amd_iommu.c 92.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37 38 39 40
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
41
#include <asm/msidef.h>
42
#include <asm/proto.h>
43
#include <asm/iommu.h>
44
#include <asm/gart.h>
45
#include <asm/dma.h>
46 47 48

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
49
#include "irq_remapping.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

71 72 73
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

74 75 76 77 78 79
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

80
static const struct iommu_ops amd_iommu_ops;
81

82
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83
int amd_iommu_max_glx_val = -1;
84

85 86
static struct dma_map_ops amd_iommu_dma_ops;

87 88 89 90 91 92
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
93
	struct list_head alias_list;      /* Link alias-groups together */
94 95 96 97 98 99 100 101 102 103 104 105 106 107
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

108 109 110
/*
 * general struct to manage commands send to an IOMMU
 */
111
struct iommu_cmd {
112 113 114
	u32 data[4];
};

115 116
struct kmem_cache *amd_iommu_irq_cache;

117
static void update_domain(struct protection_domain *domain);
118
static int alloc_passthrough_domain(void);
119

120 121 122 123 124 125
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

126 127 128 129 130
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

131
static struct iommu_dev_data *alloc_dev_data(u16 devid)
132 133 134 135 136 137 138 139
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

140 141
	INIT_LIST_HEAD(&dev_data->alias_list);

142
	dev_data->devid = devid;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

193 194 195 196
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

197
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
198 199
}

200 201 202 203 204
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

205 206 207 208
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
209 210
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
211 212 213 214 215 216 217 218 219 220 221 222
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

223 224 225 226 227 228 229 230 231
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

232
/*
233 234
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
235
 */
236 237
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
238
{
239
	u64 addr;
240

241 242 243 244 245
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
246
	}
247
}
248

249 250 251 252 253 254 255 256
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
257

258 259 260 261 262 263 264
	devid = get_device_id(dev);

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
265 266
}

267 268 269 270 271 272 273 274 275 276 277
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

278 279
	/* No PCI device */
	if (!dev_is_pci(dev))
280 281 282 283 284 285 286 287 288 289 290 291 292 293
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

294
static void init_iommu_group(struct device *dev)
295
{
296 297
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
298 299
	struct iommu_group *group;

300
	group = iommu_group_get_for_dev(dev);
301 302 303 304 305 306 307 308 309 310 311 312
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
313 314
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

377 378 379 380 381 382 383 384 385 386 387 388 389
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

390 391
	alias = get_alias(dev);

392 393 394 395 396 397 398 399 400 401 402 403
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

404 405
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
406
	}
407

408 409 410 411 412 413 414
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

415 416
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
417 418 419
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

420 421 422
	return 0;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

437 438
static void iommu_uninit_device(struct device *dev)
{
439 440 441 442 443
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
444 445 446
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

447 448
	iommu_group_remove_device(dev);

449 450 451
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

452 453 454
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

455
	/*
456 457
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
458
	 */
459
}
J
Joerg Roedel 已提交
460

461 462 463 464 465 466
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

467
DECLARE_STATS_COUNTER(compl_wait);
468
DECLARE_STATS_COUNTER(cnt_map_single);
469
DECLARE_STATS_COUNTER(cnt_unmap_single);
470
DECLARE_STATS_COUNTER(cnt_map_sg);
471
DECLARE_STATS_COUNTER(cnt_unmap_sg);
472
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
473
DECLARE_STATS_COUNTER(cnt_free_coherent);
474
DECLARE_STATS_COUNTER(cross_page);
475
DECLARE_STATS_COUNTER(domain_flush_single);
476
DECLARE_STATS_COUNTER(domain_flush_all);
477
DECLARE_STATS_COUNTER(alloced_io_mem);
478
DECLARE_STATS_COUNTER(total_map_requests);
479 480 481 482 483
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
503
					 &amd_iommu_unmap_flush);
504 505

	amd_iommu_stats_add(&compl_wait);
506
	amd_iommu_stats_add(&cnt_map_single);
507
	amd_iommu_stats_add(&cnt_unmap_single);
508
	amd_iommu_stats_add(&cnt_map_sg);
509
	amd_iommu_stats_add(&cnt_unmap_sg);
510
	amd_iommu_stats_add(&cnt_alloc_coherent);
511
	amd_iommu_stats_add(&cnt_free_coherent);
512
	amd_iommu_stats_add(&cross_page);
513
	amd_iommu_stats_add(&domain_flush_single);
514
	amd_iommu_stats_add(&domain_flush_all);
515
	amd_iommu_stats_add(&alloced_io_mem);
516
	amd_iommu_stats_add(&total_map_requests);
517 518 519 520
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
521 522 523 524
}

#endif

525 526 527 528 529 530
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

531 532 533 534
static void dump_dte_entry(u16 devid)
{
	int i;

535 536
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
537 538 539
			amd_iommu_dev_table[devid].data[i]);
}

540 541 542 543 544 545 546 547 548
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

549
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
550
{
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
572

573
	printk(KERN_ERR "AMD-Vi: Event logged [");
574 575 576 577 578

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
579
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
580
		       address, flags);
581
		dump_dte_entry(devid);
582 583 584 585
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
586
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
587 588 589 590 591
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
592
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
593 594 595 596 597
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
598
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
599 600 601 602
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
603
		dump_command(address);
604 605 606 607 608 609 610 611
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
612
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
613 614 615 616 617
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
618
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619 620 621 622 623
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
624 625

	memset(__evt, 0, 4 * sizeof(u32));
626 627 628 629 630 631 632 633 634 635
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
636
		iommu_print_event(iommu, iommu->evt_buf + head);
637 638 639 640 641 642
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

643
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
644 645 646
{
	struct amd_iommu_fault fault;

647 648
	INC_STATS_COUNTER(pri_requests);

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
690

691 692 693
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
694

695 696 697 698 699 700 701
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
702 703
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
704 705 706 707 708 709

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
710 711 712 713
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

714
irqreturn_t amd_iommu_int_thread(int irq, void *data)
715
{
716 717
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
718

719 720 721 722
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
723

724 725 726 727
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
728

729 730 731 732
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
749
	return IRQ_HANDLED;
750 751
}

752 753 754 755 756
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

757 758 759 760 761 762
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
783 784 785
{
	u8 *target;

786
	target = iommu->cmd_buf + tail;
787 788 789 790 791 792
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
793
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
794
}
795

796
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
797
{
798 799
	WARN_ON(address & 0x7ULL);

800
	memset(cmd, 0, sizeof(*cmd));
801 802 803
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
804 805 806
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

807 808 809 810 811 812 813
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

814 815 816 817
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
818
	bool s;
819 820

	pages = iommu_num_pages(address, size, PAGE_SIZE);
821
	s     = false;
822 823 824 825 826 827 828

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
829
		s = true;
830 831 832 833 834 835 836 837 838 839 840
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
841
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
842 843 844
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

845 846 847 848
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
849
	bool s;
850 851

	pages = iommu_num_pages(address, size, PAGE_SIZE);
852
	s     = false;
853 854 855 856 857 858 859

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
860
		s = true;
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

876 877 878 879 880 881 882
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

883
	cmd->data[0]  = pasid;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
902
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
903 904
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
905
	cmd->data[1] |= (pasid & 0xff) << 16;
906 907 908 909 910 911 912 913
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

914 915 916 917 918 919 920
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
921
		cmd->data[1]  = pasid;
922 923 924 925 926 927 928 929
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

930 931 932 933
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
934 935
}

936 937 938 939 940 941 942
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

943 944
/*
 * Writes the command to the IOMMUs command buffer and informs the
945
 * hardware about the new command.
946
 */
947 948 949
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
950
{
951
	u32 left, tail, head, next_tail;
952 953
	unsigned long flags;

954
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
955 956

again:
957 958
	spin_lock_irqsave(&iommu->lock, flags);

959 960 961 962
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
963

964 965 966 967
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
968

969 970
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
971

972 973 974 975 976 977
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
978 979
	}

980 981 982
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
983
	iommu->need_sync = sync;
984

985
	spin_unlock_irqrestore(&iommu->lock, flags);
986

987
	return 0;
988 989
}

990 991 992 993 994
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

995 996 997 998
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
999
static int iommu_completion_wait(struct amd_iommu *iommu)
1000 1001
{
	struct iommu_cmd cmd;
1002
	volatile u64 sem = 0;
1003
	int ret;
1004

1005
	if (!iommu->need_sync)
1006
		return 0;
1007

1008
	build_completion_wait(&cmd, (u64)&sem);
1009

1010
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1011
	if (ret)
1012
		return ret;
1013

1014
	return wait_on_sem(&sem);
1015 1016
}

1017
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1018
{
1019
	struct iommu_cmd cmd;
1020

1021
	build_inv_dte(&cmd, devid);
1022

1023 1024
	return iommu_queue_command(iommu, &cmd);
}
1025

1026 1027 1028
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1029

1030 1031
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1032

1033 1034
	iommu_completion_wait(iommu);
}
1035

1036 1037 1038 1039 1040 1041 1042
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1043

1044 1045 1046 1047 1048 1049
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1050

1051
	iommu_completion_wait(iommu);
1052 1053
}

1054
static void iommu_flush_all(struct amd_iommu *iommu)
1055
{
1056
	struct iommu_cmd cmd;
1057

1058
	build_inv_all(&cmd);
1059

1060 1061 1062 1063
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1083 1084
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1085 1086 1087 1088
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1089
		iommu_flush_irt_all(iommu);
1090
		iommu_flush_tlb_all(iommu);
1091 1092 1093
	}
}

1094
/*
1095
 * Command send function for flushing on-device TLB
1096
 */
1097 1098
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1099 1100
{
	struct amd_iommu *iommu;
1101
	struct iommu_cmd cmd;
1102
	int qdep;
1103

1104 1105
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1106

1107
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1108 1109

	return iommu_queue_command(iommu, &cmd);
1110 1111
}

1112 1113 1114
/*
 * Command send function for invalidating a device table entry
 */
1115
static int device_flush_dte(struct iommu_dev_data *dev_data)
1116
{
1117
	struct amd_iommu *iommu;
1118
	int ret;
1119

1120
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1121

1122
	ret = iommu_flush_dte(iommu, dev_data->devid);
1123 1124 1125
	if (ret)
		return ret;

1126
	if (dev_data->ats.enabled)
1127
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1128 1129

	return ret;
1130 1131
}

1132 1133 1134 1135 1136
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1137 1138
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1139
{
1140
	struct iommu_dev_data *dev_data;
1141 1142
	struct iommu_cmd cmd;
	int ret = 0, i;
1143

1144
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1145

1146 1147 1148 1149 1150 1151 1152 1153
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1154
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1155 1156
	}

1157 1158
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1159
		if (!dev_data->ats.enabled)
1160 1161
			continue;

1162
		ret |= device_flush_iotlb(dev_data, address, size);
1163 1164
	}

1165
	WARN_ON(ret);
1166 1167
}

1168 1169
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1170
{
1171
	__domain_flush_pages(domain, address, size, 0);
1172
}
1173

1174
/* Flush the whole IO/TLB for a given protection domain */
1175
static void domain_flush_tlb(struct protection_domain *domain)
1176
{
1177
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1178 1179
}

1180
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1181
static void domain_flush_tlb_pde(struct protection_domain *domain)
1182
{
1183
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1184 1185
}

1186
static void domain_flush_complete(struct protection_domain *domain)
1187
{
1188
	int i;
1189

1190 1191 1192
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1193

1194 1195 1196 1197 1198
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1199
	}
1200 1201
}

1202

1203
/*
1204
 * This function flushes the DTEs for all devices in domain
1205
 */
1206
static void domain_flush_devices(struct protection_domain *domain)
1207
{
1208
	struct iommu_dev_data *dev_data;
1209

1210
	list_for_each_entry(dev_data, &domain->dev_list, list)
1211
		device_flush_dte(dev_data);
1212 1213
}

1214 1215 1216 1217 1218 1219 1220
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1250
		      unsigned long page_size,
1251 1252 1253
		      u64 **pte_page,
		      gfp_t gfp)
{
1254
	int level, end_lvl;
1255
	u64 *pte, *page;
1256 1257

	BUG_ON(!is_power_of_2(page_size));
1258 1259 1260 1261

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1262 1263 1264 1265
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1266 1267 1268 1269 1270 1271 1272 1273 1274

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1275 1276 1277 1278
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1296 1297 1298
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1299 1300 1301 1302
{
	int level;
	u64 *pte;

1303 1304 1305
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1306 1307 1308
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1309

1310 1311 1312
	while (level > 0) {

		/* Not Present */
1313 1314 1315
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1316
		/* Large PTE */
1317 1318 1319
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1320 1321 1322 1323 1324

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1325 1326
		level -= 1;

1327
		/* Walk to the next level */
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1343 1344 1345 1346 1347
	}

	return pte;
}

1348 1349 1350 1351 1352 1353 1354
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1355 1356 1357
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1358
			  int prot,
1359
			  unsigned long page_size)
1360
{
1361
	u64 __pte, *pte;
1362
	int i, count;
1363

1364 1365 1366
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1367
	if (!(prot & IOMMU_PROT_MASK))
1368 1369
		return -EINVAL;

1370 1371
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1372

1373 1374 1375
	if (!pte)
		return -ENOMEM;

1376 1377 1378
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1379

1380
	if (count > 1) {
1381 1382 1383 1384
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1385 1386 1387 1388 1389 1390

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1391 1392
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1393

1394 1395
	update_domain(dom);

1396 1397 1398
	return 0;
}

1399 1400 1401
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1402
{
1403 1404
	unsigned long long unmapped;
	unsigned long unmap_size;
1405 1406 1407 1408 1409
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1410

1411 1412
	while (unmapped < page_size) {

1413 1414 1415 1416 1417 1418
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1419 1420 1421 1422 1423 1424 1425 1426
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1427
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1428

1429
	return unmapped;
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1441

1442
/*
1443
 * The address allocator core functions.
1444 1445 1446
 *
 * called with domain->lock held
 */
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1468 1469 1470 1471 1472
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1473
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1474 1475 1476
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1477
	struct amd_iommu *iommu;
1478
	unsigned long i, old_size, pte_pgsize;
1479

1480 1481 1482 1483
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1503
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1514
	old_size                = dma_dom->aperture_size;
1515 1516
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1529
	/* Initialize the exclusion range if necessary */
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1551
	     i += pte_pgsize) {
1552
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1553 1554 1555
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1556 1557
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1558 1559
	}

1560 1561
	update_domain(&dma_dom->domain);

1562 1563 1564
	return 0;

out_free:
1565 1566
	update_domain(&dma_dom->domain);

1567 1568 1569 1570 1571 1572 1573 1574
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1575 1576 1577 1578 1579 1580 1581
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1582
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1583 1584
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
1585
	unsigned long boundary_size, mask;
1586 1587 1588
	unsigned long address = -1;
	unsigned long limit;

1589 1590
	next_bit >>= PAGE_SHIFT;

1591 1592 1593 1594
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1611
			dom->next_address = address + (pages << PAGE_SHIFT);
1612 1613 1614 1615 1616 1617 1618 1619 1620
			break;
		}

		next_bit = 0;
	}

	return address;
}

1621 1622
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1623
					     unsigned int pages,
1624 1625
					     unsigned long align_mask,
					     u64 dma_mask)
1626 1627 1628
{
	unsigned long address;

1629 1630 1631 1632
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1633

1634
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1635
				     dma_mask, dom->next_address);
1636

1637
	if (address == -1) {
1638
		dom->next_address = 0;
1639 1640
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1641 1642
		dom->need_flush = true;
	}
1643

1644
	if (unlikely(address == -1))
1645
		address = DMA_ERROR_CODE;
1646 1647 1648 1649 1650 1651

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1652 1653 1654 1655 1656
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1657 1658 1659 1660
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1661 1662
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1663

1664 1665
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1666 1667 1668 1669
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1670

1671
	if (address >= dom->next_address)
1672
		dom->need_flush = true;
1673 1674

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1675

A
Akinobu Mita 已提交
1676
	bitmap_clear(range->bitmap, address, pages);
1677

1678 1679
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1752
		/* PTE present? */				\
1753 1754 1755
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1756 1757 1758 1759 1760
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1773
static void free_pagetable(struct protection_domain *domain)
1774
{
1775
	unsigned long root = (unsigned long)domain->pt_root;
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1800 1801 1802
	}
}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1833 1834
static void free_gcr3_table(struct protection_domain *domain)
{
1835 1836 1837 1838 1839 1840 1841
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1842 1843 1844
	free_page((unsigned long)domain->gcr3_tbl);
}

1845 1846 1847 1848
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1849 1850
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1851 1852
	int i;

1853 1854 1855
	if (!dom)
		return;

1856 1857
	del_domain_from_list(&dom->domain);

1858
	free_pagetable(&dom->domain);
1859

1860 1861 1862 1863 1864 1865
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1866 1867 1868 1869

	kfree(dom);
}

1870 1871
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1872
 * It also initializes the page table and the address allocator data
1873 1874
 * structures required for the dma_ops interface
 */
1875
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1888
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1889
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1890
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1891
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1892 1893 1894 1895
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1896 1897
	dma_dom->need_flush = false;

1898 1899
	add_domain_to_list(&dma_dom->domain);

1900
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1901 1902
		goto free_dma_dom;

1903
	/*
1904 1905
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1906
	 */
1907
	dma_dom->aperture[0]->bitmap[0] = 1;
1908
	dma_dom->next_address = 0;
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1919 1920 1921 1922 1923 1924 1925 1926 1927
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1928
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1929
{
1930
	u64 pte_root = 0;
1931
	u64 flags = 0;
1932

1933 1934 1935
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1936 1937 1938
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1939

1940 1941
	flags = amd_iommu_dev_table[devid].data[1];

1942 1943 1944
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1971 1972 1973 1974 1975
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1976 1977 1978 1979 1980 1981 1982 1983 1984
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1985 1986
}

1987 1988
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1989 1990
{
	struct amd_iommu *iommu;
1991
	bool ats;
1992

1993 1994
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1995 1996 1997 1998

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1999
	set_dte_entry(dev_data->devid, domain, ats);
2000 2001 2002 2003 2004 2005

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2006
	device_flush_dte(dev_data);
2007 2008
}

2009
static void do_detach(struct iommu_dev_data *dev_data)
2010 2011 2012
{
	struct amd_iommu *iommu;

2013
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2014 2015

	/* decrease reference counters */
2016 2017 2018 2019 2020 2021
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2022
	clear_dte_entry(dev_data->devid);
2023

2024
	/* Flush the DTE entry */
2025
	device_flush_dte(dev_data);
2026 2027 2028 2029 2030 2031
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2032
static int __attach_device(struct iommu_dev_data *dev_data,
2033
			   struct protection_domain *domain)
2034
{
2035
	struct iommu_dev_data *head, *entry;
2036
	int ret;
2037

2038 2039 2040
	/* lock domain */
	spin_lock(&domain->lock);

2041
	head = dev_data;
2042

2043 2044
	if (head->alias_data != NULL)
		head = head->alias_data;
2045

2046
	/* Now we have the root of the alias group, if any */
2047

2048 2049 2050
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2051

2052 2053
	/* Attach alias group root */
	do_attach(head, domain);
2054

2055 2056 2057
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2058

2059 2060 2061 2062
	ret = 0;

out_unlock:

2063 2064
	/* ready */
	spin_unlock(&domain->lock);
2065

2066
	return ret;
2067
}
2068

2069 2070 2071 2072 2073 2074 2075 2076

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2077 2078 2079 2080 2081 2082
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2083
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2084 2085 2086
	if (!pos)
		return -EINVAL;

2087 2088 2089
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2090 2091 2092 2093

	return 0;
}

2094 2095
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2096 2097 2098 2099 2100 2101 2102 2103
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2115 2116
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2117 2118 2119
	if (ret)
		goto out_err;

2120 2121 2122 2123 2124 2125
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2139
/* FIXME: Move this to PCI code */
2140
#define PCI_PRI_TLP_OFF		(1 << 15)
2141

J
Joerg Roedel 已提交
2142
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2143
{
2144
	u16 status;
2145 2146
	int pos;

2147
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2148 2149 2150
	if (!pos)
		return false;

2151
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2152

2153
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2154 2155
}

2156
/*
F
Frank Arnold 已提交
2157
 * If a device is not yet associated with a domain, this function
2158 2159
 * assigns it visible for the hardware
 */
2160 2161
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2162
{
2163
	struct pci_dev *pdev = to_pci_dev(dev);
2164
	struct iommu_dev_data *dev_data;
2165
	unsigned long flags;
2166
	int ret;
2167

2168 2169
	dev_data = get_dev_data(dev);

2170 2171 2172 2173 2174 2175 2176 2177 2178
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2179
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2180 2181
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2182 2183 2184
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2185

2186
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2187
	ret = __attach_device(dev_data, domain);
2188 2189
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2190 2191 2192 2193 2194
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2195
	domain_flush_tlb_pde(domain);
2196 2197

	return ret;
2198 2199
}

2200 2201 2202
/*
 * Removes a device from a protection domain (unlocked)
 */
2203
static void __detach_device(struct iommu_dev_data *dev_data)
2204
{
2205
	struct iommu_dev_data *head, *entry;
2206
	struct protection_domain *domain;
2207
	unsigned long flags;
2208

2209
	BUG_ON(!dev_data->domain);
2210

2211 2212 2213
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2214

2215 2216 2217
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2218

2219 2220
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2221

2222
	do_detach(head);
2223

2224
	spin_unlock_irqrestore(&domain->lock, flags);
2225 2226 2227

	/*
	 * If we run in passthrough mode the device must be assigned to the
2228 2229
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2230
	 */
2231
	if (dev_data->passthrough &&
2232
	    (dev_data->domain == NULL && domain != pt_domain))
2233
		__attach_device(dev_data, pt_domain);
2234 2235 2236 2237 2238
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2239
static void detach_device(struct device *dev)
2240
{
2241
	struct protection_domain *domain;
2242
	struct iommu_dev_data *dev_data;
2243 2244
	unsigned long flags;

2245
	dev_data = get_dev_data(dev);
2246
	domain   = dev_data->domain;
2247

2248 2249
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2250
	__detach_device(dev_data);
2251
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2252

2253 2254 2255
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2256
		pci_disable_ats(to_pci_dev(dev));
2257 2258

	dev_data->ats.enabled = false;
2259
}
2260

2261
static int amd_iommu_add_device(struct device *dev)
2262
{
2263
	struct iommu_dev_data *dev_data;
2264
	struct iommu_domain *domain;
2265
	struct amd_iommu *iommu;
2266
	u16 devid;
2267
	int ret;
2268

2269
	if (!check_device(dev) || get_dev_data(dev))
2270
		return 0;
2271

2272 2273
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2274

2275
	ret = iommu_init_device(dev);
2276 2277 2278 2279
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2280

2281
		iommu_ignore_device(dev);
2282
		dev->archdata.dma_ops = &nommu_dma_ops;
2283 2284 2285
		goto out;
	}
	init_iommu_group(dev);
2286

2287
	dev_data = get_dev_data(dev);
2288

2289
	BUG_ON(!dev_data);
2290

2291
	if (dev_data->iommu_v2)
2292
		iommu_request_dm_for_dev(dev);
2293

2294 2295 2296 2297 2298 2299
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		dev_data->passthrough = true;
		dev->archdata.dma_ops = &nommu_dma_ops;
	} else {
2300
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2301 2302
	}

2303
out:
2304 2305 2306 2307 2308
	iommu_completion_wait(iommu);

	return 0;
}

2309
static void amd_iommu_remove_device(struct device *dev)
2310
{
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2322 2323
}

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2337
static struct protection_domain *get_domain(struct device *dev)
2338
{
2339
	struct protection_domain *domain;
2340
	struct iommu_domain *io_domain;
2341

2342
	if (!check_device(dev))
2343
		return ERR_PTR(-EINVAL);
2344

2345
	io_domain = iommu_get_domain_for_dev(dev);
2346 2347
	if (!io_domain)
		return NULL;
2348

2349 2350
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2351
		return ERR_PTR(-EBUSY);
2352

2353
	return domain;
2354 2355
}

2356 2357
static void update_device_table(struct protection_domain *domain)
{
2358
	struct iommu_dev_data *dev_data;
2359

2360 2361
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2362 2363 2364 2365 2366 2367 2368 2369
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2370 2371 2372

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2373 2374 2375 2376

	domain->updated = false;
}

2377 2378 2379 2380 2381 2382
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2383
	struct aperture_range *aperture;
2384 2385
	u64 *pte, *pte_page;

2386 2387 2388 2389 2390
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2391
	if (!pte) {
2392
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2393
				GFP_ATOMIC);
2394 2395
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2396
		pte += PM_LEVEL_INDEX(0, address);
2397

2398
	update_domain(&dom->domain);
2399 2400 2401 2402

	return pte;
}

2403 2404 2405 2406
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2407
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2418
	pte  = dma_ops_get_pte(dom, address);
2419
	if (!pte)
2420
		return DMA_ERROR_CODE;
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2438 2439 2440
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2441
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2442 2443
				 unsigned long address)
{
2444
	struct aperture_range *aperture;
2445 2446 2447 2448 2449
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2450 2451 2452 2453 2454 2455 2456
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2457

2458
	pte += PM_LEVEL_INDEX(0, address);
2459 2460 2461 2462 2463 2464

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2465 2466
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2467 2468
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2469 2470
 * Must be called with the domain lock held.
 */
2471 2472 2473 2474
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2475
			       int dir,
2476 2477
			       bool align,
			       u64 dma_mask)
2478 2479
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2480
	dma_addr_t address, start, ret;
2481
	unsigned int pages;
2482
	unsigned long align_mask = 0;
2483 2484
	int i;

2485
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2486 2487
	paddr &= PAGE_MASK;

2488 2489
	INC_STATS_COUNTER(total_map_requests);

2490 2491 2492
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2493 2494 2495
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2496
retry:
2497 2498
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2499
	if (unlikely(address == DMA_ERROR_CODE)) {
2500 2501 2502 2503 2504 2505 2506
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2507
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2508 2509 2510
			goto out;

		/*
2511
		 * aperture was successfully enlarged by 128 MB, try
2512 2513 2514 2515
		 * allocation again
		 */
		goto retry;
	}
2516 2517 2518

	start = address;
	for (i = 0; i < pages; ++i) {
2519
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2520
		if (ret == DMA_ERROR_CODE)
2521 2522
			goto out_unmap;

2523 2524 2525 2526 2527
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2528 2529
	ADD_STATS_COUNTER(alloced_io_mem, size);

2530
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2531
		domain_flush_tlb(&dma_dom->domain);
2532
		dma_dom->need_flush = false;
2533
	} else if (unlikely(amd_iommu_np_cache))
2534
		domain_flush_pages(&dma_dom->domain, address, size);
2535

2536 2537
out:
	return address;
2538 2539 2540 2541 2542

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2543
		dma_ops_domain_unmap(dma_dom, start);
2544 2545 2546 2547
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2548
	return DMA_ERROR_CODE;
2549 2550
}

2551 2552 2553 2554
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2555
static void __unmap_single(struct dma_ops_domain *dma_dom,
2556 2557 2558 2559
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2560
	dma_addr_t flush_addr;
2561 2562 2563
	dma_addr_t i, start;
	unsigned int pages;

2564
	if ((dma_addr == DMA_ERROR_CODE) ||
2565
	    (dma_addr + size > dma_dom->aperture_size))
2566 2567
		return;

2568
	flush_addr = dma_addr;
2569
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2570 2571 2572 2573
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2574
		dma_ops_domain_unmap(dma_dom, start);
2575 2576 2577
		start += PAGE_SIZE;
	}

2578 2579
	SUB_STATS_COUNTER(alloced_io_mem, size);

2580
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2581

2582
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2583
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2584 2585
		dma_dom->need_flush = false;
	}
2586 2587
}

2588 2589 2590
/*
 * The exported map_single function for dma_ops.
 */
2591 2592 2593 2594
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2595 2596 2597 2598
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2599
	u64 dma_mask;
2600
	phys_addr_t paddr = page_to_phys(page) + offset;
2601

2602 2603
	INC_STATS_COUNTER(cnt_map_single);

2604 2605
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2606
		return (dma_addr_t)paddr;
2607 2608
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2609

2610 2611
	dma_mask = *dev->dma_mask;

2612
	spin_lock_irqsave(&domain->lock, flags);
2613

2614
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2615
			    dma_mask);
2616
	if (addr == DMA_ERROR_CODE)
2617 2618
		goto out;

2619
	domain_flush_complete(domain);
2620 2621 2622 2623 2624 2625 2626

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2627 2628 2629
/*
 * The exported unmap_single function for dma_ops.
 */
2630 2631
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2632 2633 2634 2635
{
	unsigned long flags;
	struct protection_domain *domain;

2636 2637
	INC_STATS_COUNTER(cnt_unmap_single);

2638 2639
	domain = get_domain(dev);
	if (IS_ERR(domain))
2640 2641
		return;

2642 2643
	spin_lock_irqsave(&domain->lock, flags);

2644
	__unmap_single(domain->priv, dma_addr, size, dir);
2645

2646
	domain_flush_complete(domain);
2647 2648 2649 2650

	spin_unlock_irqrestore(&domain->lock, flags);
}

2651 2652 2653 2654
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2655
static int map_sg(struct device *dev, struct scatterlist *sglist,
2656 2657
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2658 2659 2660 2661 2662 2663 2664
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2665
	u64 dma_mask;
2666

2667 2668
	INC_STATS_COUNTER(cnt_map_sg);

2669
	domain = get_domain(dev);
2670
	if (IS_ERR(domain))
2671
		return 0;
2672

2673
	dma_mask = *dev->dma_mask;
2674 2675 2676 2677 2678 2679

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2680
		s->dma_address = __map_single(dev, domain->priv,
2681 2682
					      paddr, s->length, dir, false,
					      dma_mask);
2683 2684 2685 2686 2687 2688 2689 2690

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2691
	domain_flush_complete(domain);
2692 2693 2694 2695 2696 2697 2698 2699

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2700
			__unmap_single(domain->priv, s->dma_address,
2701 2702 2703 2704 2705 2706 2707 2708 2709
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2710 2711 2712 2713
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2714
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2715 2716
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2717 2718 2719 2720 2721 2722
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2723 2724
	INC_STATS_COUNTER(cnt_unmap_sg);

2725 2726
	domain = get_domain(dev);
	if (IS_ERR(domain))
2727 2728
		return;

2729 2730 2731
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2732
		__unmap_single(domain->priv, s->dma_address,
2733 2734 2735 2736
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2737
	domain_flush_complete(domain);
2738 2739 2740 2741

	spin_unlock_irqrestore(&domain->lock, flags);
}

2742 2743 2744
/*
 * The exported alloc_coherent function for dma_ops.
 */
2745
static void *alloc_coherent(struct device *dev, size_t size,
2746 2747
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2748
{
2749
	u64 dma_mask = dev->coherent_dma_mask;
2750 2751 2752
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2753

2754 2755
	INC_STATS_COUNTER(cnt_alloc_coherent);

2756 2757
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2758 2759 2760
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2761 2762
	} else if (IS_ERR(domain))
		return NULL;
2763

2764
	size	  = PAGE_ALIGN(size);
2765 2766
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2767
	flag     |= __GFP_ZERO;
2768

2769 2770 2771 2772
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2773

2774 2775 2776 2777 2778
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2779

2780 2781 2782
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2783 2784
	spin_lock_irqsave(&domain->lock, flags);

2785
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2786
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2787

2788
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2789
		spin_unlock_irqrestore(&domain->lock, flags);
2790
		goto out_free;
J
Jiri Slaby 已提交
2791
	}
2792

2793
	domain_flush_complete(domain);
2794 2795 2796

	spin_unlock_irqrestore(&domain->lock, flags);

2797
	return page_address(page);
2798 2799 2800

out_free:

2801 2802
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2803 2804

	return NULL;
2805 2806
}

2807 2808 2809
/*
 * The exported free_coherent function for dma_ops.
 */
2810
static void free_coherent(struct device *dev, size_t size,
2811 2812
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2813 2814
{
	struct protection_domain *domain;
2815 2816
	unsigned long flags;
	struct page *page;
2817

2818 2819
	INC_STATS_COUNTER(cnt_free_coherent);

2820 2821 2822
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2823 2824
	domain = get_domain(dev);
	if (IS_ERR(domain))
2825 2826
		goto free_mem;

2827 2828
	spin_lock_irqsave(&domain->lock, flags);

2829
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2830

2831
	domain_flush_complete(domain);
2832 2833 2834 2835

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2836 2837
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2838 2839
}

2840 2841 2842 2843 2844 2845
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2846
	return check_device(dev);
2847 2848
}

2849
static struct dma_map_ops amd_iommu_dma_ops = {
2850 2851
	.alloc = alloc_coherent,
	.free = free_coherent,
2852 2853
	.map_page = map_page,
	.unmap_page = unmap_page,
2854 2855
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2856
	.dma_supported = amd_iommu_dma_supported,
2857 2858
};

2859
int __init amd_iommu_init_api(void)
2860
{
2861
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2862 2863
}

2864 2865 2866
int __init amd_iommu_init_dma_ops(void)
{
	iommu_detected = 1;
2867
	swiotlb = 0;
2868

2869 2870
	amd_iommu_stats_init();

2871 2872 2873 2874 2875
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2876 2877
	return 0;
}
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2891
	struct iommu_dev_data *entry;
2892 2893 2894 2895
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2896 2897 2898 2899
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2900
	}
2901 2902 2903 2904

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2905 2906 2907 2908 2909
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2910 2911
	del_domain_from_list(domain);

2912 2913 2914 2915 2916 2917 2918
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2919 2920 2921 2922 2923
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2924
		return NULL;
2925 2926

	spin_lock_init(&domain->lock);
2927
	mutex_init(&domain->api_lock);
2928 2929
	domain->id = domain_id_alloc();
	if (!domain->id)
2930
		goto out_err;
2931
	INIT_LIST_HEAD(&domain->dev_list);
2932

2933 2934
	add_domain_to_list(domain);

2935 2936 2937 2938 2939 2940 2941 2942
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2943
static int alloc_passthrough_domain(void)
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
2957 2958

static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2959
{
2960
	struct protection_domain *pdomain;
2961
	struct dma_ops_domain *dma_domain;
2962

2963 2964 2965 2966 2967
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2968

2969 2970 2971 2972 2973 2974
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2975

2976 2977 2978
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2989 2990 2991 2992
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2993

2994 2995
		pdomain->mode = PAGE_MODE_NONE;
		break;
2996 2997 2998
	default:
		return NULL;
	}
2999

3000
	return &pdomain->domain;
3001 3002
}

3003
static void amd_iommu_domain_free(struct iommu_domain *dom)
3004
{
3005
	struct protection_domain *domain;
3006

3007
	if (!dom)
3008 3009
		return;

3010 3011
	domain = to_pdomain(dom);

3012 3013 3014 3015 3016
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3017 3018
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3019

3020 3021 3022
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3023
	protection_domain_free(domain);
3024 3025
}

3026 3027 3028
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3029
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3030 3031 3032
	struct amd_iommu *iommu;
	u16 devid;

3033
	if (!check_device(dev))
3034 3035
		return;

3036
	devid = get_device_id(dev);
3037

3038
	if (dev_data->domain != NULL)
3039
		detach_device(dev);
3040 3041 3042 3043 3044 3045 3046 3047

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3048 3049 3050
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3051
	struct protection_domain *domain = to_pdomain(dom);
3052
	struct iommu_dev_data *dev_data;
3053
	struct amd_iommu *iommu;
3054
	int ret;
3055

3056
	if (!check_device(dev))
3057 3058
		return -EINVAL;

3059 3060
	dev_data = dev->archdata.iommu;

3061
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3062 3063 3064
	if (!iommu)
		return -EINVAL;

3065
	if (dev_data->domain)
3066
		detach_device(dev);
3067

3068
	ret = attach_device(dev, domain);
3069 3070 3071

	iommu_completion_wait(iommu);

3072
	return ret;
3073 3074
}

3075
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3076
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3077
{
3078
	struct protection_domain *domain = to_pdomain(dom);
3079 3080 3081
	int prot = 0;
	int ret;

3082 3083 3084
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3085 3086 3087 3088 3089
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3090
	mutex_lock(&domain->api_lock);
3091
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3092 3093
	mutex_unlock(&domain->api_lock);

3094
	return ret;
3095 3096
}

3097 3098
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3099
{
3100
	struct protection_domain *domain = to_pdomain(dom);
3101
	size_t unmap_size;
3102

3103 3104 3105
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3106
	mutex_lock(&domain->api_lock);
3107
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3108
	mutex_unlock(&domain->api_lock);
3109

3110
	domain_flush_tlb_pde(domain);
3111

3112
	return unmap_size;
3113 3114
}

3115
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3116
					  dma_addr_t iova)
3117
{
3118
	struct protection_domain *domain = to_pdomain(dom);
3119
	unsigned long offset_mask, pte_pgsize;
3120
	u64 *pte, __pte;
3121

3122 3123 3124
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3125
	pte = fetch_pte(domain, iova, &pte_pgsize);
3126

3127
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3128 3129
		return 0;

3130 3131
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3132

3133
	return (__pte & ~offset_mask) | (iova & offset_mask);
3134 3135
}

3136
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3137
{
3138 3139
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3140
		return true;
3141
	case IOMMU_CAP_INTR_REMAP:
3142
		return (irq_remapping_enabled == 1);
3143 3144
	case IOMMU_CAP_NOEXEC:
		return false;
3145 3146
	}

3147
	return false;
S
Sheng Yang 已提交
3148 3149
}

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3191
static const struct iommu_ops amd_iommu_ops = {
3192
	.capable = amd_iommu_capable,
3193 3194
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3195 3196
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3197 3198
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3199
	.map_sg = default_iommu_map_sg,
3200
	.iova_to_phys = amd_iommu_iova_to_phys,
3201 3202
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3203 3204
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3205
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3206 3207
};

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3220
	struct iommu_dev_data *dev_data;
3221
	struct pci_dev *dev = NULL;
3222
	int ret;
3223

3224 3225 3226
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3227

3228
	for_each_pci_dev(dev) {
3229
		if (!check_device(&dev->dev))
3230 3231
			continue;

3232 3233 3234
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3235
		attach_device(&dev->dev, pt_domain);
3236 3237
	}

J
Joerg Roedel 已提交
3238 3239
	amd_iommu_stats_init();

3240 3241 3242 3243
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3257 3258 3259

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3260
	struct protection_domain *domain = to_pdomain(dom);
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3278 3279 3280

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3281
	struct protection_domain *domain = to_pdomain(dom);
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3385 3386
	INC_STATS_COUNTER(invalidate_iotlb);

3387 3388 3389 3390 3391 3392
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3393
	struct protection_domain *domain = to_pdomain(dom);
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3407 3408
	INC_STATS_COUNTER(invalidate_iotlb_all);

3409 3410 3411 3412 3413 3414
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3415
	struct protection_domain *domain = to_pdomain(dom);
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3495
	struct protection_domain *domain = to_pdomain(dom);
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3509
	struct protection_domain *domain = to_pdomain(dom);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3520 3521 3522 3523 3524 3525 3526 3527

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3528 3529
	INC_STATS_COUNTER(complete_ppr);

3530 3531 3532 3533 3534 3535 3536 3537 3538
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3539 3540 3541

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3542
	struct protection_domain *pdomain;
3543

3544 3545
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3546 3547 3548
		return NULL;

	/* Only return IOMMUv2 domains */
3549
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3550 3551
		return NULL;

3552
	return &pdomain->domain;
3553 3554
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3686 3687 3688
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3689 3690 3691 3692 3693 3694 3695
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3696
		table = NULL;
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3714
		set_dte_irq_entry(alias, table);
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3749
			struct irq_2_irte *irte_info;
3750 3751 3752 3753 3754 3755

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3756
			cfg->remapped	      = 1;
3757 3758 3759
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3835 3836 3837 3838 3839
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
3840
	struct irq_2_irte *irte_info;
3841 3842 3843 3844 3845 3846 3847
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

3848
	cfg = irq_cfg(irq);
3849 3850 3851
	if (!cfg)
		return -EINVAL;

3852
	irte_info = &cfg->irq_2_irte;
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
3866
	cfg->remapped	      = 1;
3867 3868
	irte_info->devid      = devid;
	irte_info->index      = index;
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
3902
	struct irq_2_irte *irte_info;
3903 3904 3905 3906 3907 3908 3909 3910
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

3911
	cfg       = irqd_cfg(data);
3912
	irq       = data->irq;
3913
	irte_info = &cfg->irq_2_irte;
3914 3915 3916 3917

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

3918
	if (get_irte(irte_info->devid, irte_info->index, &irte))
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

3934
	modify_irte(irte_info->devid, irte_info->index, irte);
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
3946
	struct irq_2_irte *irte_info;
3947 3948
	struct irq_cfg *cfg;

3949
	cfg = irq_cfg(irq);
3950 3951 3952
	if (!cfg)
		return -EINVAL;

3953
	irte_info = &cfg->irq_2_irte;
3954

3955
	free_irte(irte_info->devid, irte_info->index);
3956 3957 3958 3959

	return 0;
}

3960 3961 3962 3963
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
3964
	struct irq_2_irte *irte_info;
3965 3966 3967
	struct irq_cfg *cfg;
	union irte irte;

3968
	cfg = irq_cfg(irq);
3969 3970 3971
	if (!cfg)
		return;

3972
	irte_info = &cfg->irq_2_irte;
3973 3974 3975 3976 3977 3978 3979 3980

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

3981
	modify_irte(irte_info->devid, irte_info->index, irte);
3982 3983 3984

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
3985
	msg->data       = irte_info->index;
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

3997
	cfg = irq_cfg(irq);
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4010
	struct irq_2_irte *irte_info;
4011 4012 4013 4014 4015 4016
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4017
	cfg = irq_cfg(irq);
4018 4019 4020 4021 4022 4023 4024
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4025
	irte_info	= &cfg->irq_2_irte;
4026

4027
	cfg->remapped	      = 1;
4028 4029
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4030 4031 4032 4033

	return 0;
}

4034
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4035
{
4036
	struct irq_2_irte *irte_info;
4037 4038 4039
	struct irq_cfg *cfg;
	int index, devid;

4040
	cfg = irq_cfg(irq);
4041 4042 4043
	if (!cfg)
		return -EINVAL;

4044
	irte_info = &cfg->irq_2_irte;
4045 4046 4047 4048 4049 4050 4051 4052
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4053
	cfg->remapped	      = 1;
4054 4055
	irte_info->devid      = devid;
	irte_info->index      = index;
4056 4057 4058 4059

	return 0;
}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4072
	.alloc_hpet_msi		= alloc_hpet_msi,
4073
};
4074
#endif