ohci.c 93.8 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21
#include <linux/bitops.h>
22
#include <linux/bug.h>
23
#include <linux/compiler.h>
24
#include <linux/delay.h>
S
Stefan Richter 已提交
25
#include <linux/device.h>
A
Andrew Morton 已提交
26
#include <linux/dma-mapping.h>
27
#include <linux/firewire.h>
S
Stefan Richter 已提交
28
#include <linux/firewire-constants.h>
29 30
#include <linux/init.h>
#include <linux/interrupt.h>
S
Stefan Richter 已提交
31
#include <linux/io.h>
32
#include <linux/kernel.h>
S
Stefan Richter 已提交
33
#include <linux/list.h>
A
Al Viro 已提交
34
#include <linux/mm.h>
35
#include <linux/module.h>
36
#include <linux/moduleparam.h>
37
#include <linux/mutex.h>
38
#include <linux/pci.h>
39
#include <linux/pci_ids.h>
40
#include <linux/slab.h>
S
Stefan Richter 已提交
41
#include <linux/spinlock.h>
S
Stefan Richter 已提交
42
#include <linux/string.h>
43
#include <linux/time.h>
44
#include <linux/vmalloc.h>
A
Andrew Morton 已提交
45

S
Stefan Richter 已提交
46
#include <asm/byteorder.h>
S
Stefan Richter 已提交
47
#include <asm/page.h>
48
#include <asm/system.h>
49

50 51 52 53
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif

54 55
#include "core.h"
#include "ohci.h"
56

57 58 59 60 61 62 63 64 65 66 67 68 69
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
70 71 72 73 74 75 76 77 78 79

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

80 81 82 83
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
84

85 86 87 88 89 90 91 92
#define AR_BUFFER_SIZE	(32*1024)
#define AR_BUFFERS_MIN	DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
/* we need at least two pages for proper list management */
#define AR_BUFFERS	(AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)

#define MAX_ASYNC_PAYLOAD	4096
#define MAX_AR_PACKET_SIZE	(16 + MAX_ASYNC_PAYLOAD + 4)
#define AR_WRAPAROUND_PAGES	DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93

94 95
struct ar_context {
	struct fw_ohci *ohci;
96 97 98 99
	struct page *pages[AR_BUFFERS];
	void *buffer;
	struct descriptor *descriptors;
	dma_addr_t descriptors_bus;
100
	void *pointer;
101
	unsigned int last_buffer_index;
102
	u32 regs;
103 104 105
	struct tasklet_struct tasklet;
};

106 107 108 109 110
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
111 112 113 114 115 116 117 118 119 120 121 122 123

/*
 * A buffer that contains a block of DMA-able coherent memory used for
 * storing a portion of a DMA descriptor program.
 */
struct descriptor_buffer {
	struct list_head list;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	size_t used;
	struct descriptor buffer[0];
};

124
struct context {
S
Stefan Richter 已提交
125
	struct fw_ohci *ohci;
126
	u32 regs;
127
	int total_allocation;
128
	bool running;
129
	bool flushing;
S
Stefan Richter 已提交
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	/*
	 * List of page-sized buffers for storing DMA descriptors.
	 * Head of list contains buffers in use and tail of list contains
	 * free buffers.
	 */
	struct list_head buffer_list;

	/*
	 * Pointer to a buffer inside buffer_list that contains the tail
	 * end of the current DMA program.
	 */
	struct descriptor_buffer *buffer_tail;

	/*
	 * The descriptor containing the branch address of the first
	 * descriptor that has not yet been filled by the device.
	 */
	struct descriptor *last;

	/*
	 * The last descriptor in the DMA program.  It contains the branch
	 * address that must be updated upon appending a new descriptor.
	 */
	struct descriptor *prev;
155 156 157

	descriptor_callback_t callback;

S
Stefan Richter 已提交
158
	struct tasklet_struct tasklet;
159 160
};

161 162 163 164 165 166
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167 168 169

struct iso_context {
	struct fw_iso_context base;
170
	struct context context;
171
	int excess_bytes;
172 173
	void *header;
	size_t header_length;
174 175 176

	u8 sync;
	u8 tags;
177 178 179 180 181 182 183 184
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
185
	int node_id;
186
	int generation;
187
	int request_generation;	/* for timestamping incoming requests */
188
	unsigned quirks;
189
	unsigned int pri_req_max;
190
	u32 bus_time;
191
	bool is_root;
192
	bool csr_state_setclear_abdicate;
193 194
	int n_ir;
	int n_it;
195 196 197 198
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
199 200
	spinlock_t lock;

201 202
	struct mutex phy_reg_mutex;

203 204 205
	void *misc_buffer;
	dma_addr_t misc_buffer_bus;

206 207
	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
208 209
	struct context at_request_ctx;
	struct context at_response_ctx;
210

211
	u32 it_context_support;
212
	u32 it_context_mask;     /* unoccupied IT contexts */
213
	struct iso_context *it_context_list;
214
	u64 ir_context_channels; /* unoccupied channels */
215
	u32 ir_context_support;
216
	u32 ir_context_mask;     /* unoccupied IR contexts */
217
	struct iso_context *ir_context_list;
218 219
	u64 mc_channels; /* channels in use by the multichannel IR context */
	bool mc_allocated;
220 221 222 223 224 225 226 227 228 229 230 231

	__be32    *config_rom;
	dma_addr_t config_rom_bus;
	__be32    *next_config_rom;
	dma_addr_t next_config_rom_bus;
	__be32     next_header;

	__le32    *self_id_cpu;
	dma_addr_t self_id_bus;
	struct tasklet_struct bus_reset_tasklet;

	u32 self_id_buffer[512];
232 233
};

A
Adrian Bunk 已提交
234
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 236 237 238
{
	return container_of(card, struct fw_ohci, card);
}

239 240 241 242 243 244
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
245 246 247 248 249 250

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

251
#define OHCI1394_MAX_AT_REQ_RETRIES	0xf
252 253 254 255 256 257 258
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
259
#define OHCI_TCODE_PHY_PACKET		0x0e
260
#define OHCI_VERSION_1_1		0x010010
261

262 263
static char ohci_driver_name[] = KBUILD_MODNAME;

264
#define PCI_DEVICE_ID_AGERE_FW643	0x5901
265
#define PCI_DEVICE_ID_JMICRON_JMB38X_FW	0x2380
266 267
#define PCI_DEVICE_ID_TI_TSB12LV22	0x8009

268 269 270
#define QUIRK_CYCLE_TIMER		1
#define QUIRK_RESET_PACKET		2
#define QUIRK_BE_HEADERS		4
271
#define QUIRK_NO_1394A			8
272
#define QUIRK_NO_MSI			16
273 274 275

/* In case of multiple matches in ohci_quirks[], only the first one is used. */
static const struct {
276
	unsigned short vendor, device, revision, flags;
277
} ohci_quirks[] = {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	{PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
		QUIRK_BE_HEADERS},

	{PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
		QUIRK_NO_MSI},

	{PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER},

	{PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},

	{PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_RESET_PACKET},

	{PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
		QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 305
};

306 307 308 309 310 311 312
/* This overrides anything that was found in ohci_quirks[]. */
static int param_quirks;
module_param_named(quirks, param_quirks, int, 0644);
MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
	", nonatomic cycle timer = "	__stringify(QUIRK_CYCLE_TIMER)
	", reset packet generation = "	__stringify(QUIRK_RESET_PACKET)
	", AR/selfID endianess = "	__stringify(QUIRK_BE_HEADERS)
313
	", no 1394a enhancements = "	__stringify(QUIRK_NO_1394A)
314
	", disable MSI = "		__stringify(QUIRK_NO_MSI)
315 316
	")");

317
#define OHCI_PARAM_DEBUG_AT_AR		1
318
#define OHCI_PARAM_DEBUG_SELFIDS	2
319 320
#define OHCI_PARAM_DEBUG_IRQS		4
#define OHCI_PARAM_DEBUG_BUSRESETS	8 /* only effective before chip init */
321

322 323
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG

324 325 326 327
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
	", AT/AR events = "	__stringify(OHCI_PARAM_DEBUG_AT_AR)
328 329 330
	", self-IDs = "		__stringify(OHCI_PARAM_DEBUG_SELFIDS)
	", IRQs = "		__stringify(OHCI_PARAM_DEBUG_IRQS)
	", busReset events = "	__stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 332 333 334
	", or a combination, or all = -1)");

static void log_irqs(u32 evt)
{
335 336 337 338 339 340
	if (likely(!(param_debug &
			(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
		return;

	if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
	    !(evt & OHCI1394_busReset))
341 342
		return;

343
	fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 345 346 347 348 349 350 351 352
	    evt & OHCI1394_selfIDComplete	? " selfID"		: "",
	    evt & OHCI1394_RQPkt		? " AR_req"		: "",
	    evt & OHCI1394_RSPkt		? " AR_resp"		: "",
	    evt & OHCI1394_reqTxComplete	? " AT_req"		: "",
	    evt & OHCI1394_respTxComplete	? " AT_resp"		: "",
	    evt & OHCI1394_isochRx		? " IR"			: "",
	    evt & OHCI1394_isochTx		? " IT"			: "",
	    evt & OHCI1394_postedWriteErr	? " postedWriteErr"	: "",
	    evt & OHCI1394_cycleTooLong		? " cycleTooLong"	: "",
353
	    evt & OHCI1394_cycle64Seconds	? " cycle64Seconds"	: "",
354
	    evt & OHCI1394_cycleInconsistent	? " cycleInconsistent"	: "",
355
	    evt & OHCI1394_regAccessFail	? " regAccessFail"	: "",
356
	    evt & OHCI1394_unrecoverableError	? " unrecoverableError"	: "",
357 358 359 360 361
	    evt & OHCI1394_busReset		? " busReset"		: "",
	    evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
		    OHCI1394_RSPkt | OHCI1394_reqTxComplete |
		    OHCI1394_respTxComplete | OHCI1394_isochRx |
		    OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 363
		    OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
		    OHCI1394_cycleInconsistent |
364
		    OHCI1394_regAccessFail | OHCI1394_busReset)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
						? " ?"			: "");
}

static const char *speed[] = {
	[0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
};
static const char *power[] = {
	[0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
	[4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };

static char _p(u32 *s, int shift)
{
	return port[*s >> shift & 3];
}

382
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
383 384 385 386
{
	if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
		return;

387 388
	fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
		  self_id_count, generation, node_id);
389 390 391

	for (; self_id_count--; ++s)
		if ((*s & 1 << 23) == 0)
392 393 394 395 396 397
			fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
			    "%s gc=%d %s %s%s%s\n",
			    *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
			    speed[*s >> 14 & 3], *s >> 16 & 63,
			    power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
			    *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398
		else
399 400 401 402
			fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
			    *s, *s >> 24 & 63,
			    _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
			    _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
}

static const char *evts[] = {
	[0x00] = "evt_no_status",	[0x01] = "-reserved-",
	[0x02] = "evt_long_packet",	[0x03] = "evt_missing_ack",
	[0x04] = "evt_underrun",	[0x05] = "evt_overrun",
	[0x06] = "evt_descriptor_read",	[0x07] = "evt_data_read",
	[0x08] = "evt_data_write",	[0x09] = "evt_bus_reset",
	[0x0a] = "evt_timeout",		[0x0b] = "evt_tcode_err",
	[0x0c] = "-reserved-",		[0x0d] = "-reserved-",
	[0x0e] = "evt_unknown",		[0x0f] = "evt_flushed",
	[0x10] = "-reserved-",		[0x11] = "ack_complete",
	[0x12] = "ack_pending ",	[0x13] = "-reserved-",
	[0x14] = "ack_busy_X",		[0x15] = "ack_busy_A",
	[0x16] = "ack_busy_B",		[0x17] = "-reserved-",
	[0x18] = "-reserved-",		[0x19] = "-reserved-",
	[0x1a] = "-reserved-",		[0x1b] = "ack_tardy",
	[0x1c] = "-reserved-",		[0x1d] = "ack_data_error",
	[0x1e] = "ack_type_error",	[0x1f] = "-reserved-",
	[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
	[0x0] = "QW req",		[0x1] = "BW req",
	[0x2] = "W resp",		[0x3] = "-reserved-",
	[0x4] = "QR req",		[0x5] = "BR req",
	[0x6] = "QR resp",		[0x7] = "BR resp",
	[0x8] = "cycle start",		[0x9] = "Lk req",
	[0xa] = "async stream packet",	[0xb] = "Lk resp",
	[0xc] = "-reserved-",		[0xd] = "-reserved-",
	[0xe] = "link internal",	[0xf] = "-reserved-",
};

static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
	int tcode = header[0] >> 4 & 0xf;
	char specific[12];

	if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
		return;

	if (unlikely(evt >= ARRAY_SIZE(evts)))
			evt = 0x1f;

446
	if (evt == OHCI1394_evt_bus_reset) {
447 448
		fw_notify("A%c evt_bus_reset, generation %d\n",
		    dir, (header[2] >> 16) & 0xff);
449 450 451
		return;
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465
	switch (tcode) {
	case 0x0: case 0x6: case 0x8:
		snprintf(specific, sizeof(specific), " = %08x",
			 be32_to_cpu((__force __be32)header[3]));
		break;
	case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
		snprintf(specific, sizeof(specific), " %x,%x",
			 header[3] >> 16, header[3] & 0xffff);
		break;
	default:
		specific[0] = '\0';
	}

	switch (tcode) {
466
	case 0xa:
467
		fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468
		break;
469 470 471 472
	case 0xe:
		fw_notify("A%c %s, PHY %08x %08x\n",
			  dir, evts[evt], header[1], header[2]);
		break;
473
	case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 475 476 477 478 479
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s, %04x%08x%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 481
		break;
	default:
482 483 484 485 486 487
		fw_notify("A%c spd %x tl %02x, "
		    "%04x -> %04x, %s, "
		    "%s%s\n",
		    dir, speed, header[0] >> 10 & 0x3f,
		    header[1] >> 16, header[0] >> 16, evts[evt],
		    tcodes[tcode], specific);
488 489 490 491 492
	}
}

#else

493 494 495 496
#define param_debug 0
static inline void log_irqs(u32 evt) {}
static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
497 498 499

#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */

A
Adrian Bunk 已提交
500
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
501 502 503 504
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
505
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
506 507 508 509
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
510
static inline void flush_writes(const struct fw_ohci *ohci)
511 512 513 514 515
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

516
static int read_phy_reg(struct fw_ohci *ohci, int addr)
517
{
518
	u32 val;
519
	int i;
520 521

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
522
	for (i = 0; i < 3 + 100; i++) {
523 524 525 526
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (val & OHCI1394_PhyControl_ReadDone)
			return OHCI1394_PhyControl_ReadData(val);

527 528 529 530 531 532
		/*
		 * Try a few times without waiting.  Sleeping is necessary
		 * only when the link/PHY interface is busy.
		 */
		if (i >= 3)
			msleep(1);
533
	}
534
	fw_error("failed to read phy reg\n");
535

536 537
	return -EBUSY;
}
538

539 540 541
static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
{
	int i;
542 543

	reg_write(ohci, OHCI1394_PhyControl,
544
		  OHCI1394_PhyControl_Write(addr, val));
545
	for (i = 0; i < 3 + 100; i++) {
546 547 548
		val = reg_read(ohci, OHCI1394_PhyControl);
		if (!(val & OHCI1394_PhyControl_WritePending))
			return 0;
549

550 551
		if (i >= 3)
			msleep(1);
552 553 554 555
	}
	fw_error("failed to write phy reg\n");

	return -EBUSY;
556 557
}

558 559
static int update_phy_reg(struct fw_ohci *ohci, int addr,
			  int clear_bits, int set_bits)
560
{
561
	int ret = read_phy_reg(ohci, addr);
562 563
	if (ret < 0)
		return ret;
564

565 566 567 568 569 570 571
	/*
	 * The interrupt status bits are cleared by writing a one bit.
	 * Avoid clearing them unless explicitly requested in set_bits.
	 */
	if (addr == 5)
		clear_bits |= PHY_INT_STATUS_BITS;

572
	return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
573 574
}

575
static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
576
{
577
	int ret;
578

579
	ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
580 581
	if (ret < 0)
		return ret;
582

583
	return read_phy_reg(ohci, addr);
584 585
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static int ohci_read_phy_reg(struct fw_card *card, int addr)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = read_phy_reg(ohci, addr);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
}

static int ohci_update_phy_reg(struct fw_card *card, int addr,
			       int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	int ret;

	mutex_lock(&ohci->phy_reg_mutex);
	ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
	mutex_unlock(&ohci->phy_reg_mutex);

	return ret;
609 610
}

611 612 613 614 615 616
static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
{
	return page_private(ctx->pages[i]);
}

static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
617
{
618
	struct descriptor *d;
619

620 621 622 623
	d = &ctx->descriptors[index];
	d->branch_address  &= cpu_to_le32(~0xf);
	d->res_count       =  cpu_to_le16(PAGE_SIZE);
	d->transfer_status =  0;
624

625
	wmb(); /* finish init of new descriptors before branch_address update */
626 627 628 629
	d = &ctx->descriptors[ctx->last_buffer_index];
	d->branch_address  |= cpu_to_le32(1);

	ctx->last_buffer_index = index;
630

631
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
632
	flush_writes(ctx->ohci);
633 634
}

635
static void ar_context_release(struct ar_context *ctx)
636
{
637
	unsigned int i;
638

639 640
	if (ctx->buffer)
		vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
641

642 643 644 645 646 647 648
	for (i = 0; i < AR_BUFFERS; i++)
		if (ctx->pages[i]) {
			dma_unmap_page(ctx->ohci->card.device,
				       ar_buffer_bus(ctx, i),
				       PAGE_SIZE, DMA_FROM_DEVICE);
			__free_page(ctx->pages[i]);
		}
649 650
}

651
static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
652
{
653 654 655
	if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
		reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
		flush_writes(ctx->ohci);
656

657
		fw_error("AR error: %s; DMA stopped\n", error_msg);
658
	}
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	/* FIXME: restart? */
}

static inline unsigned int ar_next_buffer_index(unsigned int index)
{
	return (index + 1) % AR_BUFFERS;
}

static inline unsigned int ar_prev_buffer_index(unsigned int index)
{
	return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
}

static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
{
	return ar_next_buffer_index(ctx->last_buffer_index);
}

/*
 * We search for the buffer that contains the last AR packet DMA data written
 * by the controller.
 */
static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
						 unsigned int *buffer_offset)
{
	unsigned int i, next_i, last = ctx->last_buffer_index;
	__le16 res_count, next_res_count;

	i = ar_first_buffer_index(ctx);
	res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);

	/* A buffer that is not yet completely filled must be the last one. */
	while (i != last && res_count == 0) {

		/* Peek at the next descriptor. */
		next_i = ar_next_buffer_index(i);
		rmb(); /* read descriptors in order */
		next_res_count = ACCESS_ONCE(
				ctx->descriptors[next_i].res_count);
		/*
		 * If the next descriptor is still empty, we must stop at this
		 * descriptor.
		 */
		if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
			/*
			 * The exception is when the DMA data for one packet is
			 * split over three buffers; in this case, the middle
			 * buffer's descriptor might be never updated by the
			 * controller and look still empty, and we have to peek
			 * at the third one.
			 */
			if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
				next_i = ar_next_buffer_index(next_i);
				rmb();
				next_res_count = ACCESS_ONCE(
					ctx->descriptors[next_i].res_count);
				if (next_res_count != cpu_to_le16(PAGE_SIZE))
					goto next_buffer_is_active;
			}

			break;
		}

next_buffer_is_active:
		i = next_i;
		res_count = next_res_count;
	}

	rmb(); /* read res_count before the DMA data */

	*buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
	if (*buffer_offset > PAGE_SIZE) {
		*buffer_offset = 0;
		ar_context_abort(ctx, "corrupted descriptor");
	}

	return i;
}

static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
				    unsigned int end_buffer_index,
				    unsigned int end_buffer_offset)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer_index) {
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					PAGE_SIZE, DMA_FROM_DEVICE);
		i = ar_next_buffer_index(i);
	}
	if (end_buffer_offset > 0)
		dma_sync_single_for_cpu(ctx->ohci->card.device,
					ar_buffer_bus(ctx, i),
					end_buffer_offset, DMA_FROM_DEVICE);
755 756
}

757 758
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
759
	(ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
760 761 762 763
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif

764
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
765 766
{
	struct fw_ohci *ohci = ctx->ohci;
767 768
	struct fw_packet p;
	u32 status, length, tcode;
769
	int evt;
770

771 772 773
	p.header[0] = cond_le32_to_cpu(buffer[0]);
	p.header[1] = cond_le32_to_cpu(buffer[1]);
	p.header[2] = cond_le32_to_cpu(buffer[2]);
774 775 776 777 778

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
779
		p.header[3] = (__force __u32) buffer[3];
780
		p.header_length = 16;
781
		p.payload_length = 0;
782 783 784
		break;

	case TCODE_READ_BLOCK_REQUEST :
785
		p.header[3] = cond_le32_to_cpu(buffer[3]);
786 787 788 789 790
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
791 792 793
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
794
		p.header[3] = cond_le32_to_cpu(buffer[3]);
795
		p.header_length = 16;
796
		p.payload_length = p.header[3] >> 16;
797 798 799 800
		if (p.payload_length > MAX_ASYNC_PAYLOAD) {
			ar_context_abort(ctx, "invalid packet length");
			return NULL;
		}
801 802 803 804
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
805
	case OHCI_TCODE_PHY_PACKET:
806
		p.header_length = 12;
807
		p.payload_length = 0;
808
		break;
809 810

	default:
811 812
		ar_context_abort(ctx, "invalid tcode");
		return NULL;
813
	}
814

815 816 817 818
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
819
	status = cond_le32_to_cpu(buffer[length]);
820
	evt    = (status >> 16) & 0x1f;
821

822
	p.ack        = evt - 16;
823 824 825
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
826

827
	log_ar_at_event('R', p.speed, p.header, evt);
828

829
	/*
830 831 832 833 834 835 836 837 838
	 * Several controllers, notably from NEC and VIA, forget to
	 * write ack_complete status at PHY packet reception.
	 */
	if (evt == OHCI1394_evt_no_status &&
	    (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
		p.ack = ACK_COMPLETE;

	/*
	 * The OHCI bus reset handler synthesizes a PHY packet with
839 840 841 842 843
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
844
	 * request.
845 846 847 848
	 *
	 * Alas some chips sometimes emit bus reset packets with a
	 * wrong generation.  We set the correct generation for these
	 * at a slightly incorrect time (in bus_reset_tasklet).
849
	 */
850
	if (evt == OHCI1394_evt_bus_reset) {
851
		if (!(ohci->quirks & QUIRK_RESET_PACKET))
852 853
			ohci->request_generation = (p.header[2] >> 16) & 0xff;
	} else if (ctx == &ohci->ar_request_ctx) {
854
		fw_core_handle_request(&ohci->card, &p);
855
	} else {
856
		fw_core_handle_response(&ohci->card, &p);
857
	}
858

859 860
	return buffer + length + 1;
}
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
{
	void *next;

	while (p < end) {
		next = handle_ar_packet(ctx, p);
		if (!next)
			return p;
		p = next;
	}

	return p;
}

static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
{
	unsigned int i;

	i = ar_first_buffer_index(ctx);
	while (i != end_buffer) {
		dma_sync_single_for_device(ctx->ohci->card.device,
					   ar_buffer_bus(ctx, i),
					   PAGE_SIZE, DMA_FROM_DEVICE);
		ar_context_link_page(ctx, i);
		i = ar_next_buffer_index(i);
	}
}

890 891 892
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
893 894
	unsigned int end_buffer_index, end_buffer_offset;
	void *p, *end;
895

896 897 898
	p = ctx->pointer;
	if (!p)
		return;
899

900 901 902 903
	end_buffer_index = ar_search_last_active_buffer(ctx,
							&end_buffer_offset);
	ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
	end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
904

905
	if (end_buffer_index < ar_first_buffer_index(ctx)) {
906
		/*
907 908 909 910
		 * The filled part of the overall buffer wraps around; handle
		 * all packets up to the buffer end here.  If the last packet
		 * wraps around, its tail will be visible after the buffer end
		 * because the buffer start pages are mapped there again.
911
		 */
912 913 914 915 916 917 918
		void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
		p = handle_ar_packets(ctx, p, buffer_end);
		if (p < buffer_end)
			goto error;
		/* adjust p to point back into the actual buffer */
		p -= AR_BUFFERS * PAGE_SIZE;
	}
919

920 921 922 923 924 925
	p = handle_ar_packets(ctx, p, end);
	if (p != end) {
		if (p > end)
			ar_context_abort(ctx, "inconsistent descriptor");
		goto error;
	}
926

927 928
	ctx->pointer = p;
	ar_recycle_buffers(ctx, end_buffer_index);
929

930
	return;
931

932 933
error:
	ctx->pointer = NULL;
934 935
}

936 937
static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
			   unsigned int descriptors_offset, u32 regs)
938
{
939 940 941 942
	unsigned int i;
	dma_addr_t dma_addr;
	struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
	struct descriptor *d;
943

944 945
	ctx->regs        = regs;
	ctx->ohci        = ohci;
946 947
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	for (i = 0; i < AR_BUFFERS; i++) {
		ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
		if (!ctx->pages[i])
			goto out_of_memory;
		dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
					0, PAGE_SIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(ohci->card.device, dma_addr)) {
			__free_page(ctx->pages[i]);
			ctx->pages[i] = NULL;
			goto out_of_memory;
		}
		set_page_private(ctx->pages[i], dma_addr);
	}

	for (i = 0; i < AR_BUFFERS; i++)
		pages[i]              = ctx->pages[i];
	for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
		pages[AR_BUFFERS + i] = ctx->pages[i];
	ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
967
				 -1, PAGE_KERNEL);
968 969 970
	if (!ctx->buffer)
		goto out_of_memory;

971 972
	ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
	ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
973 974 975 976 977 978 979 980 981 982 983

	for (i = 0; i < AR_BUFFERS; i++) {
		d = &ctx->descriptors[i];
		d->req_count      = cpu_to_le16(PAGE_SIZE);
		d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						DESCRIPTOR_STATUS |
						DESCRIPTOR_BRANCH_ALWAYS);
		d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
		d->branch_address = cpu_to_le32(ctx->descriptors_bus +
			ar_next_buffer_index(i) * sizeof(struct descriptor));
	}
984

985
	return 0;
986 987 988 989 990

out_of_memory:
	ar_context_release(ctx);

	return -ENOMEM;
991 992 993 994
}

static void ar_context_run(struct ar_context *ctx)
{
995 996 997 998
	unsigned int i;

	for (i = 0; i < AR_BUFFERS; i++)
		ar_context_link_page(ctx, i);
999

1000
	ctx->pointer = ctx->buffer;
1001

1002
	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1003
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1004
	flush_writes(ctx->ohci);
1005
}
S
Stefan Richter 已提交
1006

1007
static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
{
	int b, key;

	b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
	key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;

	/* figure out which descriptor the branch address goes in */
	if (z == 2 && (b == 3 || key == 2))
		return d;
	else
		return d + z - 1;
}

1021 1022 1023 1024 1025 1026
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct descriptor *d, *last;
	u32 address;
	int z;
1027
	struct descriptor_buffer *desc;
1028

1029 1030 1031
	desc = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);
	last = ctx->last;
1032
	while (last->branch_address != 0) {
1033
		struct descriptor_buffer *old_desc = desc;
1034 1035
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
1036 1037 1038 1039 1040 1041 1042 1043 1044
		address &= ~0xf;

		/* If the branch address points to a buffer outside of the
		 * current buffer, advance to the next buffer. */
		if (address < desc->buffer_bus ||
				address >= desc->buffer_bus + desc->used)
			desc = list_entry(desc->list.next,
					struct descriptor_buffer, list);
		d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1045
		last = find_branch_descriptor(d, z);
1046 1047 1048 1049

		if (!ctx->callback(ctx, d, last))
			break;

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		if (old_desc != desc) {
			/* If we've advanced to the next buffer, move the
			 * previous buffer to the free list. */
			unsigned long flags;
			old_desc->used = 0;
			spin_lock_irqsave(&ctx->ohci->lock, flags);
			list_move_tail(&old_desc->list, &ctx->buffer_list);
			spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		}
		ctx->last = last;
1060 1061 1062
	}
}

1063 1064 1065 1066
/*
 * Allocate a new buffer and add it to the list of free buffers for this
 * context.  Must be called with ohci->lock held.
 */
1067
static int context_add_buffer(struct context *ctx)
1068 1069
{
	struct descriptor_buffer *desc;
1070
	dma_addr_t uninitialized_var(bus_addr);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	int offset;

	/*
	 * 16MB of descriptors should be far more than enough for any DMA
	 * program.  This will catch run-away userspace or DoS attacks.
	 */
	if (ctx->total_allocation >= 16*1024*1024)
		return -ENOMEM;

	desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
			&bus_addr, GFP_ATOMIC);
	if (!desc)
		return -ENOMEM;

	offset = (void *)&desc->buffer - (void *)desc;
	desc->buffer_size = PAGE_SIZE - offset;
	desc->buffer_bus = bus_addr + offset;
	desc->used = 0;

	list_add_tail(&desc->list, &ctx->buffer_list);
	ctx->total_allocation += PAGE_SIZE;

	return 0;
}

1096 1097
static int context_init(struct context *ctx, struct fw_ohci *ohci,
			u32 regs, descriptor_callback_t callback)
1098 1099 1100
{
	ctx->ohci = ohci;
	ctx->regs = regs;
1101 1102 1103 1104
	ctx->total_allocation = 0;

	INIT_LIST_HEAD(&ctx->buffer_list);
	if (context_add_buffer(ctx) < 0)
1105 1106
		return -ENOMEM;

1107 1108 1109
	ctx->buffer_tail = list_entry(ctx->buffer_list.next,
			struct descriptor_buffer, list);

1110 1111 1112
	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

1113 1114
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
1115
	 * branch address and looks like it's been sent.  That way we
1116
	 * have a descriptor to append DMA programs to.
1117
	 */
1118 1119 1120 1121 1122 1123
	memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
	ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
	ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
	ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
	ctx->last = ctx->buffer_tail->buffer;
	ctx->prev = ctx->buffer_tail->buffer;
1124 1125 1126 1127

	return 0;
}

1128
static void context_release(struct context *ctx)
1129 1130
{
	struct fw_card *card = &ctx->ohci->card;
1131
	struct descriptor_buffer *desc, *tmp;
1132

1133 1134 1135 1136
	list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
		dma_free_coherent(card->device, PAGE_SIZE, desc,
			desc->buffer_bus -
			((void *)&desc->buffer - (void *)desc));
1137 1138
}

1139
/* Must be called with ohci->lock held */
1140 1141
static struct descriptor *context_get_descriptors(struct context *ctx,
						  int z, dma_addr_t *d_bus)
1142
{
1143 1144 1145 1146 1147 1148 1149 1150 1151
	struct descriptor *d = NULL;
	struct descriptor_buffer *desc = ctx->buffer_tail;

	if (z * sizeof(*d) > desc->buffer_size)
		return NULL;

	if (z * sizeof(*d) > desc->buffer_size - desc->used) {
		/* No room for the descriptor in this buffer, so advance to the
		 * next one. */
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		if (desc->list.next == &ctx->buffer_list) {
			/* If there is no free buffer next in the list,
			 * allocate one. */
			if (context_add_buffer(ctx) < 0)
				return NULL;
		}
		desc = list_entry(desc->list.next,
				struct descriptor_buffer, list);
		ctx->buffer_tail = desc;
	}
1163

1164
	d = desc->buffer + desc->used / sizeof(*d);
1165
	memset(d, 0, z * sizeof(*d));
1166
	*d_bus = desc->buffer_bus + desc->used;
1167 1168 1169 1170

	return d;
}

1171
static void context_run(struct context *ctx, u32 extra)
1172 1173 1174
{
	struct fw_ohci *ohci = ctx->ohci;

1175
	reg_write(ohci, COMMAND_PTR(ctx->regs),
1176
		  le32_to_cpu(ctx->last->branch_address));
1177 1178
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1179
	ctx->running = true;
1180 1181 1182 1183 1184 1185 1186
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;
1187
	struct descriptor_buffer *desc = ctx->buffer_tail;
1188

1189
	d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1190

1191
	desc->used += (z + extra) * sizeof(*d);
1192 1193

	wmb(); /* finish init of new descriptors before branch_address update */
1194 1195
	ctx->prev->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev = find_branch_descriptor(d, z);
1196

1197
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1198 1199 1200 1201 1202 1203
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
1204
	int i;
1205

1206
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1207
	ctx->running = false;
1208
	flush_writes(ctx->ohci);
1209

1210
	for (i = 0; i < 10; i++) {
1211
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1212
		if ((reg & CONTEXT_ACTIVE) == 0)
1213
			return;
1214

1215
		mdelay(1);
1216
	}
1217
	fw_error("Error: DMA context still active (0x%08x)\n", reg);
1218
}
1219

1220 1221 1222
struct driver_data {
	struct fw_packet *packet;
};
1223

1224 1225
/*
 * This function apppends a packet to the DMA queue for transmission.
1226
 * Must always be called with the ochi->lock held to ensure proper
1227 1228
 * generation handling and locking around packet queue manipulation.
 */
1229 1230
static int at_context_queue_packet(struct context *ctx,
				   struct fw_packet *packet)
1231 1232
{
	struct fw_ohci *ohci = ctx->ohci;
1233
	dma_addr_t d_bus, uninitialized_var(payload_bus);
1234 1235 1236
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
1237 1238
	int z, tcode;

1239 1240 1241 1242
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1243 1244
	}

1245
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1246 1247
	d[0].res_count = cpu_to_le16(packet->timestamp);

1248 1249
	/*
	 * The DMA format for asyncronous link packets is different
1250
	 * from the IEEE1394 layout, so shift the fields around
1251
	 * accordingly.
1252
	 */
1253

1254
	tcode = (packet->header[0] >> 4) & 0x0f;
1255
	header = (__le32 *) &d[1];
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
1266 1267 1268 1269 1270
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
1271 1272

		if (TCODE_IS_BLOCK_PACKET(tcode))
1273
			header[3] = cpu_to_le32(packet->header[3]);
1274
		else
1275 1276 1277
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
1278 1279
		break;

1280
	case TCODE_LINK_INTERNAL:
1281 1282
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
1283 1284
		header[1] = cpu_to_le32(packet->header[1]);
		header[2] = cpu_to_le32(packet->header[2]);
1285
		d[0].req_count = cpu_to_le16(12);
S
Stefan Richter 已提交
1286

1287
		if (is_ping_packet(&packet->header[1]))
S
Stefan Richter 已提交
1288
			d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1289 1290
		break;

1291
	case TCODE_STREAM_DATA:
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
		d[0].req_count = cpu_to_le16(8);
		break;

	default:
		/* BUG(); */
		packet->ack = RCODE_SEND_ERROR;
		return -1;
1302 1303
	}

1304 1305
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
1306
	packet->driver_data = driver_data;
1307

1308 1309 1310 1311
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
1312
		if (dma_mapping_error(ohci->card.device, payload_bus)) {
1313 1314 1315
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}
1316 1317
		packet->payload_bus	= payload_bus;
		packet->payload_mapped	= true;
1318 1319 1320 1321 1322

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
1323
	} else {
1324 1325
		last = &d[0];
		z = 2;
1326 1327
	}

1328 1329 1330
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
1331

1332 1333
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
1334
		if (packet->payload_mapped)
1335 1336
			dma_unmap_single(ohci->card.device, payload_bus,
					 packet->payload_length, DMA_TO_DEVICE);
1337 1338 1339 1340 1341
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
1342

1343
	if (!ctx->running)
1344 1345 1346
		context_run(ctx, 0);

	return 0;
1347 1348
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static void at_context_flush(struct context *ctx)
{
	tasklet_disable(&ctx->tasklet);

	ctx->flushing = true;
	context_tasklet((unsigned long)ctx);
	ctx->flushing = false;

	tasklet_enable(&ctx->tasklet);
}

1360 1361 1362
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1363
{
1364
	struct driver_data *driver_data;
1365
	struct fw_packet *packet;
1366
	struct fw_ohci *ohci = context->ohci;
1367 1368
	int evt;

1369
	if (last->transfer_status == 0 && !context->flushing)
1370 1371
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
1372

1373 1374 1375 1376 1377
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
1378

1379
	if (packet->payload_mapped)
1380
		dma_unmap_single(ohci->card.device, packet->payload_bus,
1381 1382
				 packet->payload_length, DMA_TO_DEVICE);

1383 1384
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
1385

1386 1387
	log_ar_at_event('T', packet->speed, packet->header, evt);

1388 1389 1390 1391 1392
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
1393

1394
	case OHCI1394_evt_flushed:
1395 1396 1397 1398
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
1399 1400
		packet->ack = RCODE_GENERATION;
		break;
1401

1402
	case OHCI1394_evt_missing_ack:
1403 1404 1405 1406 1407 1408 1409 1410 1411
		if (context->flushing)
			packet->ack = RCODE_GENERATION;
		else {
			/*
			 * Using a valid (current) generation count, but the
			 * node is not on the bus or not sending acks.
			 */
			packet->ack = RCODE_NO_ACK;
		}
1412
		break;
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
1423

1424 1425 1426 1427 1428 1429 1430
	case OHCI1394_evt_no_status:
		if (context->flushing) {
			packet->ack = RCODE_GENERATION;
			break;
		}
		/* fall through */

1431 1432 1433 1434
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
1435

1436
	packet->callback(packet, &ohci->card, packet->ack);
1437

1438
	return 1;
1439 1440
}

1441 1442 1443 1444 1445
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
1446

1447 1448
static void handle_local_rom(struct fw_ohci *ohci,
			     struct fw_packet *packet, u32 csr)
1449 1450 1451 1452
{
	struct fw_packet response;
	int tcode, length, i;

1453
	tcode = HEADER_GET_TCODE(packet->header[0]);
1454
	if (TCODE_IS_BLOCK_PACKET(tcode))
1455
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

1474 1475
static void handle_local_lock(struct fw_ohci *ohci,
			      struct fw_packet *packet, u32 csr)
1476 1477
{
	struct fw_packet response;
1478
	int tcode, length, ext_tcode, sel, try;
1479 1480 1481
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

1482 1483
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1484
	payload = packet->payload;
1485
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
	for (try = 0; try < 20; try++)
		if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
			lock_old = cpu_to_be32(reg_read(ohci,
							OHCI1394_CSRData));
			fw_fill_response(&response, packet->header,
					 RCODE_COMPLETE,
					 &lock_old, sizeof(lock_old));
			goto out;
		}

	fw_error("swap not done (CSR lock timeout)\n");
	fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1517 1518 1519 1520 1521

 out:
	fw_core_handle_response(&ohci->card, &response);
}

1522
static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1523
{
1524
	u64 offset, csr;
1525

1526 1527 1528 1529
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1530 1531 1532

	offset =
		((unsigned long long)
1533
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
1554 1555 1556 1557 1558

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
1559
}
1560

1561
static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1562 1563
{
	unsigned long flags;
1564
	int ret;
1565 1566 1567

	spin_lock_irqsave(&ctx->ohci->lock, flags);

1568
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1569
	    ctx->ohci->generation == packet->generation) {
1570 1571 1572
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
1573
	}
1574

1575
	ret = at_context_queue_packet(ctx, packet);
1576 1577
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

1578
	if (ret < 0)
1579
		packet->callback(packet, &ctx->ohci->card, packet->ack);
1580

1581 1582
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static void detect_dead_context(struct fw_ohci *ohci,
				const char *name, unsigned int regs)
{
	u32 ctl;

	ctl = reg_read(ohci, CONTROL_SET(regs));
	if (ctl & CONTEXT_DEAD) {
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
		fw_error("DMA context %s has stopped, error code: %s\n",
			 name, evts[ctl & 0x1f]);
#else
		fw_error("DMA context %s has stopped, error code: %#x\n",
			 name, ctl & 0x1f);
#endif
	}
}

static void handle_dead_contexts(struct fw_ohci *ohci)
{
	unsigned int i;
	char name[8];

	detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
	detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
	detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
	detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
	for (i = 0; i < 32; ++i) {
		if (!(ohci->it_context_support & (1 << i)))
			continue;
		sprintf(name, "IT%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
	}
	for (i = 0; i < 32; ++i) {
		if (!(ohci->ir_context_support & (1 << i)))
			continue;
		sprintf(name, "IR%u", i);
		detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
	}
	/* TODO: maybe try to flush and restart the dead contexts */
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
static u32 cycle_timer_ticks(u32 cycle_timer)
{
	u32 ticks;

	ticks = cycle_timer & 0xfff;
	ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
	ticks += (3072 * 8000) * (cycle_timer >> 25);

	return ticks;
}

/*
 * Some controllers exhibit one or more of the following bugs when updating the
 * iso cycle timer register:
 *  - When the lowest six bits are wrapping around to zero, a read that happens
 *    at the same time will return garbage in the lowest ten bits.
 *  - When the cycleOffset field wraps around to zero, the cycleCount field is
 *    not incremented for about 60 ns.
 *  - Occasionally, the entire register reads zero.
 *
 * To catch these, we read the register three times and ensure that the
 * difference between each two consecutive reads is approximately the same, i.e.
 * less than twice the other.  Furthermore, any negative difference indicates an
 * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
 * execute, so we have enough precision to compute the ratio of the differences.)
 */
static u32 get_cycle_time(struct fw_ohci *ohci)
{
	u32 c0, c1, c2;
	u32 t0, t1, t2;
	s32 diff01, diff12;
	int i;

	c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);

	if (ohci->quirks & QUIRK_CYCLE_TIMER) {
		i = 0;
		c1 = c2;
		c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		do {
			c0 = c1;
			c1 = c2;
			c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
			t0 = cycle_timer_ticks(c0);
			t1 = cycle_timer_ticks(c1);
			t2 = cycle_timer_ticks(c2);
			diff01 = t1 - t0;
			diff12 = t2 - t1;
		} while ((diff01 <= 0 || diff12 <= 0 ||
			  diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
			 && i++ < 20);
	}

	return c2;
}

/*
 * This function has to be called at least every 64 seconds.  The bus_time
 * field stores not only the upper 25 bits of the BUS_TIME register but also
 * the most significant bit of the cycle timer in bit 6 so that we can detect
 * changes in this bit.
 */
static u32 update_bus_time(struct fw_ohci *ohci)
{
	u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;

	if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
		ohci->bus_time += 0x40;

	return ohci->bus_time | cycle_time_seconds;
}

1696 1697 1698
static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
1699
	int self_id_count, i, j, reg;
1700 1701
	int generation, new_generation;
	unsigned long flags;
1702 1703
	void *free_rom = NULL;
	dma_addr_t free_rom_bus = 0;
1704
	bool is_new_root;
1705 1706 1707

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
1708
		fw_notify("node ID not valid, new bus reset in progress\n");
1709 1710
		return;
	}
1711 1712 1713 1714 1715 1716
	if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
		fw_notify("malconfigured bus\n");
		return;
	}
	ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
			       OHCI1394_NodeID_nodeNumber);
1717

1718 1719 1720 1721 1722 1723
	is_new_root = (reg & OHCI1394_NodeID_root) != 0;
	if (!(ohci->is_root && is_new_root))
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	ohci->is_root = is_new_root;

1724 1725 1726 1727 1728
	reg = reg_read(ohci, OHCI1394_SelfIDCount);
	if (reg & OHCI1394_SelfIDCount_selfIDError) {
		fw_notify("inconsistent self IDs\n");
		return;
	}
1729 1730
	/*
	 * The count in the SelfIDCount register is the number of
1731 1732
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
1733 1734
	 * bit extra to get the actual number of self IDs.
	 */
1735 1736
	self_id_count = (reg >> 3) & 0xff;
	if (self_id_count == 0 || self_id_count > 252) {
1737 1738 1739
		fw_notify("inconsistent self IDs\n");
		return;
	}
1740
	generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1741
	rmb();
1742 1743

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1744 1745 1746 1747
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
			fw_notify("inconsistent self IDs\n");
			return;
		}
1748 1749
		ohci->self_id_buffer[j] =
				cond_le32_to_cpu(ohci->self_id_cpu[i]);
1750
	}
1751
	rmb();
1752

1753 1754
	/*
	 * Check the consistency of the self IDs we just read.  The
1755 1756 1757 1758 1759 1760 1761 1762 1763
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
1764 1765
	 * of self IDs.
	 */
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

1777
	ohci->generation = -1; /* prevent AT packet queueing */
1778 1779
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
1780 1781 1782

	spin_unlock_irqrestore(&ohci->lock, flags);

1783 1784 1785 1786 1787
	/*
	 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
	 * packets in the AT queues and software needs to drain them.
	 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
	 */
1788 1789 1790 1791 1792 1793
	at_context_flush(&ohci->at_request_ctx);
	at_context_flush(&ohci->at_response_ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
1794 1795
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

1796
	if (ohci->quirks & QUIRK_RESET_PACKET)
1797 1798
		ohci->request_generation = generation;

1799 1800
	/*
	 * This next bit is unrelated to the AT context stuff but we
1801 1802 1803 1804
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
T
Thomas Weber 已提交
1805
	 * next_config_rom pointer so a new update can take place.
1806
	 */
1807 1808

	if (ohci->next_config_rom != NULL) {
1809 1810 1811 1812
		if (ohci->next_config_rom != ohci->config_rom) {
			free_rom      = ohci->config_rom;
			free_rom_bus  = ohci->config_rom_bus;
		}
1813 1814 1815 1816
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

1817 1818
		/*
		 * Restore config_rom image and manually update
1819 1820
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
1821 1822
		 * do that last.
		 */
1823 1824
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
1825 1826 1827
		ohci->config_rom[0] = ohci->next_header;
		reg_write(ohci, OHCI1394_ConfigROMhdr,
			  be32_to_cpu(ohci->next_header));
1828 1829
	}

1830 1831 1832 1833 1834
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
	reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif

1835 1836
	spin_unlock_irqrestore(&ohci->lock, flags);

1837 1838 1839 1840
	if (free_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  free_rom, free_rom_bus);

1841 1842
	log_selfids(ohci->node_id, generation,
		    self_id_count, ohci->self_id_buffer);
1843

1844
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1845 1846 1847
				 self_id_count, ohci->self_id_buffer,
				 ohci->csr_state_setclear_abdicate);
	ohci->csr_state_setclear_abdicate = false;
1848 1849 1850 1851 1852
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
1853
	u32 event, iso_event;
1854 1855 1856 1857
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

1858
	if (!event || !~event)
1859 1860
		return IRQ_NONE;

1861 1862 1863 1864 1865 1866
	/*
	 * busReset and postedWriteErr must not be cleared yet
	 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
	 */
	reg_write(ohci, OHCI1394_IntEventClear,
		  event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1867
	log_irqs(event);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (event & OHCI1394_isochRx) {
		iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->ir_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1894 1895
	}

1896 1897 1898
	if (event & OHCI1394_isochTx) {
		iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1899

1900 1901 1902 1903 1904 1905
		while (iso_event) {
			i = ffs(iso_event) - 1;
			tasklet_schedule(
				&ohci->it_context_list[i].context.tasklet);
			iso_event &= ~(1 << i);
		}
1906 1907
	}

1908 1909 1910 1911
	if (unlikely(event & OHCI1394_regAccessFail))
		fw_error("Register access failure - "
			 "please notify linux1394-devel@lists.sf.net\n");

1912 1913 1914 1915 1916
	if (unlikely(event & OHCI1394_postedWriteErr)) {
		reg_read(ohci, OHCI1394_PostedWriteAddressHi);
		reg_read(ohci, OHCI1394_PostedWriteAddressLo);
		reg_write(ohci, OHCI1394_IntEventClear,
			  OHCI1394_postedWriteErr);
1917
		fw_error("PCI posted write error\n");
1918
	}
1919

1920 1921 1922 1923 1924 1925 1926
	if (unlikely(event & OHCI1394_cycleTooLong)) {
		if (printk_ratelimit())
			fw_notify("isochronous cycle too long\n");
		reg_write(ohci, OHCI1394_LinkControlSet,
			  OHCI1394_LinkControl_cycleMaster);
	}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	if (unlikely(event & OHCI1394_cycleInconsistent)) {
		/*
		 * We need to clear this event bit in order to make
		 * cycleMatch isochronous I/O work.  In theory we should
		 * stop active cycleMatch iso contexts now and restart
		 * them at least two cycles later.  (FIXME?)
		 */
		if (printk_ratelimit())
			fw_notify("isochronous cycle inconsistent\n");
	}

1938 1939 1940
	if (unlikely(event & OHCI1394_unrecoverableError))
		handle_dead_contexts(ohci);

1941 1942 1943 1944
	if (event & OHCI1394_cycle64Seconds) {
		spin_lock(&ohci->lock);
		update_bus_time(ohci);
		spin_unlock(&ohci->lock);
1945 1946
	} else
		flush_writes(ohci);
1947

1948 1949 1950
	return IRQ_HANDLED;
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1967 1968 1969 1970 1971 1972 1973 1974 1975
static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
{
	size_t size = length * 4;

	memcpy(dest, src, size);
	if (size < CONFIG_ROM_SIZE)
		memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
}

1976 1977 1978
static int configure_1394a_enhancements(struct fw_ohci *ohci)
{
	bool enable_1394a;
1979
	int ret, clear, set, offset;
1980 1981 1982 1983 1984 1985 1986 1987

	/* Check if the driver should configure link and PHY. */
	if (!(reg_read(ohci, OHCI1394_HCControlSet) &
	      OHCI1394_HCControl_programPhyEnable))
		return 0;

	/* Paranoia: check whether the PHY supports 1394a, too. */
	enable_1394a = false;
1988 1989 1990 1991 1992 1993 1994 1995
	ret = read_phy_reg(ohci, 2);
	if (ret < 0)
		return ret;
	if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
		ret = read_paged_phy_reg(ohci, 1, 8);
		if (ret < 0)
			return ret;
		if (ret >= 1)
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
			enable_1394a = true;
	}

	if (ohci->quirks & QUIRK_NO_1394A)
		enable_1394a = false;

	/* Configure PHY and link consistently. */
	if (enable_1394a) {
		clear = 0;
		set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
	} else {
		clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
		set = 0;
	}
2010
	ret = update_phy_reg(ohci, 5, clear, set);
2011 2012
	if (ret < 0)
		return ret;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

	if (enable_1394a)
		offset = OHCI1394_HCControlSet;
	else
		offset = OHCI1394_HCControlClear;
	reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);

	/* Clean up: configuration has been taken care of. */
	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_programPhyEnable);

	return 0;
}

2027 2028
static int ohci_enable(struct fw_card *card,
		       const __be32 *config_rom, size_t length)
2029 2030 2031
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);
2032
	u32 lps, seconds, version, irqs;
2033
	int i, ret;
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
2045 2046
	 * full link enabled.  However, with some cards (well, at least
	 * a JMicron PCIe card), we have to try again sometimes.
2047 2048 2049 2050 2051
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

	for (lps = 0, i = 0; !lps && i < 3; i++) {
		msleep(50);
		lps = reg_read(ohci, OHCI1394_HCControlSet) &
		      OHCI1394_HCControl_LPS;
	}

	if (!lps) {
		fw_error("Failed to set Link Power Status\n");
		return -EIO;
	}
2063 2064 2065 2066

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

2067
	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2068 2069
	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
2070
		  OHCI1394_LinkControl_rcvPhyPkt |
2071 2072 2073 2074 2075 2076
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2077 2078
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
		  (200 << 16));
2079

2080 2081 2082 2083
	seconds = lower_32_bits(get_seconds());
	reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
	ohci->bus_time = seconds & ~0x3f;

2084 2085 2086 2087
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	if (version >= OHCI_VERSION_1_1) {
		reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
			  0xfffffffe);
2088
		card->broadcast_channel_auto_allocated = true;
2089 2090
	}

2091 2092 2093 2094
	/* Get implemented bits of the priority arbitration request counter. */
	reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
	ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
	reg_write(ohci, OHCI1394_FairnessControl, 0);
2095
	card->priority_budget_implemented = ohci->pri_req_max != 0;
2096 2097 2098 2099 2100 2101 2102 2103

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);

2104 2105 2106
	ret = configure_1394a_enhancements(ohci);
	if (ret < 0)
		return ret;
2107

2108
	/* Activate link_on bit and contender bit in our self ID packets.*/
2109 2110 2111
	ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
	if (ret < 0)
		return ret;
2112

2113 2114
	/*
	 * When the link is not yet enabled, the atomic config rom
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

2132 2133 2134 2135 2136 2137 2138
	if (config_rom) {
		ohci->next_config_rom =
			dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
					   &ohci->next_config_rom_bus,
					   GFP_KERNEL);
		if (ohci->next_config_rom == NULL)
			return -ENOMEM;
2139

2140
		copy_config_rom(ohci->next_config_rom, config_rom, length);
2141 2142 2143 2144 2145 2146 2147 2148
	} else {
		/*
		 * In the suspend case, config_rom is NULL, which
		 * means that we just reuse the old config rom.
		 */
		ohci->next_config_rom = ohci->config_rom;
		ohci->next_config_rom_bus = ohci->config_rom_bus;
	}
2149

2150
	ohci->next_header = ohci->next_config_rom[0];
2151 2152
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2153 2154
	reg_write(ohci, OHCI1394_BusOptions,
		  be32_to_cpu(ohci->next_config_rom[2]));
2155 2156 2157 2158
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

2159 2160
	if (!(ohci->quirks & QUIRK_NO_MSI))
		pci_enable_msi(dev);
2161
	if (request_irq(dev->irq, irq_handler,
2162 2163 2164 2165
			pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
			ohci_driver_name, ohci)) {
		fw_error("Failed to allocate interrupt %d.\n", dev->irq);
		pci_disable_msi(dev);
2166 2167 2168 2169 2170
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

2171 2172 2173 2174 2175 2176
	irqs =	OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		OHCI1394_RQPkt | OHCI1394_RSPkt |
		OHCI1394_isochTx | OHCI1394_isochRx |
		OHCI1394_postedWriteErr |
		OHCI1394_selfIDComplete |
		OHCI1394_regAccessFail |
2177
		OHCI1394_cycle64Seconds |
2178 2179 2180
		OHCI1394_cycleInconsistent |
		OHCI1394_unrecoverableError |
		OHCI1394_cycleTooLong |
2181 2182 2183 2184 2185
		OHCI1394_masterIntEnable;
	if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
		irqs |= OHCI1394_busReset;
	reg_write(ohci, OHCI1394_IntMaskSet, irqs);

2186 2187 2188 2189 2190
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

2191 2192
	/* We are ready to go, reset bus to finish initialization. */
	fw_schedule_bus_reset(&ohci->card, false, true);
2193 2194 2195 2196

	return 0;
}

2197
static int ohci_set_config_rom(struct fw_card *card,
2198
			       const __be32 *config_rom, size_t length)
2199 2200 2201 2202
{
	struct fw_ohci *ohci;
	unsigned long flags;
	__be32 *next_config_rom;
2203
	dma_addr_t uninitialized_var(next_config_rom_bus);
2204 2205 2206

	ohci = fw_ohci(card);

2207 2208
	/*
	 * When the OHCI controller is enabled, the config rom update
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	/*
	 * If there is not an already pending config_rom update,
	 * push our new allocation into the ohci->next_config_rom
	 * and then mark the local variable as null so that we
	 * won't deallocate the new buffer.
	 *
	 * OTOH, if there is a pending config_rom update, just
	 * use that buffer with the new config_rom data, and
	 * let this routine free the unused DMA allocation.
	 */

2253 2254 2255
	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;
2256 2257
		next_config_rom = NULL;
	}
2258

2259
	copy_config_rom(ohci->next_config_rom, config_rom, length);
2260

2261 2262
	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
2263

2264
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2265 2266 2267

	spin_unlock_irqrestore(&ohci->lock, flags);

2268 2269 2270 2271 2272
	/* If we didn't use the DMA allocation, delete it. */
	if (next_config_rom != NULL)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);

2273 2274
	/*
	 * Now initiate a bus reset to have the changes take
2275 2276 2277
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
2278 2279
	 * takes effect.
	 */
2280

2281 2282 2283
	fw_schedule_bus_reset(&ohci->card, true, true);

	return 0;
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

2300 2301 2302
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
2303 2304
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
2305
	int ret = -ENOENT;
2306

2307
	tasklet_disable(&ctx->tasklet);
2308

2309 2310
	if (packet->ack != 0)
		goto out;
2311

2312
	if (packet->payload_mapped)
2313 2314 2315
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);

2316
	log_ar_at_event('T', packet->speed, packet->header, 0x20);
2317 2318 2319
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
2320
	ret = 0;
2321 2322
 out:
	tasklet_enable(&ctx->tasklet);
2323

2324
	return ret;
2325 2326
}

2327 2328
static int ohci_enable_phys_dma(struct fw_card *card,
				int node_id, int generation)
2329
{
2330 2331 2332
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
	return 0;
#else
2333 2334
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
2335
	int n, ret = 0;
2336

2337 2338 2339 2340
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
2341 2342 2343 2344

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
2345
		ret = -ESTALE;
2346 2347 2348
		goto out;
	}

2349 2350 2351 2352
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
2353 2354 2355 2356 2357 2358 2359

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

2360 2361
	flush_writes(ohci);
 out:
2362
	spin_unlock_irqrestore(&ohci->lock, flags);
2363 2364

	return ret;
2365
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2366
}
S
Stefan Richter 已提交
2367

2368
static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2369
{
2370
	struct fw_ohci *ohci = fw_ohci(card);
2371 2372
	unsigned long flags;
	u32 value;
2373 2374

	switch (csr_offset) {
2375 2376 2377 2378 2379
	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
		if (ohci->is_root &&
		    (reg_read(ohci, OHCI1394_LinkControlSet) &
		     OHCI1394_LinkControl_cycleMaster))
2380
			value = CSR_STATE_BIT_CMSTR;
2381
		else
2382 2383 2384
			value = 0;
		if (ohci->csr_state_setclear_abdicate)
			value |= CSR_STATE_BIT_ABDICATE;
2385

2386
		return value;
2387

2388 2389 2390
	case CSR_NODE_IDS:
		return reg_read(ohci, OHCI1394_NodeID) << 16;

2391 2392 2393
	case CSR_CYCLE_TIME:
		return get_cycle_time(ohci);

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	case CSR_BUS_TIME:
		/*
		 * We might be called just after the cycle timer has wrapped
		 * around but just before the cycle64Seconds handler, so we
		 * better check here, too, if the bus time needs to be updated.
		 */
		spin_lock_irqsave(&ohci->lock, flags);
		value = update_bus_time(ohci);
		spin_unlock_irqrestore(&ohci->lock, flags);
		return value;

2405 2406 2407 2408
	case CSR_BUSY_TIMEOUT:
		value = reg_read(ohci, OHCI1394_ATRetries);
		return (value >> 4) & 0x0ffff00f;

2409 2410 2411 2412
	case CSR_PRIORITY_BUDGET:
		return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
			(ohci->pri_req_max << 8);

2413 2414 2415 2416
	default:
		WARN_ON(1);
		return 0;
	}
2417 2418
}

2419
static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2420 2421
{
	struct fw_ohci *ohci = fw_ohci(card);
2422
	unsigned long flags;
2423

2424
	switch (csr_offset) {
2425 2426 2427 2428 2429 2430
	case CSR_STATE_CLEAR:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlClear,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2431 2432
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = false;
2433
		break;
2434

2435 2436 2437 2438 2439 2440
	case CSR_STATE_SET:
		if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
			reg_write(ohci, OHCI1394_LinkControlSet,
				  OHCI1394_LinkControl_cycleMaster);
			flush_writes(ohci);
		}
2441 2442
		if (value & CSR_STATE_BIT_ABDICATE)
			ohci->csr_state_setclear_abdicate = true;
2443
		break;
2444

2445 2446 2447 2448 2449
	case CSR_NODE_IDS:
		reg_write(ohci, OHCI1394_NodeID, value >> 16);
		flush_writes(ohci);
		break;

2450 2451 2452 2453 2454 2455 2456
	case CSR_CYCLE_TIME:
		reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
		reg_write(ohci, OHCI1394_IntEventSet,
			  OHCI1394_cycleInconsistent);
		flush_writes(ohci);
		break;

2457 2458 2459 2460 2461 2462
	case CSR_BUS_TIME:
		spin_lock_irqsave(&ohci->lock, flags);
		ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
		spin_unlock_irqrestore(&ohci->lock, flags);
		break;

2463 2464 2465 2466 2467 2468 2469
	case CSR_BUSY_TIMEOUT:
		value = (value & 0xf) | ((value & 0xf) << 4) |
			((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
		reg_write(ohci, OHCI1394_ATRetries, value);
		flush_writes(ohci);
		break;

2470 2471 2472 2473 2474
	case CSR_PRIORITY_BUDGET:
		reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
		flush_writes(ohci);
		break;

2475 2476 2477 2478
	default:
		WARN_ON(1);
		break;
	}
2479 2480
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static void copy_iso_headers(struct iso_context *ctx, void *p)
{
	int i = ctx->header_length;

	if (i + ctx->base.header_size > PAGE_SIZE)
		return;

	/*
	 * The iso header is byteswapped to little endian by
	 * the controller, but the remaining header quadlets
	 * are big endian.  We want to present all the headers
	 * as big endian, so we have to swap the first quadlet.
	 */
	if (ctx->base.header_size > 0)
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
	if (ctx->base.header_size > 4)
		*(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
	if (ctx->base.header_size > 8)
		memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
	ctx->header_length += ctx->base.header_size;
}

2503 2504 2505 2506 2507 2508
static int handle_ir_packet_per_buffer(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2509
	struct descriptor *pd;
2510
	__le32 *ir_header;
2511
	void *p;
2512

2513
	for (pd = d; pd <= last; pd++)
2514 2515 2516
		if (pd->transfer_status)
			break;
	if (pd > last)
2517 2518 2519
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

2520 2521
	p = last + 1;
	copy_iso_headers(ctx, p);
2522

2523 2524
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
		ir_header = (__le32 *) p;
2525 2526 2527 2528
		ctx->base.callback.sc(&ctx->base,
				      le32_to_cpu(ir_header[0]) & 0xffff,
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2529 2530 2531 2532 2533 2534
		ctx->header_length = 0;
	}

	return 1;
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
/* d == last because each descriptor block is only a single descriptor. */
static int handle_ir_buffer_fill(struct context *context,
				 struct descriptor *d,
				 struct descriptor *last)
{
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);

	if (!last->transfer_status)
		/* Descriptor(s) not done yet, stop iteration */
		return 0;

	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
		ctx->base.callback.mc(&ctx->base,
				      le32_to_cpu(last->data_address) +
				      le16_to_cpu(last->req_count) -
				      le16_to_cpu(last->res_count),
				      ctx->base.callback_data);

	return 1;
}

2557 2558 2559
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
2560
{
2561 2562
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
2563 2564
	int i;
	struct descriptor *pd;
S
Stefan Richter 已提交
2565

2566 2567 2568 2569 2570
	for (pd = d; pd <= last; pd++)
		if (pd->transfer_status)
			break;
	if (pd > last)
		/* Descriptor(s) not done yet, stop iteration */
2571 2572
		return 0;

2573 2574 2575 2576 2577 2578 2579 2580 2581
	i = ctx->header_length;
	if (i + 4 < PAGE_SIZE) {
		/* Present this value as big-endian to match the receive code */
		*(__be32 *)(ctx->header + i) = cpu_to_be32(
				((u32)le16_to_cpu(pd->transfer_status) << 16) |
				le16_to_cpu(pd->res_count));
		ctx->header_length += 4;
	}
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2582 2583 2584
		ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
				      ctx->header_length, ctx->header,
				      ctx->base.callback_data);
2585 2586
		ctx->header_length = 0;
	}
2587
	return 1;
2588 2589
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
{
	u32 hi = channels >> 32, lo = channels;

	reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
	reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
	reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
	mmiowb();
	ohci->mc_channels = channels;
}

2602
static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2603
				int type, int channel, size_t header_size)
2604 2605
{
	struct fw_ohci *ohci = fw_ohci(card);
2606 2607 2608 2609
	struct iso_context *uninitialized_var(ctx);
	descriptor_callback_t uninitialized_var(callback);
	u64 *uninitialized_var(channels);
	u32 *uninitialized_var(mask), uninitialized_var(regs);
2610
	unsigned long flags;
2611
	int index, ret = -EBUSY;
2612

2613
	spin_lock_irqsave(&ohci->lock, flags);
2614

2615 2616 2617
	switch (type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		mask     = &ohci->it_context_mask;
2618
		callback = handle_it_packet;
2619 2620 2621 2622 2623 2624 2625 2626 2627
		index    = ffs(*mask) - 1;
		if (index >= 0) {
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoXmitContextBase(index);
			ctx  = &ohci->it_context_list[index];
		}
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2628
		channels = &ohci->ir_context_channels;
2629
		mask     = &ohci->ir_context_mask;
2630
		callback = handle_ir_packet_per_buffer;
2631 2632 2633 2634 2635 2636 2637 2638
		index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			*channels &= ~(1ULL << channel);
			*mask     &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;
2639

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		mask     = &ohci->ir_context_mask;
		callback = handle_ir_buffer_fill;
		index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
		if (index >= 0) {
			ohci->mc_allocated = true;
			*mask &= ~(1 << index);
			regs = OHCI1394_IsoRcvContextBase(index);
			ctx  = &ohci->ir_context_list[index];
		}
		break;

	default:
		index = -1;
		ret = -ENOSYS;
2655
	}
2656

2657 2658 2659
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
2660
		return ERR_PTR(ret);
S
Stefan Richter 已提交
2661

2662
	memset(ctx, 0, sizeof(*ctx));
2663 2664
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
2665 2666
	if (ctx->header == NULL) {
		ret = -ENOMEM;
2667
		goto out;
2668
	}
2669 2670
	ret = context_init(&ctx->context, ohci, regs, callback);
	if (ret < 0)
2671
		goto out_with_header;
2672

2673 2674 2675
	if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
		set_multichannel_mask(ohci, 0);

2676
	return &ctx->base;
2677 2678 2679 2680 2681

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

	switch (type) {
	case FW_ISO_CONTEXT_RECEIVE:
		*channels |= 1ULL << channel;
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ohci->mc_allocated = false;
		break;
	}
2692
	*mask |= 1 << index;
2693

2694 2695
	spin_unlock_irqrestore(&ohci->lock, flags);

2696
	return ERR_PTR(ret);
2697 2698
}

2699 2700
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
2701
{
S
Stefan Richter 已提交
2702
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2703
	struct fw_ohci *ohci = ctx->context.ohci;
2704
	u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2705 2706
	int index;

2707 2708 2709 2710
	/* the controller cannot start without any queued packets */
	if (ctx->context.last->branch_address == 0)
		return -ENODATA;

2711 2712
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2713
		index = ctx - ohci->it_context_list;
2714 2715 2716
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2717
				(cycle & 0x7fff) << 16;
2718

2719 2720
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2721
		context_run(&ctx->context, match);
2722 2723 2724 2725 2726 2727
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
		/* fall through */
	case FW_ISO_CONTEXT_RECEIVE:
2728
		index = ctx - ohci->ir_context_list;
2729 2730 2731 2732 2733
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
2734

2735 2736
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2737
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2738
		context_run(&ctx->context, control);
2739 2740 2741 2742

		ctx->sync = sync;
		ctx->tags = tags;

2743
		break;
2744
	}
2745 2746 2747 2748

	return 0;
}

2749 2750 2751
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2752
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2753 2754
	int index;

2755 2756
	switch (ctx->base.type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2757 2758
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2759 2760 2761 2762
		break;

	case FW_ISO_CONTEXT_RECEIVE:
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2763 2764
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2765
		break;
2766 2767 2768
	}
	flush_writes(ohci);
	context_stop(&ctx->context);
2769
	tasklet_kill(&ctx->context.tasklet);
2770 2771 2772 2773

	return 0;
}

2774 2775 2776
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
2777
	struct iso_context *ctx = container_of(base, struct iso_context, base);
2778 2779 2780
	unsigned long flags;
	int index;

2781 2782
	ohci_stop_iso(base);
	context_release(&ctx->context);
2783
	free_page((unsigned long)ctx->header);
2784

2785 2786
	spin_lock_irqsave(&ohci->lock, flags);

2787 2788
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
2789 2790
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
2791 2792 2793
		break;

	case FW_ISO_CONTEXT_RECEIVE:
2794 2795
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
2796
		ohci->ir_context_channels |= 1ULL << base->channel;
2797 2798 2799 2800 2801 2802 2803 2804 2805
		break;

	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
		ohci->ir_context_channels |= ohci->mc_channels;
		ohci->mc_channels = 0;
		ohci->mc_allocated = false;
		break;
2806 2807 2808 2809 2810
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	unsigned long flags;
	int ret;

	switch (base->type) {
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:

		spin_lock_irqsave(&ohci->lock, flags);

		/* Don't allow multichannel to grab other contexts' channels. */
		if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
			*channels = ohci->ir_context_channels;
			ret = -EBUSY;
		} else {
			set_multichannel_mask(ohci, *channels);
			ret = 0;
		}

		spin_unlock_irqrestore(&ohci->lock, flags);

		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

2841 2842 2843 2844 2845 2846 2847 2848
#ifdef CONFIG_PM
static void ohci_resume_iso_dma(struct fw_ohci *ohci)
{
	int i;
	struct iso_context *ctx;

	for (i = 0 ; i < ohci->n_ir ; i++) {
		ctx = &ohci->ir_context_list[i];
2849
		if (ctx->context.running)
2850 2851 2852 2853 2854
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}

	for (i = 0 ; i < ohci->n_it ; i++) {
		ctx = &ohci->it_context_list[i];
2855
		if (ctx->context.running)
2856 2857 2858 2859 2860
			ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
	}
}
#endif

2861 2862 2863 2864
static int queue_iso_transmit(struct iso_context *ctx,
			      struct fw_iso_packet *packet,
			      struct fw_iso_buffer *buffer,
			      unsigned long payload)
2865
{
2866
	struct descriptor *d, *last, *pd;
2867 2868
	struct fw_iso_packet *p;
	__le32 *header;
2869
	dma_addr_t d_bus, page_bus;
2870 2871
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
2872
	int page, end_page, i, length, offset;
2873 2874

	p = packet;
2875
	payload_index = payload;
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
2894
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2895

2896 2897 2898
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
2899 2900

	if (!p->skip) {
2901
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2902
		d[0].req_count = cpu_to_le16(8);
2903 2904 2905 2906 2907 2908 2909 2910
		/*
		 * Link the skip address to this descriptor itself.  This causes
		 * a context to skip a cycle whenever lost cycles or FIFO
		 * overruns occur, without dropping the data.  The application
		 * should then decide whether this is an error condition or not.
		 * FIXME:  Make the context's cycle-lost behaviour configurable?
		 */
		d[0].branch_address = cpu_to_le32(d_bus | z);
2911 2912

		header = (__le32 *) &d[1];
2913 2914 2915 2916 2917
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
2918
		header[1] =
2919
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2920 2921 2922 2923 2924
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
2925
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
2938 2939 2940

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
2941 2942 2943 2944 2945

		payload_index += length;
	}

	if (p->interrupt)
2946
		irq = DESCRIPTOR_IRQ_ALWAYS;
2947
	else
2948
		irq = DESCRIPTOR_NO_IRQ;
2949

2950
	last = z == 2 ? d : d + z - 1;
2951 2952 2953
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
2954
				     irq);
2955

2956
	context_append(&ctx->context, d, z, header_z);
2957 2958 2959

	return 0;
}
S
Stefan Richter 已提交
2960

2961 2962 2963 2964
static int queue_iso_packet_per_buffer(struct iso_context *ctx,
				       struct fw_iso_packet *packet,
				       struct fw_iso_buffer *buffer,
				       unsigned long payload)
2965
{
2966
	struct descriptor *d, *pd;
2967 2968
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, rest;
2969 2970
	int i, j, length;
	int page, offset, packet_count, header_size, payload_per_buffer;
2971 2972

	/*
2973 2974
	 * The OHCI controller puts the isochronous header and trailer in the
	 * buffer, so we need at least 8 bytes.
2975
	 */
2976
	packet_count = packet->header_length / ctx->base.header_size;
2977
	header_size  = max(ctx->base.header_size, (size_t)8);
2978 2979 2980 2981 2982

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
2983
	payload_per_buffer = packet->payload_length / packet_count;
2984 2985 2986

	for (i = 0; i < packet_count; i++) {
		/* d points to the header descriptor */
2987
		z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2988
		d = context_get_descriptors(&ctx->context,
2989
				z + header_z, &d_bus);
2990 2991 2992
		if (d == NULL)
			return -ENOMEM;

2993 2994
		d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
					      DESCRIPTOR_INPUT_MORE);
2995
		if (packet->skip && i == 0)
2996
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2997 2998
		d->req_count    = cpu_to_le16(header_size);
		d->res_count    = d->req_count;
2999
		d->transfer_status = 0;
3000 3001
		d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));

3002
		rest = payload_per_buffer;
3003
		pd = d;
3004
		for (j = 1; j < z; j++) {
3005
			pd++;
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
			pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
						  DESCRIPTOR_INPUT_MORE);

			if (offset + rest < PAGE_SIZE)
				length = rest;
			else
				length = PAGE_SIZE - offset;
			pd->req_count = cpu_to_le16(length);
			pd->res_count = pd->req_count;
			pd->transfer_status = 0;

			page_bus = page_private(buffer->pages[page]);
			pd->data_address = cpu_to_le32(page_bus + offset);

			offset = (offset + length) & ~PAGE_MASK;
			rest -= length;
			if (offset == 0)
				page++;
		}
3025 3026 3027
		pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_INPUT_LAST |
					  DESCRIPTOR_BRANCH_ALWAYS);
3028
		if (packet->interrupt && i == packet_count - 1)
3029 3030 3031 3032 3033 3034 3035 3036
			pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		context_append(&ctx->context, d, z, header_z);
	}

	return 0;
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
static int queue_iso_buffer_fill(struct iso_context *ctx,
				 struct fw_iso_packet *packet,
				 struct fw_iso_buffer *buffer,
				 unsigned long payload)
{
	struct descriptor *d;
	dma_addr_t d_bus, page_bus;
	int page, offset, rest, z, i, length;

	page   = payload >> PAGE_SHIFT;
	offset = payload & ~PAGE_MASK;
	rest   = packet->payload_length;

	/* We need one descriptor for each page in the buffer. */
	z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);

	if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
		return -EFAULT;

	for (i = 0; i < z; i++) {
		d = context_get_descriptors(&ctx->context, 1, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
					 DESCRIPTOR_BRANCH_ALWAYS);
		if (packet->skip && i == 0)
			d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
		if (packet->interrupt && i == z - 1)
			d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);

		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;
		d->req_count = cpu_to_le16(length);
		d->res_count = d->req_count;
		d->transfer_status = 0;

		page_bus = page_private(buffer->pages[page]);
		d->data_address = cpu_to_le32(page_bus + offset);

		rest -= length;
		offset = 0;
		page++;

		context_append(&ctx->context, d, 1, 0);
	}

	return 0;
}

3089 3090 3091 3092
static int ohci_queue_iso(struct fw_iso_context *base,
			  struct fw_iso_packet *packet,
			  struct fw_iso_buffer *buffer,
			  unsigned long payload)
3093
{
3094
	struct iso_context *ctx = container_of(base, struct iso_context, base);
3095
	unsigned long flags;
3096
	int ret = -ENOSYS;
3097

3098
	spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	switch (base->type) {
	case FW_ISO_CONTEXT_TRANSMIT:
		ret = queue_iso_transmit(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE:
		ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
		break;
	case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
		ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
		break;
	}
3110 3111
	spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);

3112
	return ret;
3113 3114
}

3115
static const struct fw_card_driver ohci_driver = {
3116
	.enable			= ohci_enable,
3117
	.read_phy_reg		= ohci_read_phy_reg,
3118 3119 3120 3121
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
3122
	.cancel_packet		= ohci_cancel_packet,
3123
	.enable_phys_dma	= ohci_enable_phys_dma,
3124 3125
	.read_csr		= ohci_read_csr,
	.write_csr		= ohci_write_csr,
3126 3127 3128

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
3129
	.set_iso_channels	= ohci_set_iso_channels,
3130
	.queue_iso		= ohci_queue_iso,
3131
	.start_iso		= ohci_start_iso,
3132
	.stop_iso		= ohci_stop_iso,
3133 3134
};

3135
#ifdef CONFIG_PPC_PMAC
3136
static void pmac_ohci_on(struct pci_dev *dev)
3137
{
3138 3139 3140 3141 3142 3143 3144 3145
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
		}
	}
3146 3147
}

3148
static void pmac_ohci_off(struct pci_dev *dev)
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
{
	if (machine_is(powermac)) {
		struct device_node *ofn = pci_device_to_OF_node(dev);

		if (ofn) {
			pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
			pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
		}
	}
}
#else
3160 3161
static inline void pmac_ohci_on(struct pci_dev *dev) {}
static inline void pmac_ohci_off(struct pci_dev *dev) {}
3162 3163
#endif /* CONFIG_PPC_PMAC */

3164 3165
static int __devinit pci_probe(struct pci_dev *dev,
			       const struct pci_device_id *ent)
3166 3167
{
	struct fw_ohci *ohci;
3168
	u32 bus_options, max_receive, link_speed, version;
3169
	u64 guid;
3170
	int i, err;
3171 3172
	size_t size;

3173
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3174
	if (ohci == NULL) {
3175 3176
		err = -ENOMEM;
		goto fail;
3177 3178 3179 3180
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

3181
	pmac_ohci_on(dev);
3182

3183 3184
	err = pci_enable_device(dev);
	if (err) {
3185
		fw_error("Failed to enable OHCI hardware\n");
3186
		goto fail_free;
3187 3188 3189 3190 3191 3192 3193
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);
3194
	mutex_init(&ohci->phy_reg_mutex);
3195 3196 3197 3198

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

3199 3200
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
3201
		fw_error("MMIO resource unavailable\n");
3202
		goto fail_disable;
3203 3204 3205 3206 3207
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
3208 3209
		err = -ENXIO;
		goto fail_iomem;
3210 3211
	}

3212
	for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3213 3214 3215 3216 3217
		if ((ohci_quirks[i].vendor == dev->vendor) &&
		    (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].device == dev->device) &&
		    (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
		     ohci_quirks[i].revision >= dev->revision)) {
3218 3219 3220
			ohci->quirks = ohci_quirks[i].flags;
			break;
		}
3221 3222
	if (param_quirks)
		ohci->quirks = param_quirks;
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	/*
	 * Because dma_alloc_coherent() allocates at least one page,
	 * we save space by using a common buffer for the AR request/
	 * response descriptors and the self IDs buffer.
	 */
	BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
	BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
	ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
					       PAGE_SIZE,
					       &ohci->misc_buffer_bus,
					       GFP_KERNEL);
	if (!ohci->misc_buffer) {
		err = -ENOMEM;
		goto fail_iounmap;
	}

	err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3241 3242
			      OHCI1394_AsReqRcvContextControlSet);
	if (err < 0)
3243
		goto fail_misc_buf;
3244

3245
	err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3246 3247 3248
			      OHCI1394_AsRspRcvContextControlSet);
	if (err < 0)
		goto fail_arreq_ctx;
3249

3250 3251 3252 3253
	err = context_init(&ohci->at_request_ctx, ohci,
			   OHCI1394_AsReqTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_arrsp_ctx;
3254

3255 3256 3257 3258
	err = context_init(&ohci->at_response_ctx, ohci,
			   OHCI1394_AsRspTrContextControlSet, handle_at_packet);
	if (err < 0)
		goto fail_atreq_ctx;
3259 3260

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3261
	ohci->ir_context_channels = ~0ULL;
3262
	ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3263
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3264
	ohci->ir_context_mask = ohci->ir_context_support;
3265 3266
	ohci->n_ir = hweight32(ohci->ir_context_mask);
	size = sizeof(struct iso_context) * ohci->n_ir;
3267
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3268 3269

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3270
	ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3271
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3272
	ohci->it_context_mask = ohci->it_context_support;
3273 3274
	ohci->n_it = hweight32(ohci->it_context_mask);
	size = sizeof(struct iso_context) * ohci->n_it;
3275
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3276 3277

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3278
		err = -ENOMEM;
3279
		goto fail_contexts;
3280 3281
	}

3282 3283
	ohci->self_id_cpu = ohci->misc_buffer     + PAGE_SIZE/2;
	ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3284 3285 3286 3287 3288 3289 3290

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

3291
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3292
	if (err)
3293
		goto fail_contexts;
3294

3295 3296 3297 3298
	version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
	fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
		  "%d IR + %d IT contexts, quirks 0x%x\n",
		  dev_name(&dev->dev), version >> 16, version & 0xff,
3299
		  ohci->n_ir, ohci->n_it, ohci->quirks);
3300

3301
	return 0;
3302

3303
 fail_contexts:
3304
	kfree(ohci->ir_context_list);
3305 3306
	kfree(ohci->it_context_list);
	context_release(&ohci->at_response_ctx);
3307
 fail_atreq_ctx:
3308
	context_release(&ohci->at_request_ctx);
3309
 fail_arrsp_ctx:
3310
	ar_context_release(&ohci->ar_response_ctx);
3311
 fail_arreq_ctx:
3312
	ar_context_release(&ohci->ar_request_ctx);
3313 3314 3315
 fail_misc_buf:
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3316
 fail_iounmap:
3317 3318 3319 3320 3321
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
3322
 fail_free:
3323
	kfree(ohci);
3324
	pmac_ohci_off(dev);
3325 3326 3327
 fail:
	if (err == -ENOMEM)
		fw_error("Out of memory\n");
3328 3329

	return err;
3330 3331 3332 3333 3334 3335 3336
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
3337 3338
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
3339 3340
	fw_core_remove_card(&ohci->card);

3341 3342 3343 3344
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
3345 3346 3347

	software_reset(ohci);
	free_irq(dev->irq, ohci);
3348 3349 3350 3351 3352 3353 3354 3355 3356

	if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->next_config_rom, ohci->next_config_rom_bus);
	if (ohci->config_rom)
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
	ar_context_release(&ohci->ar_request_ctx);
	ar_context_release(&ohci->ar_response_ctx);
3357 3358
	dma_free_coherent(ohci->card.device, PAGE_SIZE,
			  ohci->misc_buffer, ohci->misc_buffer_bus);
3359 3360
	context_release(&ohci->at_request_ctx);
	context_release(&ohci->at_response_ctx);
3361 3362
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
3363
	pci_disable_msi(dev);
3364 3365 3366
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
3367
	kfree(ohci);
3368
	pmac_ohci_off(dev);
3369

3370 3371 3372
	fw_notify("Removed fw-ohci device.\n");
}

3373
#ifdef CONFIG_PM
3374
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3375
{
3376
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3377 3378 3379
	int err;

	software_reset(ohci);
3380
	free_irq(dev->irq, ohci);
3381
	pci_disable_msi(dev);
3382
	err = pci_save_state(dev);
3383
	if (err) {
3384
		fw_error("pci_save_state failed\n");
3385 3386
		return err;
	}
3387
	err = pci_set_power_state(dev, pci_choose_state(dev, state));
3388 3389
	if (err)
		fw_error("pci_set_power_state failed with %d\n", err);
3390
	pmac_ohci_off(dev);
3391

3392 3393 3394
	return 0;
}

3395
static int pci_resume(struct pci_dev *dev)
3396
{
3397
	struct fw_ohci *ohci = pci_get_drvdata(dev);
3398 3399
	int err;

3400
	pmac_ohci_on(dev);
3401 3402 3403
	pci_set_power_state(dev, PCI_D0);
	pci_restore_state(dev);
	err = pci_enable_device(dev);
3404
	if (err) {
3405
		fw_error("pci_enable_device failed\n");
3406 3407 3408
		return err;
	}

3409 3410 3411 3412 3413 3414 3415
	/* Some systems don't setup GUID register on resume from ram  */
	if (!reg_read(ohci, OHCI1394_GUIDLo) &&
					!reg_read(ohci, OHCI1394_GUIDHi)) {
		reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
		reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
	}

3416 3417 3418 3419 3420
	err = ohci_enable(&ohci->card, NULL, 0);
	if (err)
		return err;

	ohci_resume_iso_dma(ohci);
3421

3422
	return 0;
3423 3424 3425
}
#endif

3426
static const struct pci_device_id pci_table[] = {
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
3438 3439 3440 3441
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
3442 3443 3444 3445 3446 3447
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

3448 3449 3450 3451 3452
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);