amd_iommu.c 105.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

J
Joerg Roedel 已提交
20
#define pr_fmt(fmt)     "AMD-Vi: " fmt
21
#define dev_fmt(fmt)    pr_fmt(fmt)
J
Joerg Roedel 已提交
22

23
#include <linux/ratelimit.h>
24
#include <linux/pci.h>
25
#include <linux/acpi.h>
26
#include <linux/amba/bus.h>
27
#include <linux/platform_device.h>
28
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
29
#include <linux/bitmap.h>
30
#include <linux/slab.h>
31
#include <linux/debugfs.h>
32
#include <linux/scatterlist.h>
33
#include <linux/dma-mapping.h>
34
#include <linux/dma-direct.h>
35
#include <linux/iommu-helper.h>
36
#include <linux/iommu.h>
37
#include <linux/delay.h>
38
#include <linux/amd-iommu.h>
39 40
#include <linux/notifier.h>
#include <linux/export.h>
41 42
#include <linux/irq.h>
#include <linux/msi.h>
43
#include <linux/dma-contiguous.h>
44
#include <linux/irqdomain.h>
45
#include <linux/percpu.h>
46
#include <linux/iova.h>
47 48 49 50
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
51
#include <asm/msidef.h>
52
#include <asm/proto.h>
53
#include <asm/iommu.h>
54
#include <asm/gart.h>
55
#include <asm/dma.h>
56 57 58

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
59
#include "irq_remapping.h"
60 61 62

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

63
#define LOOP_TIMEOUT	100000
64

65 66 67 68
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

69 70 71 72 73 74
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

75 76 77 78 79 80
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
81
 * 512GB Pages are not supported due to a hardware bug
82
 */
J
Joerg Roedel 已提交
83
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
84

85
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
86
static DEFINE_SPINLOCK(pd_bitmap_lock);
87

88
/* List of all available dev_data structures */
89
static LLIST_HEAD(dev_data_list);
90

91 92
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
93
LIST_HEAD(acpihid_map);
94

95 96 97 98
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
99
const struct iommu_ops amd_iommu_ops;
100

101
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
102
int amd_iommu_max_glx_val = -1;
103

104
static const struct dma_map_ops amd_iommu_dma_ops;
105

106 107 108
/*
 * general struct to manage commands send to an IOMMU
 */
109
struct iommu_cmd {
110 111 112
	u32 data[4];
};

113 114
struct kmem_cache *amd_iommu_irq_cache;

115
static void update_domain(struct protection_domain *domain);
116
static int protection_domain_init(struct protection_domain *domain);
117
static void detach_device(struct device *dev);
118
static void iova_domain_flush_tlb(struct iova_domain *iovad);
119

120 121 122 123 124 125 126
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

127 128
	/* IOVA RB-Tree */
	struct iova_domain iovad;
129 130
};

131 132 133
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

134 135 136 137 138 139
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

140 141
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
142
{
143
	struct acpi_device *adev = ACPI_COMPANION(dev);
144 145
	const char *hid, *uid;

146 147 148 149 150
	if (!adev)
		return -ENODEV;

	hid = acpi_device_hid(adev);
	uid = acpi_device_uid(adev);
151 152 153 154 155 156 157 158 159 160 161

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
162 163
}

164
static inline u16 get_pci_device_id(struct device *dev)
165 166 167 168 169 170
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

198 199 200 201 202
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

203 204 205 206 207 208
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

209
static struct iommu_dev_data *alloc_dev_data(u16 devid)
210 211 212 213 214 215 216
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

217
	dev_data->devid = devid;
218 219
	ratelimit_default_init(&dev_data->rs);

220
	llist_add(&dev_data->dev_data_list, &dev_data_list);
221 222 223
	return dev_data;
}

224 225 226
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
227
	struct llist_node *node;
228

229 230
	if (llist_empty(&dev_data_list))
		return NULL;
231

232 233
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
234
		if (dev_data->devid == devid)
235
			return dev_data;
236 237
	}

238
	return NULL;
239 240
}

241 242 243 244 245 246 247 248 249 250 251
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

252
	/* The callers make sure that get_device_id() does not fail here */
253
	devid = get_device_id(dev);
254 255 256 257 258

	/* For ACPI HID devices, we simply return the devid as such */
	if (!dev_is_pci(dev))
		return devid;

259
	ivrs_alias = amd_iommu_alias_table[devid];
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

287 288
	pci_info(pdev, "Using IVRS reported alias %02x:%02x.%d "
		"for device [%04x:%04x], kernel reported alias "
289
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
290
		PCI_FUNC(ivrs_alias), pdev->vendor, pdev->device,
291 292 293 294 295 296 297 298 299
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
300
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
301 302
		pci_info(pdev, "Added PCI DMA alias %02x.%d\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias));
303 304 305 306 307
	}

	return ivrs_alias;
}

308 309 310
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
311
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
312 313 314

	dev_data = search_dev_data(devid);

315
	if (dev_data == NULL) {
316
		dev_data = alloc_dev_data(devid);
317 318
		if (!dev_data)
			return NULL;
319

320 321 322 323
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

324 325 326
	return dev_data;
}

327
struct iommu_dev_data *get_dev_data(struct device *dev)
328 329 330
{
	return dev->archdata.iommu;
}
331
EXPORT_SYMBOL(get_dev_data);
332

333 334 335 336
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
337
{
338
	struct acpihid_map_entry *p, *entry = NULL;
339
	int devid;
340 341 342 343 344 345 346 347 348 349 350 351

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
352 353
	else
		iommu_group_ref_get(entry->group);
354 355

	return entry->group;
356 357
}

358 359 360 361
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
362 363
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
364 365 366
	};
	int i, pos;

G
Gil Kupfer 已提交
367 368 369
	if (pci_ats_disabled())
		return false;

370 371 372 373 374 375 376 377 378
	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

379 380 381 382 383 384 385 386 387
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

388 389 390 391 392 393
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
394
	int devid;
395 396 397 398 399

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
400
	if (devid < 0)
401
		return false;
402 403 404 405 406 407 408 409 410 411 412

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

413
static void init_iommu_group(struct device *dev)
414 415 416
{
	struct iommu_group *group;

417
	group = iommu_group_get_for_dev(dev);
418 419 420 421
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
422 423 424 425 426
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
427
	struct amd_iommu *iommu;
428
	int devid;
429 430 431 432

	if (dev->archdata.iommu)
		return 0;

433
	devid = get_device_id(dev);
434
	if (devid < 0)
435 436
		return devid;

437 438
	iommu = amd_iommu_rlookup_table[devid];

439
	dev_data = find_dev_data(devid);
440 441 442
	if (!dev_data)
		return -ENOMEM;

443 444
	dev_data->alias = get_alias(dev);

Y
Yu Zhao 已提交
445 446 447 448 449 450 451 452
	/*
	 * By default we use passthrough mode for IOMMUv2 capable device.
	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
	 * invalid address), we ignore the capability for the device so
	 * it'll be forced to go into translation mode.
	 */
	if ((iommu_pass_through || !amd_iommu_force_isolation) &&
	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
453 454
		struct amd_iommu *iommu;

455
		iommu = amd_iommu_rlookup_table[dev_data->devid];
456 457 458
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

459 460
	dev->archdata.iommu = dev_data;

461
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
462

463 464 465
	return 0;
}

466 467
static void iommu_ignore_device(struct device *dev)
{
468 469
	u16 alias;
	int devid;
470 471

	devid = get_device_id(dev);
472
	if (devid < 0)
473 474
		return;

475
	alias = get_alias(dev);
476 477 478 479 480 481 482 483

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

484 485
static void iommu_uninit_device(struct device *dev)
{
486
	struct iommu_dev_data *dev_data;
487 488
	struct amd_iommu *iommu;
	int devid;
489

490
	devid = get_device_id(dev);
491
	if (devid < 0)
492
		return;
493

494 495
	iommu = amd_iommu_rlookup_table[devid];

496
	dev_data = search_dev_data(devid);
497 498 499
	if (!dev_data)
		return;

500 501 502
	if (dev_data->domain)
		detach_device(dev);

503
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
504

505 506
	iommu_group_remove_device(dev);

507
	/* Remove dma-ops */
508
	dev->dma_ops = NULL;
509

510
	/*
511 512
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
513
	 */
514
}
J
Joerg Roedel 已提交
515

516 517 518 519 520 521
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

522 523 524 525
static void dump_dte_entry(u16 devid)
{
	int i;

526
	for (i = 0; i < 4; ++i)
J
Joerg Roedel 已提交
527
		pr_err("DTE[%d]: %016llx\n", i,
528 529 530
			amd_iommu_dev_table[devid].data[i]);
}

531 532
static void dump_command(unsigned long phys_addr)
{
533
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
534 535 536
	int i;

	for (i = 0; i < 4; ++i)
J
Joerg Roedel 已提交
537
		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
538 539
}

540 541 542 543 544 545
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

546 547
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
548 549 550 551
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
552
		pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
553 554
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
555
		pr_err("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
556 557 558 559 560 561 562 563
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

564
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
565
{
566
	struct device *dev = iommu->iommu.dev;
567
	int type, devid, pasid, flags, tag;
568 569 570 571 572 573 574
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
575
	pasid   = PPR_PASID(*(u64 *)&event[0]);
576 577 578 579 580 581
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
J
Joerg Roedel 已提交
582
			pr_err("No event written to event log\n");
583 584 585 586 587
			return;
		}
		udelay(1);
		goto retry;
	}
588

589
	if (type == EVENT_TYPE_IO_FAULT) {
590
		amd_iommu_report_page_fault(devid, pasid, address, flags);
591 592
		return;
	}
593 594 595

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
596
		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
597
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598
			pasid, address, flags);
599
		dump_dte_entry(devid);
600 601
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
602
		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
603
			"address=0x%llx flags=0x%04x]\n",
604 605
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
606 607
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
608
		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
609
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610
			pasid, address, flags);
611 612
		break;
	case EVENT_TYPE_ILL_CMD:
613
		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
614
		dump_command(address);
615 616
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
617
		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
618
			address, flags);
619 620
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
621
		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
622 623
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
624 625
		break;
	case EVENT_TYPE_INV_DEV_REQ:
626
		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
627
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628
			pasid, address, flags);
629
		break;
630 631 632 633
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
634
		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
635 636
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			pasid, address, flags);
637 638
		break;
	default:
639
		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
640
			event[0], event[1], event[2], event[3]);
641
	}
642 643

	memset(__evt, 0, 4 * sizeof(u32));
644 645 646 647 648 649 650 651 652 653
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
654
		iommu_print_event(iommu, iommu->evt_buf + head);
655
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
656 657 658 659 660
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

661
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
662 663 664 665
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
J
Joerg Roedel 已提交
666
		pr_err_ratelimited("Unknown PPR request received\n");
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
706

707 708 709
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
710

711 712 713 714 715 716 717
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
718 719
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
720 721 722 723 724 725

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
726 727 728 729
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

J
Joerg Roedel 已提交
771
			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
772 773 774 775
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
J
Joerg Roedel 已提交
776
				pr_err("GA log notifier failed.\n");
777 778 779 780 781 782 783 784 785 786 787 788 789
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

790
irqreturn_t amd_iommu_int_thread(int irq, void *data)
791
{
792 793
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
794

795 796 797
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
798
			iommu->mmio_base + MMIO_STATUS_OFFSET);
799

800
		if (status & MMIO_STATUS_EVT_INT_MASK) {
J
Joerg Roedel 已提交
801
			pr_devel("Processing IOMMU Event Log\n");
802 803
			iommu_poll_events(iommu);
		}
804

805
		if (status & MMIO_STATUS_PPR_INT_MASK) {
J
Joerg Roedel 已提交
806
			pr_devel("Processing IOMMU PPR Log\n");
807 808
			iommu_poll_ppr_log(iommu);
		}
809

810 811
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
J
Joerg Roedel 已提交
812
			pr_devel("Processing IOMMU GA Log\n");
813 814 815 816
			iommu_poll_ga_log(iommu);
		}
#endif

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
832
	return IRQ_HANDLED;
833 834
}

835 836 837 838 839
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

840 841 842 843 844 845
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

846 847 848 849 850 851 852 853 854 855
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
J
Joerg Roedel 已提交
856
		pr_alert("Completion-Wait loop timed out\n");
857 858 859 860 861 862 863
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
864
			       struct iommu_cmd *cmd)
865 866 867
{
	u8 *target;

868 869 870 871
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
872 873 874 875 876

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
877
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
878
}
879

880
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
881
{
882 883
	u64 paddr = iommu_virt_to_phys((void *)address);

884 885
	WARN_ON(address & 0x7ULL);

886
	memset(cmd, 0, sizeof(*cmd));
887 888
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
889
	cmd->data[2] = 1;
890 891 892
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

893 894 895 896 897 898 899
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

900 901 902 903
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
904
	bool s;
905 906

	pages = iommu_num_pages(address, size, PAGE_SIZE);
907
	s     = false;
908 909 910 911 912 913 914

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
915
		s = true;
916 917 918 919 920 921 922 923 924 925 926
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
927
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
928 929 930
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

931 932 933 934
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
935
	bool s;
936 937

	pages = iommu_num_pages(address, size, PAGE_SIZE);
938
	s     = false;
939 940 941 942 943 944 945

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
946
		s = true;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

962 963 964 965 966 967 968
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

969
	cmd->data[0]  = pasid;
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
988
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
989 990
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
991
	cmd->data[1] |= (pasid & 0xff) << 16;
992 993 994 995 996 997 998 999
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1000 1001 1002 1003 1004 1005 1006
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1007
		cmd->data[1]  = pasid;
1008 1009 1010 1011 1012 1013 1014 1015
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1016 1017 1018 1019
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1020 1021
}

1022 1023 1024 1025 1026 1027 1028
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1029 1030
/*
 * Writes the command to the IOMMUs command buffer and informs the
1031
 * hardware about the new command.
1032
 */
1033 1034 1035
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1036
{
1037
	unsigned int count = 0;
1038
	u32 left, next_tail;
1039

1040
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1041
again:
1042
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1043

1044
	if (left <= 0x20) {
1045 1046 1047
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
J
Joerg Roedel 已提交
1048
				pr_err("Command buffer timeout\n");
1049 1050
				return -EIO;
			}
1051

1052 1053
			udelay(1);
		}
1054

1055 1056 1057
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1058 1059

		goto again;
1060 1061
	}

1062
	copy_cmd_to_buffer(iommu, cmd);
1063

1064
	/* Do we need to make sure all commands are processed? */
1065
	iommu->need_sync = sync;
1066

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1077
	raw_spin_lock_irqsave(&iommu->lock, flags);
1078
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1079
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1080

1081
	return ret;
1082 1083
}

1084 1085 1086 1087 1088
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1089 1090 1091 1092
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1093
static int iommu_completion_wait(struct amd_iommu *iommu)
1094 1095
{
	struct iommu_cmd cmd;
1096
	unsigned long flags;
1097
	int ret;
1098

1099
	if (!iommu->need_sync)
1100
		return 0;
1101

1102

1103 1104
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1105
	raw_spin_lock_irqsave(&iommu->lock, flags);
1106 1107 1108 1109

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1110
	if (ret)
1111 1112 1113 1114 1115
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1116
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1117

1118
	return ret;
1119 1120
}

1121
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1122
{
1123
	struct iommu_cmd cmd;
1124

1125
	build_inv_dte(&cmd, devid);
1126

1127 1128
	return iommu_queue_command(iommu, &cmd);
}
1129

1130
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1131 1132
{
	u32 devid;
1133

1134 1135
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1136

1137 1138
	iommu_completion_wait(iommu);
}
1139

1140 1141 1142 1143
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1144
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1145 1146
{
	u32 dom_id;
1147

1148 1149 1150 1151 1152 1153
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1154

1155
	iommu_completion_wait(iommu);
1156 1157
}

1158
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1159
{
1160
	struct iommu_cmd cmd;
1161

1162
	build_inv_all(&cmd);
1163

1164 1165 1166 1167
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1168 1169 1170 1171 1172 1173 1174 1175 1176
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1177
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1178 1179 1180 1181 1182 1183 1184 1185 1186
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1187 1188
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1189
	if (iommu_feature(iommu, FEATURE_IA)) {
1190
		amd_iommu_flush_all(iommu);
1191
	} else {
1192 1193 1194
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1195 1196 1197
	}
}

1198
/*
1199
 * Command send function for flushing on-device TLB
1200
 */
1201 1202
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1203 1204
{
	struct amd_iommu *iommu;
1205
	struct iommu_cmd cmd;
1206
	int qdep;
1207

1208 1209
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1210

1211
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1212 1213

	return iommu_queue_command(iommu, &cmd);
1214 1215
}

1216 1217 1218
/*
 * Command send function for invalidating a device table entry
 */
1219
static int device_flush_dte(struct iommu_dev_data *dev_data)
1220
{
1221
	struct amd_iommu *iommu;
1222
	u16 alias;
1223
	int ret;
1224

1225
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1226
	alias = dev_data->alias;
1227

1228
	ret = iommu_flush_dte(iommu, dev_data->devid);
1229 1230
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1231 1232 1233
	if (ret)
		return ret;

1234
	if (dev_data->ats.enabled)
1235
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1236 1237

	return ret;
1238 1239
}

1240 1241 1242 1243 1244
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1245 1246
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1247
{
1248
	struct iommu_dev_data *dev_data;
1249 1250
	struct iommu_cmd cmd;
	int ret = 0, i;
1251

1252
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1253

1254
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1255 1256 1257 1258 1259 1260 1261
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1262
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1263 1264
	}

1265 1266
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1267
		if (!dev_data->ats.enabled)
1268 1269
			continue;

1270
		ret |= device_flush_iotlb(dev_data, address, size);
1271 1272
	}

1273
	WARN_ON(ret);
1274 1275
}

1276 1277
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1278
{
1279
	__domain_flush_pages(domain, address, size, 0);
1280
}
1281

1282
/* Flush the whole IO/TLB for a given protection domain */
1283
static void domain_flush_tlb(struct protection_domain *domain)
1284
{
1285
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1286 1287
}

1288
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1289
static void domain_flush_tlb_pde(struct protection_domain *domain)
1290
{
1291
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1292 1293
}

1294
static void domain_flush_complete(struct protection_domain *domain)
1295
{
1296
	int i;
1297

1298
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1299
		if (domain && !domain->dev_iommu[i])
1300
			continue;
1301

1302 1303 1304 1305 1306
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1307
	}
1308 1309
}

1310

1311
/*
1312
 * This function flushes the DTEs for all devices in domain
1313
 */
1314
static void domain_flush_devices(struct protection_domain *domain)
1315
{
1316
	struct iommu_dev_data *dev_data;
1317

1318
	list_for_each_entry(dev_data, &domain->dev_list, list)
1319
		device_flush_dte(dev_data);
1320 1321
}

1322 1323 1324 1325 1326 1327 1328
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static void free_page_list(struct page *freelist)
{
	while (freelist != NULL) {
		unsigned long p = (unsigned long)page_address(freelist);
		freelist = freelist->freelist;
		free_page(p);
	}
}

static struct page *free_pt_page(unsigned long pt, struct page *freelist)
{
	struct page *p = virt_to_page((void *)pt);

	p->freelist = freelist;

	return p;
}

#define DEFINE_FREE_PT_FN(LVL, FN)						\
static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
{										\
	unsigned long p;							\
	u64 *pt;								\
	int i;									\
										\
	pt = (u64 *)__pt;							\
										\
	for (i = 0; i < 512; ++i) {						\
		/* PTE present? */						\
		if (!IOMMU_PTE_PRESENT(pt[i]))					\
			continue;						\
										\
		/* Large PTE? */						\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
		    PM_PTE_LEVEL(pt[i]) == 7)					\
			continue;						\
										\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
		freelist = FN(p, freelist);					\
	}									\
										\
	return free_pt_page((unsigned long)pt, freelist);			\
}

DEFINE_FREE_PT_FN(l2, free_pt_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1379 1380
static struct page *free_sub_pt(unsigned long root, int mode,
				struct page *freelist)
1381
{
1382
	switch (mode) {
1383
	case PAGE_MODE_NONE:
1384
	case PAGE_MODE_7_LEVEL:
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		break;
	case PAGE_MODE_1_LEVEL:
		freelist = free_pt_page(root, freelist);
		break;
	case PAGE_MODE_2_LEVEL:
		freelist = free_pt_l2(root, freelist);
		break;
	case PAGE_MODE_3_LEVEL:
		freelist = free_pt_l3(root, freelist);
		break;
	case PAGE_MODE_4_LEVEL:
		freelist = free_pt_l4(root, freelist);
		break;
	case PAGE_MODE_5_LEVEL:
		freelist = free_pt_l5(root, freelist);
		break;
	case PAGE_MODE_6_LEVEL:
		freelist = free_pt_l6(root, freelist);
		break;
	default:
		BUG();
	}

1408 1409 1410 1411 1412 1413 1414 1415
	return freelist;
}

static void free_pagetable(struct protection_domain *domain)
{
	unsigned long root = (unsigned long)domain->pt_root;
	struct page *freelist = NULL;

1416 1417 1418
	BUG_ON(domain->mode < PAGE_MODE_NONE ||
	       domain->mode > PAGE_MODE_6_LEVEL);

1419 1420
	free_sub_pt(root, domain->mode, freelist);

1421 1422 1423
	free_page_list(freelist);
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1443
					iommu_virt_to_phys(domain->pt_root));
1444 1445 1446 1447 1448 1449 1450 1451 1452
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1453
		      unsigned long page_size,
1454 1455 1456
		      u64 **pte_page,
		      gfp_t gfp)
{
1457
	int level, end_lvl;
1458
	u64 *pte, *page;
1459 1460

	BUG_ON(!is_power_of_2(page_size));
1461 1462 1463 1464

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1465 1466 1467 1468
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1469 1470

	while (level > end_lvl) {
1471
		u64 __pte, __npte;
1472
		int pte_level;
1473

1474 1475
		__pte     = *pte;
		pte_level = PM_PTE_LEVEL(__pte);
1476

1477 1478
		if (!IOMMU_PTE_PRESENT(__pte) ||
		    pte_level == PAGE_MODE_7_LEVEL) {
1479 1480 1481
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1482

1483
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1484

1485
			/* pte could have been changed somewhere. */
1486
			if (cmpxchg64(pte, __pte, __npte) != __pte)
1487
				free_page((unsigned long)page);
1488
			else if (pte_level == PAGE_MODE_7_LEVEL)
1489
				domain->updated = true;
1490 1491

			continue;
1492 1493
		}

1494
		/* No level skipping support yet */
1495
		if (pte_level != level)
1496 1497
			return NULL;

1498 1499
		level -= 1;

1500
		pte = IOMMU_PTE_PAGE(__pte);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1515 1516 1517
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1518 1519 1520 1521
{
	int level;
	u64 *pte;

1522 1523
	*page_size = 0;

1524 1525 1526
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1527 1528 1529
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1530

1531 1532 1533
	while (level > 0) {

		/* Not Present */
1534 1535 1536
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1537
		/* Large PTE */
1538 1539 1540
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1541 1542 1543 1544 1545

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1546 1547
		level -= 1;

1548
		/* Walk to the next level */
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1564 1565 1566 1567 1568
	}

	return pte;
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static struct page *free_clear_pte(u64 *pte, u64 pteval, struct page *freelist)
{
	unsigned long pt;
	int mode;

	while (cmpxchg64(pte, pteval, 0) != pteval) {
		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
		pteval = *pte;
	}

	if (!IOMMU_PTE_PRESENT(pteval))
		return freelist;

	pt   = (unsigned long)IOMMU_PTE_PAGE(pteval);
	mode = IOMMU_PTE_MODE(pteval);

	return free_sub_pt(pt, mode, freelist);
}

1588 1589 1590 1591 1592 1593 1594
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1595 1596 1597
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1598
			  unsigned long page_size,
1599
			  int prot,
1600
			  gfp_t gfp)
1601
{
1602
	struct page *freelist = NULL;
1603
	u64 __pte, *pte;
1604
	int i, count;
1605

1606 1607 1608
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1609
	if (!(prot & IOMMU_PROT_MASK))
1610 1611
		return -EINVAL;

1612
	count = PAGE_SIZE_PTE_COUNT(page_size);
1613
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1614

1615 1616 1617
	if (!pte)
		return -ENOMEM;

1618
	for (i = 0; i < count; ++i)
1619 1620 1621 1622
		freelist = free_clear_pte(&pte[i], pte[i], freelist);

	if (freelist != NULL)
		dom->updated = true;
1623

1624
	if (count > 1) {
1625
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1626
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1627
	} else
1628
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1629 1630 1631 1632 1633 1634

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1635 1636
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1637

1638 1639
	update_domain(dom);

1640 1641 1642
	/* Everything flushed out, free pages now */
	free_page_list(freelist);

1643 1644 1645
	return 0;
}

1646 1647 1648
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1649
{
1650 1651
	unsigned long long unmapped;
	unsigned long unmap_size;
1652 1653 1654 1655 1656
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1657

1658 1659
	while (unmapped < page_size) {

1660 1661 1662 1663 1664 1665
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1666 1667 1668 1669 1670 1671 1672 1673
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1674
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1675

1676
	return unmapped;
1677 1678
}

1679 1680 1681
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1682
 * interface functions.
1683 1684
 *
 ****************************************************************************/
1685

1686

1687 1688 1689
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1690
{
1691
	unsigned long pfn = 0;
1692

1693
	pages = __roundup_pow_of_two(pages);
1694

1695 1696
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1697
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1698

1699
	if (!pfn)
1700 1701
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1702

1703
	return (pfn << PAGE_SHIFT);
1704 1705
}

1706 1707 1708
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1709
{
1710 1711
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1712

1713
	free_iova_fast(&dma_dom->iovad, address, pages);
1714 1715
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1751 1752 1753 1754
static u16 domain_id_alloc(void)
{
	int id;

1755
	spin_lock(&pd_bitmap_lock);
1756 1757 1758 1759 1760 1761
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1762
	spin_unlock(&pd_bitmap_lock);
1763 1764 1765 1766

	return id;
}

1767 1768
static void domain_id_free(int id)
{
1769
	spin_lock(&pd_bitmap_lock);
1770 1771
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1772
	spin_unlock(&pd_bitmap_lock);
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1784
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1799
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1800 1801 1802 1803 1804

		free_gcr3_tbl_level1(ptr);
	}
}

1805 1806
static void free_gcr3_table(struct protection_domain *domain)
{
1807 1808 1809 1810
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1811 1812
	else
		BUG_ON(domain->glx != 0);
1813

1814 1815 1816
	free_page((unsigned long)domain->gcr3_tbl);
}

1817 1818 1819 1820
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1821 1822
}

1823
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1824
{
1825
	struct dma_ops_domain *dom;
1826

1827
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1828 1829 1830 1831

	dma_ops_domain_flush_tlb(dom);
}

1832 1833 1834 1835
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1836 1837 1838 1839 1840
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1841 1842
	del_domain_from_list(&dom->domain);

1843
	put_iova_domain(&dom->iovad);
1844

1845
	free_pagetable(&dom->domain);
1846

1847 1848 1849
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1850 1851 1852
	kfree(dom);
}

1853 1854
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1855
 * It also initializes the page table and the address allocator data
1856 1857
 * structures required for the dma_ops interface
 */
1858
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1859 1860 1861 1862 1863 1864 1865
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1866
	if (protection_domain_init(&dma_dom->domain))
1867
		goto free_dma_dom;
1868

1869
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1870
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1871
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1872 1873 1874
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1875
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1876

1877
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1878 1879
		goto free_dma_dom;

1880 1881
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1882

1883 1884
	add_domain_to_list(&dma_dom->domain);

1885 1886 1887 1888 1889 1890 1891 1892
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1893 1894 1895 1896 1897 1898 1899 1900 1901
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1902 1903
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1904
{
1905
	u64 pte_root = 0;
1906
	u64 flags = 0;
1907

1908
	if (domain->mode != PAGE_MODE_NONE)
1909
		pte_root = iommu_virt_to_phys(domain->pt_root);
1910

1911 1912
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1913
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1914

1915 1916
	flags = amd_iommu_dev_table[devid].data[1];

1917 1918 1919
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1920 1921 1922 1923 1924 1925 1926
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1927
	if (domain->flags & PD_IOMMUV2_MASK) {
1928
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1953
	flags &= ~DEV_DOMID_MASK;
1954 1955 1956 1957
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1958 1959 1960 1961 1962
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1963
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1964
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1965 1966

	amd_iommu_apply_erratum_63(devid);
1967 1968
}

1969 1970
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1971 1972
{
	struct amd_iommu *iommu;
1973
	u16 alias;
1974
	bool ats;
1975

1976
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1977
	alias = dev_data->alias;
1978
	ats   = dev_data->ats.enabled;
1979 1980 1981 1982 1983 1984 1985 1986 1987

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1988
	/* Update device table */
1989
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1990
	if (alias != dev_data->devid)
1991
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1992

1993
	device_flush_dte(dev_data);
1994 1995
}

1996
static void do_detach(struct iommu_dev_data *dev_data)
1997
{
1998
	struct protection_domain *domain = dev_data->domain;
1999
	struct amd_iommu *iommu;
2000
	u16 alias;
2001

2002
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2003
	alias = dev_data->alias;
2004

2005 2006 2007
	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2008
	clear_dte_entry(dev_data->devid);
2009 2010
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2011

2012
	/* Flush the DTE entry */
2013
	device_flush_dte(dev_data);
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

	/* Flush IOTLB */
	domain_flush_tlb_pde(domain);

	/* Wait for the flushes to finish */
	domain_flush_complete(domain);

	/* decrease reference counters - needs to happen after the flushes */
	domain->dev_iommu[iommu->index] -= 1;
	domain->dev_cnt                 -= 1;
2024 2025 2026
}

/*
2027 2028
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2029
 */
2030
static int __attach_device(struct iommu_dev_data *dev_data,
2031
			   struct protection_domain *domain)
2032
{
2033
	int ret;
2034

2035 2036 2037
	/* lock domain */
	spin_lock(&domain->lock);

2038
	ret = -EBUSY;
2039
	if (dev_data->domain != NULL)
2040
		goto out_unlock;
2041

2042
	/* Attach alias group root */
2043
	do_attach(dev_data, domain);
2044

2045 2046 2047 2048
	ret = 0;

out_unlock:

2049 2050
	/* ready */
	spin_unlock(&domain->lock);
2051

2052
	return ret;
2053
}
2054

2055 2056 2057 2058 2059 2060 2061 2062

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2063 2064 2065 2066 2067 2068
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2069
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2070 2071 2072
	if (!pos)
		return -EINVAL;

2073 2074 2075
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2076 2077 2078 2079

	return 0;
}

2080 2081
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2082 2083 2084 2085 2086 2087 2088 2089
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2101 2102
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2103 2104 2105
	if (ret)
		goto out_err;

2106 2107 2108 2109 2110 2111
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2125
/* FIXME: Move this to PCI code */
2126
#define PCI_PRI_TLP_OFF		(1 << 15)
2127

J
Joerg Roedel 已提交
2128
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2129
{
2130
	u16 status;
2131 2132
	int pos;

2133
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2134 2135 2136
	if (!pos)
		return false;

2137
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2138

2139
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2140 2141
}

2142
/*
2143 2144
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2145
 */
2146 2147
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2148
{
2149
	struct pci_dev *pdev;
2150
	struct iommu_dev_data *dev_data;
2151
	unsigned long flags;
2152
	int ret;
2153

2154 2155
	dev_data = get_dev_data(dev);

2156 2157 2158 2159
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2160
	if (domain->flags & PD_IOMMUV2_MASK) {
2161
		if (!dev_data->passthrough)
2162 2163
			return -EINVAL;

2164 2165 2166
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2167

2168 2169 2170 2171
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2172 2173
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2174 2175 2176
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2177

2178
skip_ats_check:
2179
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2180
	ret = __attach_device(dev_data, domain);
2181
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2182

2183 2184 2185 2186 2187
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2188
	domain_flush_tlb_pde(domain);
2189 2190

	return ret;
2191 2192
}

2193 2194 2195
/*
 * Removes a device from a protection domain (unlocked)
 */
2196
static void __detach_device(struct iommu_dev_data *dev_data)
2197
{
2198
	struct protection_domain *domain;
2199

2200
	domain = dev_data->domain;
2201

2202
	spin_lock(&domain->lock);
2203

2204
	do_detach(dev_data);
2205

2206
	spin_unlock(&domain->lock);
2207 2208 2209 2210 2211
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2212
static void detach_device(struct device *dev)
2213
{
2214
	struct protection_domain *domain;
2215
	struct iommu_dev_data *dev_data;
2216 2217
	unsigned long flags;

2218
	dev_data = get_dev_data(dev);
2219
	domain   = dev_data->domain;
2220

2221 2222 2223 2224 2225 2226 2227 2228 2229
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (WARN_ON(!dev_data->domain))
		return;

2230
	/* lock device table */
2231
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2232
	__detach_device(dev_data);
2233
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2234

2235 2236 2237
	if (!dev_is_pci(dev))
		return;

2238
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2239 2240
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2241
		pci_disable_ats(to_pci_dev(dev));
2242 2243

	dev_data->ats.enabled = false;
2244
}
2245

2246
static int amd_iommu_add_device(struct device *dev)
2247
{
2248
	struct iommu_dev_data *dev_data;
2249
	struct iommu_domain *domain;
2250
	struct amd_iommu *iommu;
2251
	int ret, devid;
2252

2253
	if (!check_device(dev) || get_dev_data(dev))
2254
		return 0;
2255

2256
	devid = get_device_id(dev);
2257
	if (devid < 0)
2258 2259
		return devid;

2260
	iommu = amd_iommu_rlookup_table[devid];
2261

2262
	ret = iommu_init_device(dev);
2263 2264
	if (ret) {
		if (ret != -ENOTSUPP)
2265
			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2266

2267
		iommu_ignore_device(dev);
2268
		dev->dma_ops = NULL;
2269 2270 2271
		goto out;
	}
	init_iommu_group(dev);
2272

2273
	dev_data = get_dev_data(dev);
2274

2275
	BUG_ON(!dev_data);
2276

2277
	if (iommu_pass_through || dev_data->iommu_v2)
2278
		iommu_request_dm_for_dev(dev);
2279

2280 2281
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2282
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2283
		dev_data->passthrough = true;
2284
	else
2285
		dev->dma_ops = &amd_iommu_dma_ops;
2286

2287
out:
2288 2289 2290 2291 2292
	iommu_completion_wait(iommu);

	return 0;
}

2293
static void amd_iommu_remove_device(struct device *dev)
2294
{
2295
	struct amd_iommu *iommu;
2296
	int devid;
2297 2298 2299 2300 2301

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2302
	if (devid < 0)
2303 2304
		return;

2305 2306 2307 2308
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2309 2310
}

2311 2312 2313 2314 2315 2316 2317 2318
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2332
static struct protection_domain *get_domain(struct device *dev)
2333
{
2334
	struct protection_domain *domain;
2335
	struct iommu_domain *io_domain;
2336

2337
	if (!check_device(dev))
2338
		return ERR_PTR(-EINVAL);
2339

2340
	domain = get_dev_data(dev)->domain;
2341 2342 2343 2344 2345 2346
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2347 2348 2349
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2350
	if (!dma_ops_domain(domain))
2351
		return ERR_PTR(-EBUSY);
2352

2353
	return domain;
2354 2355
}

2356 2357
static void update_device_table(struct protection_domain *domain)
{
2358
	struct iommu_dev_data *dev_data;
2359

2360
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2361 2362
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2363 2364 2365 2366 2367

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2368 2369
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2370
	}
2371 2372 2373 2374 2375 2376 2377 2378
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2379 2380 2381

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2382 2383 2384 2385

	domain->updated = false;
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2397

2398 2399
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2400 2401
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2402 2403
 * Must be called with the domain lock held.
 */
2404 2405 2406 2407
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2408
			       enum dma_data_direction direction,
2409
			       u64 dma_mask)
2410 2411
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2412
	dma_addr_t address, start, ret;
2413
	unsigned int pages;
2414
	int prot = 0;
2415 2416
	int i;

2417
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2418 2419
	paddr &= PAGE_MASK;

2420
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2421
	if (!address)
2422
		goto out;
2423

2424
	prot = dir2prot(direction);
2425

2426 2427
	start = address;
	for (i = 0; i < pages; ++i) {
2428 2429 2430
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2431 2432
			goto out_unmap;

2433 2434 2435 2436 2437
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2438
	if (unlikely(amd_iommu_np_cache)) {
2439
		domain_flush_pages(&dma_dom->domain, address, size);
2440 2441
		domain_flush_complete(&dma_dom->domain);
	}
2442

2443 2444
out:
	return address;
2445 2446 2447 2448 2449

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2450
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2451 2452
	}

2453 2454 2455 2456
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2457

2458
	return DMA_MAPPING_ERROR;
2459 2460
}

2461 2462 2463 2464
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2465
static void __unmap_single(struct dma_ops_domain *dma_dom,
2466 2467 2468 2469 2470 2471 2472
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2473
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2474 2475 2476 2477
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2478
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2479 2480 2481
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2482 2483 2484
	if (amd_iommu_unmap_flush) {
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
2485
		dma_ops_free_iova(dma_dom, dma_addr, pages);
J
Joerg Roedel 已提交
2486
	} else {
2487 2488
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2489
	}
2490 2491
}

2492 2493 2494
/*
 * The exported map_single function for dma_ops.
 */
2495 2496 2497
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2498
			   unsigned long attrs)
2499
{
2500
	phys_addr_t paddr = page_to_phys(page) + offset;
2501
	struct protection_domain *domain;
2502
	struct dma_ops_domain *dma_dom;
2503
	u64 dma_mask;
2504

2505 2506
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2507
		return (dma_addr_t)paddr;
2508
	else if (IS_ERR(domain))
2509
		return DMA_MAPPING_ERROR;
2510

2511
	dma_mask = *dev->dma_mask;
2512
	dma_dom = to_dma_ops_domain(domain);
2513

2514
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2515 2516
}

2517 2518 2519
/*
 * The exported unmap_single function for dma_ops.
 */
2520
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2521
		       enum dma_data_direction dir, unsigned long attrs)
2522 2523
{
	struct protection_domain *domain;
2524
	struct dma_ops_domain *dma_dom;
2525

2526 2527
	domain = get_domain(dev);
	if (IS_ERR(domain))
2528 2529
		return;

2530 2531 2532
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2533 2534
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2561 2562 2563 2564
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2565
static int map_sg(struct device *dev, struct scatterlist *sglist,
2566
		  int nelems, enum dma_data_direction direction,
2567
		  unsigned long attrs)
2568
{
2569
	int mapped_pages = 0, npages = 0, prot = 0, i;
2570
	struct protection_domain *domain;
2571
	struct dma_ops_domain *dma_dom;
2572
	struct scatterlist *s;
2573
	unsigned long address;
2574
	u64 dma_mask;
2575
	int ret;
2576

2577
	domain = get_domain(dev);
2578
	if (IS_ERR(domain))
2579
		return 0;
2580

2581
	dma_dom  = to_dma_ops_domain(domain);
2582
	dma_mask = *dev->dma_mask;
2583

2584 2585 2586
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2587
	if (address == DMA_MAPPING_ERROR)
2588 2589 2590 2591 2592
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2593
	for_each_sg(sglist, s, nelems, i) {
2594 2595 2596 2597
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
2598

2599 2600 2601 2602 2603
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2604

2605 2606
			mapped_pages += 1;
		}
2607 2608
	}

2609 2610
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
2611 2612 2613 2614 2615 2616
		/*
		 * Add in the remaining piece of the scatter-gather offset that
		 * was masked out when we were determining the physical address
		 * via (sg_phys(s) & PAGE_MASK) earlier.
		 */
		s->dma_address += address + (s->offset & ~PAGE_MASK);
2617 2618 2619 2620 2621 2622
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
2623 2624
	dev_err(dev, "IOMMU mapping error in map_sg (io-pages: %d reason: %d)\n",
		npages, ret);
2625 2626 2627 2628 2629 2630

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2631

2632 2633 2634
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

2635
			if (--mapped_pages == 0)
2636 2637
				goto out_free_iova;
		}
2638 2639
	}

2640
out_free_iova:
2641
	free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2642 2643

out_err:
2644
	return 0;
2645 2646
}

2647 2648 2649 2650
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2651
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2652
		     int nelems, enum dma_data_direction dir,
2653
		     unsigned long attrs)
2654 2655
{
	struct protection_domain *domain;
2656
	struct dma_ops_domain *dma_dom;
2657 2658
	unsigned long startaddr;
	int npages = 2;
2659

2660 2661
	domain = get_domain(dev);
	if (IS_ERR(domain))
2662 2663
		return;

2664
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2665
	dma_dom   = to_dma_ops_domain(domain);
2666 2667
	npages    = sg_num_pages(dev, sglist, nelems);

2668
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2669 2670
}

2671 2672 2673
/*
 * The exported alloc_coherent function for dma_ops.
 */
2674
static void *alloc_coherent(struct device *dev, size_t size,
2675
			    dma_addr_t *dma_addr, gfp_t flag,
2676
			    unsigned long attrs)
2677
{
2678
	u64 dma_mask = dev->coherent_dma_mask;
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;

	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
	} else if (IS_ERR(domain))
		return NULL;
2690

2691 2692 2693 2694 2695 2696 2697 2698 2699
	dma_dom   = to_dma_ops_domain(domain);
	size	  = PAGE_ALIGN(size);
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;

	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!gfpflags_allow_blocking(flag))
2700
			return NULL;
2701

2702
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2703
					get_order(size), flag & __GFP_NOWARN);
2704 2705 2706
		if (!page)
			return NULL;
	}
2707

2708 2709 2710
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2711 2712 2713
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
				 size, DMA_BIDIRECTIONAL, dma_mask);

2714
	if (*dma_addr == DMA_MAPPING_ERROR)
2715
		goto out_free;
2716 2717

	return page_address(page);
2718 2719

out_free:
2720 2721 2722 2723

	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));

2724
	return NULL;
2725 2726
}

2727 2728 2729
/*
 * The exported free_coherent function for dma_ops.
 */
2730
static void free_coherent(struct device *dev, size_t size,
2731
			  void *virt_addr, dma_addr_t dma_addr,
2732
			  unsigned long attrs)
2733
{
2734 2735 2736
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;
2737

2738
	page = virt_to_page(virt_addr);
2739 2740
	size = PAGE_ALIGN(size);

2741 2742 2743
	domain = get_domain(dev);
	if (IS_ERR(domain))
		goto free_mem;
2744

2745 2746 2747
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2748

2749 2750 2751
free_mem:
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2752 2753
}

2754 2755 2756 2757 2758 2759
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2760
	if (!dma_direct_supported(dev, mask))
2761
		return 0;
2762
	return check_device(dev);
2763 2764
}

2765
static const struct dma_map_ops amd_iommu_dma_ops = {
2766 2767 2768 2769 2770 2771 2772
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2773 2774
};

2775 2776 2777 2778 2779
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2780
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
2818
				pci_err(pdev, "Reserve pci-resource range %pR failed\n", r);
2819 2820 2821 2822 2823 2824 2825 2826
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2827
int __init amd_iommu_init_api(void)
2828
{
2829
	int ret, err = 0;
2830 2831 2832 2833

	ret = iova_cache_get();
	if (ret)
		return ret;
2834

2835 2836 2837 2838
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2839 2840 2841 2842 2843 2844 2845 2846
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2847 2848 2849
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2850

2851
	return 0;
2852 2853
}

2854 2855
int __init amd_iommu_init_dma_ops(void)
{
2856
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2857 2858
	iommu_detected = 1;

2859
	if (amd_iommu_unmap_flush)
J
Joerg Roedel 已提交
2860
		pr_info("IO/TLB flush on unmap enabled\n");
2861
	else
J
Joerg Roedel 已提交
2862
		pr_info("Lazy IO/TLB flushing enabled\n");
2863

2864
	return 0;
2865

2866
}
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2880
	struct iommu_dev_data *entry;
2881 2882
	unsigned long flags;

2883
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2884

2885 2886 2887
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
2888
		BUG_ON(!entry->domain);
2889
		__detach_device(entry);
2890
	}
2891

2892
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2893 2894
}

2895 2896 2897 2898 2899
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2900 2901
	del_domain_from_list(domain);

2902 2903 2904 2905 2906 2907
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2920
static struct protection_domain *protection_domain_alloc(void)
2921 2922 2923 2924 2925
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2926
		return NULL;
2927

2928
	if (protection_domain_init(domain))
2929 2930
		goto out_err;

2931 2932
	add_domain_to_list(domain);

2933 2934 2935 2936 2937 2938 2939 2940
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2941
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2942
{
2943
	struct protection_domain *pdomain;
2944
	struct dma_ops_domain *dma_domain;
2945

2946 2947 2948 2949 2950
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2951

2952 2953 2954 2955 2956 2957
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2958

2959 2960 2961
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2962

2963 2964 2965 2966
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
J
Joerg Roedel 已提交
2967
			pr_err("Failed to allocate\n");
2968 2969 2970 2971
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2972 2973 2974 2975
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2976

2977 2978
		pdomain->mode = PAGE_MODE_NONE;
		break;
2979 2980 2981
	default:
		return NULL;
	}
2982

2983
	return &pdomain->domain;
2984 2985
}

2986
static void amd_iommu_domain_free(struct iommu_domain *dom)
2987
{
2988
	struct protection_domain *domain;
2989
	struct dma_ops_domain *dma_dom;
2990

2991 2992
	domain = to_pdomain(dom);

2993 2994 2995 2996 2997
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2998 2999
	if (!dom)
		return;
3000

3001 3002
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3003
		/* Now release the domain */
3004
		dma_dom = to_dma_ops_domain(domain);
3005 3006 3007 3008 3009
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3010

3011 3012 3013 3014 3015 3016
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3017 3018
}

3019 3020 3021
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3022
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3023
	struct amd_iommu *iommu;
3024
	int devid;
3025

3026
	if (!check_device(dev))
3027 3028
		return;

3029
	devid = get_device_id(dev);
3030
	if (devid < 0)
3031
		return;
3032

3033
	if (dev_data->domain != NULL)
3034
		detach_device(dev);
3035 3036 3037 3038 3039

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3040 3041 3042 3043 3044 3045
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3046 3047 3048
	iommu_completion_wait(iommu);
}

3049 3050 3051
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3052
	struct protection_domain *domain = to_pdomain(dom);
3053
	struct iommu_dev_data *dev_data;
3054
	struct amd_iommu *iommu;
3055
	int ret;
3056

3057
	if (!check_device(dev))
3058 3059
		return -EINVAL;

3060 3061
	dev_data = dev->archdata.iommu;

3062
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3063 3064 3065
	if (!iommu)
		return -EINVAL;

3066
	if (dev_data->domain)
3067
		detach_device(dev);
3068

3069
	ret = attach_device(dev, domain);
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3080 3081
	iommu_completion_wait(iommu);

3082
	return ret;
3083 3084
}

3085
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3086
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3087
{
3088
	struct protection_domain *domain = to_pdomain(dom);
3089 3090 3091
	int prot = 0;
	int ret;

3092 3093 3094
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3095 3096 3097 3098 3099
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3100
	mutex_lock(&domain->api_lock);
3101
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3102 3103
	mutex_unlock(&domain->api_lock);

3104
	return ret;
3105 3106
}

3107 3108
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3109
{
3110
	struct protection_domain *domain = to_pdomain(dom);
3111
	size_t unmap_size;
3112

3113
	if (domain->mode == PAGE_MODE_NONE)
3114
		return 0;
3115

3116
	mutex_lock(&domain->api_lock);
3117
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3118
	mutex_unlock(&domain->api_lock);
3119

3120
	return unmap_size;
3121 3122
}

3123
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3124
					  dma_addr_t iova)
3125
{
3126
	struct protection_domain *domain = to_pdomain(dom);
3127
	unsigned long offset_mask, pte_pgsize;
3128
	u64 *pte, __pte;
3129

3130 3131 3132
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3133
	pte = fetch_pte(domain, iova, &pte_pgsize);
3134

3135
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3136 3137
		return 0;

3138
	offset_mask = pte_pgsize - 1;
3139
	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3140

3141
	return (__pte & ~offset_mask) | (iova & offset_mask);
3142 3143
}

3144
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3145
{
3146 3147
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3148
		return true;
3149
	case IOMMU_CAP_INTR_REMAP:
3150
		return (irq_remapping_enabled == 1);
3151 3152
	case IOMMU_CAP_NOEXEC:
		return false;
3153 3154
	default:
		break;
3155 3156
	}

3157
	return false;
S
Sheng Yang 已提交
3158 3159
}

3160 3161
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3162
{
3163
	struct iommu_resv_region *region;
3164
	struct unity_map_entry *entry;
3165
	int devid;
3166 3167

	devid = get_device_id(dev);
3168
	if (devid < 0)
3169
		return;
3170 3171

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3172 3173
		size_t length;
		int prot = 0;
3174 3175 3176 3177

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3178 3179 3180 3181 3182 3183 3184 3185 3186
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3187
		if (!region) {
3188
			dev_err(dev, "Out of memory allocating dm-regions\n");
3189 3190 3191 3192
			return;
		}
		list_add_tail(&region->list, head);
	}
3193 3194 3195

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3196
					 0, IOMMU_RESV_MSI);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3207 3208
}

3209
static void amd_iommu_put_resv_regions(struct device *dev,
3210 3211
				     struct list_head *head)
{
3212
	struct iommu_resv_region *entry, *next;
3213 3214 3215 3216 3217

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3218
static void amd_iommu_apply_resv_region(struct device *dev,
3219
				      struct iommu_domain *domain,
3220
				      struct iommu_resv_region *region)
3221
{
3222
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3223 3224 3225
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3226
	end   = IOVA_PFN(region->start + region->length - 1);
3227 3228 3229 3230

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3231 3232 3233 3234 3235 3236 3237
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3251
const struct iommu_ops amd_iommu_ops = {
3252
	.capable = amd_iommu_capable,
3253 3254
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3255 3256
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3257 3258
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3259
	.iova_to_phys = amd_iommu_iova_to_phys,
3260 3261
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3262
	.device_group = amd_iommu_device_group,
3263 3264 3265
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3266
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3267
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3268 3269 3270
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3271 3272
};

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3295 3296 3297

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3298
	struct protection_domain *domain = to_pdomain(dom);
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3316 3317 3318

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3319
	struct protection_domain *domain = to_pdomain(dom);
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3380
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3397 3398 3399 3400 3401 3402
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3434
	struct protection_domain *domain = to_pdomain(dom);
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3454
	struct protection_domain *domain = to_pdomain(dom);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3487
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3488 3489
		}

3490
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3534
	struct protection_domain *domain = to_pdomain(dom);
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3548
	struct protection_domain *domain = to_pdomain(dom);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3576 3577 3578

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3579
	struct protection_domain *pdomain;
3580

3581 3582
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3583 3584 3585
		return NULL;

	/* Only return IOMMUv2 domains */
3586
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3587 3588
		return NULL;

3589
	return &pdomain->domain;
3590 3591
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

G
Gil Kupfer 已提交
3619 3620 3621 3622 3623
	if (!pci_ats_disabled()) {
		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
		if (pos)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
	}
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3649 3650 3651 3652 3653 3654 3655 3656 3657

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3658
static struct irq_chip amd_ir_chip;
3659
static DEFINE_SPINLOCK(iommu_table_lock);
3660

3661 3662 3663 3664 3665 3666
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3667
	dte	|= iommu_virt_to_phys(table->table);
3668 3669 3670 3671 3672 3673 3674
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3714 3715 3716 3717 3718 3719 3720 3721
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3722
static struct irq_remap_table *alloc_irq_table(u16 devid)
3723 3724
{
	struct irq_remap_table *table = NULL;
3725
	struct irq_remap_table *new_table = NULL;
3726 3727 3728 3729
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3730
	spin_lock_irqsave(&iommu_table_lock, flags);
3731 3732 3733 3734 3735 3736 3737

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3738
		goto out_unlock;
3739 3740 3741 3742

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3743
		set_remap_table_entry(iommu, devid, table);
3744
		goto out_wait;
3745
	}
3746
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3747 3748

	/* Nothing there yet, allocate new irq remapping table */
3749 3750 3751
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3752

3753
	spin_lock_irqsave(&iommu_table_lock, flags);
3754

3755 3756
	table = irq_lookup_table[devid];
	if (table)
3757
		goto out_unlock;
3758

3759 3760 3761 3762
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3763 3764
	}

3765 3766
	table = new_table;
	new_table = NULL;
3767

3768 3769 3770
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3771

3772
out_wait:
3773 3774 3775
	iommu_completion_wait(iommu);

out_unlock:
3776
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3777

3778 3779 3780 3781
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3782 3783 3784
	return table;
}

3785
static int alloc_irq_index(u16 devid, int count, bool align)
3786 3787
{
	struct irq_remap_table *table;
3788
	int index, c, alignment = 1;
3789
	unsigned long flags;
3790 3791 3792 3793
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3794

3795
	table = alloc_irq_table(devid);
3796 3797 3798
	if (!table)
		return -ENODEV;

3799 3800 3801
	if (align)
		alignment = roundup_pow_of_two(count);

3802
	raw_spin_lock_irqsave(&table->lock, flags);
3803 3804

	/* Scan table for free entries */
3805
	for (index = ALIGN(table->min_index, alignment), c = 0;
3806
	     index < MAX_IRQS_PER_TABLE;) {
3807
		if (!iommu->irte_ops->is_allocated(table, index)) {
3808
			c += 1;
3809 3810
		} else {
			c     = 0;
3811
			index = ALIGN(index + 1, alignment);
3812 3813
			continue;
		}
3814 3815 3816

		if (c == count)	{
			for (; c != 0; --c)
3817
				iommu->irte_ops->set_allocated(table, index - c + 1);
3818 3819 3820 3821

			index -= count - 1;
			goto out;
		}
3822 3823

		index++;
3824 3825 3826 3827 3828
	}

	index = -ENOSPC;

out:
3829
	raw_spin_unlock_irqrestore(&table->lock, flags);
3830 3831 3832 3833

	return index;
}

3834 3835
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3836 3837 3838 3839
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3840
	struct irte_ga *entry;
3841 3842 3843 3844 3845

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3846
	table = get_irq_table(devid);
3847 3848 3849
	if (!table)
		return -ENOMEM;

3850
	raw_spin_lock_irqsave(&table->lock, flags);
3851 3852 3853 3854 3855 3856 3857

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3858 3859
	if (data)
		data->ref = entry;
3860

3861
	raw_spin_unlock_irqrestore(&table->lock, flags);
3862 3863 3864 3865 3866 3867 3868 3869

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3870 3871 3872 3873 3874 3875 3876 3877 3878
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3879
	table = get_irq_table(devid);
3880 3881 3882
	if (!table)
		return -ENOMEM;

3883
	raw_spin_lock_irqsave(&table->lock, flags);
3884
	table->table[index] = irte->val;
3885
	raw_spin_unlock_irqrestore(&table->lock, flags);
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3903
	table = get_irq_table(devid);
3904 3905 3906
	if (!table)
		return;

3907
	raw_spin_lock_irqsave(&table->lock, flags);
3908
	iommu->irte_ops->clear_allocated(table, index);
3909
	raw_spin_unlock_irqrestore(&table->lock, flags);
3910 3911 3912 3913 3914

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3915 3916
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3917
			 u8 vector, u32 dest_apicid, int devid)
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3931
			    u8 vector, u32 dest_apicid, int devid)
3932 3933 3934 3935 3936 3937 3938 3939
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
3940 3941
	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3958
	modify_irte_ga(devid, index, irte, NULL);
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3974
	modify_irte_ga(devid, index, irte, NULL);
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3992
	if (!irte->lo.fields_remap.guest_mode) {
3993
		irte->hi.fields.vector = vector;
3994 3995 3996 3997
		irte->lo.fields_remap.destination =
					APICID_TO_IRTE_DEST_LO(dest_apicid);
		irte->hi.fields.destination =
					APICID_TO_IRTE_DEST_HI(dest_apicid);
3998 3999
		modify_irte_ga(devid, index, irte, NULL);
	}
4000 4001
}

4002
#define IRTE_ALLOCATED (~1U)
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4048
static int get_devid(struct irq_alloc_info *info)
4049
{
4050
	int devid = -1;
4051

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4067

4068 4069
	return devid;
}
4070

4071 4072 4073 4074
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4075

4076 4077
	if (!info)
		return NULL;
4078

4079 4080 4081 4082 4083 4084
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4085

4086
	return NULL;
4087 4088
}

4089
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4090
{
4091 4092
	struct amd_iommu *iommu;
	int devid;
4093

4094 4095
	if (!info)
		return NULL;
4096

4097 4098 4099 4100
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4101
		if (devid < 0)
4102 4103
			return NULL;

4104 4105 4106
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4107 4108 4109 4110
		break;
	default:
		break;
	}
4111

4112 4113
	return NULL;
}
4114

4115 4116 4117 4118 4119 4120
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4121 4122 4123
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4124

4125 4126 4127 4128 4129 4130 4131 4132
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4133 4134 4135 4136
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4137

4138 4139
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4140 4141
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4142
				 irq_cfg->dest_apicid, devid);
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4158

4159 4160 4161 4162 4163 4164 4165
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4166

4167 4168 4169 4170
	default:
		BUG_ON(1);
		break;
	}
4171 4172
}

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4193 4194
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4195
{
4196 4197
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4198
	struct amd_ir_data *data = NULL;
4199
	struct irq_cfg *cfg;
4200
	int i, ret, devid;
4201
	int index;
4202

4203 4204 4205 4206
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4207 4208
		return -EINVAL;

4209 4210 4211 4212 4213 4214
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4215

4216 4217 4218
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4219

4220 4221 4222
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4223

4224
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4241
			index = info->ioapic_pin;
4242
		} else {
4243
			index = -ENOMEM;
4244
		}
4245
	} else {
4246 4247 4248
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4249 4250 4251
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4252
		ret = index;
4253 4254
		goto out_free_parent;
	}
4255

4256 4257 4258 4259 4260 4261 4262
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4263

4264 4265 4266 4267 4268
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4279 4280 4281 4282 4283 4284
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4285

4286
	return 0;
4287

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4299 4300
}

4301 4302
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4303
{
4304 4305 4306 4307
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4308

4309 4310 4311 4312 4313 4314
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4315
			kfree(data->entry);
4316 4317 4318 4319 4320
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4321

4322 4323 4324 4325 4326
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4327
static int irq_remapping_activate(struct irq_domain *domain,
4328
				  struct irq_data *irq_data, bool reserve)
4329 4330 4331
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4332
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4333
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4334

4335 4336 4337 4338 4339 4340
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4341
	return 0;
4342 4343
}

4344 4345
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4346
{
4347 4348
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4349
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4350

4351 4352 4353
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4354
}
4355

4356
static const struct irq_domain_ops amd_ir_domain_ops = {
4357 4358 4359 4360
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4361
};
4362

4363 4364 4365 4366 4367 4368 4369 4370
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4371 4372 4373 4374 4375 4376 4377 4378
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4379 4380 4381 4382 4383 4384 4385 4386

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
J
Joerg Roedel 已提交
4387
		pr_debug("%s: Fall back to using intr legacy remap\n",
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4401
		irte->lo.fields_vapic.ga_log_intr = 1;
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
4414 4415 4416 4417
		irte->lo.fields_remap.destination =
				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
		irte->hi.fields.destination =
				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4447 4448 4449 4450 4451 4452 4453
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4454
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4455
	int ret;
4456

4457 4458 4459
	if (!iommu)
		return -ENODEV;

4460 4461 4462
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4463

4464
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4465 4466 4467 4468 4469
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4470
	send_cleanup_vector(cfg);
4471 4472

	return IRQ_SET_MASK_OK_DONE;
4473 4474
}

4475
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4476
{
4477
	struct amd_ir_data *ir_data = irq_data->chip_data;
4478

4479 4480
	*msg = ir_data->msi_entry;
}
4481

4482
static struct irq_chip amd_ir_chip = {
4483
	.name			= "AMD-IR",
4484
	.irq_ack		= apic_ack_irq,
4485 4486 4487
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4488
};
4489

4490 4491
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4492 4493 4494 4495 4496 4497 4498
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4499 4500
	if (!iommu->ir_domain)
		return -ENOMEM;
4501

4502
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4503 4504 4505
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4506 4507
	return 0;
}
4508 4509 4510 4511 4512

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4513
	struct irq_remap_table *table;
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4527 4528
	table = get_irq_table(devid);
	if (!table)
4529 4530
		return -ENODEV;

4531
	raw_spin_lock_irqsave(&table->lock, flags);
4532 4533

	if (ref->lo.fields_vapic.guest_mode) {
4534 4535 4536 4537 4538 4539
		if (cpu >= 0) {
			ref->lo.fields_vapic.destination =
						APICID_TO_IRTE_DEST_LO(cpu);
			ref->hi.fields.destination =
						APICID_TO_IRTE_DEST_HI(cpu);
		}
4540 4541 4542 4543
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4544
	raw_spin_unlock_irqrestore(&table->lock, flags);
4545 4546 4547 4548 4549 4550

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4551
#endif