787 1788

	dma_ops_domain_flush_tlb(dom);
}

1789 1790 1791 1792
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1793 1794 1795 1796 1797
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1798 1799
	del_domain_from_list(&dom->domain);

1800
	put_iova_domain(&dom->iovad);
1801

1802
	free_pagetable(&dom->domain);
1803

1804 1805 1806
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1807 1808 1809
	kfree(dom);
}

1810 1811
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1812
 * It also initializes the page table and the address allocator data
1813 1814
 * structures required for the dma_ops interface
 */
1815
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1816 1817 1818 1819 1820 1821 1822
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1823
	if (protection_domain_init(&dma_dom->domain))
1824
		goto free_dma_dom;
1825

1826
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1827
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1828
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1829 1830 1831
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1832
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1833

1834
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1835 1836
		goto free_dma_dom;

1837 1838
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1839

1840 1841
	add_domain_to_list(&dma_dom->domain);

1842 1843 1844 1845 1846 1847 1848 1849
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1850 1851 1852 1853 1854 1855 1856 1857 1858
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1859 1860
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1861
{
1862
	u64 pte_root = 0;
1863
	u64 flags = 0;
1864

1865
	if (domain->mode != PAGE_MODE_NONE)
1866
		pte_root = iommu_virt_to_phys(domain->pt_root);
1867

1868 1869
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1870
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1871

1872 1873
	flags = amd_iommu_dev_table[devid].data[1];

1874 1875 1876
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1877 1878 1879 1880 1881 1882 1883
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1884
	if (domain->flags & PD_IOMMUV2_MASK) {
1885
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1910
	flags &= ~DEV_DOMID_MASK;
1911 1912 1913 1914
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1915 1916 1917 1918 1919
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1920
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1921
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1922 1923

	amd_iommu_apply_erratum_63(devid);
1924 1925
}

1926 1927
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1928 1929
{
	struct amd_iommu *iommu;
1930
	u16 alias;
1931
	bool ats;
1932

1933
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1934
	alias = dev_data->alias;
1935
	ats   = dev_data->ats.enabled;
1936 1937 1938 1939 1940 1941 1942 1943 1944

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1945
	/* Update device table */
1946
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1947
	if (alias != dev_data->devid)
1948
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1949

1950
	device_flush_dte(dev_data);
1951 1952
}

1953
static void do_detach(struct iommu_dev_data *dev_data)
1954 1955
{
	struct amd_iommu *iommu;
1956
	u16 alias;
1957

1958
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1959
	alias = dev_data->alias;
1960 1961

	/* decrease reference counters */
1962 1963 1964 1965 1966 1967
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1968
	clear_dte_entry(dev_data->devid);
1969 1970
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1971

1972
	/* Flush the DTE entry */
1973
	device_flush_dte(dev_data);
1974 1975 1976
}

/*
1977 1978
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
1979
 */
1980
static int __attach_device(struct iommu_dev_data *dev_data,
1981
			   struct protection_domain *domain)
1982
{
1983
	int ret;
1984

1985 1986 1987
	/* lock domain */
	spin_lock(&domain->lock);

1988
	ret = -EBUSY;
1989
	if (dev_data->domain != NULL)
1990
		goto out_unlock;
1991

1992
	/* Attach alias group root */
1993
	do_attach(dev_data, domain);
1994

1995 1996 1997 1998
	ret = 0;

out_unlock:

1999 2000
	/* ready */
	spin_unlock(&domain->lock);
2001

2002
	return ret;
2003
}
2004

2005 2006 2007 2008 2009 2010 2011 2012

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2013 2014 2015 2016 2017 2018
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2019
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2020 2021 2022
	if (!pos)
		return -EINVAL;

2023 2024 2025
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2026 2027 2028 2029

	return 0;
}

2030 2031
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2032 2033 2034 2035 2036 2037 2038 2039
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2051 2052
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2053 2054 2055
	if (ret)
		goto out_err;

2056 2057 2058 2059 2060 2061
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2075
/* FIXME: Move this to PCI code */
2076
#define PCI_PRI_TLP_OFF		(1 << 15)
2077

J
Joerg Roedel 已提交
2078
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2079
{
2080
	u16 status;
2081 2082
	int pos;

2083
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2084 2085 2086
	if (!pos)
		return false;

2087
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2088

2089
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2090 2091
}

2092
/*
2093 2094
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2095
 */
2096 2097
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2098
{
2099
	struct pci_dev *pdev;
2100
	struct iommu_dev_data *dev_data;
2101
	unsigned long flags;
2102
	int ret;
2103

2104 2105
	dev_data = get_dev_data(dev);

2106 2107 2108 2109
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2110
	if (domain->flags & PD_IOMMUV2_MASK) {
2111
		if (!dev_data->passthrough)
2112 2113
			return -EINVAL;

2114 2115 2116
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2117

2118 2119 2120 2121
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2122 2123
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2124 2125 2126
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2127

2128
skip_ats_check:
2129
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2130
	ret = __attach_device(dev_data, domain);
2131
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2132

2133 2134 2135 2136 2137
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2138
	domain_flush_tlb_pde(domain);
2139 2140

	return ret;
2141 2142
}

2143 2144 2145
/*
 * Removes a device from a protection domain (unlocked)
 */
2146
static void __detach_device(struct iommu_dev_data *dev_data)
2147
{
2148
	struct protection_domain *domain;
2149

2150
	domain = dev_data->domain;
2151

2152
	spin_lock(&domain->lock);
2153

2154
	do_detach(dev_data);
2155

2156
	spin_unlock(&domain->lock);
2157 2158 2159 2160 2161
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2162
static void detach_device(struct device *dev)
2163
{
2164
	struct protection_domain *domain;
2165
	struct iommu_dev_data *dev_data;
2166 2167
	unsigned long flags;

2168
	dev_data = get_dev_data(dev);
2169
	domain   = dev_data->domain;
2170

2171 2172 2173 2174 2175 2176 2177 2178 2179
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (WARN_ON(!dev_data->domain))
		return;

2180
	/* lock device table */
2181
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2182
	__detach_device(dev_data);
2183
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2184

2185 2186 2187
	if (!dev_is_pci(dev))
		return;

2188
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2189 2190
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2191
		pci_disable_ats(to_pci_dev(dev));
2192 2193

	dev_data->ats.enabled = false;
2194
}
2195

2196
static int amd_iommu_add_device(struct device *dev)
2197
{
2198
	struct iommu_dev_data *dev_data;
2199
	struct iommu_domain *domain;
2200
	struct amd_iommu *iommu;
2201
	int ret, devid;
2202

2203
	if (!check_device(dev) || get_dev_data(dev))
2204
		return 0;
2205

2206
	devid = get_device_id(dev);
2207
	if (devid < 0)
2208 2209
		return devid;

2210
	iommu = amd_iommu_rlookup_table[devid];
2211

2212
	ret = iommu_init_device(dev);
2213 2214 2215 2216
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2217

2218
		iommu_ignore_device(dev);
2219
		dev->dma_ops = &dma_direct_ops;
2220 2221 2222
		goto out;
	}
	init_iommu_group(dev);
2223

2224
	dev_data = get_dev_data(dev);
2225

2226
	BUG_ON(!dev_data);
2227

2228
	if (iommu_pass_through || dev_data->iommu_v2)
2229
		iommu_request_dm_for_dev(dev);
2230

2231 2232
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2233
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2234
		dev_data->passthrough = true;
2235
	else
2236
		dev->dma_ops = &amd_iommu_dma_ops;
2237

2238
out:
2239 2240 2241 2242 2243
	iommu_completion_wait(iommu);

	return 0;
}

2244
static void amd_iommu_remove_device(struct device *dev)
2245
{
2246
	struct amd_iommu *iommu;
2247
	int devid;
2248 2249 2250 2251 2252

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2253
	if (devid < 0)
2254 2255
		return;

2256 2257 2258 2259
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2260 2261
}

2262 2263 2264 2265 2266 2267 2268 2269
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2283
static struct protection_domain *get_domain(struct device *dev)
2284
{
2285
	struct protection_domain *domain;
2286
	struct iommu_domain *io_domain;
2287

2288
	if (!check_device(dev))
2289
		return ERR_PTR(-EINVAL);
2290

2291
	domain = get_dev_data(dev)->domain;
2292 2293 2294 2295 2296 2297
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2298 2299 2300
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2301
	if (!dma_ops_domain(domain))
2302
		return ERR_PTR(-EBUSY);
2303

2304
	return domain;
2305 2306
}

2307 2308
static void update_device_table(struct protection_domain *domain)
{
2309
	struct iommu_dev_data *dev_data;
2310

2311
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2312 2313
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2314 2315 2316 2317 2318

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2319 2320
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2321
	}
2322 2323 2324 2325 2326 2327 2328 2329
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2330 2331 2332

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2333 2334 2335 2336

	domain->updated = false;
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2348

2349 2350
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2351 2352
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2353 2354
 * Must be called with the domain lock held.
 */
2355 2356 2357 2358
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2359
			       enum dma_data_direction direction,
2360
			       u64 dma_mask)
2361 2362
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2363
	dma_addr_t address, start, ret;
2364
	unsigned int pages;
2365
	int prot = 0;
2366 2367
	int i;

2368
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2369 2370
	paddr &= PAGE_MASK;

2371
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2372
	if (address == AMD_IOMMU_MAPPING_ERROR)
2373
		goto out;
2374

2375
	prot = dir2prot(direction);
2376

2377 2378
	start = address;
	for (i = 0; i < pages; ++i) {
2379 2380 2381
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2382 2383
			goto out_unmap;

2384 2385 2386 2387 2388
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2389
	if (unlikely(amd_iommu_np_cache)) {
2390
		domain_flush_pages(&dma_dom->domain, address, size);
2391 2392
		domain_flush_complete(&dma_dom->domain);
	}
2393

2394 2395
out:
	return address;
2396 2397 2398 2399 2400

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2401
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2402 2403
	}

2404 2405 2406 2407
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2408

2409
	return AMD_IOMMU_MAPPING_ERROR;
2410 2411
}

2412 2413 2414 2415
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2416
static void __unmap_single(struct dma_ops_domain *dma_dom,
2417 2418 2419 2420 2421 2422 2423
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2424
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2425 2426 2427 2428
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2429
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2430 2431 2432
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2433 2434 2435
	if (amd_iommu_unmap_flush) {
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
2436
		dma_ops_free_iova(dma_dom, dma_addr, pages);
J
Joerg Roedel 已提交
2437
	} else {
2438 2439
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2440
	}
2441 2442
}

2443 2444 2445
/*
 * The exported map_single function for dma_ops.
 */
2446 2447 2448
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2449
			   unsigned long attrs)
2450
{
2451
	phys_addr_t paddr = page_to_phys(page) + offset;
2452
	struct protection_domain *domain;
2453
	struct dma_ops_domain *dma_dom;
2454
	u64 dma_mask;
2455

2456 2457
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2458
		return (dma_addr_t)paddr;
2459
	else if (IS_ERR(domain))
2460
		return AMD_IOMMU_MAPPING_ERROR;
2461

2462
	dma_mask = *dev->dma_mask;
2463
	dma_dom = to_dma_ops_domain(domain);
2464

2465
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2466 2467
}

2468 2469 2470
/*
 * The exported unmap_single function for dma_ops.
 */
2471
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2472
		       enum dma_data_direction dir, unsigned long attrs)
2473 2474
{
	struct protection_domain *domain;
2475
	struct dma_ops_domain *dma_dom;
2476

2477 2478
	domain = get_domain(dev);
	if (IS_ERR(domain))
2479 2480
		return;

2481 2482 2483
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2484 2485
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2512 2513 2514 2515
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2516
static int map_sg(struct device *dev, struct scatterlist *sglist,
2517
		  int nelems, enum dma_data_direction direction,
2518
		  unsigned long attrs)
2519
{
2520
	int mapped_pages = 0, npages = 0, prot = 0, i;
2521
	struct protection_domain *domain;
2522
	struct dma_ops_domain *dma_dom;
2523
	struct scatterlist *s;
2524
	unsigned long address;
2525
	u64 dma_mask;
2526

2527
	domain = get_domain(dev);
2528
	if (IS_ERR(domain))
2529
		return 0;
2530

2531
	dma_dom  = to_dma_ops_domain(domain);
2532
	dma_mask = *dev->dma_mask;
2533

2534 2535 2536
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2537
	if (address == AMD_IOMMU_MAPPING_ERROR)
2538 2539 2540 2541 2542
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2543
	for_each_sg(sglist, s, nelems, i) {
2544 2545 2546 2547 2548
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2549

2550 2551 2552 2553 2554
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2555

2556 2557
			mapped_pages += 1;
		}
2558 2559
	}

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2577

2578 2579 2580 2581 2582 2583
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2584 2585
	}

2586 2587 2588 2589
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2590
	return 0;
2591 2592
}

2593 2594 2595 2596
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2597
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2598
		     int nelems, enum dma_data_direction dir,
2599
		     unsigned long attrs)
2600 2601
{
	struct protection_domain *domain;
2602
	struct dma_ops_domain *dma_dom;
2603 2604
	unsigned long startaddr;
	int npages = 2;
2605

2606 2607
	domain = get_domain(dev);
	if (IS_ERR(domain))
2608 2609
		return;

2610
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2611
	dma_dom   = to_dma_ops_domain(domain);
2612 2613
	npages    = sg_num_pages(dev, sglist, nelems);

2614
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2615 2616
}

2617 2618 2619
/*
 * The exported alloc_coherent function for dma_ops.
 */
2620
static void *alloc_coherent(struct device *dev, size_t size,
2621
			    dma_addr_t *dma_addr, gfp_t flag,
2622
			    unsigned long attrs)
2623
{
2624
	u64 dma_mask = dev->coherent_dma_mask;
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;

	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
	} else if (IS_ERR(domain))
		return NULL;
2636

2637 2638 2639 2640 2641 2642 2643 2644 2645
	dma_dom   = to_dma_ops_domain(domain);
	size	  = PAGE_ALIGN(size);
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;

	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!gfpflags_allow_blocking(flag))
2646
			return NULL;
2647

2648
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2649
					get_order(size), flag & __GFP_NOWARN);
2650 2651 2652
		if (!page)
			return NULL;
	}
2653

2654 2655 2656
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2657 2658 2659
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
				 size, DMA_BIDIRECTIONAL, dma_mask);

2660
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2661
		goto out_free;
2662 2663

	return page_address(page);
2664 2665

out_free:
2666 2667 2668 2669

	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));

2670
	return NULL;
2671 2672
}

2673 2674 2675
/*
 * The exported free_coherent function for dma_ops.
 */
2676
static void free_coherent(struct device *dev, size_t size,
2677
			  void *virt_addr, dma_addr_t dma_addr,
2678
			  unsigned long attrs)
2679
{
2680 2681 2682
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;
2683

2684
	page = virt_to_page(virt_addr);
2685 2686
	size = PAGE_ALIGN(size);

2687 2688 2689
	domain = get_domain(dev);
	if (IS_ERR(domain))
		goto free_mem;
2690

2691 2692 2693
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2694

2695 2696 2697
free_mem:
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2698 2699
}

2700 2701 2702 2703 2704 2705
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2706
	if (!dma_direct_supported(dev, mask))
2707
		return 0;
2708
	return check_device(dev);
2709 2710
}

2711 2712 2713 2714 2715
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2716
static const struct dma_map_ops amd_iommu_dma_ops = {
2717 2718 2719 2720 2721 2722 2723
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2724
	.mapping_error	= amd_iommu_mapping_error,
2725 2726
};

2727 2728 2729 2730 2731
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2732
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2779
int __init amd_iommu_init_api(void)
2780
{
2781
	int ret, err = 0;
2782 2783 2784 2785

	ret = iova_cache_get();
	if (ret)
		return ret;
2786

2787 2788 2789 2790
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2791 2792 2793 2794 2795 2796 2797 2798
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2799 2800 2801
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2802

2803
	return 0;
2804 2805
}

2806 2807
int __init amd_iommu_init_dma_ops(void)
{
2808
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2809 2810
	iommu_detected = 1;

2811 2812
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2813 2814 2815 2816 2817
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2818 2819
	 */
	if (!swiotlb)
2820
		dma_ops = &dma_direct_ops;
2821

2822 2823 2824 2825 2826
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2827
	return 0;
2828

2829
}
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2843
	struct iommu_dev_data *entry;
2844 2845
	unsigned long flags;

2846
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2847

2848 2849 2850
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
2851
		BUG_ON(!entry->domain);
2852
		__detach_device(entry);
2853
	}
2854

2855
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2856 2857
}

2858 2859 2860 2861 2862
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2863 2864
	del_domain_from_list(domain);

2865 2866 2867 2868 2869 2870
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2883
static struct protection_domain *protection_domain_alloc(void)
2884 2885 2886 2887 2888
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2889
		return NULL;
2890

2891
	if (protection_domain_init(domain))
2892 2893
		goto out_err;

2894 2895
	add_domain_to_list(domain);

2896 2897 2898 2899 2900 2901 2902 2903
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2904
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2905
{
2906
	struct protection_domain *pdomain;
2907
	struct dma_ops_domain *dma_domain;
2908

2909 2910 2911 2912 2913
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2914

2915 2916 2917 2918 2919 2920
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2921

2922 2923 2924
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2935 2936 2937 2938
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2939

2940 2941
		pdomain->mode = PAGE_MODE_NONE;
		break;
2942 2943 2944
	default:
		return NULL;
	}
2945

2946
	return &pdomain->domain;
2947 2948
}

2949
static void amd_iommu_domain_free(struct iommu_domain *dom)
2950
{
2951
	struct protection_domain *domain;
2952
	struct dma_ops_domain *dma_dom;
2953

2954 2955
	domain = to_pdomain(dom);

2956 2957 2958 2959 2960
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2961 2962
	if (!dom)
		return;
2963

2964 2965
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2966
		/* Now release the domain */
2967
		dma_dom = to_dma_ops_domain(domain);
2968 2969 2970 2971 2972
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2973

2974 2975 2976 2977 2978 2979
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2980 2981
}

2982 2983 2984
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2985
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2986
	struct amd_iommu *iommu;
2987
	int devid;
2988

2989
	if (!check_device(dev))
2990 2991
		return;

2992
	devid = get_device_id(dev);
2993
	if (devid < 0)
2994
		return;
2995

2996
	if (dev_data->domain != NULL)
2997
		detach_device(dev);
2998 2999 3000 3001 3002

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3003 3004 3005 3006 3007 3008
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3009 3010 3011
	iommu_completion_wait(iommu);
}

3012 3013 3014
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3015
	struct protection_domain *domain = to_pdomain(dom);
3016
	struct iommu_dev_data *dev_data;
3017
	struct amd_iommu *iommu;
3018
	int ret;
3019

3020
	if (!check_device(dev))
3021 3022
		return -EINVAL;

3023 3024
	dev_data = dev->archdata.iommu;

3025
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3026 3027 3028
	if (!iommu)
		return -EINVAL;

3029
	if (dev_data->domain)
3030
		detach_device(dev);
3031

3032
	ret = attach_device(dev, domain);
3033

3034 3035 3036 3037 3038 3039 3040 3041 3042
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3043 3044
	iommu_completion_wait(iommu);

3045
	return ret;
3046 3047
}

3048
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3049
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3050
{
3051
	struct protection_domain *domain = to_pdomain(dom);
3052 3053 3054
	int prot = 0;
	int ret;

3055 3056 3057
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3058 3059 3060 3061 3062
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3063
	mutex_lock(&domain->api_lock);
3064
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3065 3066
	mutex_unlock(&domain->api_lock);

3067
	return ret;
3068 3069
}

3070 3071
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3072
{
3073
	struct protection_domain *domain = to_pdomain(dom);
3074
	size_t unmap_size;
3075

3076
	if (domain->mode == PAGE_MODE_NONE)
3077
		return 0;
3078

3079
	mutex_lock(&domain->api_lock);
3080
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3081
	mutex_unlock(&domain->api_lock);
3082

3083
	return unmap_size;
3084 3085
}

3086
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3087
					  dma_addr_t iova)
3088
{
3089
	struct protection_domain *domain = to_pdomain(dom);
3090
	unsigned long offset_mask, pte_pgsize;
3091
	u64 *pte, __pte;
3092

3093 3094 3095
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3096
	pte = fetch_pte(domain, iova, &pte_pgsize);
3097

3098
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3099 3100
		return 0;

3101
	offset_mask = pte_pgsize - 1;
3102
	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3103

3104
	return (__pte & ~offset_mask) | (iova & offset_mask);
3105 3106
}

3107
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3108
{
3109 3110
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3111
		return true;
3112
	case IOMMU_CAP_INTR_REMAP:
3113
		return (irq_remapping_enabled == 1);
3114 3115
	case IOMMU_CAP_NOEXEC:
		return false;
3116 3117
	default:
		break;
3118 3119
	}

3120
	return false;
S
Sheng Yang 已提交
3121 3122
}

3123 3124
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3125
{
3126
	struct iommu_resv_region *region;
3127
	struct unity_map_entry *entry;
3128
	int devid;
3129 3130

	devid = get_device_id(dev);
3131
	if (devid < 0)
3132
		return;
3133 3134

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3135 3136
		size_t length;
		int prot = 0;
3137 3138 3139 3140

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3141 3142 3143 3144 3145 3146 3147 3148 3149
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3150 3151 3152 3153 3154 3155 3156
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3157 3158 3159

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3160
					 0, IOMMU_RESV_MSI);
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3171 3172
}

3173
static void amd_iommu_put_resv_regions(struct device *dev,
3174 3175
				     struct list_head *head)
{
3176
	struct iommu_resv_region *entry, *next;
3177 3178 3179 3180 3181

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3182
static void amd_iommu_apply_resv_region(struct device *dev,
3183
				      struct iommu_domain *domain,
3184
				      struct iommu_resv_region *region)
3185
{
3186
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3187 3188 3189
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3190
	end   = IOVA_PFN(region->start + region->length - 1);
3191 3192 3193 3194

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3195 3196 3197 3198 3199 3200 3201
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3215
const struct iommu_ops amd_iommu_ops = {
3216
	.capable = amd_iommu_capable,
3217 3218
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3219 3220
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3221 3222
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3223
	.iova_to_phys = amd_iommu_iova_to_phys,
3224 3225
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3226
	.device_group = amd_iommu_device_group,
3227 3228 3229
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3230
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3231
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3232 3233 3234
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3235 3236
};

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3259 3260 3261

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3262
	struct protection_domain *domain = to_pdomain(dom);
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3280 3281 3282

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3283
	struct protection_domain *domain = to_pdomain(dom);
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3344
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3361 3362 3363 3364 3365 3366
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3398
	struct protection_domain *domain = to_pdomain(dom);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3418
	struct protection_domain *domain = to_pdomain(dom);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3451
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3452 3453
		}

3454
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3498
	struct protection_domain *domain = to_pdomain(dom);
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3512
	struct protection_domain *domain = to_pdomain(dom);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3540 3541 3542

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3543
	struct protection_domain *pdomain;
3544

3545 3546
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3547 3548 3549
		return NULL;

	/* Only return IOMMUv2 domains */
3550
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3551 3552
		return NULL;

3553
	return &pdomain->domain;
3554 3555
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

G
Gil Kupfer 已提交
3583 3584 3585 3586 3587
	if (!pci_ats_disabled()) {
		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
		if (pos)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
	}
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3613 3614 3615 3616 3617 3618 3619 3620 3621

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3622
static struct irq_chip amd_ir_chip;
3623
static DEFINE_SPINLOCK(iommu_table_lock);
3624

3625 3626 3627 3628 3629 3630
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3631
	dte	|= iommu_virt_to_phys(table->table);
3632 3633 3634 3635 3636 3637 3638
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3678 3679 3680 3681 3682 3683 3684 3685
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3686
static struct irq_remap_table *alloc_irq_table(u16 devid)
3687 3688
{
	struct irq_remap_table *table = NULL;
3689
	struct irq_remap_table *new_table = NULL;
3690 3691 3692 3693
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3694
	spin_lock_irqsave(&iommu_table_lock, flags);
3695 3696 3697 3698 3699 3700 3701

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3702
		goto out_unlock;
3703 3704 3705 3706

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3707
		set_remap_table_entry(iommu, devid, table);
3708
		goto out_wait;
3709
	}
3710
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3711 3712

	/* Nothing there yet, allocate new irq remapping table */
3713 3714 3715
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3716

3717
	spin_lock_irqsave(&iommu_table_lock, flags);
3718

3719 3720
	table = irq_lookup_table[devid];
	if (table)
3721
		goto out_unlock;
3722

3723 3724 3725 3726
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3727 3728
	}

3729 3730
	table = new_table;
	new_table = NULL;
3731

3732 3733 3734
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3735

3736
out_wait:
3737 3738 3739
	iommu_completion_wait(iommu);

out_unlock:
3740
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3741

3742 3743 3744 3745
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3746 3747 3748
	return table;
}

3749
static int alloc_irq_index(u16 devid, int count, bool align)
3750 3751
{
	struct irq_remap_table *table;
3752
	int index, c, alignment = 1;
3753
	unsigned long flags;
3754 3755 3756 3757
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3758

3759
	table = alloc_irq_table(devid);
3760 3761 3762
	if (!table)
		return -ENODEV;

3763 3764 3765
	if (align)
		alignment = roundup_pow_of_two(count);

3766
	raw_spin_lock_irqsave(&table->lock, flags);
3767 3768

	/* Scan table for free entries */
3769
	for (index = ALIGN(table->min_index, alignment), c = 0;
3770
	     index < MAX_IRQS_PER_TABLE;) {
3771
		if (!iommu->irte_ops->is_allocated(table, index)) {
3772
			c += 1;
3773 3774
		} else {
			c     = 0;
3775
			index = ALIGN(index + 1, alignment);
3776 3777
			continue;
		}
3778 3779 3780

		if (c == count)	{
			for (; c != 0; --c)
3781
				iommu->irte_ops->set_allocated(table, index - c + 1);
3782 3783 3784 3785

			index -= count - 1;
			goto out;
		}
3786 3787

		index++;
3788 3789 3790 3791 3792
	}

	index = -ENOSPC;

out:
3793
	raw_spin_unlock_irqrestore(&table->lock, flags);
3794 3795 3796 3797

	return index;
}

3798 3799
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3800 3801 3802 3803
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3804
	struct irte_ga *entry;
3805 3806 3807 3808 3809

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3810
	table = get_irq_table(devid);
3811 3812 3813
	if (!table)
		return -ENOMEM;

3814
	raw_spin_lock_irqsave(&table->lock, flags);
3815 3816 3817 3818 3819 3820 3821

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3822 3823
	if (data)
		data->ref = entry;
3824

3825
	raw_spin_unlock_irqrestore(&table->lock, flags);
3826 3827 3828 3829 3830 3831 3832 3833

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3834 3835 3836 3837 3838 3839 3840 3841 3842
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3843
	table = get_irq_table(devid);
3844 3845 3846
	if (!table)
		return -ENOMEM;

3847
	raw_spin_lock_irqsave(&table->lock, flags);
3848
	table->table[index] = irte->val;
3849
	raw_spin_unlock_irqrestore(&table->lock, flags);
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3867
	table = get_irq_table(devid);
3868 3869 3870
	if (!table)
		return;

3871
	raw_spin_lock_irqsave(&table->lock, flags);
3872
	iommu->irte_ops->clear_allocated(table, index);
3873
	raw_spin_unlock_irqrestore(&table->lock, flags);
3874 3875 3876 3877 3878

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3879 3880
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3881
			 u8 vector, u32 dest_apicid, int devid)
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3895
			    u8 vector, u32 dest_apicid, int devid)
3896 3897 3898 3899 3900 3901 3902 3903
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
3904 3905
	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3922
	modify_irte_ga(devid, index, irte, NULL);
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3938
	modify_irte_ga(devid, index, irte, NULL);
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3956
	if (!irte->lo.fields_remap.guest_mode) {
3957
		irte->hi.fields.vector = vector;
3958 3959 3960 3961
		irte->lo.fields_remap.destination =
					APICID_TO_IRTE_DEST_LO(dest_apicid);
		irte->hi.fields.destination =
					APICID_TO_IRTE_DEST_HI(dest_apicid);
3962 3963
		modify_irte_ga(devid, index, irte, NULL);
	}
3964 3965
}

3966
#define IRTE_ALLOCATED (~1U)
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4012
static int get_devid(struct irq_alloc_info *info)
4013
{
4014
	int devid = -1;
4015

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4031

4032 4033
	return devid;
}
4034

4035 4036 4037 4038
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4039

4040 4041
	if (!info)
		return NULL;
4042

4043 4044 4045 4046 4047 4048
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4049

4050
	return NULL;
4051 4052
}

4053
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4054
{
4055 4056
	struct amd_iommu *iommu;
	int devid;
4057

4058 4059
	if (!info)
		return NULL;
4060

4061 4062 4063 4064
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4065
		if (devid < 0)
4066 4067
			return NULL;

4068 4069 4070
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4071 4072 4073 4074
		break;
	default:
		break;
	}
4075

4076 4077
	return NULL;
}
4078

4079 4080 4081 4082 4083 4084
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4085 4086 4087
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4088

4089 4090 4091 4092 4093 4094 4095 4096
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4097 4098 4099 4100
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4101

4102 4103
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4104 4105
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4106
				 irq_cfg->dest_apicid, devid);
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4122

4123 4124 4125 4126 4127 4128 4129
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4130

4131 4132 4133 4134
	default:
		BUG_ON(1);
		break;
	}
4135 4136
}

4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4157 4158
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4159
{
4160 4161
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4162
	struct amd_ir_data *data = NULL;
4163
	struct irq_cfg *cfg;
4164
	int i, ret, devid;
4165
	int index;
4166

4167 4168 4169 4170
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4171 4172
		return -EINVAL;

4173 4174 4175 4176 4177 4178
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4179

4180 4181 4182
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4183

4184 4185 4186
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4187

4188
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4205
			index = info->ioapic_pin;
4206
		} else {
4207
			index = -ENOMEM;
4208
		}
4209
	} else {
4210 4211 4212
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4213 4214 4215
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4216
		ret = index;
4217 4218
		goto out_free_parent;
	}
4219

4220 4221 4222 4223 4224 4225 4226
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4227

4228 4229 4230 4231 4232
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4243 4244 4245 4246 4247 4248
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4249

4250
	return 0;
4251

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4263 4264
}

4265 4266
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4267
{
4268 4269 4270 4271
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4272

4273 4274 4275 4276 4277 4278
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4279
			kfree(data->entry);
4280 4281 4282 4283 4284
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4285

4286 4287 4288 4289 4290
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4291
static int irq_remapping_activate(struct irq_domain *domain,
4292
				  struct irq_data *irq_data, bool reserve)
4293 4294 4295
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4296
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4297
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4298

4299 4300 4301 4302 4303 4304
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4305
	return 0;
4306 4307
}

4308 4309
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4310
{
4311 4312
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4313
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4314

4315 4316 4317
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4318
}
4319

4320
static const struct irq_domain_ops amd_ir_domain_ops = {
4321 4322 4323 4324
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4325
};
4326

4327 4328 4329 4330 4331 4332 4333 4334
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4335 4336 4337 4338 4339 4340 4341 4342
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4365
		irte->lo.fields_vapic.ga_log_intr = 1;
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
4378 4379 4380 4381
		irte->lo.fields_remap.destination =
				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
		irte->hi.fields.destination =
				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4411 4412 4413 4414 4415 4416 4417
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4418
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4419
	int ret;
4420

4421 4422 4423
	if (!iommu)
		return -ENODEV;

4424 4425 4426
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4427

4428
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4429 4430 4431 4432 4433
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4434
	send_cleanup_vector(cfg);
4435 4436

	return IRQ_SET_MASK_OK_DONE;
4437 4438
}

4439
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4440
{
4441
	struct amd_ir_data *ir_data = irq_data->chip_data;
4442

4443 4444
	*msg = ir_data->msi_entry;
}
4445

4446
static struct irq_chip amd_ir_chip = {
4447
	.name			= "AMD-IR",
4448
	.irq_ack		= apic_ack_irq,
4449 4450 4451
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4452
};
4453

4454 4455
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4456 4457 4458 4459 4460 4461 4462
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4463 4464
	if (!iommu->ir_domain)
		return -ENOMEM;
4465

4466
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4467 4468 4469
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4470 4471
	return 0;
}
4472 4473 4474 4475 4476

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4477
	struct irq_remap_table *table;
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4491 4492
	table = get_irq_table(devid);
	if (!table)
4493 4494
		return -ENODEV;

4495
	raw_spin_lock_irqsave(&table->lock, flags);
4496 4497

	if (ref->lo.fields_vapic.guest_mode) {
4498 4499 4500 4501 4502 4503
		if (cpu >= 0) {
			ref->lo.fields_vapic.destination =
						APICID_TO_IRTE_DEST_LO(cpu);
			ref->hi.fields.destination =
						APICID_TO_IRTE_DEST_HI(cpu);
		}
4504 4505 4506 4507
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4508
	raw_spin_unlock_irqrestore(&table->lock, flags);
4509 4510 4511 4512 4513 4514

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4515
#endif