entry_64.S 42.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <linux/err.h>
L
Linus Torvalds 已提交
39

R
Roland McGrath 已提交
40 41
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
#include <linux/elf-em.h>
42 43 44
#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
#define __AUDIT_ARCH_64BIT			0x80000000
#define __AUDIT_ARCH_LE				0x40000000
J
Jiri Olsa 已提交
45

46 47
.code64
.section .entry.text, "ax"
48

49
#ifdef CONFIG_PARAVIRT
50
ENTRY(native_usergs_sysret64)
51 52
	swapgs
	sysretq
53
ENDPROC(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_IRETQ
57
#ifdef CONFIG_TRACE_IRQFLAGS
58 59
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
79
	call	debug_stack_set_zero
80
	TRACE_IRQS_OFF
81
	call	debug_stack_reset
82 83 84
.endm

.macro TRACE_IRQS_ON_DEBUG
85
	call	debug_stack_set_zero
86
	TRACE_IRQS_ON
87
	call	debug_stack_reset
88 89
.endm

90
.macro TRACE_IRQS_IRETQ_DEBUG
91 92
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
93 94 95 96 97
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
98 99 100
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
101 102
#endif

L
Linus Torvalds 已提交
103
/*
104
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
105
 *
106 107 108 109 110 111 112 113 114 115
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
116
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
117 118 119 120 121 122
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
123
 * rax  system call number
124 125
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
126 127
 * rdi  arg0
 * rsi  arg1
128
 * rdx  arg2
129
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
130 131
 * r8   arg4
 * r9   arg5
132
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
133
 *
L
Linus Torvalds 已提交
134 135
 * Only called from user space.
 *
136
 * When user can change pt_regs->foo always force IRET. That is because
137 138
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
139
 */
L
Linus Torvalds 已提交
140

141
ENTRY(entry_SYSCALL_64)
142 143 144 145 146
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
147 148 149 150 151 152
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
153
GLOBAL(entry_SYSCALL_64_after_swapgs)
154

155 156
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
157

158 159
	TRACE_IRQS_OFF

160
	/* Construct struct pt_regs on stack */
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

178 179 180 181 182 183 184
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
	jnz	entry_SYSCALL64_slow_path

185
entry_SYSCALL_64_fastpath:
186 187 188 189 190 191 192
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
193
#if __SYSCALL_MASK == ~0
194
	cmpq	$__NR_syscall_max, %rax
195
#else
196 197
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
198
#endif
199 200
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
201 202 203

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
204 205
	 * It might end up jumping to the slow path.  If it jumps, RAX
	 * and all argument registers are clobbered.
206
	 */
207
	call	*sys_call_table(, %rax, 8)
208 209
.Lentry_SYSCALL_64_after_fastpath_call:

210
	movq	%rax, RAX(%rsp)
211
1:
212 213

	/*
214 215 216
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
217
	 */
218 219
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
220
	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
221
	jnz	1f
222

223 224
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
225 226 227
	movq	RIP(%rsp), %rcx
	movq	EFLAGS(%rsp), %r11
	RESTORE_C_REGS_EXCEPT_RCX_R11
228
	movq	RSP(%rsp), %rsp
229
	USERGS_SYSRET64
L
Linus Torvalds 已提交
230

231 232 233 234 235 236
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
237 238
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
239
	SAVE_EXTRA_REGS
240
	movq	%rsp, %rdi
241 242
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
243

244 245
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
246
	SAVE_EXTRA_REGS
247
	movq	%rsp, %rdi
248 249 250
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
251
	RESTORE_EXTRA_REGS
252
	TRACE_IRQS_IRETQ		/* we're about to change IF */
253 254 255 256 257

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
258 259 260 261
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
262 263 264 265

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
266
	 * the kernel, since userspace controls RSP.
267
	 *
268
	 * If width of "canonical tail" ever becomes variable, this will need
269 270 271 272 273
	 * to be updated to remain correct on both old and new CPUs.
	 */
	.ifne __VIRTUAL_MASK_SHIFT - 47
	.error "virtual address width changed -- SYSRET checks need update"
	.endif
274

275 276 277
	/* Change top 16 bits to be the sign-extension of 47th bit */
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278

279 280 281
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
282

283 284
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
285

286 287 288
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
289 290

	/*
291 292 293 294 295 296 297 298 299
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
300
	 *
301
	 *           movq	$stuck_here, %rcx
302 303 304 305 306 307
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
308 309
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
310 311 312

	/* nothing to check for RSP */

313 314
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
315 316

	/*
317 318
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
319 320
	 */
syscall_return_via_sysret:
321 322
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
323
	movq	RSP(%rsp), %rsp
324 325 326 327 328
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
329
END(entry_SYSCALL_64)
330

331 332 333
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
334 335 336
	 * If we are on the fast path, we need to save the extra regs,
	 * which we achieve by trying again on the slow path.  If we are on
	 * the slow path, the extra regs are already saved.
337 338
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
339
	 * IRQs are on.
340 341 342 343
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

344 345 346 347 348 349
	/*
	 * Called from fast path -- disable IRQs again, pop return address
	 * and jump to slow path
	 */
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
350
	popq	%rax
351
	jmp	entry_SYSCALL64_slow_path
352 353

1:
354
	jmp	*%rax				/* Called from C */
355 356 357 358 359 360 361 362 363 364 365 366 367 368
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

#ifdef CONFIG_CC_STACKPROTECTOR
	movq	TASK_stack_canary(%rsi), %rbx
	movq	%rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif

	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
END(__switch_to_asm)

406 407 408
/*
 * A newly forked process directly context switches into this address.
 *
409
 * rax: prev task we switched from
410 411
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
412 413
 */
ENTRY(ret_from_fork)
414
	movq	%rax, %rdi
415
	call	schedule_tail			/* rdi: 'prev' task parameter */
416

417 418
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
419

420
2:
421 422 423 424 425
	movq	%rsp, %rdi
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
426 427 428 429 430 431 432 433 434 435 436 437

1:
	/* kernel thread */
	movq	%r12, %rdi
	call	*%rbx
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
438 439
END(ret_from_fork)

440
/*
441 442
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
443
 */
444
	.align 8
445
ENTRY(irq_entries_start)
446 447
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
448
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
449 450 451 452
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
453 454
END(irq_entries_start)

455
/*
L
Linus Torvalds 已提交
456 457 458
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
459 460 461
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
462

463
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
464
	.macro interrupt func
465
	cld
466 467 468
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
469

470
	testb	$3, CS(%rsp)
471
	jz	1f
472 473 474 475 476

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
477
	SWAPGS
478 479 480 481 482 483 484 485 486 487 488

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

489
	CALL_enter_from_user_mode
490

491
1:
492
	/*
D
Denys Vlasenko 已提交
493
	 * Save previous stack pointer, optionally switch to interrupt stack.
494 495 496 497 498
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
499
	movq	%rsp, %rdi
500 501
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
502
	pushq	%rdi
503 504 505
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

506
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
507 508
	.endm

509 510 511 512
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
513 514
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
515
	ASM_CLAC
516
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
517
	interrupt do_IRQ
518
	/* 0(%rsp): old RSP */
519
ret_from_intr:
520
	DISABLE_INTERRUPTS(CLBR_NONE)
521
	TRACE_IRQS_OFF
522
	decl	PER_CPU_VAR(irq_count)
523

524
	/* Restore saved previous stack */
525
	popq	%rsp
526

527
	testb	$3, CS(%rsp)
528
	jz	retint_kernel
529

530 531 532 533
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
534
	TRACE_IRQS_IRETQ
535
	SWAPGS
536
	jmp	restore_regs_and_iret
537

538
/* Returning to kernel space */
539
retint_kernel:
540 541 542
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
543
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
544
	jnc	1f
545
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
546
	jnz	1f
547
	call	preempt_schedule_irq
548
	jmp	0b
549
1:
550
#endif
551 552 553 554
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
555 556 557 558 559

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
560
GLOBAL(restore_regs_and_iret)
561
	RESTORE_EXTRA_REGS
562
restore_c_regs_and_iret:
563 564
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
565 566 567
	INTERRUPT_RETURN

ENTRY(native_iret)
568 569 570 571
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
572
#ifdef CONFIG_X86_ESPFIX64
573 574
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
575
#endif
576

577
.global native_irq_return_iret
578
native_irq_return_iret:
A
Andy Lutomirski 已提交
579 580 581 582 583 584
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
585
	iretq
I
Ingo Molnar 已提交
586

587
#ifdef CONFIG_X86_ESPFIX64
588
native_irq_return_ldt:
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
611
	SWAPGS
612
	movq	PER_CPU_VAR(espfix_waddr), %rdi
613 614
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
615
	movq	%rax, (1*8)(%rdi)
616
	movq	(2*8)(%rsp), %rax		/* user CS */
617
	movq	%rax, (2*8)(%rdi)
618
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
619
	movq	%rax, (3*8)(%rdi)
620
	movq	(5*8)(%rsp), %rax		/* user SS */
621
	movq	%rax, (5*8)(%rdi)
622
	movq	(4*8)(%rsp), %rax		/* user RSP */
623
	movq	%rax, (4*8)(%rdi)
624 625 626 627 628 629 630 631 632 633 634 635 636
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
	popq	%rdi				/* Restore user RDI */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
637
	orq	PER_CPU_VAR(espfix_stack), %rax
638
	SWAPGS
639
	movq	%rax, %rsp
640 641 642 643 644 645 646 647 648 649 650 651

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
652
	jmp	native_irq_return_iret
653
#endif
654
END(common_interrupt)
655

L
Linus Torvalds 已提交
656 657
/*
 * APIC interrupts.
658
 */
659
.macro apicinterrupt3 num sym do_sym
660
ENTRY(\sym)
661
	ASM_CLAC
662
	pushq	$~(\num)
663
.Lcommon_\sym:
664
	interrupt \do_sym
665
	jmp	ret_from_intr
666 667
END(\sym)
.endm
L
Linus Torvalds 已提交
668

669 670 671 672 673 674 675 676 677 678 679 680
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

681 682 683 684 685 686 687 688 689
/* Make sure APIC interrupt handlers end up in the irqentry section: */
#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
# define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
# define POP_SECTION_IRQENTRY	.popsection
#else
# define PUSH_SECTION_IRQENTRY
# define POP_SECTION_IRQENTRY
#endif

690
.macro apicinterrupt num sym do_sym
691
PUSH_SECTION_IRQENTRY
692 693
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
694
POP_SECTION_IRQENTRY
695 696
.endm

697
#ifdef CONFIG_SMP
698 699
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
700
#endif
L
Linus Torvalds 已提交
701

N
Nick Piggin 已提交
702
#ifdef CONFIG_X86_UV
703
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
704
#endif
705 706 707

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
708

709
#ifdef CONFIG_HAVE_KVM
710 711
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
712 713
#endif

714
#ifdef CONFIG_X86_MCE_THRESHOLD
715
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
716 717
#endif

718
#ifdef CONFIG_X86_MCE_AMD
719
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
720 721
#endif

722
#ifdef CONFIG_X86_THERMAL_VECTOR
723
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
724
#endif
725

726
#ifdef CONFIG_SMP
727 728 729
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
730
#endif
L
Linus Torvalds 已提交
731

732 733
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
734

735
#ifdef CONFIG_IRQ_WORK
736
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
737 738
#endif

L
Linus Torvalds 已提交
739 740
/*
 * Exception entry points.
741
 */
742
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
743 744

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
745
ENTRY(\sym)
746 747 748 749 750
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

751
	ASM_CLAC
752
	PARAVIRT_ADJUST_EXCEPTION_FRAME
753 754

	.ifeq \has_error_code
755
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
756 757
	.endif

758
	ALLOC_PT_GPREGS_ON_STACK
759 760

	.if \paranoid
761
	.if \paranoid == 1
762 763
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
764
	.endif
765
	call	paranoid_entry
766
	.else
767
	call	error_entry
768
	.endif
769
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
770 771

	.if \paranoid
772
	.if \shift_ist != -1
773
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
774
	.else
775
	TRACE_IRQS_OFF
776
	.endif
777
	.endif
778

779
	movq	%rsp, %rdi			/* pt_regs pointer */
780 781

	.if \has_error_code
782 783
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
784
	.else
785
	xorl	%esi, %esi			/* no error code */
786 787
	.endif

788
	.if \shift_ist != -1
789
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
790 791
	.endif

792
	call	\do_sym
793

794
	.if \shift_ist != -1
795
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
796 797
	.endif

798
	/* these procedures expect "no swapgs" flag in ebx */
799
	.if \paranoid
800
	jmp	paranoid_exit
801
	.else
802
	jmp	error_exit
803 804
	.endif

805 806 807 808 809 810 811
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
812
	call	error_entry
813 814


815 816 817
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
818

819
	movq	%rsp, %rdi			/* pt_regs pointer */
820 821

	.if \has_error_code
822 823
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
824
	.else
825
	xorl	%esi, %esi			/* no error code */
826 827
	.endif

828
	call	\do_sym
829

830
	jmp	error_exit			/* %ebx: no swapgs flag */
831
	.endif
832
END(\sym)
833
.endm
834

835
#ifdef CONFIG_TRACING
836 837 838
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
839 840
.endm
#else
841 842
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
843 844 845
.endm
#endif

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
865
ENTRY(native_load_gs_index)
866
	pushfq
867
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
868
	SWAPGS
869
.Lgs_change:
870
	movl	%edi, %gs
871
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
872
	SWAPGS
873
	popfq
874
	ret
875
END(native_load_gs_index)
876

877
	_ASM_EXTABLE(.Lgs_change, bad_gs)
878
	.section .fixup, "ax"
L
Linus Torvalds 已提交
879
	/* running with kernelgs */
880
bad_gs:
881
	SWAPGS					/* switch back to user gs */
882 883 884 885 886 887
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
888 889 890
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
891
	.previous
892

893
/* Call softirq on interrupt stack. Interrupts are off. */
894
ENTRY(do_softirq_own_stack)
895 896 897 898 899 900
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
901
	leaveq
902
	decl	PER_CPU_VAR(irq_count)
903
	ret
904
END(do_softirq_own_stack)
905

906
#ifdef CONFIG_XEN
907
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
908 909

/*
910 911 912 913 914 915 916 917 918 919 920 921
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
922 923
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

924 925 926 927
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
928 929 930 931 932 933 934 935
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
936
#ifndef CONFIG_PREEMPT
937
	call	xen_maybe_preempt_hcall
938
#endif
939
	jmp	error_exit
940
END(xen_do_hypervisor_callback)
941 942

/*
943 944 945 946 947 948 949 950 951 952 953 954
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
955
ENTRY(xen_failsafe_callback)
956 957 958 959 960 961 962 963 964 965 966 967
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
968
	/* All segments match their saved values => Category 2 (Bad IRET). */
969 970 971 972 973 974 975
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
976
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
977 978 979 980
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
981 982 983
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
984
	jmp	error_exit
985 986
END(xen_failsafe_callback)

987
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
988 989
	xen_hvm_callback_vector xen_evtchn_do_upcall

990
#endif /* CONFIG_XEN */
991

992
#if IS_ENABLED(CONFIG_HYPERV)
993
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
994 995 996
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

997 998 999 1000
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

1001
#ifdef CONFIG_XEN
1002 1003 1004
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
1005
#endif
1006 1007 1008 1009

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
1010
#ifdef CONFIG_KVM_GUEST
1011
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
1012
#endif
1013

1014
#ifdef CONFIG_X86_MCE
1015
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
1016 1017
#endif

1018 1019 1020 1021 1022 1023
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
1024 1025 1026
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1027 1028
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1029
	rdmsr
1030 1031
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1032
	SWAPGS
1033
	xorl	%ebx, %ebx
1034
1:	ret
1035
END(paranoid_entry)
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1046 1047
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1048
 */
1049 1050
ENTRY(paranoid_exit)
	DISABLE_INTERRUPTS(CLBR_NONE)
1051
	TRACE_IRQS_OFF_DEBUG
1052 1053
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
1054
	TRACE_IRQS_IRETQ
1055
	SWAPGS_UNSAFE_STACK
1056
	jmp	paranoid_exit_restore
1057
paranoid_exit_no_swapgs:
1058
	TRACE_IRQS_IRETQ_DEBUG
1059
paranoid_exit_restore:
1060 1061 1062
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
1063
	INTERRUPT_RETURN
1064 1065 1066
END(paranoid_exit)

/*
1067
 * Save all registers in pt_regs, and switch gs if needed.
1068
 * Return: EBX=0: came from user mode; EBX=1: otherwise
1069 1070 1071
 */
ENTRY(error_entry)
	cld
1072 1073
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
1074
	xorl	%ebx, %ebx
1075
	testb	$3, CS+8(%rsp)
1076
	jz	.Lerror_kernelspace
1077

1078 1079 1080 1081 1082
.Lerror_entry_from_usermode_swapgs:
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1083
	SWAPGS
1084

1085
.Lerror_entry_from_usermode_after_swapgs:
1086 1087 1088 1089 1090 1091
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
1092
	CALL_enter_from_user_mode
1093
	ret
1094

1095
.Lerror_entry_done:
1096 1097 1098
	TRACE_IRQS_OFF
	ret

1099 1100 1101 1102 1103 1104
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1105
.Lerror_kernelspace:
1106 1107 1108
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1109
	je	.Lerror_bad_iret
1110 1111
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1112
	je	.Lbstep_iret
1113
	cmpq	$.Lgs_change, RIP+8(%rsp)
1114
	jne	.Lerror_entry_done
1115 1116

	/*
1117
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1118
	 * gsbase and proceed.  We'll fix up the exception and land in
1119
	 * .Lgs_change's error handler with kernel gsbase.
1120
	 */
1121
	jmp	.Lerror_entry_from_usermode_swapgs
1122

1123
.Lbstep_iret:
1124
	/* Fix truncated RIP */
1125
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1126 1127
	/* fall through */

1128
.Lerror_bad_iret:
1129 1130 1131 1132
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1133
	SWAPGS
1134 1135 1136 1137 1138 1139

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1140 1141 1142
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1143
	decl	%ebx
1144
	jmp	.Lerror_entry_from_usermode_after_swapgs
1145 1146 1147
END(error_entry)


1148 1149 1150 1151 1152
/*
 * On entry, EBS is a "return to kernel mode" flag:
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1153
ENTRY(error_exit)
1154
	movl	%ebx, %eax
1155 1156
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
1157 1158 1159
	testl	%eax, %eax
	jnz	retint_kernel
	jmp	retint_user
1160 1161
END(error_exit)

1162
/* Runs on exception stack */
1163
ENTRY(nmi)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1174
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1193 1194 1195
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1196 1197
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1198
	 *    o Modify the "iret" location to jump to the repeat_nmi
1199 1200 1201 1202 1203 1204 1205 1206
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1207 1208 1209 1210 1211
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1212 1213
	 */

1214
	/* Use %rdx as our temp variable throughout */
1215
	pushq	%rdx
1216

1217 1218 1219 1220 1221 1222 1223 1224 1225
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1226 1227 1228
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1229 1230
	 */

1231
	SWAPGS_UNSAFE_STACK
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1267
	/*
1268 1269 1270
	 * Return back to user mode.  We must *not* do the normal exit
	 * work, because we don't want to enable interrupts.  Fortunately,
	 * do_nmi doesn't modify pt_regs.
1271
	 */
1272 1273
	SWAPGS
	jmp	restore_c_regs_and_iret
1274

1275
.Lnmi_from_kernel:
1276
	/*
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1317
	/*
1318 1319
	 * Determine whether we're a nested NMI.
	 *
1320 1321 1322 1323 1324 1325
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1326
	 */
1327 1328 1329 1330 1331 1332 1333 1334

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1335

1336
	/*
1337
	 * Now check "NMI executing".  If it's set, then we're nested.
1338 1339
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1340
	 */
1341 1342
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1343 1344

	/*
1345 1346
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1347 1348 1349 1350 1351 1352 1353 1354
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1355
	 */
1356 1357 1358 1359 1360
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1361

1362 1363 1364 1365
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1366 1367 1368 1369 1370 1371 1372

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1373

1374 1375
nested_nmi:
	/*
1376 1377
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1378
	 */
1379
	subq	$8, %rsp
1380 1381 1382
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1383
	pushfq
1384 1385
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1386 1387

	/* Put stack back */
1388
	addq	$(6*8), %rsp
1389 1390

nested_nmi_out:
1391
	popq	%rdx
1392

1393
	/* We are returning to kernel mode, so this cannot result in a fault. */
1394 1395 1396
	INTERRUPT_RETURN

first_nmi:
1397
	/* Restore rdx. */
1398
	movq	(%rsp), %rdx
1399

1400 1401
	/* Make room for "NMI executing". */
	pushq	$0
1402

1403
	/* Leave room for the "iret" frame */
1404
	subq	$(5*8), %rsp
1405

1406
	/* Copy the "original" frame to the "outermost" frame */
1407
	.rept 5
1408
	pushq	11*8(%rsp)
1409
	.endr
1410

1411 1412
	/* Everything up to here is safe from nested NMIs */

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1428
repeat_nmi:
1429 1430 1431 1432 1433 1434 1435 1436
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1437 1438 1439 1440
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1441 1442
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1443
	 */
1444
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1445

1446
	/*
1447 1448 1449
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1450
	 */
1451
	addq	$(10*8), %rsp
1452
	.rept 5
1453
	pushq	-6*8(%rsp)
1454
	.endr
1455
	subq	$(5*8), %rsp
1456
end_repeat_nmi:
1457 1458

	/*
1459 1460 1461
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1462
	 */
1463
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1464 1465
	ALLOC_PT_GPREGS_ON_STACK

1466
	/*
1467
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1468 1469 1470 1471 1472
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1473
	call	paranoid_entry
1474

1475
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1476 1477 1478
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1479

1480 1481
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1482 1483 1484
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1485 1486
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1487 1488

	/* Point RSP at the "iret" frame. */
1489
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1501 1502 1503 1504 1505 1506

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1507
	INTERRUPT_RETURN
1508 1509 1510
END(nmi)

ENTRY(ignore_sysret)
1511
	mov	$-ENOSYS, %eax
1512 1513
	sysret
END(ignore_sysret)
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
	leaq	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)