i915_request.c 47.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/dma-fence-array.h>
26 27
#include <linux/irq_work.h>
#include <linux/prefetch.h>
28 29
#include <linux/sched.h>
#include <linux/sched/clock.h>
30
#include <linux/sched/signal.h>
31

32 33
#include "gem/i915_gem_context.h"
#include "gt/intel_context.h"
34
#include "gt/intel_ring.h"
35
#include "gt/intel_rps.h"
36

37
#include "i915_active.h"
38
#include "i915_drv.h"
39
#include "i915_globals.h"
40
#include "i915_trace.h"
41
#include "intel_pm.h"
42

43 44 45 46
struct execute_cb {
	struct list_head link;
	struct irq_work work;
	struct i915_sw_fence *fence;
47 48
	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
	struct i915_request *signal;
49 50
};

51
static struct i915_global_request {
52
	struct i915_global base;
53 54
	struct kmem_cache *slab_requests;
	struct kmem_cache *slab_dependencies;
55
	struct kmem_cache *slab_execute_cbs;
56 57
} global;

58
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 60 61 62
{
	return "i915";
}

63
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64
{
65 66
	/*
	 * The timeline struct (as part of the ppgtt underneath a context)
67 68 69 70 71 72 73 74 75 76
	 * may be freed when the request is no longer in use by the GPU.
	 * We could extend the life of a context to beyond that of all
	 * fences, possibly keeping the hw resource around indefinitely,
	 * or we just give them a false name. Since
	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
	 * lie seems justifiable.
	 */
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return "signaled";

77
	return to_request(fence)->gem_context->name ?: "[i915]";
78 79
}

80
static bool i915_fence_signaled(struct dma_fence *fence)
81
{
82
	return i915_request_completed(to_request(fence));
83 84
}

85
static bool i915_fence_enable_signaling(struct dma_fence *fence)
86
{
87
	return i915_request_enable_breadcrumb(to_request(fence));
88 89
}

90
static signed long i915_fence_wait(struct dma_fence *fence,
91
				   bool interruptible,
92
				   signed long timeout)
93
{
94 95 96
	return i915_request_wait(to_request(fence),
				 interruptible | I915_WAIT_PRIORITY,
				 timeout);
97 98
}

99
static void i915_fence_release(struct dma_fence *fence)
100
{
101
	struct i915_request *rq = to_request(fence);
102

103 104
	/*
	 * The request is put onto a RCU freelist (i.e. the address
105 106 107 108 109
	 * is immediately reused), mark the fences as being freed now.
	 * Otherwise the debugobjects for the fences are only marked as
	 * freed when the slab cache itself is freed, and so we would get
	 * caught trying to reuse dead objects.
	 */
110
	i915_sw_fence_fini(&rq->submit);
111
	i915_sw_fence_fini(&rq->semaphore);
112

113
	kmem_cache_free(global.slab_requests, rq);
114 115
}

116
const struct dma_fence_ops i915_fence_ops = {
117 118 119 120 121 122 123 124
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
};

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static void irq_execute_cb(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	i915_sw_fence_complete(cb->fence);
	kmem_cache_free(global.slab_execute_cbs, cb);
}

static void irq_execute_cb_hook(struct irq_work *wrk)
{
	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);

	cb->hook(container_of(cb->fence, struct i915_request, submit),
		 &cb->signal->fence);
	i915_request_put(cb->signal);

	irq_execute_cb(wrk);
}

static void __notify_execute_cb(struct i915_request *rq)
{
	struct execute_cb *cb;

	lockdep_assert_held(&rq->lock);

	if (list_empty(&rq->execute_cb))
		return;

	list_for_each_entry(cb, &rq->execute_cb, link)
		irq_work_queue(&cb->work);

	/*
	 * XXX Rollback on __i915_request_unsubmit()
	 *
	 * In the future, perhaps when we have an active time-slicing scheduler,
	 * it will be interesting to unsubmit parallel execution and remove
	 * busywaits from the GPU until their master is restarted. This is
	 * quite hairy, we have to carefully rollback the fence and do a
	 * preempt-to-idle cycle on the target engine, all the while the
	 * master execute_cb may refire.
	 */
	INIT_LIST_HEAD(&rq->execute_cb);
}

169
static inline void
170
remove_from_client(struct i915_request *request)
171
{
172
	struct drm_i915_file_private *file_priv;
173

174
	if (!READ_ONCE(request->file_priv))
175 176
		return;

177 178 179 180
	rcu_read_lock();
	file_priv = xchg(&request->file_priv, NULL);
	if (file_priv) {
		spin_lock(&file_priv->mm.lock);
181
		list_del(&request->client_link);
182
		spin_unlock(&file_priv->mm.lock);
183
	}
184
	rcu_read_unlock();
185 186
}

187
static void free_capture_list(struct i915_request *request)
188
{
189
	struct i915_capture_list *capture;
190

191
	capture = fetch_and_zero(&request->capture_list);
192
	while (capture) {
193
		struct i915_capture_list *next = capture->next;
194 195 196 197 198 199

		kfree(capture);
		capture = next;
	}
}

200 201 202 203 204 205 206 207 208 209 210
static void remove_from_engine(struct i915_request *rq)
{
	struct intel_engine_cs *engine, *locked;

	/*
	 * Virtual engines complicate acquiring the engine timeline lock,
	 * as their rq->engine pointer is not stable until under that
	 * engine lock. The simple ploy we use is to take the lock then
	 * check that the rq still belongs to the newly locked engine.
	 */
	locked = READ_ONCE(rq->engine);
211
	spin_lock_irq(&locked->active.lock);
212 213 214 215 216
	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
		spin_unlock(&locked->active.lock);
		spin_lock(&engine->active.lock);
		locked = engine;
	}
217
	list_del_init(&rq->sched.link);
218
	spin_unlock_irq(&locked->active.lock);
219 220
}

221
bool i915_request_retire(struct i915_request *rq)
222
{
223 224
	if (!i915_request_completed(rq))
		return false;
225

226 227 228 229
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
		  hwsp_seqno(rq));
230

231 232
	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
	trace_i915_request_retire(rq);
C
Chris Wilson 已提交
233

234 235 236 237 238 239 240 241 242
	/*
	 * We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
243 244
	GEM_BUG_ON(!list_is_first(&rq->link,
				  &i915_request_timeline(rq)->requests));
245
	rq->ring->head = rq->postfix;
246

247 248 249 250 251 252
	/*
	 * We only loosely track inflight requests across preemption,
	 * and so we may find ourselves attempting to retire a _completed_
	 * request that we have removed from the HW and put back on a run
	 * queue.
	 */
253
	remove_from_engine(rq);
254

255
	spin_lock_irq(&rq->lock);
256 257 258 259 260
	i915_request_mark_complete(rq);
	if (!i915_request_signaled(rq))
		dma_fence_signal_locked(&rq->fence);
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
		i915_request_cancel_breadcrumb(rq);
261
	if (i915_request_has_waitboost(rq)) {
262 263
		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
		atomic_dec(&rq->engine->gt->rps.num_waiters);
264
	}
265 266 267 268 269
	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
		__notify_execute_cb(rq);
	}
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
270
	spin_unlock_irq(&rq->lock);
271

272
	remove_from_client(rq);
273
	list_del(&rq->link);
274

275 276 277
	intel_context_exit(rq->hw_context);
	intel_context_unpin(rq->hw_context);

278 279 280 281 282
	free_capture_list(rq);
	i915_sched_node_fini(&rq->sched);
	i915_request_put(rq);

	return true;
283 284
}

285
void i915_request_retire_upto(struct i915_request *rq)
286
{
287
	struct intel_timeline * const tl = i915_request_timeline(rq);
288
	struct i915_request *tmp;
289

290
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
291 292
		  rq->engine->name,
		  rq->fence.context, rq->fence.seqno,
293
		  hwsp_seqno(rq));
294

295
	GEM_BUG_ON(!i915_request_completed(rq));
296

297
	do {
298
		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299
	} while (i915_request_retire(tmp) && tmp != rq);
300 301
}

302
static int
303 304 305 306 307
__await_execution(struct i915_request *rq,
		  struct i915_request *signal,
		  void (*hook)(struct i915_request *rq,
			       struct dma_fence *signal),
		  gfp_t gfp)
308 309 310
{
	struct execute_cb *cb;

311 312 313
	if (i915_request_is_active(signal)) {
		if (hook)
			hook(rq, &signal->fence);
314
		return 0;
315
	}
316 317 318 319 320 321 322 323 324

	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
	if (!cb)
		return -ENOMEM;

	cb->fence = &rq->submit;
	i915_sw_fence_await(cb->fence);
	init_irq_work(&cb->work, irq_execute_cb);

325 326 327 328 329 330
	if (hook) {
		cb->hook = hook;
		cb->signal = i915_request_get(signal);
		cb->work.func = irq_execute_cb_hook;
	}

331 332
	spin_lock_irq(&signal->lock);
	if (i915_request_is_active(signal)) {
333 334 335 336
		if (hook) {
			hook(rq, &signal->fence);
			i915_request_put(signal);
		}
337 338 339 340 341 342 343
		i915_sw_fence_complete(cb->fence);
		kmem_cache_free(global.slab_execute_cbs, cb);
	} else {
		list_add_tail(&cb->link, &signal->execute_cb);
	}
	spin_unlock_irq(&signal->lock);

344 345
	/* Copy across semaphore status as we need the same behaviour */
	rq->sched.flags |= signal->sched.flags;
346 347 348
	return 0;
}

349
bool __i915_request_submit(struct i915_request *request)
350
{
351
	struct intel_engine_cs *engine = request->engine;
352
	bool result = false;
353

354
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
355
		  engine->name,
356
		  request->fence.context, request->fence.seqno,
357
		  hwsp_seqno(request));
358

359
	GEM_BUG_ON(!irqs_disabled());
360
	lockdep_assert_held(&engine->active.lock);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	/*
	 * With the advent of preempt-to-busy, we frequently encounter
	 * requests that we have unsubmitted from HW, but left running
	 * until the next ack and so have completed in the meantime. On
	 * resubmission of that completed request, we can skip
	 * updating the payload, and execlists can even skip submitting
	 * the request.
	 *
	 * We must remove the request from the caller's priority queue,
	 * and the caller must only call us when the request is in their
	 * priority queue, under the active.lock. This ensures that the
	 * request has *not* yet been retired and we can safely move
	 * the request into the engine->active.list where it will be
	 * dropped upon retiring. (Otherwise if resubmit a *retired*
	 * request, this would be a horrible use-after-free.)
	 */
	if (i915_request_completed(request))
		goto xfer;

381 382 383
	if (i915_gem_context_is_banned(request->gem_context))
		i915_request_skip(request, -EIO);

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/*
	 * Are we using semaphores when the gpu is already saturated?
	 *
	 * Using semaphores incurs a cost in having the GPU poll a
	 * memory location, busywaiting for it to change. The continual
	 * memory reads can have a noticeable impact on the rest of the
	 * system with the extra bus traffic, stalling the cpu as it too
	 * tries to access memory across the bus (perf stat -e bus-cycles).
	 *
	 * If we installed a semaphore on this request and we only submit
	 * the request after the signaler completed, that indicates the
	 * system is overloaded and using semaphores at this time only
	 * increases the amount of work we are doing. If so, we disable
	 * further use of semaphores until we are idle again, whence we
	 * optimistically try again.
	 */
	if (request->sched.semaphores &&
	    i915_sw_fence_signaled(&request->semaphore))
402
		engine->saturated |= request->sched.semaphores;
403

404 405
	engine->emit_fini_breadcrumb(request,
				     request->ring->vaddr + request->postfix);
406

407 408 409
	trace_i915_request_execute(request);
	engine->serial++;
	result = true;
410

411 412 413 414 415
xfer:	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);

	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
		list_move_tail(&request->sched.link, &engine->active.requests);
416

417
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
418
	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
419 420
	    !i915_request_enable_breadcrumb(request))
		intel_engine_queue_breadcrumbs(engine);
421

422 423
	__notify_execute_cb(request);

424 425
	spin_unlock(&request->lock);

426
	return result;
427 428
}

429
void i915_request_submit(struct i915_request *request)
430 431 432
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;
433

434
	/* Will be called from irq-context when using foreign fences. */
435
	spin_lock_irqsave(&engine->active.lock, flags);
436

437
	__i915_request_submit(request);
438

439
	spin_unlock_irqrestore(&engine->active.lock, flags);
440 441
}

442
void __i915_request_unsubmit(struct i915_request *request)
443
{
444
	struct intel_engine_cs *engine = request->engine;
445

446
	GEM_TRACE("%s fence %llx:%lld, current %d\n",
447
		  engine->name,
448
		  request->fence.context, request->fence.seqno,
449
		  hwsp_seqno(request));
450

451
	GEM_BUG_ON(!irqs_disabled());
452
	lockdep_assert_held(&engine->active.lock);
453

454 455
	/*
	 * Only unwind in reverse order, required so that the per-context list
456 457
	 * is kept in seqno/ring order.
	 */
C
Chris Wilson 已提交
458

459 460
	/* We may be recursing from the signal callback of another i915 fence */
	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
461

462
	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
463
		i915_request_cancel_breadcrumb(request);
464

465 466
	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
467

468 469
	spin_unlock(&request->lock);

470 471 472 473 474 475
	/* We've already spun, don't charge on resubmitting. */
	if (request->sched.semaphores && i915_request_started(request)) {
		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
		request->sched.semaphores = 0;
	}

476 477
	/*
	 * We don't need to wake_up any waiters on request->execute, they
478
	 * will get woken by any other event or us re-adding this request
479
	 * to the engine timeline (__i915_request_submit()). The waiters
480 481 482 483 484
	 * should be quite adapt at finding that the request now has a new
	 * global_seqno to the one they went to sleep on.
	 */
}

485
void i915_request_unsubmit(struct i915_request *request)
486 487 488 489 490
{
	struct intel_engine_cs *engine = request->engine;
	unsigned long flags;

	/* Will be called from irq-context when using foreign fences. */
491
	spin_lock_irqsave(&engine->active.lock, flags);
492

493
	__i915_request_unsubmit(request);
494

495
	spin_unlock_irqrestore(&engine->active.lock, flags);
496 497
}

498
static int __i915_sw_fence_call
499
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
500
{
501
	struct i915_request *request =
502 503 504 505
		container_of(fence, typeof(*request), submit);

	switch (state) {
	case FENCE_COMPLETE:
506
		trace_i915_request_submit(request);
C
Chris Wilson 已提交
507 508 509 510

		if (unlikely(fence->error))
			i915_request_skip(request, fence->error);

511
		/*
512 513 514 515 516 517
		 * We need to serialize use of the submit_request() callback
		 * with its hotplugging performed during an emergency
		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
		 * critical section in order to force i915_gem_set_wedged() to
		 * wait until the submit_request() is completed before
		 * proceeding.
518 519
		 */
		rcu_read_lock();
520
		request->engine->submit_request(request);
521
		rcu_read_unlock();
522 523 524
		break;

	case FENCE_FREE:
525
		i915_request_put(request);
526 527 528
		break;
	}

529 530 531
	return NOTIFY_DONE;
}

532 533 534 535 536 537 538 539
static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct i915_request *request =
		container_of(fence, typeof(*request), semaphore);

	switch (state) {
	case FENCE_COMPLETE:
540
		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
541 542 543 544 545 546 547 548 549 550
		break;

	case FENCE_FREE:
		i915_request_put(request);
		break;
	}

	return NOTIFY_DONE;
}

551
static void retire_requests(struct intel_timeline *tl)
552 553 554
{
	struct i915_request *rq, *rn;

555
	list_for_each_entry_safe(rq, rn, &tl->requests, link)
556
		if (!i915_request_retire(rq))
557 558 559 560
			break;
}

static noinline struct i915_request *
561
request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
562 563 564
{
	struct i915_request *rq;

565
	if (list_empty(&tl->requests))
566 567
		goto out;

568 569 570
	if (!gfpflags_allow_blocking(gfp))
		goto out;

571
	/* Move our oldest request to the slab-cache (if not in use!) */
572
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
573 574 575 576 577 578 579
	i915_request_retire(rq);

	rq = kmem_cache_alloc(global.slab_requests,
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
	if (rq)
		return rq;

580
	/* Ratelimit ourselves to prevent oom from malicious clients */
581
	rq = list_last_entry(&tl->requests, typeof(*rq), link);
582 583 584
	cond_synchronize_rcu(rq->rcustate);

	/* Retire our old requests in the hope that we free some */
585
	retire_requests(tl);
586 587

out:
588
	return kmem_cache_alloc(global.slab_requests, gfp);
589 590
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static void __i915_request_ctor(void *arg)
{
	struct i915_request *rq = arg;

	spin_lock_init(&rq->lock);
	i915_sched_node_init(&rq->sched);
	i915_sw_fence_init(&rq->submit, submit_notify);
	i915_sw_fence_init(&rq->semaphore, semaphore_notify);

	rq->file_priv = NULL;
	rq->capture_list = NULL;

	INIT_LIST_HEAD(&rq->execute_cb);
}

606
struct i915_request *
607
__i915_request_create(struct intel_context *ce, gfp_t gfp)
608
{
609
	struct intel_timeline *tl = ce->timeline;
610 611
	struct i915_request *rq;
	u32 seqno;
612 613
	int ret;

614
	might_sleep_if(gfpflags_allow_blocking(gfp));
615

616 617
	/* Check that the caller provided an already pinned context */
	__intel_context_pin(ce);
618

619 620
	/*
	 * Beware: Dragons be flying overhead.
621 622 623 624
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
625
	 * of being read by __i915_active_request_get_rcu(). As such,
626 627
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
628
	 * read the request->global_seqno and increment the reference count.
629 630 631 632
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
633 634
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
635 636 637 638 639 640 641 642 643 644 645 646 647
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
648
	rq = kmem_cache_alloc(global.slab_requests,
649
			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
650
	if (unlikely(!rq)) {
651
		rq = request_alloc_slow(tl, gfp);
652
		if (!rq) {
653 654 655
			ret = -ENOMEM;
			goto err_unreserve;
		}
656
	}
657

658
	ret = intel_timeline_get_seqno(tl, rq, &seqno);
659 660 661
	if (ret)
		goto err_free;

662
	rq->i915 = ce->engine->i915;
663
	rq->hw_context = ce;
664 665
	rq->gem_context = ce->gem_context;
	rq->engine = ce->engine;
666
	rq->ring = ce->ring;
667
	rq->execution_mask = ce->engine->mask;
668
	rq->flags = 0;
669 670

	rcu_assign_pointer(rq->timeline, tl);
671 672
	rq->hwsp_seqno = tl->hwsp_seqno;
	rq->hwsp_cacheline = tl->hwsp_cacheline;
673

674
	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
675

676 677
	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
		       tl->fence_context, seqno);
678

679
	/* We bump the ref for the fence chain */
680 681
	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
682

683
	i915_sched_node_reinit(&rq->sched);
684

685
	/* No zalloc, everything must be cleared after use */
686
	rq->batch = NULL;
687 688 689
	GEM_BUG_ON(rq->file_priv);
	GEM_BUG_ON(rq->capture_list);
	GEM_BUG_ON(!list_empty(&rq->execute_cb));
690

691 692 693
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
694
	 * i915_request_add() call can't fail. Note that the reserve may need
695 696
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
697 698 699 700 701
	 *
	 * Note that due to how we add reserved_space to intel_ring_begin()
	 * we need to double our request to ensure that if we need to wrap
	 * around inside i915_request_add() there is sufficient space at
	 * the beginning of the ring as well.
702
	 */
703 704
	rq->reserved_space =
		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
705

706 707
	/*
	 * Record the position of the start of the request so that
708 709 710 711
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
712
	rq->head = rq->ring->emit;
713

714
	ret = rq->engine->request_alloc(rq);
715 716
	if (ret)
		goto err_unwind;
717

718 719
	rq->infix = rq->ring->emit; /* end of header; start of user payload */

720
	intel_context_mark_active(ce);
721
	return rq;
722

723
err_unwind:
724
	ce->ring->emit = rq->head;
725

726
	/* Make sure we didn't add ourselves to external state before freeing */
727 728
	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
729

730
err_free:
731
	kmem_cache_free(global.slab_requests, rq);
732
err_unreserve:
733
	intel_context_unpin(ce);
734
	return ERR_PTR(ret);
735 736
}

737 738 739 740
struct i915_request *
i915_request_create(struct intel_context *ce)
{
	struct i915_request *rq;
741
	struct intel_timeline *tl;
742

743 744 745
	tl = intel_context_timeline_lock(ce);
	if (IS_ERR(tl))
		return ERR_CAST(tl);
746 747

	/* Move our oldest request to the slab-cache (if not in use!) */
748 749
	rq = list_first_entry(&tl->requests, typeof(*rq), link);
	if (!list_is_last(&rq->link, &tl->requests))
750 751 752 753 754 755 756 757 758
		i915_request_retire(rq);

	intel_context_enter(ce);
	rq = __i915_request_create(ce, GFP_KERNEL);
	intel_context_exit(ce); /* active reference transferred to request */
	if (IS_ERR(rq))
		goto err_unlock;

	/* Check that we do not interrupt ourselves with a new request */
759
	rq->cookie = lockdep_pin_lock(&tl->mutex);
760 761 762 763

	return rq;

err_unlock:
764
	intel_context_timeline_unlock(tl);
765 766 767
	return rq;
}

768 769 770
static int
i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
{
771 772 773
	struct intel_timeline *tl;
	struct dma_fence *fence;
	int err;
774

775 776 777 778 779 780 781 782 783
	GEM_BUG_ON(i915_request_timeline(rq) ==
		   rcu_access_pointer(signal->timeline));

	rcu_read_lock();
	tl = rcu_dereference(signal->timeline);
	if (i915_request_started(signal) || !kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();
	if (!tl) /* already started or maybe even completed */
784 785
		return 0;

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	fence = ERR_PTR(-EBUSY);
	if (mutex_trylock(&tl->mutex)) {
		fence = NULL;
		if (!i915_request_started(signal) &&
		    !list_is_first(&signal->link, &tl->requests)) {
			signal = list_prev_entry(signal, link);
			fence = dma_fence_get(&signal->fence);
		}
		mutex_unlock(&tl->mutex);
	}
	intel_timeline_put(tl);
	if (IS_ERR_OR_NULL(fence))
		return PTR_ERR_OR_ZERO(fence);

	err = 0;
	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
		err = i915_sw_fence_await_dma_fence(&rq->submit,
						    fence, 0,
						    I915_FENCE_GFP);
	dma_fence_put(fence);

	return err;
808 809
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
static intel_engine_mask_t
already_busywaiting(struct i915_request *rq)
{
	/*
	 * Polling a semaphore causes bus traffic, delaying other users of
	 * both the GPU and CPU. We want to limit the impact on others,
	 * while taking advantage of early submission to reduce GPU
	 * latency. Therefore we restrict ourselves to not using more
	 * than one semaphore from each source, and not using a semaphore
	 * if we have detected the engine is saturated (i.e. would not be
	 * submitted early and cause bus traffic reading an already passed
	 * semaphore).
	 *
	 * See the are-we-too-late? check in __i915_request_submit().
	 */
825
	return rq->sched.semaphores | rq->engine->saturated;
826 827
}

828
static int
829 830 831
__emit_semaphore_wait(struct i915_request *to,
		      struct i915_request *from,
		      u32 seqno)
832
{
833
	const int has_token = INTEL_GEN(to->i915) >= 12;
834
	u32 hwsp_offset;
835
	int len, err;
836 837 838 839
	u32 *cs;

	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);

840
	/* We need to pin the signaler's HWSP until we are finished reading. */
841 842 843
	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
	if (err)
		return err;
844

845 846 847 848 849
	len = 4;
	if (has_token)
		len += 2;

	cs = intel_ring_begin(to, len);
850 851 852 853 854 855 856 857 858 859 860
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Using greater-than-or-equal here means we have to worry
	 * about seqno wraparound. To side step that issue, we swap
	 * the timeline HWSP upon wrapping, so that everyone listening
	 * for the old (pre-wrap) values do not see the much smaller
	 * (post-wrap) values than they were expecting (and so wait
	 * forever).
	 */
861 862 863 864 865
	*cs++ = (MI_SEMAPHORE_WAIT |
		 MI_SEMAPHORE_GLOBAL_GTT |
		 MI_SEMAPHORE_POLL |
		 MI_SEMAPHORE_SAD_GTE_SDD) +
		has_token;
866
	*cs++ = seqno;
867 868
	*cs++ = hwsp_offset;
	*cs++ = 0;
869 870 871 872
	if (has_token) {
		*cs++ = 0;
		*cs++ = MI_NOOP;
	}
873 874

	intel_ring_advance(to, cs);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	return 0;
}

static int
emit_semaphore_wait(struct i915_request *to,
		    struct i915_request *from,
		    gfp_t gfp)
{
	/* Just emit the first semaphore we see as request space is limited. */
	if (already_busywaiting(to) & from->engine->mask)
		goto await_fence;

	if (i915_request_await_start(to, from) < 0)
		goto await_fence;

	/* Only submit our spinner after the signaler is running! */
	if (__await_execution(to, from, NULL, gfp))
		goto await_fence;

	if (__emit_semaphore_wait(to, from, from->fence.seqno))
		goto await_fence;

897 898
	to->sched.semaphores |= from->engine->mask;
	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
899
	return 0;
900 901 902 903 904

await_fence:
	return i915_sw_fence_await_dma_fence(&to->submit,
					     &from->fence, 0,
					     I915_FENCE_GFP);
905 906
}

907
static int
908
i915_request_await_request(struct i915_request *to, struct i915_request *from)
909
{
910
	int ret;
911 912

	GEM_BUG_ON(to == from);
913
	GEM_BUG_ON(to->timeline == from->timeline);
914

915
	if (i915_request_completed(from))
916 917
		return 0;

918
	if (to->engine->schedule) {
919
		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
920 921 922 923
		if (ret < 0)
			return ret;
	}

924 925 926
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
927
						       I915_FENCE_GFP);
928 929 930
	} else if (intel_engine_has_semaphores(to->engine) &&
		   to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
931 932 933 934
	} else {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    I915_FENCE_GFP);
935
	}
936 937 938 939 940 941 942 943 944 945
	if (ret < 0)
		return ret;

	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
						    &from->fence, 0,
						    I915_FENCE_GFP);
		if (ret < 0)
			return ret;
	}
946

947
	return 0;
948 949
}

950
int
951
i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
952
{
953 954
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
955 956
	int ret;

957 958
	/*
	 * Note that if the fence-array was created in signal-on-any mode,
959 960 961 962 963 964
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */
965 966 967 968 969 970 971
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}
972

973 974
	do {
		fence = *child++;
975 976
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
977
			continue;
978
		}
979

980 981
		/*
		 * Requests on the same timeline are explicitly ordered, along
982
		 * with their dependencies, by i915_request_add() which ensures
983 984
		 * that requests are submitted in-order through each ring.
		 */
985
		if (fence->context == rq->fence.context)
986 987
			continue;

988
		/* Squash repeated waits to the same timelines */
989
		if (fence->context &&
990 991
		    intel_timeline_sync_is_later(i915_request_timeline(rq),
						 fence))
992 993
			continue;

994
		if (dma_fence_is_i915(fence))
995
			ret = i915_request_await_request(rq, to_request(fence));
996
		else
997
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
998
							    fence->context ? I915_FENCE_TIMEOUT : 0,
999
							    I915_FENCE_GFP);
1000 1001
		if (ret < 0)
			return ret;
1002 1003

		/* Record the latest fence used against each timeline */
1004
		if (fence->context)
1005 1006
			intel_timeline_sync_set(i915_request_timeline(rq),
						fence);
1007
	} while (--nchild);
1008 1009 1010 1011

	return 0;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
					  struct dma_fence *fence)
{
	return __intel_timeline_sync_is_later(tl,
					      fence->context,
					      fence->seqno - 1);
}

static int intel_timeline_sync_set_start(struct intel_timeline *tl,
					 const struct dma_fence *fence)
{
	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
}

static int
__i915_request_await_execution(struct i915_request *to,
			       struct i915_request *from,
			       void (*hook)(struct i915_request *rq,
					    struct dma_fence *signal))
{
	int err;

	/* Submit both requests at the same time */
	err = __await_execution(to, from, hook, I915_FENCE_GFP);
	if (err)
		return err;

	/* Squash repeated depenendices to the same timelines */
	if (intel_timeline_sync_has_start(i915_request_timeline(to),
					  &from->fence))
		return 0;

	/* Ensure both start together [after all semaphores in signal] */
	if (intel_engine_has_semaphores(to->engine))
		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
	else
		err = i915_request_await_start(to, from);
	if (err < 0)
		return err;

	/* Couple the dependency tree for PI on this exposed to->fence */
	if (to->engine->schedule) {
		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
		if (err < 0)
			return err;
	}

	return intel_timeline_sync_set_start(i915_request_timeline(to),
					     &from->fence);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
int
i915_request_await_execution(struct i915_request *rq,
			     struct dma_fence *fence,
			     void (*hook)(struct i915_request *rq,
					  struct dma_fence *signal))
{
	struct dma_fence **child = &fence;
	unsigned int nchild = 1;
	int ret;

	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);

		/* XXX Error for signal-on-any fence arrays */

		child = array->fences;
		nchild = array->num_fences;
		GEM_BUG_ON(!nchild);
	}

	do {
		fence = *child++;
1085 1086
		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1087
			continue;
1088
		}
1089 1090 1091 1092 1093 1094 1095 1096 1097

		/*
		 * We don't squash repeated fence dependencies here as we
		 * want to run our callback in all cases.
		 */

		if (dma_fence_is_i915(fence))
			ret = __i915_request_await_execution(rq,
							     to_request(fence),
1098
							     hook);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		else
			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
							    I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	} while (--nchild);

	return 0;
}

1110
/**
1111
 * i915_request_await_object - set this request to (async) wait upon a bo
1112 1113
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
1114
 * @write: whether the wait is on behalf of a writer
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
1131 1132 1133
i915_request_await_object(struct i915_request *to,
			  struct drm_i915_gem_object *obj,
			  bool write)
1134
{
1135 1136
	struct dma_fence *excl;
	int ret = 0;
1137 1138

	if (write) {
1139 1140 1141
		struct dma_fence **shared;
		unsigned int count, i;

1142
		ret = dma_resv_get_fences_rcu(obj->base.resv,
1143 1144 1145 1146 1147
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
1148
			ret = i915_request_await_dma_fence(to, shared[i]);
1149 1150 1151 1152 1153 1154 1155 1156 1157
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
1158
	} else {
1159
		excl = dma_resv_get_excl_rcu(obj->base.resv);
1160 1161
	}

1162 1163
	if (excl) {
		if (ret == 0)
1164
			ret = i915_request_await_dma_fence(to, excl);
1165

1166
		dma_fence_put(excl);
1167 1168
	}

1169
	return ret;
1170 1171
}

1172 1173 1174 1175 1176 1177 1178 1179
void i915_request_skip(struct i915_request *rq, int error)
{
	void *vaddr = rq->ring->vaddr;
	u32 head;

	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
	dma_fence_set_error(&rq->fence, error);

C
Chris Wilson 已提交
1180 1181 1182
	if (rq->infix == rq->postfix)
		return;

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/*
	 * As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = rq->infix;
	if (rq->postfix < head) {
		memset(vaddr + head, 0, rq->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, rq->postfix - head);
C
Chris Wilson 已提交
1194
	rq->infix = rq->postfix;
1195 1196
}

1197 1198 1199
static struct i915_request *
__i915_request_add_to_timeline(struct i915_request *rq)
{
1200
	struct intel_timeline *timeline = i915_request_timeline(rq);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	struct i915_request *prev;

	/*
	 * Dependency tracking and request ordering along the timeline
	 * is special cased so that we can eliminate redundant ordering
	 * operations while building the request (we know that the timeline
	 * itself is ordered, and here we guarantee it).
	 *
	 * As we know we will need to emit tracking along the timeline,
	 * we embed the hooks into our request struct -- at the cost of
	 * having to have specialised no-allocation interfaces (which will
	 * be beneficial elsewhere).
	 *
	 * A second benefit to open-coding i915_request_await_request is
	 * that we can apply a slight variant of the rules specialised
	 * for timelines that jump between engines (such as virtual engines).
	 * If we consider the case of virtual engine, we must emit a dma-fence
	 * to prevent scheduling of the second request until the first is
	 * complete (to maximise our greedy late load balancing) and this
	 * precludes optimising to use semaphores serialisation of a single
	 * timeline across engines.
	 */
1223 1224
	prev = to_request(__i915_active_fence_set(&timeline->last_request,
						  &rq->fence));
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (prev && !i915_request_completed(prev)) {
		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
			i915_sw_fence_await_sw_fence(&rq->submit,
						     &prev->submit,
						     &rq->submitq);
		else
			__i915_sw_fence_await_dma_fence(&rq->submit,
							&prev->fence,
							&rq->dmaq);
		if (rq->engine->schedule)
			__i915_sched_node_add_dependency(&rq->sched,
							 &prev->sched,
							 &rq->dep,
							 0);
	}

	list_add_tail(&rq->link, &timeline->requests);

1243 1244 1245 1246 1247
	/*
	 * Make sure that no request gazumped us - if it was allocated after
	 * our i915_request_alloc() and called __i915_request_add() before
	 * us, the timeline will hold its seqno which is later than ours.
	 */
1248 1249 1250 1251 1252
	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);

	return prev;
}

1253 1254 1255 1256 1257
/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
1258
struct i915_request *__i915_request_commit(struct i915_request *rq)
1259
{
1260 1261
	struct intel_engine_cs *engine = rq->engine;
	struct intel_ring *ring = rq->ring;
1262
	u32 *cs;
1263

1264
	GEM_TRACE("%s fence %llx:%lld\n",
1265
		  engine->name, rq->fence.context, rq->fence.seqno);
1266

1267 1268 1269 1270 1271
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
1272 1273
	GEM_BUG_ON(rq->reserved_space > ring->space);
	rq->reserved_space = 0;
1274
	rq->emitted_jiffies = jiffies;
1275

1276 1277
	/*
	 * Record the position of the start of the breadcrumb so that
1278 1279
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
1280
	 * position of the ring's HEAD.
1281
	 */
1282
	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1283
	GEM_BUG_ON(IS_ERR(cs));
1284
	rq->postfix = intel_ring_offset(rq, cs);
1285

1286
	return __i915_request_add_to_timeline(rq);
1287 1288 1289 1290 1291
}

void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr)
{
1292 1293
	/*
	 * Let the backend know a new request has arrived that may need
1294 1295 1296 1297 1298 1299 1300 1301 1302
	 * to adjust the existing execution schedule due to a high priority
	 * request - i.e. we may want to preempt the current request in order
	 * to run a high priority dependency chain *before* we can execute this
	 * request.
	 *
	 * This is called before the request is ready to run so that we can
	 * decide whether to preempt the entire chain so that it is ready to
	 * run at the earliest possible convenience.
	 */
1303
	i915_sw_fence_commit(&rq->semaphore);
1304 1305
	if (attr && rq->engine->schedule)
		rq->engine->schedule(rq, attr);
1306 1307 1308 1309 1310
	i915_sw_fence_commit(&rq->submit);
}

void i915_request_add(struct i915_request *rq)
{
1311
	struct i915_sched_attr attr = rq->gem_context->sched;
1312
	struct intel_timeline * const tl = i915_request_timeline(rq);
1313 1314
	struct i915_request *prev;

1315 1316
	lockdep_assert_held(&tl->mutex);
	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1317 1318 1319 1320 1321

	trace_i915_request_add(rq);

	prev = __i915_request_commit(rq);

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * Boost actual workloads past semaphores!
	 *
	 * With semaphores we spin on one engine waiting for another,
	 * simply to reduce the latency of starting our work when
	 * the signaler completes. However, if there is any other
	 * work that we could be doing on this engine instead, that
	 * is better utilisation and will reduce the overall duration
	 * of the current work. To avoid PI boosting a semaphore
	 * far in the distance past over useful work, we keep a history
	 * of any semaphore use along our dependency chain.
	 */
	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
		attr.priority |= I915_PRIORITY_NOSEMAPHORE;

	/*
	 * Boost priorities to new clients (new request flows).
	 *
	 * Allow interactive/synchronous clients to jump ahead of
	 * the bulk clients. (FQ_CODEL)
	 */
	if (list_empty(&rq->sched.signalers_list))
		attr.priority |= I915_PRIORITY_WAIT;

1346
	local_bh_disable();
1347
	__i915_request_queue(rq, &attr);
1348
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	/*
	 * In typical scenarios, we do not expect the previous request on
	 * the timeline to be still tracked by timeline->last_request if it
	 * has been completed. If the completed request is still here, that
	 * implies that request retirement is a long way behind submission,
	 * suggesting that we haven't been retiring frequently enough from
	 * the combination of retire-before-alloc, waiters and the background
	 * retirement worker. So if the last request on this timeline was
	 * already completed, do a catch up pass, flushing the retirement queue
	 * up to this client. Since we have now moved the heaviest operations
	 * during retirement onto secondary workers, such as freeing objects
	 * or contexts, retiring a bunch of requests is mostly list management
	 * (and cache misses), and so we should not be overly penalizing this
	 * client by performing excess work, though we may still performing
	 * work on behalf of others -- but instead we should benefit from
	 * improved resource management. (Well, that's the theory at least.)
	 */
1367 1368 1369
	if (prev &&
	    i915_request_completed(prev) &&
	    rcu_access_pointer(prev->timeline) == tl)
1370
		i915_request_retire_upto(prev);
1371

1372
	mutex_unlock(&tl->mutex);
1373 1374 1375 1376 1377 1378
}

static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

1379 1380
	/*
	 * Cheaply and approximately convert from nanoseconds to microseconds.
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

1408 1409
static bool __i915_spin_request(const struct i915_request * const rq,
				int state, unsigned long timeout_us)
1410
{
1411
	unsigned int cpu;
1412 1413 1414 1415 1416 1417 1418

	/*
	 * Only wait for the request if we know it is likely to complete.
	 *
	 * We don't track the timestamps around requests, nor the average
	 * request length, so we do not have a good indicator that this
	 * request will complete within the timeout. What we do know is the
1419 1420 1421 1422
	 * order in which requests are executed by the context and so we can
	 * tell if the request has been started. If the request is not even
	 * running yet, it is a fair assumption that it will not complete
	 * within our relatively short timeout.
1423
	 */
1424
	if (!i915_request_is_running(rq))
1425 1426
		return false;

1427 1428
	/*
	 * When waiting for high frequency requests, e.g. during synchronous
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
1440 1441
		if (i915_request_completed(rq))
			return true;
1442

1443 1444 1445 1446 1447 1448
		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

1449
		cpu_relax();
1450 1451 1452 1453 1454
	} while (!need_resched());

	return false;
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
struct request_wait {
	struct dma_fence_cb cb;
	struct task_struct *tsk;
};

static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
{
	struct request_wait *wait = container_of(cb, typeof(*wait), cb);

	wake_up_process(wait->tsk);
}

1467
/**
1468
 * i915_request_wait - wait until execution of request has finished
1469
 * @rq: the request to wait upon
1470
 * @flags: how to wait
1471 1472
 * @timeout: how long to wait in jiffies
 *
1473
 * i915_request_wait() waits for the request to be completed, for a
1474 1475
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
1476
 *
1477 1478 1479 1480
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
1481
 */
1482
long i915_request_wait(struct i915_request *rq,
1483 1484
		       unsigned int flags,
		       long timeout)
1485
{
1486 1487
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1488
	struct request_wait wait;
1489 1490

	might_sleep();
1491
	GEM_BUG_ON(timeout < 0);
1492

1493
	if (dma_fence_is_signaled(&rq->fence))
1494
		return timeout;
1495

1496 1497
	if (!timeout)
		return -ETIME;
1498

1499
	trace_i915_request_wait_begin(rq, flags);
1500 1501 1502 1503 1504 1505 1506

	/*
	 * We must never wait on the GPU while holding a lock as we
	 * may need to perform a GPU reset. So while we don't need to
	 * serialise wait/reset with an explicit lock, we do want
	 * lockdep to detect potential dependency cycles.
	 */
1507
	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	/*
	 * Optimistic spin before touching IRQs.
	 *
	 * We may use a rather large value here to offset the penalty of
	 * switching away from the active task. Frequently, the client will
	 * wait upon an old swapbuffer to throttle itself to remain within a
	 * frame of the gpu. If the client is running in lockstep with the gpu,
	 * then it should not be waiting long at all, and a sleep now will incur
	 * extra scheduler latency in producing the next frame. To try to
	 * avoid adding the cost of enabling/disabling the interrupt to the
	 * short wait, we first spin to see if the request would have completed
	 * in the time taken to setup the interrupt.
	 *
	 * We need upto 5us to enable the irq, and upto 20us to hide the
	 * scheduler latency of a context switch, ignoring the secondary
	 * impacts from a context switch such as cache eviction.
	 *
	 * The scheme used for low-latency IO is called "hybrid interrupt
	 * polling". The suggestion there is to sleep until just before you
	 * expect to be woken by the device interrupt and then poll for its
	 * completion. That requires having a good predictor for the request
	 * duration, which we currently lack.
	 */
1532
	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1533 1534
	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
		dma_fence_signal(&rq->fence);
1535
		goto out;
1536
	}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	/*
	 * This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we sleep. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery).
	 */
	if (flags & I915_WAIT_PRIORITY) {
		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1552
			intel_rps_boost(rq);
1553
		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1554
	}
1555

1556 1557 1558
	wait.tsk = current;
	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
		goto out;
1559

1560 1561
	for (;;) {
		set_current_state(state);
1562

1563 1564
		if (i915_request_completed(rq)) {
			dma_fence_signal(&rq->fence);
1565
			break;
1566
		}
1567 1568

		if (signal_pending_state(state, current)) {
1569
			timeout = -ERESTARTSYS;
1570 1571 1572
			break;
		}

1573 1574
		if (!timeout) {
			timeout = -ETIME;
1575 1576 1577
			break;
		}

1578
		intel_engine_flush_submission(rq->engine);
1579
		timeout = io_schedule_timeout(timeout);
1580
	}
1581
	__set_current_state(TASK_RUNNING);
1582

1583 1584 1585
	dma_fence_remove_callback(&rq->fence, &wait.cb);

out:
1586
	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1587
	trace_i915_request_wait_end(rq);
1588
	return timeout;
1589
}
1590

1591 1592
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_request.c"
1593
#include "selftests/i915_request.c"
1594
#endif
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static void i915_global_request_shrink(void)
{
	kmem_cache_shrink(global.slab_dependencies);
	kmem_cache_shrink(global.slab_execute_cbs);
	kmem_cache_shrink(global.slab_requests);
}

static void i915_global_request_exit(void)
{
	kmem_cache_destroy(global.slab_dependencies);
	kmem_cache_destroy(global.slab_execute_cbs);
	kmem_cache_destroy(global.slab_requests);
}

static struct i915_global_request global = { {
	.shrink = i915_global_request_shrink,
	.exit = i915_global_request_exit,
} };

1615 1616
int __init i915_global_request_init(void)
{
1617 1618 1619 1620 1621 1622 1623 1624
	global.slab_requests =
		kmem_cache_create("i915_request",
				  sizeof(struct i915_request),
				  __alignof__(struct i915_request),
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_TYPESAFE_BY_RCU,
				  __i915_request_ctor);
1625 1626 1627
	if (!global.slab_requests)
		return -ENOMEM;

1628 1629 1630 1631 1632 1633 1634
	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
					     SLAB_HWCACHE_ALIGN |
					     SLAB_RECLAIM_ACCOUNT |
					     SLAB_TYPESAFE_BY_RCU);
	if (!global.slab_execute_cbs)
		goto err_requests;

1635 1636 1637 1638
	global.slab_dependencies = KMEM_CACHE(i915_dependency,
					      SLAB_HWCACHE_ALIGN |
					      SLAB_RECLAIM_ACCOUNT);
	if (!global.slab_dependencies)
1639
		goto err_execute_cbs;
1640

1641
	i915_global_register(&global.base);
1642 1643
	return 0;

1644 1645
err_execute_cbs:
	kmem_cache_destroy(global.slab_execute_cbs);
1646 1647 1648 1649
err_requests:
	kmem_cache_destroy(global.slab_requests);
	return -ENOMEM;
}