amd_iommu.c 96.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37 38 39 40
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
41
#include <asm/msidef.h>
42
#include <asm/proto.h>
43
#include <asm/iommu.h>
44
#include <asm/gart.h>
45
#include <asm/dma.h>
46 47 48

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
49
#include "irq_remapping.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

78 79 80 81 82 83
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

84
static const struct iommu_ops amd_iommu_ops;
85

86
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87
int amd_iommu_max_glx_val = -1;
88

89 90
static struct dma_map_ops amd_iommu_dma_ops;

91 92 93 94 95 96
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
97
	struct list_head alias_list;      /* Link alias-groups together */
98 99 100 101 102 103 104 105 106 107 108 109 110 111
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

112 113 114
/*
 * general struct to manage commands send to an IOMMU
 */
115
struct iommu_cmd {
116 117 118
	u32 data[4];
};

119 120
struct kmem_cache *amd_iommu_irq_cache;

121
static void update_domain(struct protection_domain *domain);
122
static int alloc_passthrough_domain(void);
123

124 125 126 127 128 129
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

130 131 132 133 134
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

135
static struct iommu_dev_data *alloc_dev_data(u16 devid)
136 137 138 139 140 141 142 143
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

144 145
	INIT_LIST_HEAD(&dev_data->alias_list);

146
	dev_data->devid = devid;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

197 198 199 200
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

201
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
202 203
}

204 205 206 207 208
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

209 210 211 212
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
213 214
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
215 216 217 218 219 220 221 222 223 224 225 226
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

227 228 229 230 231 232 233 234 235
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

264 265 266 267 268 269 270 271 272 273 274
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

275 276
	/* No PCI device */
	if (!dev_is_pci(dev))
277 278 279 280 281 282 283 284 285 286 287 288 289 290
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

291
static void init_iommu_group(struct device *dev)
292 293 294
{
	struct iommu_group *group;

295
	group = iommu_group_get_for_dev(dev);
296 297
	if (!IS_ERR(group))
		iommu_group_put(group);
298 299
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

362 363 364 365 366 367 368 369 370 371 372 373 374
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

375 376
	alias = get_alias(dev);

377 378 379 380 381 382 383 384 385 386 387 388
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

389 390
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
391
	}
392

393 394 395 396 397 398 399
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

400 401
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
402 403 404
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

405 406 407
	return 0;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

422 423
static void iommu_uninit_device(struct device *dev)
{
424 425 426 427 428
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
429 430 431
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

432 433
	iommu_group_remove_device(dev);

434 435 436
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

437 438 439
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

440
	/*
441 442
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
443
	 */
444
}
J
Joerg Roedel 已提交
445

446 447 448 449 450 451
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

452
DECLARE_STATS_COUNTER(compl_wait);
453
DECLARE_STATS_COUNTER(cnt_map_single);
454
DECLARE_STATS_COUNTER(cnt_unmap_single);
455
DECLARE_STATS_COUNTER(cnt_map_sg);
456
DECLARE_STATS_COUNTER(cnt_unmap_sg);
457
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
458
DECLARE_STATS_COUNTER(cnt_free_coherent);
459
DECLARE_STATS_COUNTER(cross_page);
460
DECLARE_STATS_COUNTER(domain_flush_single);
461
DECLARE_STATS_COUNTER(domain_flush_all);
462
DECLARE_STATS_COUNTER(alloced_io_mem);
463
DECLARE_STATS_COUNTER(total_map_requests);
464 465 466 467 468
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
488
					 &amd_iommu_unmap_flush);
489 490

	amd_iommu_stats_add(&compl_wait);
491
	amd_iommu_stats_add(&cnt_map_single);
492
	amd_iommu_stats_add(&cnt_unmap_single);
493
	amd_iommu_stats_add(&cnt_map_sg);
494
	amd_iommu_stats_add(&cnt_unmap_sg);
495
	amd_iommu_stats_add(&cnt_alloc_coherent);
496
	amd_iommu_stats_add(&cnt_free_coherent);
497
	amd_iommu_stats_add(&cross_page);
498
	amd_iommu_stats_add(&domain_flush_single);
499
	amd_iommu_stats_add(&domain_flush_all);
500
	amd_iommu_stats_add(&alloced_io_mem);
501
	amd_iommu_stats_add(&total_map_requests);
502 503 504 505
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
506 507 508 509
}

#endif

510 511 512 513 514 515
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

516 517 518 519
static void dump_dte_entry(u16 devid)
{
	int i;

520 521
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
522 523 524
			amd_iommu_dev_table[devid].data[i]);
}

525 526 527 528 529 530 531 532 533
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

534
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
535
{
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
557

558
	printk(KERN_ERR "AMD-Vi: Event logged [");
559 560 561 562 563

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
564
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
565
		       address, flags);
566
		dump_dte_entry(devid);
567 568 569 570
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
571
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
572 573 574 575 576
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
577
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
578 579 580 581 582
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
583
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
584 585 586 587
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
588
		dump_command(address);
589 590 591 592 593 594 595 596
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
597
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 599 600 601 602
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
603
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
604 605 606 607 608
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
609 610

	memset(__evt, 0, 4 * sizeof(u32));
611 612 613 614 615 616 617 618 619 620
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
621
		iommu_print_event(iommu, iommu->evt_buf + head);
622 623 624 625 626 627
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

628
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
629 630 631
{
	struct amd_iommu_fault fault;

632 633
	INC_STATS_COUNTER(pri_requests);

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
675

676 677 678
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
679

680 681 682 683 684 685 686
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
687 688
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
689 690 691 692 693 694

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
695 696 697 698
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

699
irqreturn_t amd_iommu_int_thread(int irq, void *data)
700
{
701 702
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
703

704 705 706 707
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
708

709 710 711 712
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
713

714 715 716 717
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
734
	return IRQ_HANDLED;
735 736
}

737 738 739 740 741
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

742 743 744 745 746 747
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
768 769 770
{
	u8 *target;

771
	target = iommu->cmd_buf + tail;
772 773 774 775 776 777
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
778
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
779
}
780

781
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
782
{
783 784
	WARN_ON(address & 0x7ULL);

785
	memset(cmd, 0, sizeof(*cmd));
786 787 788
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
789 790 791
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

792 793 794 795 796 797 798
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

799 800 801 802
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
803
	bool s;
804 805

	pages = iommu_num_pages(address, size, PAGE_SIZE);
806
	s     = false;
807 808 809 810 811 812 813

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
814
		s = true;
815 816 817 818 819 820 821 822 823 824 825
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
826
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
827 828 829
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

830 831 832 833
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
834
	bool s;
835 836

	pages = iommu_num_pages(address, size, PAGE_SIZE);
837
	s     = false;
838 839 840 841 842 843 844

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
845
		s = true;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

861 862 863 864 865 866 867
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

868
	cmd->data[0]  = pasid;
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
887
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
888 889
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
890
	cmd->data[1] |= (pasid & 0xff) << 16;
891 892 893 894 895 896 897 898
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

899 900 901 902 903 904 905
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
906
		cmd->data[1]  = pasid;
907 908 909 910 911 912 913 914
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

915 916 917 918
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
919 920
}

921 922 923 924 925 926 927
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

928 929
/*
 * Writes the command to the IOMMUs command buffer and informs the
930
 * hardware about the new command.
931
 */
932 933 934
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
935
{
936
	u32 left, tail, head, next_tail;
937 938
	unsigned long flags;

939
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
940 941

again:
942 943
	spin_lock_irqsave(&iommu->lock, flags);

944 945 946 947
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
948

949 950 951 952
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
953

954 955
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
956

957 958 959 960 961 962
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
963 964
	}

965 966 967
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
968
	iommu->need_sync = sync;
969

970
	spin_unlock_irqrestore(&iommu->lock, flags);
971

972
	return 0;
973 974
}

975 976 977 978 979
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

980 981 982 983
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
984
static int iommu_completion_wait(struct amd_iommu *iommu)
985 986
{
	struct iommu_cmd cmd;
987
	volatile u64 sem = 0;
988
	int ret;
989

990
	if (!iommu->need_sync)
991
		return 0;
992

993
	build_completion_wait(&cmd, (u64)&sem);
994

995
	ret = iommu_queue_command_sync(iommu, &cmd, false);
996
	if (ret)
997
		return ret;
998

999
	return wait_on_sem(&sem);
1000 1001
}

1002
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1003
{
1004
	struct iommu_cmd cmd;
1005

1006
	build_inv_dte(&cmd, devid);
1007

1008 1009
	return iommu_queue_command(iommu, &cmd);
}
1010

1011 1012 1013
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1014

1015 1016
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1017

1018 1019
	iommu_completion_wait(iommu);
}
1020

1021 1022 1023 1024 1025 1026 1027
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1028

1029 1030 1031 1032 1033 1034
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1035

1036
	iommu_completion_wait(iommu);
1037 1038
}

1039
static void iommu_flush_all(struct amd_iommu *iommu)
1040
{
1041
	struct iommu_cmd cmd;
1042

1043
	build_inv_all(&cmd);
1044

1045 1046 1047 1048
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1068 1069
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1070 1071 1072 1073
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1074
		iommu_flush_irt_all(iommu);
1075
		iommu_flush_tlb_all(iommu);
1076 1077 1078
	}
}

1079
/*
1080
 * Command send function for flushing on-device TLB
1081
 */
1082 1083
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1084 1085
{
	struct amd_iommu *iommu;
1086
	struct iommu_cmd cmd;
1087
	int qdep;
1088

1089 1090
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1091

1092
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1093 1094

	return iommu_queue_command(iommu, &cmd);
1095 1096
}

1097 1098 1099
/*
 * Command send function for invalidating a device table entry
 */
1100
static int device_flush_dte(struct iommu_dev_data *dev_data)
1101
{
1102
	struct amd_iommu *iommu;
1103
	int ret;
1104

1105
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1106

1107
	ret = iommu_flush_dte(iommu, dev_data->devid);
1108 1109 1110
	if (ret)
		return ret;

1111
	if (dev_data->ats.enabled)
1112
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1113 1114

	return ret;
1115 1116
}

1117 1118 1119 1120 1121
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1122 1123
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1124
{
1125
	struct iommu_dev_data *dev_data;
1126 1127
	struct iommu_cmd cmd;
	int ret = 0, i;
1128

1129
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1130

1131 1132 1133 1134 1135 1136 1137 1138
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1139
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1140 1141
	}

1142 1143
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1144
		if (!dev_data->ats.enabled)
1145 1146
			continue;

1147
		ret |= device_flush_iotlb(dev_data, address, size);
1148 1149
	}

1150
	WARN_ON(ret);
1151 1152
}

1153 1154
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1155
{
1156
	__domain_flush_pages(domain, address, size, 0);
1157
}
1158

1159
/* Flush the whole IO/TLB for a given protection domain */
1160
static void domain_flush_tlb(struct protection_domain *domain)
1161
{
1162
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1163 1164
}

1165
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1166
static void domain_flush_tlb_pde(struct protection_domain *domain)
1167
{
1168
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1169 1170
}

1171
static void domain_flush_complete(struct protection_domain *domain)
1172
{
1173
	int i;
1174

1175 1176 1177
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1178

1179 1180 1181 1182 1183
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1184
	}
1185 1186
}

1187

1188
/*
1189
 * This function flushes the DTEs for all devices in domain
1190
 */
1191
static void domain_flush_devices(struct protection_domain *domain)
1192
{
1193
	struct iommu_dev_data *dev_data;
1194

1195
	list_for_each_entry(dev_data, &domain->dev_list, list)
1196
		device_flush_dte(dev_data);
1197 1198
}

1199 1200 1201 1202 1203 1204 1205
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1235
		      unsigned long page_size,
1236 1237 1238
		      u64 **pte_page,
		      gfp_t gfp)
{
1239
	int level, end_lvl;
1240
	u64 *pte, *page;
1241 1242

	BUG_ON(!is_power_of_2(page_size));
1243 1244 1245 1246

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1247 1248 1249 1250
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1251 1252 1253 1254 1255 1256 1257 1258 1259

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1260 1261 1262 1263
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1281 1282 1283
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1284 1285 1286 1287
{
	int level;
	u64 *pte;

1288 1289 1290
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1291 1292 1293
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1294

1295 1296 1297
	while (level > 0) {

		/* Not Present */
1298 1299 1300
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1301
		/* Large PTE */
1302 1303 1304
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1305 1306 1307 1308 1309

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1310 1311
		level -= 1;

1312
		/* Walk to the next level */
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1328 1329 1330 1331 1332
	}

	return pte;
}

1333 1334 1335 1336 1337 1338 1339
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1340 1341 1342
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1343
			  int prot,
1344
			  unsigned long page_size)
1345
{
1346
	u64 __pte, *pte;
1347
	int i, count;
1348

1349 1350 1351
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1352
	if (!(prot & IOMMU_PROT_MASK))
1353 1354
		return -EINVAL;

1355 1356
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1357

1358 1359 1360
	if (!pte)
		return -ENOMEM;

1361 1362 1363
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1364

1365
	if (count > 1) {
1366 1367 1368 1369
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1370 1371 1372 1373 1374 1375

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1376 1377
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1378

1379 1380
	update_domain(dom);

1381 1382 1383
	return 0;
}

1384 1385 1386
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1387
{
1388 1389
	unsigned long long unmapped;
	unsigned long unmap_size;
1390 1391 1392 1393 1394
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1395

1396 1397
	while (unmapped < page_size) {

1398 1399 1400 1401 1402 1403
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1404 1405 1406 1407 1408 1409 1410 1411
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1412
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1413

1414
	return unmapped;
1415 1416
}

1417 1418 1419 1420
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1435 1436 1437 1438
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1439 1440 1441 1442 1443 1444 1445 1446
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1447
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1448
				     PAGE_SIZE);
1449 1450 1451 1452 1453 1454 1455
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1456
			__set_bit(addr >> PAGE_SHIFT,
1457
				  dma_dom->aperture[0]->bitmap);
1458 1459 1460 1461 1462
	}

	return 0;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1485 1486 1487
/*
 * Inits the unity mappings required for a specific device
 */
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1514

1515
/*
1516
 * The address allocator core functions.
1517 1518 1519
 *
 * called with domain->lock held
 */
1520

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1541 1542 1543 1544 1545
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1546
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1547 1548 1549
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1550
	struct amd_iommu *iommu;
1551
	unsigned long i, old_size, pte_pgsize;
1552

1553 1554 1555 1556
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1576
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1587
	old_size                = dma_dom->aperture_size;
1588 1589
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1602
	/* Initialize the exclusion range if necessary */
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1624
	     i += pte_pgsize) {
1625
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1626 1627 1628
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1629 1630
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1631 1632
	}

1633 1634
	update_domain(&dma_dom->domain);

1635 1636 1637
	return 0;

out_free:
1638 1639
	update_domain(&dma_dom->domain);

1640 1641 1642 1643 1644 1645 1646 1647
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1648 1649 1650 1651 1652 1653 1654
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1655
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1656 1657 1658 1659 1660 1661
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1662 1663
	next_bit >>= PAGE_SHIFT;

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1682
			dom->next_address = address + (pages << PAGE_SHIFT);
1683 1684 1685 1686 1687 1688 1689 1690 1691
			break;
		}

		next_bit = 0;
	}

	return address;
}

1692 1693
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1694
					     unsigned int pages,
1695 1696
					     unsigned long align_mask,
					     u64 dma_mask)
1697 1698 1699
{
	unsigned long address;

1700 1701 1702 1703
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1704

1705
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1706
				     dma_mask, dom->next_address);
1707

1708
	if (address == -1) {
1709
		dom->next_address = 0;
1710 1711
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1712 1713
		dom->need_flush = true;
	}
1714

1715
	if (unlikely(address == -1))
1716
		address = DMA_ERROR_CODE;
1717 1718 1719 1720 1721 1722

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1723 1724 1725 1726 1727
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1728 1729 1730 1731
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1732 1733
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1734

1735 1736
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1737 1738 1739 1740
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1741

1742
	if (address >= dom->next_address)
1743
		dom->need_flush = true;
1744 1745

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1746

A
Akinobu Mita 已提交
1747
	bitmap_clear(range->bitmap, address, pages);
1748

1749 1750
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1838
static void free_pagetable(struct protection_domain *domain)
1839
{
1840
	unsigned long root = (unsigned long)domain->pt_root;
1841

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1865 1866 1867
	}
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1898 1899
static void free_gcr3_table(struct protection_domain *domain)
{
1900 1901 1902 1903 1904 1905 1906
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1907 1908 1909
	free_page((unsigned long)domain->gcr3_tbl);
}

1910 1911 1912 1913
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1914 1915
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1916 1917
	int i;

1918 1919 1920
	if (!dom)
		return;

1921 1922
	del_domain_from_list(&dom->domain);

1923
	free_pagetable(&dom->domain);
1924

1925 1926 1927 1928 1929 1930
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1931 1932 1933 1934

	kfree(dom);
}

1935 1936
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1937
 * It also initializes the page table and the address allocator data
1938 1939
 * structures required for the dma_ops interface
 */
1940
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1953
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1954
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1955
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1956
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1957 1958 1959 1960
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1961
	dma_dom->need_flush = false;
1962
	dma_dom->target_dev = 0xffff;
1963

1964 1965
	add_domain_to_list(&dma_dom->domain);

1966
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1967 1968
		goto free_dma_dom;

1969
	/*
1970 1971
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1972
	 */
1973
	dma_dom->aperture[0]->bitmap[0] = 1;
1974
	dma_dom->next_address = 0;
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1994
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1995
{
1996
	u64 pte_root = 0;
1997
	u64 flags = 0;
1998

1999 2000 2001
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2002 2003 2004
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2005

2006 2007
	flags = amd_iommu_dev_table[devid].data[1];

2008 2009 2010
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2037 2038 2039 2040 2041
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2042 2043 2044 2045 2046 2047 2048 2049 2050
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2051 2052
}

2053 2054
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2055 2056
{
	struct amd_iommu *iommu;
2057
	bool ats;
2058

2059 2060
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2061 2062 2063 2064

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2065
	set_dte_entry(dev_data->devid, domain, ats);
2066 2067 2068 2069 2070 2071

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2072
	device_flush_dte(dev_data);
2073 2074
}

2075
static void do_detach(struct iommu_dev_data *dev_data)
2076 2077 2078
{
	struct amd_iommu *iommu;

2079
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2080 2081

	/* decrease reference counters */
2082 2083 2084 2085 2086 2087
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2088
	clear_dte_entry(dev_data->devid);
2089

2090
	/* Flush the DTE entry */
2091
	device_flush_dte(dev_data);
2092 2093 2094 2095 2096 2097
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2098
static int __attach_device(struct iommu_dev_data *dev_data,
2099
			   struct protection_domain *domain)
2100
{
2101
	struct iommu_dev_data *head, *entry;
2102
	int ret;
2103

2104 2105 2106
	/* lock domain */
	spin_lock(&domain->lock);

2107
	head = dev_data;
2108

2109 2110
	if (head->alias_data != NULL)
		head = head->alias_data;
2111

2112
	/* Now we have the root of the alias group, if any */
2113

2114 2115 2116
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2117

2118 2119
	/* Attach alias group root */
	do_attach(head, domain);
2120

2121 2122 2123
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2124

2125 2126 2127 2128
	ret = 0;

out_unlock:

2129 2130
	/* ready */
	spin_unlock(&domain->lock);
2131

2132
	return ret;
2133
}
2134

2135 2136 2137 2138 2139 2140 2141 2142

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2143 2144 2145 2146 2147 2148
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2149
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2150 2151 2152
	if (!pos)
		return -EINVAL;

2153 2154 2155
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2156 2157 2158 2159

	return 0;
}

2160 2161
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2162 2163 2164 2165 2166 2167 2168 2169
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2181 2182
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2183 2184 2185
	if (ret)
		goto out_err;

2186 2187 2188 2189 2190 2191
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2205
/* FIXME: Move this to PCI code */
2206
#define PCI_PRI_TLP_OFF		(1 << 15)
2207

J
Joerg Roedel 已提交
2208
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2209
{
2210
	u16 status;
2211 2212
	int pos;

2213
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2214 2215 2216
	if (!pos)
		return false;

2217
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2218

2219
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2220 2221
}

2222
/*
F
Frank Arnold 已提交
2223
 * If a device is not yet associated with a domain, this function
2224 2225
 * assigns it visible for the hardware
 */
2226 2227
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2228
{
2229
	struct pci_dev *pdev = to_pci_dev(dev);
2230
	struct iommu_dev_data *dev_data;
2231
	unsigned long flags;
2232
	int ret;
2233

2234 2235
	dev_data = get_dev_data(dev);

2236 2237 2238 2239 2240 2241 2242 2243 2244
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2245
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2246 2247
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2248 2249 2250
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2251

2252
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2253
	ret = __attach_device(dev_data, domain);
2254 2255
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2256 2257 2258 2259 2260
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2261
	domain_flush_tlb_pde(domain);
2262 2263

	return ret;
2264 2265
}

2266 2267 2268
/*
 * Removes a device from a protection domain (unlocked)
 */
2269
static void __detach_device(struct iommu_dev_data *dev_data)
2270
{
2271
	struct iommu_dev_data *head, *entry;
2272
	struct protection_domain *domain;
2273
	unsigned long flags;
2274

2275
	BUG_ON(!dev_data->domain);
2276

2277 2278 2279
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2280

2281 2282 2283
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2284

2285 2286
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2287

2288
	do_detach(head);
2289

2290
	spin_unlock_irqrestore(&domain->lock, flags);
2291 2292 2293

	/*
	 * If we run in passthrough mode the device must be assigned to the
2294 2295
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2296
	 */
2297
	if (dev_data->passthrough &&
2298
	    (dev_data->domain == NULL && domain != pt_domain))
2299
		__attach_device(dev_data, pt_domain);
2300 2301 2302 2303 2304
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2305
static void detach_device(struct device *dev)
2306
{
2307
	struct protection_domain *domain;
2308
	struct iommu_dev_data *dev_data;
2309 2310
	unsigned long flags;

2311
	dev_data = get_dev_data(dev);
2312
	domain   = dev_data->domain;
2313

2314 2315
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2316
	__detach_device(dev_data);
2317
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2318

2319 2320 2321
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2322
		pci_disable_ats(to_pci_dev(dev));
2323 2324

	dev_data->ats.enabled = false;
2325
}
2326

2327 2328 2329 2330 2331 2332
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2333
	struct iommu_dev_data *dev_data;
2334
	struct protection_domain *dom = NULL;
2335 2336
	unsigned long flags;

2337
	dev_data   = get_dev_data(dev);
2338

2339 2340
	if (dev_data->domain)
		return dev_data->domain;
2341

2342 2343
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2344 2345 2346 2347 2348 2349 2350 2351

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2352 2353 2354 2355

	return dom;
}

2356
static int amd_iommu_add_device(struct device *dev)
2357 2358
{
	struct dma_ops_domain *dma_domain;
2359 2360
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
2361
	struct amd_iommu *iommu;
2362
	unsigned long flags;
2363
	u16 devid;
2364
	int ret;
2365

2366
	if (!check_device(dev) || get_dev_data(dev))
2367
		return 0;
2368

2369 2370
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2371

2372 2373 2374 2375 2376 2377
	ret = iommu_init_device(dev);
	if (ret == -ENOTSUPP) {
		iommu_ignore_device(dev);
		goto out;
	}
	init_iommu_group(dev);
2378

2379
	dev_data = get_dev_data(dev);
2380

2381 2382 2383 2384 2385 2386 2387
	if (iommu_pass_through || dev_data->iommu_v2) {
		/* Make sure passthrough domain is allocated */
		alloc_passthrough_domain();
		dev_data->passthrough = true;
		attach_device(dev, pt_domain);
		goto out;
	}
2388

2389
	domain = domain_for_device(dev);
2390

2391 2392 2393 2394 2395 2396 2397
	/* allocate a protection domain if a device is added */
	dma_domain = find_protection_domain(devid);
	if (!dma_domain) {
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;
2398

2399
		init_unity_mappings_for_device(dma_domain, devid);
2400

2401 2402 2403 2404
		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
	}
2405

2406
	attach_device(dev, &dma_domain->domain);
2407

2408
	dev->archdata.dma_ops = &amd_iommu_dma_ops;
2409

2410
out:
2411 2412 2413 2414 2415
	iommu_completion_wait(iommu);

	return 0;
}

2416
static void amd_iommu_remove_device(struct device *dev)
2417
{
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2429 2430
}

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2444
static struct protection_domain *get_domain(struct device *dev)
2445
{
2446
	struct protection_domain *domain;
2447
	struct iommu_domain *io_domain;
2448
	struct dma_ops_domain *dma_dom;
2449
	u16 devid = get_device_id(dev);
2450

2451
	if (!check_device(dev))
2452
		return ERR_PTR(-EINVAL);
2453

2454 2455 2456 2457 2458 2459
	io_domain = iommu_get_domain_for_dev(dev);
	if (io_domain) {
		domain = to_pdomain(io_domain);
		return domain;
	}

2460 2461 2462
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2463

2464 2465
	if (domain != NULL)
		return domain;
2466

F
Frank Arnold 已提交
2467
	/* Device not bound yet - bind it */
2468
	dma_dom = find_protection_domain(devid);
2469
	if (!dma_dom)
2470 2471
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2472
	DUMP_printk("Using protection domain %d for device %s\n",
2473
		    dma_dom->domain.id, dev_name(dev));
2474

2475
	return &dma_dom->domain;
2476 2477
}

2478 2479
static void update_device_table(struct protection_domain *domain)
{
2480
	struct iommu_dev_data *dev_data;
2481

2482 2483
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2484 2485 2486 2487 2488 2489 2490 2491
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2492 2493 2494

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2495 2496 2497 2498

	domain->updated = false;
}

2499 2500 2501 2502 2503 2504
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2505
	struct aperture_range *aperture;
2506 2507
	u64 *pte, *pte_page;

2508 2509 2510 2511 2512
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2513
	if (!pte) {
2514
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2515
				GFP_ATOMIC);
2516 2517
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2518
		pte += PM_LEVEL_INDEX(0, address);
2519

2520
	update_domain(&dom->domain);
2521 2522 2523 2524

	return pte;
}

2525 2526 2527 2528
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2529
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2540
	pte  = dma_ops_get_pte(dom, address);
2541
	if (!pte)
2542
		return DMA_ERROR_CODE;
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2560 2561 2562
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2563
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2564 2565
				 unsigned long address)
{
2566
	struct aperture_range *aperture;
2567 2568 2569 2570 2571
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2572 2573 2574 2575 2576 2577 2578
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2579

2580
	pte += PM_LEVEL_INDEX(0, address);
2581 2582 2583 2584 2585 2586

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2587 2588
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2589 2590
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2591 2592
 * Must be called with the domain lock held.
 */
2593 2594 2595 2596
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2597
			       int dir,
2598 2599
			       bool align,
			       u64 dma_mask)
2600 2601
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2602
	dma_addr_t address, start, ret;
2603
	unsigned int pages;
2604
	unsigned long align_mask = 0;
2605 2606
	int i;

2607
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2608 2609
	paddr &= PAGE_MASK;

2610 2611
	INC_STATS_COUNTER(total_map_requests);

2612 2613 2614
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2615 2616 2617
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2618
retry:
2619 2620
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2621
	if (unlikely(address == DMA_ERROR_CODE)) {
2622 2623 2624 2625 2626 2627 2628
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2629
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2630 2631 2632
			goto out;

		/*
2633
		 * aperture was successfully enlarged by 128 MB, try
2634 2635 2636 2637
		 * allocation again
		 */
		goto retry;
	}
2638 2639 2640

	start = address;
	for (i = 0; i < pages; ++i) {
2641
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2642
		if (ret == DMA_ERROR_CODE)
2643 2644
			goto out_unmap;

2645 2646 2647 2648 2649
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2650 2651
	ADD_STATS_COUNTER(alloced_io_mem, size);

2652
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2653
		domain_flush_tlb(&dma_dom->domain);
2654
		dma_dom->need_flush = false;
2655
	} else if (unlikely(amd_iommu_np_cache))
2656
		domain_flush_pages(&dma_dom->domain, address, size);
2657

2658 2659
out:
	return address;
2660 2661 2662 2663 2664

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2665
		dma_ops_domain_unmap(dma_dom, start);
2666 2667 2668 2669
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2670
	return DMA_ERROR_CODE;
2671 2672
}

2673 2674 2675 2676
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2677
static void __unmap_single(struct dma_ops_domain *dma_dom,
2678 2679 2680 2681
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2682
	dma_addr_t flush_addr;
2683 2684 2685
	dma_addr_t i, start;
	unsigned int pages;

2686
	if ((dma_addr == DMA_ERROR_CODE) ||
2687
	    (dma_addr + size > dma_dom->aperture_size))
2688 2689
		return;

2690
	flush_addr = dma_addr;
2691
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2692 2693 2694 2695
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2696
		dma_ops_domain_unmap(dma_dom, start);
2697 2698 2699
		start += PAGE_SIZE;
	}

2700 2701
	SUB_STATS_COUNTER(alloced_io_mem, size);

2702
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2703

2704
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2705
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2706 2707
		dma_dom->need_flush = false;
	}
2708 2709
}

2710 2711 2712
/*
 * The exported map_single function for dma_ops.
 */
2713 2714 2715 2716
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2717 2718 2719 2720
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2721
	u64 dma_mask;
2722
	phys_addr_t paddr = page_to_phys(page) + offset;
2723

2724 2725
	INC_STATS_COUNTER(cnt_map_single);

2726 2727
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2728
		return (dma_addr_t)paddr;
2729 2730
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2731

2732 2733
	dma_mask = *dev->dma_mask;

2734
	spin_lock_irqsave(&domain->lock, flags);
2735

2736
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2737
			    dma_mask);
2738
	if (addr == DMA_ERROR_CODE)
2739 2740
		goto out;

2741
	domain_flush_complete(domain);
2742 2743 2744 2745 2746 2747 2748

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2749 2750 2751
/*
 * The exported unmap_single function for dma_ops.
 */
2752 2753
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2754 2755 2756 2757
{
	unsigned long flags;
	struct protection_domain *domain;

2758 2759
	INC_STATS_COUNTER(cnt_unmap_single);

2760 2761
	domain = get_domain(dev);
	if (IS_ERR(domain))
2762 2763
		return;

2764 2765
	spin_lock_irqsave(&domain->lock, flags);

2766
	__unmap_single(domain->priv, dma_addr, size, dir);
2767

2768
	domain_flush_complete(domain);
2769 2770 2771 2772

	spin_unlock_irqrestore(&domain->lock, flags);
}

2773 2774 2775 2776
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2777
static int map_sg(struct device *dev, struct scatterlist *sglist,
2778 2779
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2780 2781 2782 2783 2784 2785 2786
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2787
	u64 dma_mask;
2788

2789 2790
	INC_STATS_COUNTER(cnt_map_sg);

2791
	domain = get_domain(dev);
2792
	if (IS_ERR(domain))
2793
		return 0;
2794

2795
	dma_mask = *dev->dma_mask;
2796 2797 2798 2799 2800 2801

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2802
		s->dma_address = __map_single(dev, domain->priv,
2803 2804
					      paddr, s->length, dir, false,
					      dma_mask);
2805 2806 2807 2808 2809 2810 2811 2812

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2813
	domain_flush_complete(domain);
2814 2815 2816 2817 2818 2819 2820 2821

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2822
			__unmap_single(domain->priv, s->dma_address,
2823 2824 2825 2826 2827 2828 2829 2830 2831
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2832 2833 2834 2835
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2836
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2837 2838
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2839 2840 2841 2842 2843 2844
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2845 2846
	INC_STATS_COUNTER(cnt_unmap_sg);

2847 2848
	domain = get_domain(dev);
	if (IS_ERR(domain))
2849 2850
		return;

2851 2852 2853
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2854
		__unmap_single(domain->priv, s->dma_address,
2855 2856 2857 2858
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2859
	domain_flush_complete(domain);
2860 2861 2862 2863

	spin_unlock_irqrestore(&domain->lock, flags);
}

2864 2865 2866
/*
 * The exported alloc_coherent function for dma_ops.
 */
2867
static void *alloc_coherent(struct device *dev, size_t size,
2868 2869
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2870
{
2871
	u64 dma_mask = dev->coherent_dma_mask;
2872 2873 2874
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2875

2876 2877
	INC_STATS_COUNTER(cnt_alloc_coherent);

2878 2879
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2880 2881 2882
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2883 2884
	} else if (IS_ERR(domain))
		return NULL;
2885

2886
	size	  = PAGE_ALIGN(size);
2887 2888
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2889

2890 2891 2892 2893
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2894

2895 2896 2897 2898 2899
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2900

2901 2902 2903
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2904 2905
	spin_lock_irqsave(&domain->lock, flags);

2906
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2907
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2908

2909
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2910
		spin_unlock_irqrestore(&domain->lock, flags);
2911
		goto out_free;
J
Jiri Slaby 已提交
2912
	}
2913

2914
	domain_flush_complete(domain);
2915 2916 2917

	spin_unlock_irqrestore(&domain->lock, flags);

2918
	return page_address(page);
2919 2920 2921

out_free:

2922 2923
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2924 2925

	return NULL;
2926 2927
}

2928 2929 2930
/*
 * The exported free_coherent function for dma_ops.
 */
2931
static void free_coherent(struct device *dev, size_t size,
2932 2933
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2934 2935
{
	struct protection_domain *domain;
2936 2937
	unsigned long flags;
	struct page *page;
2938

2939 2940
	INC_STATS_COUNTER(cnt_free_coherent);

2941 2942 2943
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2944 2945
	domain = get_domain(dev);
	if (IS_ERR(domain))
2946 2947
		goto free_mem;

2948 2949
	spin_lock_irqsave(&domain->lock, flags);

2950
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2951

2952
	domain_flush_complete(domain);
2953 2954 2955 2956

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2957 2958
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2959 2960
}

2961 2962 2963 2964 2965 2966
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2967
	return check_device(dev);
2968 2969
}

2970
static struct dma_map_ops amd_iommu_dma_ops = {
2971 2972
	.alloc = alloc_coherent,
	.free = free_coherent,
2973 2974
	.map_page = map_page,
	.unmap_page = unmap_page,
2975 2976
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2977
	.dma_supported = amd_iommu_dma_supported,
2978 2979
};

2980 2981
static unsigned device_dma_ops_init(void)
{
2982
	struct iommu_dev_data *dev_data;
2983 2984 2985 2986 2987
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
2988 2989 2990

			iommu_ignore_device(&pdev->dev);

2991 2992 2993 2994
			unhandled += 1;
			continue;
		}

2995 2996 2997 2998 2999 3000
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3001 3002 3003 3004 3005
	}

	return unhandled;
}

3006 3007 3008
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3009 3010 3011

void __init amd_iommu_init_api(void)
{
3012
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3013 3014
}

3015 3016 3017
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3018
	int ret, unhandled;
3019

3020 3021 3022 3023 3024
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3025
	for_each_iommu(iommu) {
3026
		iommu->default_dom = dma_ops_domain_alloc();
3027 3028
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3029
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3030 3031 3032 3033 3034 3035
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

	iommu_detected = 1;
3036
	swiotlb = 0;
3037

3038
	/* Make the driver finally visible to the drivers */
3039 3040 3041 3042 3043
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3044

3045 3046
	amd_iommu_stats_init();

3047 3048 3049 3050 3051
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3052 3053 3054 3055
	return 0;

free_domains:

3056
	for_each_iommu(iommu) {
3057
		dma_ops_domain_free(iommu->default_dom);
3058 3059 3060 3061
	}

	return ret;
}
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3075
	struct iommu_dev_data *entry;
3076 3077 3078 3079
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3080 3081 3082 3083
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3084
	}
3085 3086 3087 3088

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3089 3090 3091 3092 3093
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3094 3095
	del_domain_from_list(domain);

3096 3097 3098 3099 3100 3101 3102
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3103 3104 3105 3106 3107
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3108
		return NULL;
3109 3110

	spin_lock_init(&domain->lock);
3111
	mutex_init(&domain->api_lock);
3112 3113
	domain->id = domain_id_alloc();
	if (!domain->id)
3114
		goto out_err;
3115
	INIT_LIST_HEAD(&domain->dev_list);
3116

3117 3118
	add_domain_to_list(domain);

3119 3120 3121 3122 3123 3124 3125 3126
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3127
static int alloc_passthrough_domain(void)
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3141 3142

static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3143
{
3144
	struct protection_domain *pdomain;
3145

3146 3147 3148
	/* We only support unmanaged domains for now */
	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;
3149

3150 3151
	pdomain = protection_domain_alloc();
	if (!pdomain)
3152 3153
		goto out_free;

3154 3155 3156 3157
	pdomain->mode    = PAGE_MODE_3_LEVEL;
	pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!pdomain->pt_root)
		goto out_free;
3158

3159 3160 3161
	pdomain->domain.geometry.aperture_start = 0;
	pdomain->domain.geometry.aperture_end   = ~0ULL;
	pdomain->domain.geometry.force_aperture = true;
3162

3163
	return &pdomain->domain;
3164 3165

out_free:
3166
	protection_domain_free(pdomain);
3167

3168
	return NULL;
3169 3170
}

3171
static void amd_iommu_domain_free(struct iommu_domain *dom)
3172
{
3173
	struct protection_domain *domain;
3174

3175
	if (!dom)
3176 3177
		return;

3178 3179
	domain = to_pdomain(dom);

3180 3181 3182 3183 3184
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3185 3186
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3187

3188 3189 3190
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3191
	protection_domain_free(domain);
3192 3193
}

3194 3195 3196
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3197
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3198 3199 3200
	struct amd_iommu *iommu;
	u16 devid;

3201
	if (!check_device(dev))
3202 3203
		return;

3204
	devid = get_device_id(dev);
3205

3206
	if (dev_data->domain != NULL)
3207
		detach_device(dev);
3208 3209 3210 3211 3212 3213 3214 3215

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3216 3217 3218
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3219
	struct protection_domain *domain = to_pdomain(dom);
3220
	struct iommu_dev_data *dev_data;
3221
	struct amd_iommu *iommu;
3222
	int ret;
3223

3224
	if (!check_device(dev))
3225 3226
		return -EINVAL;

3227 3228
	dev_data = dev->archdata.iommu;

3229
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3230 3231 3232
	if (!iommu)
		return -EINVAL;

3233
	if (dev_data->domain)
3234
		detach_device(dev);
3235

3236
	ret = attach_device(dev, domain);
3237 3238 3239

	iommu_completion_wait(iommu);

3240
	return ret;
3241 3242
}

3243
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3244
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3245
{
3246
	struct protection_domain *domain = to_pdomain(dom);
3247 3248 3249
	int prot = 0;
	int ret;

3250 3251 3252
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3253 3254 3255 3256 3257
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3258
	mutex_lock(&domain->api_lock);
3259
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3260 3261
	mutex_unlock(&domain->api_lock);

3262
	return ret;
3263 3264
}

3265 3266
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3267
{
3268
	struct protection_domain *domain = to_pdomain(dom);
3269
	size_t unmap_size;
3270

3271 3272 3273
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3274
	mutex_lock(&domain->api_lock);
3275
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3276
	mutex_unlock(&domain->api_lock);
3277

3278
	domain_flush_tlb_pde(domain);
3279

3280
	return unmap_size;
3281 3282
}

3283
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3284
					  dma_addr_t iova)
3285
{
3286
	struct protection_domain *domain = to_pdomain(dom);
3287
	unsigned long offset_mask, pte_pgsize;
3288
	u64 *pte, __pte;
3289

3290 3291 3292
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3293
	pte = fetch_pte(domain, iova, &pte_pgsize);
3294

3295
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3296 3297
		return 0;

3298 3299
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3300

3301
	return (__pte & ~offset_mask) | (iova & offset_mask);
3302 3303
}

3304
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3305
{
3306 3307
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3308
		return true;
3309
	case IOMMU_CAP_INTR_REMAP:
3310
		return (irq_remapping_enabled == 1);
3311 3312
	case IOMMU_CAP_NOEXEC:
		return false;
3313 3314
	}

3315
	return false;
S
Sheng Yang 已提交
3316 3317
}

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3359
static const struct iommu_ops amd_iommu_ops = {
3360
	.capable = amd_iommu_capable,
3361 3362
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3363 3364
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3365 3366
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3367
	.map_sg = default_iommu_map_sg,
3368
	.iova_to_phys = amd_iommu_iova_to_phys,
3369 3370
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3371 3372
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3373
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3374 3375
};

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3388
	struct iommu_dev_data *dev_data;
3389
	struct pci_dev *dev = NULL;
3390
	int ret;
3391

3392 3393 3394
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3395

3396
	for_each_pci_dev(dev) {
3397
		if (!check_device(&dev->dev))
3398 3399
			continue;

3400 3401 3402
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3403
		attach_device(&dev->dev, pt_domain);
3404 3405
	}

J
Joerg Roedel 已提交
3406 3407
	amd_iommu_stats_init();

3408 3409 3410 3411
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3425 3426 3427

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3428
	struct protection_domain *domain = to_pdomain(dom);
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3446 3447 3448

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3449
	struct protection_domain *domain = to_pdomain(dom);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3553 3554
	INC_STATS_COUNTER(invalidate_iotlb);

3555 3556 3557 3558 3559 3560
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3561
	struct protection_domain *domain = to_pdomain(dom);
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3575 3576
	INC_STATS_COUNTER(invalidate_iotlb_all);

3577 3578 3579 3580 3581 3582
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3583
	struct protection_domain *domain = to_pdomain(dom);
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3663
	struct protection_domain *domain = to_pdomain(dom);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3677
	struct protection_domain *domain = to_pdomain(dom);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3688 3689 3690 3691 3692 3693 3694 3695

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3696 3697
	INC_STATS_COUNTER(complete_ppr);

3698 3699 3700 3701 3702 3703 3704 3705 3706
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3707 3708 3709

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3710
	struct protection_domain *pdomain;
3711

3712 3713
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3714 3715 3716
		return NULL;

	/* Only return IOMMUv2 domains */
3717
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3718 3719
		return NULL;

3720
	return &pdomain->domain;
3721 3722
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3854 3855 3856
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3857 3858 3859 3860 3861 3862 3863
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3864
		table = NULL;
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3882
		set_dte_irq_entry(alias, table);
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3917
			struct irq_2_irte *irte_info;
3918 3919 3920 3921 3922 3923

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3924
			cfg->remapped	      = 1;
3925 3926 3927
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4003 4004 4005 4006 4007
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4008
	struct irq_2_irte *irte_info;
4009 4010 4011 4012 4013 4014 4015
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

4016
	cfg = irq_cfg(irq);
4017 4018 4019
	if (!cfg)
		return -EINVAL;

4020
	irte_info = &cfg->irq_2_irte;
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4034
	cfg->remapped	      = 1;
4035 4036
	irte_info->devid      = devid;
	irte_info->index      = index;
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4070
	struct irq_2_irte *irte_info;
4071 4072 4073 4074 4075 4076 4077 4078
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

4079
	cfg       = irqd_cfg(data);
4080
	irq       = data->irq;
4081
	irte_info = &cfg->irq_2_irte;
4082 4083 4084 4085

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4086
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4102
	modify_irte(irte_info->devid, irte_info->index, irte);
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4114
	struct irq_2_irte *irte_info;
4115 4116
	struct irq_cfg *cfg;

4117
	cfg = irq_cfg(irq);
4118 4119 4120
	if (!cfg)
		return -EINVAL;

4121
	irte_info = &cfg->irq_2_irte;
4122

4123
	free_irte(irte_info->devid, irte_info->index);
4124 4125 4126 4127

	return 0;
}

4128 4129 4130 4131
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4132
	struct irq_2_irte *irte_info;
4133 4134 4135
	struct irq_cfg *cfg;
	union irte irte;

4136
	cfg = irq_cfg(irq);
4137 4138 4139
	if (!cfg)
		return;

4140
	irte_info = &cfg->irq_2_irte;
4141 4142 4143 4144 4145 4146 4147 4148

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4149
	modify_irte(irte_info->devid, irte_info->index, irte);
4150 4151 4152

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4153
	msg->data       = irte_info->index;
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4165
	cfg = irq_cfg(irq);
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4178
	struct irq_2_irte *irte_info;
4179 4180 4181 4182 4183 4184
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4185
	cfg = irq_cfg(irq);
4186 4187 4188 4189 4190 4191 4192
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4193
	irte_info	= &cfg->irq_2_irte;
4194

4195
	cfg->remapped	      = 1;
4196 4197
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4198 4199 4200 4201

	return 0;
}

4202
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4203
{
4204
	struct irq_2_irte *irte_info;
4205 4206 4207
	struct irq_cfg *cfg;
	int index, devid;

4208
	cfg = irq_cfg(irq);
4209 4210 4211
	if (!cfg)
		return -EINVAL;

4212
	irte_info = &cfg->irq_2_irte;
4213 4214 4215 4216 4217 4218 4219 4220
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4221
	cfg->remapped	      = 1;
4222 4223
	irte_info->devid      = devid;
	irte_info->index      = index;
4224 4225 4226 4227

	return 0;
}

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4240
	.alloc_hpet_msi		= alloc_hpet_msi,
4241
};
4242
#endif