amd_iommu.c 104.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/dma-direct.h>
32
#include <linux/iommu-helper.h>
33
#include <linux/iommu.h>
34
#include <linux/delay.h>
35
#include <linux/amd-iommu.h>
36 37
#include <linux/notifier.h>
#include <linux/export.h>
38 39
#include <linux/irq.h>
#include <linux/msi.h>
40
#include <linux/dma-contiguous.h>
41
#include <linux/irqdomain.h>
42
#include <linux/percpu.h>
43
#include <linux/iova.h>
44 45 46 47
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
48
#include <asm/msidef.h>
49
#include <asm/proto.h>
50
#include <asm/iommu.h>
51
#include <asm/gart.h>
52
#include <asm/dma.h>
53 54 55

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
56
#include "irq_remapping.h"
57

58 59
#define AMD_IOMMU_MAPPING_ERROR	0

60 61
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

62
#define LOOP_TIMEOUT	100000
63

64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85
static DEFINE_SPINLOCK(pd_bitmap_lock);
86

87
/* List of all available dev_data structures */
88
static LLIST_HEAD(dev_data_list);
89

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214
	ratelimit_default_init(&dev_data->rs);

215
	llist_add(&dev_data->dev_data_list, &dev_data_list);
216 217 218
	return dev_data;
}

219 220 221
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
222
	struct llist_node *node;
223

224 225
	if (llist_empty(&dev_data_list))
		return NULL;
226

227 228
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
229
		if (dev_data->devid == devid)
230
			return dev_data;
231 232
	}

233
	return NULL;
234 235
}

236 237 238 239 240 241 242 243 244 245 246
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

247
	/* The callers make sure that get_device_id() does not fail here */
248
	devid = get_device_id(dev);
249 250 251 252 253

	/* For ACPI HID devices, we simply return the devid as such */
	if (!dev_is_pci(dev))
		return devid;

254
	ivrs_alias = amd_iommu_alias_table[devid];
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 297 298 299 300 301 302 303
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

304 305 306
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
307
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308 309 310

	dev_data = search_dev_data(devid);

311
	if (dev_data == NULL) {
312
		dev_data = alloc_dev_data(devid);
313 314
		if (!dev_data)
			return NULL;
315

316 317 318 319
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

320 321 322
	return dev_data;
}

323
struct iommu_dev_data *get_dev_data(struct device *dev)
324 325 326
{
	return dev->archdata.iommu;
}
327
EXPORT_SYMBOL(get_dev_data);
328

329 330 331 332
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
333
{
334
	struct acpihid_map_entry *p, *entry = NULL;
335
	int devid;
336 337 338 339 340 341 342 343 344 345 346 347

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
348 349
	else
		iommu_group_ref_get(entry->group);
350 351

	return entry->group;
352 353
}

354 355 356 357
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
358 359
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
360 361 362
	};
	int i, pos;

G
Gil Kupfer 已提交
363 364 365
	if (pci_ats_disabled())
		return false;

366 367 368 369 370 371 372 373 374
	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

375 376 377 378 379 380 381 382 383
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

384 385 386 387 388 389
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
390
	int devid;
391 392 393 394 395

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
396
	if (devid < 0)
397
		return false;
398 399 400 401 402 403 404 405 406 407 408

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

409
static void init_iommu_group(struct device *dev)
410 411 412
{
	struct iommu_group *group;

413
	group = iommu_group_get_for_dev(dev);
414 415 416 417
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
418 419 420 421 422
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
423
	struct amd_iommu *iommu;
424
	int devid;
425 426 427 428

	if (dev->archdata.iommu)
		return 0;

429
	devid = get_device_id(dev);
430
	if (devid < 0)
431 432
		return devid;

433 434
	iommu = amd_iommu_rlookup_table[devid];

435
	dev_data = find_dev_data(devid);
436 437 438
	if (!dev_data)
		return -ENOMEM;

439 440
	dev_data->alias = get_alias(dev);

441
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
442 443
		struct amd_iommu *iommu;

444
		iommu = amd_iommu_rlookup_table[dev_data->devid];
445 446 447
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

448 449
	dev->archdata.iommu = dev_data;

450
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
451

452 453 454
	return 0;
}

455 456
static void iommu_ignore_device(struct device *dev)
{
457 458
	u16 alias;
	int devid;
459 460

	devid = get_device_id(dev);
461
	if (devid < 0)
462 463
		return;

464
	alias = get_alias(dev);
465 466 467 468 469 470 471 472

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

473 474
static void iommu_uninit_device(struct device *dev)
{
475
	struct iommu_dev_data *dev_data;
476 477
	struct amd_iommu *iommu;
	int devid;
478

479
	devid = get_device_id(dev);
480
	if (devid < 0)
481
		return;
482

483 484
	iommu = amd_iommu_rlookup_table[devid];

485
	dev_data = search_dev_data(devid);
486 487 488
	if (!dev_data)
		return;

489 490 491
	if (dev_data->domain)
		detach_device(dev);

492
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
493

494 495
	iommu_group_remove_device(dev);

496
	/* Remove dma-ops */
497
	dev->dma_ops = NULL;
498

499
	/*
500 501
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
502
	 */
503
}
J
Joerg Roedel 已提交
504

505 506 507 508 509 510
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

511 512 513 514
static void dump_dte_entry(u16 devid)
{
	int i;

515 516
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
517 518 519
			amd_iommu_dev_table[devid].data[i]);
}

520 521
static void dump_command(unsigned long phys_addr)
{
522
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
523 524 525 526 527 528
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

529 530 531 532 533 534
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

535 536
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

553
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
554
{
555
	struct device *dev = iommu->iommu.dev;
556
	int type, devid, pasid, flags, tag;
557 558 559 560 561 562 563
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
564
	pasid   = PPR_PASID(*(u64 *)&event[0]);
565 566 567 568 569 570 571 572 573 574 575 576
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
577

578
	if (type == EVENT_TYPE_IO_FAULT) {
579
		amd_iommu_report_page_fault(devid, pasid, address, flags);
580 581
		return;
	} else {
582
		dev_err(dev, "AMD-Vi: Event logged [");
583
	}
584 585 586

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
587
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
588
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589
			pasid, address, flags);
590
		dump_dte_entry(devid);
591 592
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
593 594 595 596
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
597 598
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
599
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
600
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
601
			pasid, address, flags);
602 603
		break;
	case EVENT_TYPE_ILL_CMD:
604
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
605
		dump_command(address);
606 607
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
608 609
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
			address, flags);
610 611
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
612
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
613 614
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
615 616
		break;
	case EVENT_TYPE_INV_DEV_REQ:
617
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
618
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
619
			pasid, address, flags);
620
		break;
621 622 623 624 625 626 627
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
		dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			pasid, address, flags);
628 629
		break;
	default:
630
		dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
631
			event[0], event[1], event[2], event[3]);
632
	}
633 634

	memset(__evt, 0, 4 * sizeof(u32));
635 636 637 638 639 640 641 642 643 644
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
645
		iommu_print_event(iommu, iommu->evt_buf + head);
646
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
647 648 649 650 651
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

652
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
697

698 699 700
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
701

702 703 704 705 706 707 708
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
709 710
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
711 712 713 714 715 716

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
717 718 719 720
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

781
irqreturn_t amd_iommu_int_thread(int irq, void *data)
782
{
783 784
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
785

786 787 788
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
789
			iommu->mmio_base + MMIO_STATUS_OFFSET);
790

791 792 793 794
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
795

796 797 798 799
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
800

801 802 803 804 805 806 807
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
823
	return IRQ_HANDLED;
824 825
}

826 827 828 829 830
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

831 832 833 834 835 836
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
855
			       struct iommu_cmd *cmd)
856 857 858
{
	u8 *target;

859 860 861 862
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
863 864 865 866 867

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
868
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
869
}
870

871
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
872
{
873 874
	u64 paddr = iommu_virt_to_phys((void *)address);

875 876
	WARN_ON(address & 0x7ULL);

877
	memset(cmd, 0, sizeof(*cmd));
878 879
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
880
	cmd->data[2] = 1;
881 882 883
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

884 885 886 887 888 889 890
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

891 892 893 894
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
895
	bool s;
896 897

	pages = iommu_num_pages(address, size, PAGE_SIZE);
898
	s     = false;
899 900 901 902 903 904 905

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
906
		s = true;
907 908 909 910 911 912 913 914 915 916 917
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
918
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
919 920 921
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

922 923 924 925
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
926
	bool s;
927 928

	pages = iommu_num_pages(address, size, PAGE_SIZE);
929
	s     = false;
930 931 932 933 934 935 936

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
937
		s = true;
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

953 954 955 956 957 958 959
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

960
	cmd->data[0]  = pasid;
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
979
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
980 981
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
982
	cmd->data[1] |= (pasid & 0xff) << 16;
983 984 985 986 987 988 989 990
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

991 992 993 994 995 996 997
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
998
		cmd->data[1]  = pasid;
999 1000 1001 1002 1003 1004 1005 1006
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1007 1008 1009 1010
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1011 1012
}

1013 1014 1015 1016 1017 1018 1019
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1020 1021
/*
 * Writes the command to the IOMMUs command buffer and informs the
1022
 * hardware about the new command.
1023
 */
1024 1025 1026
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1027
{
1028
	unsigned int count = 0;
1029
	u32 left, next_tail;
1030

1031
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1032
again:
1033
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1034

1035
	if (left <= 0x20) {
1036 1037 1038 1039 1040 1041
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1042

1043 1044
			udelay(1);
		}
1045

1046 1047 1048
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1049 1050

		goto again;
1051 1052
	}

1053
	copy_cmd_to_buffer(iommu, cmd);
1054

1055
	/* Do we need to make sure all commands are processed? */
1056
	iommu->need_sync = sync;
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1068
	raw_spin_lock_irqsave(&iommu->lock, flags);
1069
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1070
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1071

1072
	return ret;
1073 1074
}

1075 1076 1077 1078 1079
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1080 1081 1082 1083
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1084
static int iommu_completion_wait(struct amd_iommu *iommu)
1085 1086
{
	struct iommu_cmd cmd;
1087
	unsigned long flags;
1088
	int ret;
1089

1090
	if (!iommu->need_sync)
1091
		return 0;
1092

1093

1094 1095
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1096
	raw_spin_lock_irqsave(&iommu->lock, flags);
1097 1098 1099 1100

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1101
	if (ret)
1102 1103 1104 1105 1106
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1107
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1108

1109
	return ret;
1110 1111
}

1112
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1113
{
1114
	struct iommu_cmd cmd;
1115

1116
	build_inv_dte(&cmd, devid);
1117

1118 1119
	return iommu_queue_command(iommu, &cmd);
}
1120

1121
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1122 1123
{
	u32 devid;
1124

1125 1126
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1127

1128 1129
	iommu_completion_wait(iommu);
}
1130

1131 1132 1133 1134
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1135
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1136 1137
{
	u32 dom_id;
1138

1139 1140 1141 1142 1143 1144
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1145

1146
	iommu_completion_wait(iommu);
1147 1148
}

1149
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1150
{
1151
	struct iommu_cmd cmd;
1152

1153
	build_inv_all(&cmd);
1154

1155 1156 1157 1158
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1159 1160 1161 1162 1163 1164 1165 1166 1167
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1168
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1178 1179
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1180
	if (iommu_feature(iommu, FEATURE_IA)) {
1181
		amd_iommu_flush_all(iommu);
1182
	} else {
1183 1184 1185
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1186 1187 1188
	}
}

1189
/*
1190
 * Command send function for flushing on-device TLB
1191
 */
1192 1193
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1194 1195
{
	struct amd_iommu *iommu;
1196
	struct iommu_cmd cmd;
1197
	int qdep;
1198

1199 1200
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1201

1202
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1203 1204

	return iommu_queue_command(iommu, &cmd);
1205 1206
}

1207 1208 1209
/*
 * Command send function for invalidating a device table entry
 */
1210
static int device_flush_dte(struct iommu_dev_data *dev_data)
1211
{
1212
	struct amd_iommu *iommu;
1213
	u16 alias;
1214
	int ret;
1215

1216
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1217
	alias = dev_data->alias;
1218

1219
	ret = iommu_flush_dte(iommu, dev_data->devid);
1220 1221
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1222 1223 1224
	if (ret)
		return ret;

1225
	if (dev_data->ats.enabled)
1226
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1227 1228

	return ret;
1229 1230
}

1231 1232 1233 1234 1235
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1236 1237
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1238
{
1239
	struct iommu_dev_data *dev_data;
1240 1241
	struct iommu_cmd cmd;
	int ret = 0, i;
1242

1243
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1244

1245
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1246 1247 1248 1249 1250 1251 1252
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1253
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1254 1255
	}

1256 1257
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1258
		if (!dev_data->ats.enabled)
1259 1260
			continue;

1261
		ret |= device_flush_iotlb(dev_data, address, size);
1262 1263
	}

1264
	WARN_ON(ret);
1265 1266
}

1267 1268
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1269
{
1270
	__domain_flush_pages(domain, address, size, 0);
1271
}
1272

1273
/* Flush the whole IO/TLB for a given protection domain */
1274
static void domain_flush_tlb(struct protection_domain *domain)
1275
{
1276
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1277 1278
}

1279
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1280
static void domain_flush_tlb_pde(struct protection_domain *domain)
1281
{
1282
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1283 1284
}

1285
static void domain_flush_complete(struct protection_domain *domain)
1286
{
1287
	int i;
1288

1289
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1290
		if (domain && !domain->dev_iommu[i])
1291
			continue;
1292

1293 1294 1295 1296 1297
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1298
	}
1299 1300
}

1301

1302
/*
1303
 * This function flushes the DTEs for all devices in domain
1304
 */
1305
static void domain_flush_devices(struct protection_domain *domain)
1306
{
1307
	struct iommu_dev_data *dev_data;
1308

1309
	list_for_each_entry(dev_data, &domain->dev_list, list)
1310
		device_flush_dte(dev_data);
1311 1312
}

1313 1314 1315 1316 1317 1318 1319
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static void free_page_list(struct page *freelist)
{
	while (freelist != NULL) {
		unsigned long p = (unsigned long)page_address(freelist);
		freelist = freelist->freelist;
		free_page(p);
	}
}

static struct page *free_pt_page(unsigned long pt, struct page *freelist)
{
	struct page *p = virt_to_page((void *)pt);

	p->freelist = freelist;

	return p;
}

#define DEFINE_FREE_PT_FN(LVL, FN)						\
static struct page *free_pt_##LVL (unsigned long __pt, struct page *freelist)	\
{										\
	unsigned long p;							\
	u64 *pt;								\
	int i;									\
										\
	pt = (u64 *)__pt;							\
										\
	for (i = 0; i < 512; ++i) {						\
		/* PTE present? */						\
		if (!IOMMU_PTE_PRESENT(pt[i]))					\
			continue;						\
										\
		/* Large PTE? */						\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||					\
		    PM_PTE_LEVEL(pt[i]) == 7)					\
			continue;						\
										\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);			\
		freelist = FN(p, freelist);					\
	}									\
										\
	return free_pt_page((unsigned long)pt, freelist);			\
}

DEFINE_FREE_PT_FN(l2, free_pt_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1370 1371
static struct page *free_sub_pt(unsigned long root, int mode,
				struct page *freelist)
1372
{
1373
	switch (mode) {
1374
	case PAGE_MODE_NONE:
1375
	case PAGE_MODE_7_LEVEL:
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		break;
	case PAGE_MODE_1_LEVEL:
		freelist = free_pt_page(root, freelist);
		break;
	case PAGE_MODE_2_LEVEL:
		freelist = free_pt_l2(root, freelist);
		break;
	case PAGE_MODE_3_LEVEL:
		freelist = free_pt_l3(root, freelist);
		break;
	case PAGE_MODE_4_LEVEL:
		freelist = free_pt_l4(root, freelist);
		break;
	case PAGE_MODE_5_LEVEL:
		freelist = free_pt_l5(root, freelist);
		break;
	case PAGE_MODE_6_LEVEL:
		freelist = free_pt_l6(root, freelist);
		break;
	default:
		BUG();
	}

1399 1400 1401 1402 1403 1404 1405 1406
	return freelist;
}

static void free_pagetable(struct protection_domain *domain)
{
	unsigned long root = (unsigned long)domain->pt_root;
	struct page *freelist = NULL;

1407 1408 1409
	BUG_ON(domain->mode < PAGE_MODE_NONE ||
	       domain->mode > PAGE_MODE_6_LEVEL);

1410 1411
	free_sub_pt(root, domain->mode, freelist);

1412 1413 1414
	free_page_list(freelist);
}

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1434
					iommu_virt_to_phys(domain->pt_root));
1435 1436 1437 1438 1439 1440 1441 1442 1443
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1444
		      unsigned long page_size,
1445 1446 1447
		      u64 **pte_page,
		      gfp_t gfp)
{
1448
	int level, end_lvl;
1449
	u64 *pte, *page;
1450 1451

	BUG_ON(!is_power_of_2(page_size));
1452 1453 1454 1455

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1456 1457 1458 1459
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1460 1461

	while (level > end_lvl) {
1462 1463 1464 1465 1466
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1467 1468 1469
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1470

1471
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1472

1473 1474
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1475 1476 1477
				free_page((unsigned long)page);
				continue;
			}
1478 1479
		}

1480 1481 1482 1483
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1501 1502 1503
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1504 1505 1506 1507
{
	int level;
	u64 *pte;

1508 1509
	*page_size = 0;

1510 1511 1512
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1513 1514 1515
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1516

1517 1518 1519
	while (level > 0) {

		/* Not Present */
1520 1521 1522
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1523
		/* Large PTE */
1524 1525 1526
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1527 1528 1529 1530 1531

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1532 1533
		level -= 1;

1534
		/* Walk to the next level */
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1550 1551 1552 1553 1554
	}

	return pte;
}

1555 1556 1557 1558 1559 1560 1561
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1562 1563 1564
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1565
			  unsigned long page_size,
1566
			  int prot,
1567
			  gfp_t gfp)
1568
{
1569
	u64 __pte, *pte;
1570
	int i, count;
1571

1572 1573 1574
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1575
	if (!(prot & IOMMU_PROT_MASK))
1576 1577
		return -EINVAL;

1578
	count = PAGE_SIZE_PTE_COUNT(page_size);
1579
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1580

1581 1582 1583
	if (!pte)
		return -ENOMEM;

1584 1585 1586
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1587

1588
	if (count > 1) {
1589
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1590
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1591
	} else
1592
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1593 1594 1595 1596 1597 1598

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1599 1600
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1601

1602 1603
	update_domain(dom);

1604 1605 1606
	return 0;
}

1607 1608 1609
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1610
{
1611 1612
	unsigned long long unmapped;
	unsigned long unmap_size;
1613 1614 1615 1616 1617
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1618

1619 1620
	while (unmapped < page_size) {

1621 1622 1623 1624 1625 1626
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1627 1628 1629 1630 1631 1632 1633 1634
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1635
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1636

1637
	return unmapped;
1638 1639
}

1640 1641 1642
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1643
 * interface functions.
1644 1645
 *
 ****************************************************************************/
1646

1647

1648 1649 1650
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1651
{
1652
	unsigned long pfn = 0;
1653

1654
	pages = __roundup_pow_of_two(pages);
1655

1656 1657
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1658
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1659

1660
	if (!pfn)
1661 1662
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1663

1664
	return (pfn << PAGE_SHIFT);
1665 1666
}

1667 1668 1669
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1670
{
1671 1672
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1673

1674
	free_iova_fast(&dma_dom->iovad, address, pages);
1675 1676
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1712 1713 1714 1715
static u16 domain_id_alloc(void)
{
	int id;

1716
	spin_lock(&pd_bitmap_lock);
1717 1718 1719 1720 1721 1722
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1723
	spin_unlock(&pd_bitmap_lock);
1724 1725 1726 1727

	return id;
}

1728 1729
static void domain_id_free(int id)
{
1730
	spin_lock(&pd_bitmap_lock);
1731 1732
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1733
	spin_unlock(&pd_bitmap_lock);
1734 1735
}

1736 1737 1738 1739 1740 1741 1742 1743 1744
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1745
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1760
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1761 1762 1763 1764 1765

		free_gcr3_tbl_level1(ptr);
	}
}

1766 1767
static void free_gcr3_table(struct protection_domain *domain)
{
1768 1769 1770 1771
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1772 1773
	else
		BUG_ON(domain->glx != 0);
1774

1775 1776 1777
	free_page((unsigned long)domain->gcr3_tbl);
}

1778 1779 1780 1781
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1782 1783
}

1784
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1785
{
1786
	struct dma_ops_domain *dom;
1787

1788
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1789 1790 1791 1792

	dma_ops_domain_flush_tlb(dom);
}

1793 1794 1795 1796
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1797 1798 1799 1800 1801
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1802 1803
	del_domain_from_list(&dom->domain);

1804
	put_iova_domain(&dom->iovad);
1805

1806
	free_pagetable(&dom->domain);
1807

1808 1809 1810
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1811 1812 1813
	kfree(dom);
}

1814 1815
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1816
 * It also initializes the page table and the address allocator data
1817 1818
 * structures required for the dma_ops interface
 */
1819
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1820 1821 1822 1823 1824 1825 1826
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1827
	if (protection_domain_init(&dma_dom->domain))
1828
		goto free_dma_dom;
1829

1830
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1831
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1832
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1833 1834 1835
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1836
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1837

1838
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1839 1840
		goto free_dma_dom;

1841 1842
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1843

1844 1845
	add_domain_to_list(&dma_dom->domain);

1846 1847 1848 1849 1850 1851 1852 1853
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1854 1855 1856 1857 1858 1859 1860 1861 1862
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1863 1864
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1865
{
1866
	u64 pte_root = 0;
1867
	u64 flags = 0;
1868

1869
	if (domain->mode != PAGE_MODE_NONE)
1870
		pte_root = iommu_virt_to_phys(domain->pt_root);
1871

1872 1873
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1874
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1875

1876 1877
	flags = amd_iommu_dev_table[devid].data[1];

1878 1879 1880
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1881 1882 1883 1884 1885 1886 1887
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1888
	if (domain->flags & PD_IOMMUV2_MASK) {
1889
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1914
	flags &= ~DEV_DOMID_MASK;
1915 1916 1917 1918
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1919 1920 1921 1922 1923
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1924
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1925
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1926 1927

	amd_iommu_apply_erratum_63(devid);
1928 1929
}

1930 1931
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1932 1933
{
	struct amd_iommu *iommu;
1934
	u16 alias;
1935
	bool ats;
1936

1937
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1938
	alias = dev_data->alias;
1939
	ats   = dev_data->ats.enabled;
1940 1941 1942 1943 1944 1945 1946 1947 1948

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1949
	/* Update device table */
1950
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1951
	if (alias != dev_data->devid)
1952
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1953

1954
	device_flush_dte(dev_data);
1955 1956
}

1957
static void do_detach(struct iommu_dev_data *dev_data)
1958 1959
{
	struct amd_iommu *iommu;
1960
	u16 alias;
1961

1962
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1963
	alias = dev_data->alias;
1964 1965

	/* decrease reference counters */
1966 1967 1968 1969 1970 1971
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1972
	clear_dte_entry(dev_data->devid);
1973 1974
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1975

1976
	/* Flush the DTE entry */
1977
	device_flush_dte(dev_data);
1978 1979 1980
}

/*
1981 1982
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
1983
 */
1984
static int __attach_device(struct iommu_dev_data *dev_data,
1985
			   struct protection_domain *domain)
1986
{
1987
	int ret;
1988

1989 1990 1991
	/* lock domain */
	spin_lock(&domain->lock);

1992
	ret = -EBUSY;
1993
	if (dev_data->domain != NULL)
1994
		goto out_unlock;
1995

1996
	/* Attach alias group root */
1997
	do_attach(dev_data, domain);
1998

1999 2000 2001 2002
	ret = 0;

out_unlock:

2003 2004
	/* ready */
	spin_unlock(&domain->lock);
2005

2006
	return ret;
2007
}
2008

2009 2010 2011 2012 2013 2014 2015 2016

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2017 2018 2019 2020 2021 2022
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2023
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2024 2025 2026
	if (!pos)
		return -EINVAL;

2027 2028 2029
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2030 2031 2032 2033

	return 0;
}

2034 2035
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2036 2037 2038 2039 2040 2041 2042 2043
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2055 2056
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2057 2058 2059
	if (ret)
		goto out_err;

2060 2061 2062 2063 2064 2065
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2079
/* FIXME: Move this to PCI code */
2080
#define PCI_PRI_TLP_OFF		(1 << 15)
2081

J
Joerg Roedel 已提交
2082
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2083
{
2084
	u16 status;
2085 2086
	int pos;

2087
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2088 2089 2090
	if (!pos)
		return false;

2091
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2092

2093
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2094 2095
}

2096
/*
2097 2098
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2099
 */
2100 2101
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2102
{
2103
	struct pci_dev *pdev;
2104
	struct iommu_dev_data *dev_data;
2105
	unsigned long flags;
2106
	int ret;
2107

2108 2109
	dev_data = get_dev_data(dev);

2110 2111 2112 2113
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2114
	if (domain->flags & PD_IOMMUV2_MASK) {
2115
		if (!dev_data->passthrough)
2116 2117
			return -EINVAL;

2118 2119 2120
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2121

2122 2123 2124 2125
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2126 2127
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2128 2129 2130
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2131

2132
skip_ats_check:
2133
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2134
	ret = __attach_device(dev_data, domain);
2135
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2136

2137 2138 2139 2140 2141
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2142
	domain_flush_tlb_pde(domain);
2143 2144

	return ret;
2145 2146
}

2147 2148 2149
/*
 * Removes a device from a protection domain (unlocked)
 */
2150
static void __detach_device(struct iommu_dev_data *dev_data)
2151
{
2152
	struct protection_domain *domain;
2153

2154
	domain = dev_data->domain;
2155

2156
	spin_lock(&domain->lock);
2157

2158
	do_detach(dev_data);
2159

2160
	spin_unlock(&domain->lock);
2161 2162 2163 2164 2165
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2166
static void detach_device(struct device *dev)
2167
{
2168
	struct protection_domain *domain;
2169
	struct iommu_dev_data *dev_data;
2170 2171
	unsigned long flags;

2172
	dev_data = get_dev_data(dev);
2173
	domain   = dev_data->domain;
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (WARN_ON(!dev_data->domain))
		return;

2184
	/* lock device table */
2185
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2186
	__detach_device(dev_data);
2187
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2188

2189 2190 2191
	if (!dev_is_pci(dev))
		return;

2192
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2193 2194
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2195
		pci_disable_ats(to_pci_dev(dev));
2196 2197

	dev_data->ats.enabled = false;
2198
}
2199

2200
static int amd_iommu_add_device(struct device *dev)
2201
{
2202
	struct iommu_dev_data *dev_data;
2203
	struct iommu_domain *domain;
2204
	struct amd_iommu *iommu;
2205
	int ret, devid;
2206

2207
	if (!check_device(dev) || get_dev_data(dev))
2208
		return 0;
2209

2210
	devid = get_device_id(dev);
2211
	if (devid < 0)
2212 2213
		return devid;

2214
	iommu = amd_iommu_rlookup_table[devid];
2215

2216
	ret = iommu_init_device(dev);
2217 2218 2219 2220
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2221

2222
		iommu_ignore_device(dev);
2223
		dev->dma_ops = &dma_direct_ops;
2224 2225 2226
		goto out;
	}
	init_iommu_group(dev);
2227

2228
	dev_data = get_dev_data(dev);
2229

2230
	BUG_ON(!dev_data);
2231

2232
	if (iommu_pass_through || dev_data->iommu_v2)
2233
		iommu_request_dm_for_dev(dev);
2234

2235 2236
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2237
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2238
		dev_data->passthrough = true;
2239
	else
2240
		dev->dma_ops = &amd_iommu_dma_ops;
2241

2242
out:
2243 2244 2245 2246 2247
	iommu_completion_wait(iommu);

	return 0;
}

2248
static void amd_iommu_remove_device(struct device *dev)
2249
{
2250
	struct amd_iommu *iommu;
2251
	int devid;
2252 2253 2254 2255 2256

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2257
	if (devid < 0)
2258 2259
		return;

2260 2261 2262 2263
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2264 2265
}

2266 2267 2268 2269 2270 2271 2272 2273
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2287
static struct protection_domain *get_domain(struct device *dev)
2288
{
2289
	struct protection_domain *domain;
2290
	struct iommu_domain *io_domain;
2291

2292
	if (!check_device(dev))
2293
		return ERR_PTR(-EINVAL);
2294

2295
	domain = get_dev_data(dev)->domain;
2296 2297 2298 2299 2300 2301
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2302 2303 2304
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2305
	if (!dma_ops_domain(domain))
2306
		return ERR_PTR(-EBUSY);
2307

2308
	return domain;
2309 2310
}

2311 2312
static void update_device_table(struct protection_domain *domain)
{
2313
	struct iommu_dev_data *dev_data;
2314

2315
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2316 2317
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2318 2319 2320 2321 2322

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2323 2324
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2325
	}
2326 2327 2328 2329 2330 2331 2332 2333
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2334 2335 2336

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2337 2338 2339 2340

	domain->updated = false;
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2352

2353 2354
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2355 2356
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2357 2358
 * Must be called with the domain lock held.
 */
2359 2360 2361 2362
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2363
			       enum dma_data_direction direction,
2364
			       u64 dma_mask)
2365 2366
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2367
	dma_addr_t address, start, ret;
2368
	unsigned int pages;
2369
	int prot = 0;
2370 2371
	int i;

2372
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2373 2374
	paddr &= PAGE_MASK;

2375
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2376
	if (address == AMD_IOMMU_MAPPING_ERROR)
2377
		goto out;
2378

2379
	prot = dir2prot(direction);
2380

2381 2382
	start = address;
	for (i = 0; i < pages; ++i) {
2383 2384 2385
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2386 2387
			goto out_unmap;

2388 2389 2390 2391 2392
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2393
	if (unlikely(amd_iommu_np_cache)) {
2394
		domain_flush_pages(&dma_dom->domain, address, size);
2395 2396
		domain_flush_complete(&dma_dom->domain);
	}
2397

2398 2399
out:
	return address;
2400 2401 2402 2403 2404

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2405
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2406 2407
	}

2408 2409 2410 2411
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2412

2413
	return AMD_IOMMU_MAPPING_ERROR;
2414 2415
}

2416 2417 2418 2419
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2420
static void __unmap_single(struct dma_ops_domain *dma_dom,
2421 2422 2423 2424 2425 2426 2427
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2428
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2429 2430 2431 2432
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2433
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2434 2435 2436
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2437 2438 2439
	if (amd_iommu_unmap_flush) {
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
2440
		dma_ops_free_iova(dma_dom, dma_addr, pages);
J
Joerg Roedel 已提交
2441
	} else {
2442 2443
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2444
	}
2445 2446
}

2447 2448 2449
/*
 * The exported map_single function for dma_ops.
 */
2450 2451 2452
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2453
			   unsigned long attrs)
2454
{
2455
	phys_addr_t paddr = page_to_phys(page) + offset;
2456
	struct protection_domain *domain;
2457
	struct dma_ops_domain *dma_dom;
2458
	u64 dma_mask;
2459

2460 2461
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2462
		return (dma_addr_t)paddr;
2463
	else if (IS_ERR(domain))
2464
		return AMD_IOMMU_MAPPING_ERROR;
2465

2466
	dma_mask = *dev->dma_mask;
2467
	dma_dom = to_dma_ops_domain(domain);
2468

2469
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2470 2471
}

2472 2473 2474
/*
 * The exported unmap_single function for dma_ops.
 */
2475
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2476
		       enum dma_data_direction dir, unsigned long attrs)
2477 2478
{
	struct protection_domain *domain;
2479
	struct dma_ops_domain *dma_dom;
2480

2481 2482
	domain = get_domain(dev);
	if (IS_ERR(domain))
2483 2484
		return;

2485 2486 2487
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2488 2489
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2516 2517 2518 2519
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2520
static int map_sg(struct device *dev, struct scatterlist *sglist,
2521
		  int nelems, enum dma_data_direction direction,
2522
		  unsigned long attrs)
2523
{
2524
	int mapped_pages = 0, npages = 0, prot = 0, i;
2525
	struct protection_domain *domain;
2526
	struct dma_ops_domain *dma_dom;
2527
	struct scatterlist *s;
2528
	unsigned long address;
2529
	u64 dma_mask;
2530

2531
	domain = get_domain(dev);
2532
	if (IS_ERR(domain))
2533
		return 0;
2534

2535
	dma_dom  = to_dma_ops_domain(domain);
2536
	dma_mask = *dev->dma_mask;
2537

2538 2539 2540
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2541
	if (address == AMD_IOMMU_MAPPING_ERROR)
2542 2543 2544 2545 2546
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2547
	for_each_sg(sglist, s, nelems, i) {
2548 2549 2550 2551 2552
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2553

2554 2555 2556 2557 2558
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2559

2560 2561
			mapped_pages += 1;
		}
2562 2563
	}

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2581

2582 2583 2584 2585 2586 2587
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2588 2589
	}

2590 2591 2592 2593
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2594
	return 0;
2595 2596
}

2597 2598 2599 2600
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2601
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2602
		     int nelems, enum dma_data_direction dir,
2603
		     unsigned long attrs)
2604 2605
{
	struct protection_domain *domain;
2606
	struct dma_ops_domain *dma_dom;
2607 2608
	unsigned long startaddr;
	int npages = 2;
2609

2610 2611
	domain = get_domain(dev);
	if (IS_ERR(domain))
2612 2613
		return;

2614
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2615
	dma_dom   = to_dma_ops_domain(domain);
2616 2617
	npages    = sg_num_pages(dev, sglist, nelems);

2618
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2619 2620
}

2621 2622 2623
/*
 * The exported alloc_coherent function for dma_ops.
 */
2624
static void *alloc_coherent(struct device *dev, size_t size,
2625
			    dma_addr_t *dma_addr, gfp_t flag,
2626
			    unsigned long attrs)
2627
{
2628
	u64 dma_mask = dev->coherent_dma_mask;
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;

	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
	} else if (IS_ERR(domain))
		return NULL;
2640

2641 2642 2643 2644 2645 2646 2647 2648 2649
	dma_dom   = to_dma_ops_domain(domain);
	size	  = PAGE_ALIGN(size);
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;

	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!gfpflags_allow_blocking(flag))
2650
			return NULL;
2651

2652
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2653
					get_order(size), flag & __GFP_NOWARN);
2654 2655 2656
		if (!page)
			return NULL;
	}
2657

2658 2659 2660
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2661 2662 2663
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
				 size, DMA_BIDIRECTIONAL, dma_mask);

2664
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2665
		goto out_free;
2666 2667

	return page_address(page);
2668 2669

out_free:
2670 2671 2672 2673

	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));

2674
	return NULL;
2675 2676
}

2677 2678 2679
/*
 * The exported free_coherent function for dma_ops.
 */
2680
static void free_coherent(struct device *dev, size_t size,
2681
			  void *virt_addr, dma_addr_t dma_addr,
2682
			  unsigned long attrs)
2683
{
2684 2685 2686
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;
2687

2688
	page = virt_to_page(virt_addr);
2689 2690
	size = PAGE_ALIGN(size);

2691 2692 2693
	domain = get_domain(dev);
	if (IS_ERR(domain))
		goto free_mem;
2694

2695 2696 2697
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2698

2699 2700 2701
free_mem:
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2702 2703
}

2704 2705 2706 2707 2708 2709
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2710
	if (!dma_direct_supported(dev, mask))
2711
		return 0;
2712
	return check_device(dev);
2713 2714
}

2715 2716 2717 2718 2719
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2720
static const struct dma_map_ops amd_iommu_dma_ops = {
2721 2722 2723 2724 2725 2726 2727
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2728
	.mapping_error	= amd_iommu_mapping_error,
2729 2730
};

2731 2732 2733 2734 2735
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2736
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2783
int __init amd_iommu_init_api(void)
2784
{
2785
	int ret, err = 0;
2786 2787 2788 2789

	ret = iova_cache_get();
	if (ret)
		return ret;
2790

2791 2792 2793 2794
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2795 2796 2797 2798 2799 2800 2801 2802
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2803 2804 2805
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2806

2807
	return 0;
2808 2809
}

2810 2811
int __init amd_iommu_init_dma_ops(void)
{
2812
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2813 2814
	iommu_detected = 1;

2815 2816
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2817 2818 2819 2820 2821
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2822 2823
	 */
	if (!swiotlb)
2824
		dma_ops = &dma_direct_ops;
2825

2826 2827 2828 2829 2830
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2831
	return 0;
2832

2833
}
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2847
	struct iommu_dev_data *entry;
2848 2849
	unsigned long flags;

2850
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2851

2852 2853 2854
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
2855
		BUG_ON(!entry->domain);
2856
		__detach_device(entry);
2857
	}
2858

2859
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2860 2861
}

2862 2863 2864 2865 2866
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2867 2868
	del_domain_from_list(domain);

2869 2870 2871 2872 2873 2874
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2887
static struct protection_domain *protection_domain_alloc(void)
2888 2889 2890 2891 2892
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2893
		return NULL;
2894

2895
	if (protection_domain_init(domain))
2896 2897
		goto out_err;

2898 2899
	add_domain_to_list(domain);

2900 2901 2902 2903 2904 2905 2906 2907
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2908
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2909
{
2910
	struct protection_domain *pdomain;
2911
	struct dma_ops_domain *dma_domain;
2912

2913 2914 2915 2916 2917
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2918

2919 2920 2921 2922 2923 2924
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2925

2926 2927 2928
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2939 2940 2941 2942
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2943

2944 2945
		pdomain->mode = PAGE_MODE_NONE;
		break;
2946 2947 2948
	default:
		return NULL;
	}
2949

2950
	return &pdomain->domain;
2951 2952
}

2953
static void amd_iommu_domain_free(struct iommu_domain *dom)
2954
{
2955
	struct protection_domain *domain;
2956
	struct dma_ops_domain *dma_dom;
2957

2958 2959
	domain = to_pdomain(dom);

2960 2961 2962 2963 2964
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2965 2966
	if (!dom)
		return;
2967

2968 2969
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2970
		/* Now release the domain */
2971
		dma_dom = to_dma_ops_domain(domain);
2972 2973 2974 2975 2976
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2977

2978 2979 2980 2981 2982 2983
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2984 2985
}

2986 2987 2988
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2989
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2990
	struct amd_iommu *iommu;
2991
	int devid;
2992

2993
	if (!check_device(dev))
2994 2995
		return;

2996
	devid = get_device_id(dev);
2997
	if (devid < 0)
2998
		return;
2999

3000
	if (dev_data->domain != NULL)
3001
		detach_device(dev);
3002 3003 3004 3005 3006

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3007 3008 3009 3010 3011 3012
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3013 3014 3015
	iommu_completion_wait(iommu);
}

3016 3017 3018
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3019
	struct protection_domain *domain = to_pdomain(dom);
3020
	struct iommu_dev_data *dev_data;
3021
	struct amd_iommu *iommu;
3022
	int ret;
3023

3024
	if (!check_device(dev))
3025 3026
		return -EINVAL;

3027 3028
	dev_data = dev->archdata.iommu;

3029
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3030 3031 3032
	if (!iommu)
		return -EINVAL;

3033
	if (dev_data->domain)
3034
		detach_device(dev);
3035

3036
	ret = attach_device(dev, domain);
3037

3038 3039 3040 3041 3042 3043 3044 3045 3046
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3047 3048
	iommu_completion_wait(iommu);

3049
	return ret;
3050 3051
}

3052
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3053
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3054
{
3055
	struct protection_domain *domain = to_pdomain(dom);
3056 3057 3058
	int prot = 0;
	int ret;

3059 3060 3061
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3062 3063 3064 3065 3066
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3067
	mutex_lock(&domain->api_lock);
3068
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3069 3070
	mutex_unlock(&domain->api_lock);

3071
	return ret;
3072 3073
}

3074 3075
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3076
{
3077
	struct protection_domain *domain = to_pdomain(dom);
3078
	size_t unmap_size;
3079

3080
	if (domain->mode == PAGE_MODE_NONE)
3081
		return 0;
3082

3083
	mutex_lock(&domain->api_lock);
3084
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3085
	mutex_unlock(&domain->api_lock);
3086

3087
	return unmap_size;
3088 3089
}

3090
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3091
					  dma_addr_t iova)
3092
{
3093
	struct protection_domain *domain = to_pdomain(dom);
3094
	unsigned long offset_mask, pte_pgsize;
3095
	u64 *pte, __pte;
3096

3097 3098 3099
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3100
	pte = fetch_pte(domain, iova, &pte_pgsize);
3101

3102
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3103 3104
		return 0;

3105
	offset_mask = pte_pgsize - 1;
3106
	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3107

3108
	return (__pte & ~offset_mask) | (iova & offset_mask);
3109 3110
}

3111
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3112
{
3113 3114
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3115
		return true;
3116
	case IOMMU_CAP_INTR_REMAP:
3117
		return (irq_remapping_enabled == 1);
3118 3119
	case IOMMU_CAP_NOEXEC:
		return false;
3120 3121
	default:
		break;
3122 3123
	}

3124
	return false;
S
Sheng Yang 已提交
3125 3126
}

3127 3128
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3129
{
3130
	struct iommu_resv_region *region;
3131
	struct unity_map_entry *entry;
3132
	int devid;
3133 3134

	devid = get_device_id(dev);
3135
	if (devid < 0)
3136
		return;
3137 3138

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3139 3140
		size_t length;
		int prot = 0;
3141 3142 3143 3144

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3145 3146 3147 3148 3149 3150 3151 3152 3153
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3154 3155 3156 3157 3158 3159 3160
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3161 3162 3163

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3164
					 0, IOMMU_RESV_MSI);
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3175 3176
}

3177
static void amd_iommu_put_resv_regions(struct device *dev,
3178 3179
				     struct list_head *head)
{
3180
	struct iommu_resv_region *entry, *next;
3181 3182 3183 3184 3185

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3186
static void amd_iommu_apply_resv_region(struct device *dev,
3187
				      struct iommu_domain *domain,
3188
				      struct iommu_resv_region *region)
3189
{
3190
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3191 3192 3193
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3194
	end   = IOVA_PFN(region->start + region->length - 1);
3195 3196 3197 3198

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3199 3200 3201 3202 3203 3204 3205
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3219
const struct iommu_ops amd_iommu_ops = {
3220
	.capable = amd_iommu_capable,
3221 3222
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3223 3224
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3225 3226
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3227
	.iova_to_phys = amd_iommu_iova_to_phys,
3228 3229
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3230
	.device_group = amd_iommu_device_group,
3231 3232 3233
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3234
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3235
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3236 3237 3238
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3239 3240
};

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3263 3264 3265

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3266
	struct protection_domain *domain = to_pdomain(dom);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3284 3285 3286

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3287
	struct protection_domain *domain = to_pdomain(dom);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3348
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3365 3366 3367 3368 3369 3370
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3402
	struct protection_domain *domain = to_pdomain(dom);
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3422
	struct protection_domain *domain = to_pdomain(dom);
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3455
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3456 3457
		}

3458
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3502
	struct protection_domain *domain = to_pdomain(dom);
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3516
	struct protection_domain *domain = to_pdomain(dom);
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3544 3545 3546

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3547
	struct protection_domain *pdomain;
3548

3549 3550
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3551 3552 3553
		return NULL;

	/* Only return IOMMUv2 domains */
3554
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3555 3556
		return NULL;

3557
	return &pdomain->domain;
3558 3559
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

G
Gil Kupfer 已提交
3587 3588 3589 3590 3591
	if (!pci_ats_disabled()) {
		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
		if (pos)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
	}
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3617 3618 3619 3620 3621 3622 3623 3624 3625

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3626
static struct irq_chip amd_ir_chip;
3627
static DEFINE_SPINLOCK(iommu_table_lock);
3628

3629 3630 3631 3632 3633 3634
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3635
	dte	|= iommu_virt_to_phys(table->table);
3636 3637 3638 3639 3640 3641 3642
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3682 3683 3684 3685 3686 3687 3688 3689
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3690
static struct irq_remap_table *alloc_irq_table(u16 devid)
3691 3692
{
	struct irq_remap_table *table = NULL;
3693
	struct irq_remap_table *new_table = NULL;
3694 3695 3696 3697
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3698
	spin_lock_irqsave(&iommu_table_lock, flags);
3699 3700 3701 3702 3703 3704 3705

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3706
		goto out_unlock;
3707 3708 3709 3710

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3711
		set_remap_table_entry(iommu, devid, table);
3712
		goto out_wait;
3713
	}
3714
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3715 3716

	/* Nothing there yet, allocate new irq remapping table */
3717 3718 3719
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3720

3721
	spin_lock_irqsave(&iommu_table_lock, flags);
3722

3723 3724
	table = irq_lookup_table[devid];
	if (table)
3725
		goto out_unlock;
3726

3727 3728 3729 3730
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3731 3732
	}

3733 3734
	table = new_table;
	new_table = NULL;
3735

3736 3737 3738
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3739

3740
out_wait:
3741 3742 3743
	iommu_completion_wait(iommu);

out_unlock:
3744
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3745

3746 3747 3748 3749
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3750 3751 3752
	return table;
}

3753
static int alloc_irq_index(u16 devid, int count, bool align)
3754 3755
{
	struct irq_remap_table *table;
3756
	int index, c, alignment = 1;
3757
	unsigned long flags;
3758 3759 3760 3761
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3762

3763
	table = alloc_irq_table(devid);
3764 3765 3766
	if (!table)
		return -ENODEV;

3767 3768 3769
	if (align)
		alignment = roundup_pow_of_two(count);

3770
	raw_spin_lock_irqsave(&table->lock, flags);
3771 3772

	/* Scan table for free entries */
3773
	for (index = ALIGN(table->min_index, alignment), c = 0;
3774
	     index < MAX_IRQS_PER_TABLE;) {
3775
		if (!iommu->irte_ops->is_allocated(table, index)) {
3776
			c += 1;
3777 3778
		} else {
			c     = 0;
3779
			index = ALIGN(index + 1, alignment);
3780 3781
			continue;
		}
3782 3783 3784

		if (c == count)	{
			for (; c != 0; --c)
3785
				iommu->irte_ops->set_allocated(table, index - c + 1);
3786 3787 3788 3789

			index -= count - 1;
			goto out;
		}
3790 3791

		index++;
3792 3793 3794 3795 3796
	}

	index = -ENOSPC;

out:
3797
	raw_spin_unlock_irqrestore(&table->lock, flags);
3798 3799 3800 3801

	return index;
}

3802 3803
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3804 3805 3806 3807
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3808
	struct irte_ga *entry;
3809 3810 3811 3812 3813

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3814
	table = get_irq_table(devid);
3815 3816 3817
	if (!table)
		return -ENOMEM;

3818
	raw_spin_lock_irqsave(&table->lock, flags);
3819 3820 3821 3822 3823 3824 3825

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3826 3827
	if (data)
		data->ref = entry;
3828

3829
	raw_spin_unlock_irqrestore(&table->lock, flags);
3830 3831 3832 3833 3834 3835 3836 3837

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3838 3839 3840 3841 3842 3843 3844 3845 3846
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3847
	table = get_irq_table(devid);
3848 3849 3850
	if (!table)
		return -ENOMEM;

3851
	raw_spin_lock_irqsave(&table->lock, flags);
3852
	table->table[index] = irte->val;
3853
	raw_spin_unlock_irqrestore(&table->lock, flags);
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3871
	table = get_irq_table(devid);
3872 3873 3874
	if (!table)
		return;

3875
	raw_spin_lock_irqsave(&table->lock, flags);
3876
	iommu->irte_ops->clear_allocated(table, index);
3877
	raw_spin_unlock_irqrestore(&table->lock, flags);
3878 3879 3880 3881 3882

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3883 3884
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3885
			 u8 vector, u32 dest_apicid, int devid)
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3899
			    u8 vector, u32 dest_apicid, int devid)
3900 3901 3902 3903 3904 3905 3906 3907
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
3908 3909
	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3926
	modify_irte_ga(devid, index, irte, NULL);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3942
	modify_irte_ga(devid, index, irte, NULL);
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3960
	if (!irte->lo.fields_remap.guest_mode) {
3961
		irte->hi.fields.vector = vector;
3962 3963 3964 3965
		irte->lo.fields_remap.destination =
					APICID_TO_IRTE_DEST_LO(dest_apicid);
		irte->hi.fields.destination =
					APICID_TO_IRTE_DEST_HI(dest_apicid);
3966 3967
		modify_irte_ga(devid, index, irte, NULL);
	}
3968 3969
}

3970
#define IRTE_ALLOCATED (~1U)
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4016
static int get_devid(struct irq_alloc_info *info)
4017
{
4018
	int devid = -1;
4019

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4035

4036 4037
	return devid;
}
4038

4039 4040 4041 4042
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4043

4044 4045
	if (!info)
		return NULL;
4046

4047 4048 4049 4050 4051 4052
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4053

4054
	return NULL;
4055 4056
}

4057
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4058
{
4059 4060
	struct amd_iommu *iommu;
	int devid;
4061

4062 4063
	if (!info)
		return NULL;
4064

4065 4066 4067 4068
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4069
		if (devid < 0)
4070 4071
			return NULL;

4072 4073 4074
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4075 4076 4077 4078
		break;
	default:
		break;
	}
4079

4080 4081
	return NULL;
}
4082

4083 4084 4085 4086 4087 4088
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4089 4090 4091
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4092

4093 4094 4095 4096 4097 4098 4099 4100
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4101 4102 4103 4104
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4105

4106 4107
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4108 4109
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4110
				 irq_cfg->dest_apicid, devid);
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4126

4127 4128 4129 4130 4131 4132 4133
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4134

4135 4136 4137 4138
	default:
		BUG_ON(1);
		break;
	}
4139 4140
}

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4161 4162
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4163
{
4164 4165
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4166
	struct amd_ir_data *data = NULL;
4167
	struct irq_cfg *cfg;
4168
	int i, ret, devid;
4169
	int index;
4170

4171 4172 4173 4174
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4175 4176
		return -EINVAL;

4177 4178 4179 4180 4181 4182
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4183

4184 4185 4186
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4187

4188 4189 4190
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4191

4192
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4209
			index = info->ioapic_pin;
4210
		} else {
4211
			index = -ENOMEM;
4212
		}
4213
	} else {
4214 4215 4216
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4217 4218 4219
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4220
		ret = index;
4221 4222
		goto out_free_parent;
	}
4223

4224 4225 4226 4227 4228 4229 4230
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4231

4232 4233 4234 4235 4236
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4247 4248 4249 4250 4251 4252
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4253

4254
	return 0;
4255

4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4267 4268
}

4269 4270
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4271
{
4272 4273 4274 4275
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4276

4277 4278 4279 4280 4281 4282
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4283
			kfree(data->entry);
4284 4285 4286 4287 4288
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4289

4290 4291 4292 4293 4294
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4295
static int irq_remapping_activate(struct irq_domain *domain,
4296
				  struct irq_data *irq_data, bool reserve)
4297 4298 4299
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4300
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4301
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4302

4303 4304 4305 4306 4307 4308
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4309
	return 0;
4310 4311
}

4312 4313
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4314
{
4315 4316
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4317
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4318

4319 4320 4321
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4322
}
4323

4324
static const struct irq_domain_ops amd_ir_domain_ops = {
4325 4326 4327 4328
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4329
};
4330

4331 4332 4333 4334 4335 4336 4337 4338
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4339 4340 4341 4342 4343 4344 4345 4346
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4369
		irte->lo.fields_vapic.ga_log_intr = 1;
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
4382 4383 4384 4385
		irte->lo.fields_remap.destination =
				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
		irte->hi.fields.destination =
				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4415 4416 4417 4418 4419 4420 4421
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4422
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4423
	int ret;
4424

4425 4426 4427
	if (!iommu)
		return -ENODEV;

4428 4429 4430
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4431

4432
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4433 4434 4435 4436 4437
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4438
	send_cleanup_vector(cfg);
4439 4440

	return IRQ_SET_MASK_OK_DONE;
4441 4442
}

4443
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4444
{
4445
	struct amd_ir_data *ir_data = irq_data->chip_data;
4446

4447 4448
	*msg = ir_data->msi_entry;
}
4449

4450
static struct irq_chip amd_ir_chip = {
4451
	.name			= "AMD-IR",
4452
	.irq_ack		= apic_ack_irq,
4453 4454 4455
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4456
};
4457

4458 4459
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4460 4461 4462 4463 4464 4465 4466
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4467 4468
	if (!iommu->ir_domain)
		return -ENOMEM;
4469

4470
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4471 4472 4473
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4474 4475
	return 0;
}
4476 4477 4478 4479 4480

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4481
	struct irq_remap_table *table;
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4495 4496
	table = get_irq_table(devid);
	if (!table)
4497 4498
		return -ENODEV;

4499
	raw_spin_lock_irqsave(&table->lock, flags);
4500 4501

	if (ref->lo.fields_vapic.guest_mode) {
4502 4503 4504 4505 4506 4507
		if (cpu >= 0) {
			ref->lo.fields_vapic.destination =
						APICID_TO_IRTE_DEST_LO(cpu);
			ref->hi.fields.destination =
						APICID_TO_IRTE_DEST_HI(cpu);
		}
4508 4509 4510 4511
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4512
	raw_spin_unlock_irqrestore(&table->lock, flags);
4513 4514 4515 4516 4517 4518

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4519
#endif