entry_64.S 39.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
7
 *
L
Linus Torvalds 已提交
8 9
 * entry.S contains the system-call and fault low-level handling routines.
 *
10 11
 * Some of this is documented in Documentation/x86/entry_64.txt
 *
12
 * A note on terminology:
13 14
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
15 16
 *
 * Some macro usage:
17 18 19
 * - ENTRY/END:		Define functions in the symbol table.
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
20 21 22 23 24
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
25
#include "calling.h"
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <linux/err.h>
L
Linus Torvalds 已提交
39

R
Roland McGrath 已提交
40 41
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this.  */
#include <linux/elf-em.h>
42 43 44
#define AUDIT_ARCH_X86_64			(EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
#define __AUDIT_ARCH_64BIT			0x80000000
#define __AUDIT_ARCH_LE				0x40000000
J
Jiri Olsa 已提交
45

46 47
.code64
.section .entry.text, "ax"
48

49
#ifdef CONFIG_PARAVIRT
50
ENTRY(native_usergs_sysret64)
51 52
	swapgs
	sysretq
53
ENDPROC(native_usergs_sysret64)
54 55
#endif /* CONFIG_PARAVIRT */

56
.macro TRACE_IRQS_IRETQ
57
#ifdef CONFIG_TRACE_IRQFLAGS
58 59
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
60 61 62 63 64
	TRACE_IRQS_ON
1:
#endif
.endm

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
79
	call	debug_stack_set_zero
80
	TRACE_IRQS_OFF
81
	call	debug_stack_reset
82 83 84
.endm

.macro TRACE_IRQS_ON_DEBUG
85
	call	debug_stack_set_zero
86
	TRACE_IRQS_ON
87
	call	debug_stack_reset
88 89
.endm

90
.macro TRACE_IRQS_IRETQ_DEBUG
91 92
	bt	$9, EFLAGS(%rsp)		/* interrupts off? */
	jnc	1f
93 94 95 96 97
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
98 99 100
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
101 102
#endif

L
Linus Torvalds 已提交
103
/*
104
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
105
 *
106
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
107 108 109 110 111 112
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
113
 * rax  system call number
114 115
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
116 117
 * rdi  arg0
 * rsi  arg1
118
 * rdx  arg2
119
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
120 121
 * r8   arg4
 * r9   arg5
122
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
123
 *
L
Linus Torvalds 已提交
124 125
 * Only called from user space.
 *
126
 * When user can change pt_regs->foo always force IRET. That is because
127 128
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
129
 */
L
Linus Torvalds 已提交
130

131
ENTRY(entry_SYSCALL_64)
132 133 134 135 136
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
137 138 139 140 141 142
	SWAPGS_UNSAFE_STACK
	/*
	 * A hypervisor implementation might want to use a label
	 * after the swapgs, so that it can do the swapgs
	 * for the guest and jump here on syscall.
	 */
143
GLOBAL(entry_SYSCALL_64_after_swapgs)
144

145 146
	movq	%rsp, PER_CPU_VAR(rsp_scratch)
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
147

148 149
	TRACE_IRQS_OFF

150
	/* Construct struct pt_regs on stack */
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	pushq	$__USER_DS			/* pt_regs->ss */
	pushq	PER_CPU_VAR(rsp_scratch)	/* pt_regs->sp */
	pushq	%r11				/* pt_regs->flags */
	pushq	$__USER_CS			/* pt_regs->cs */
	pushq	%rcx				/* pt_regs->ip */
	pushq	%rax				/* pt_regs->orig_ax */
	pushq	%rdi				/* pt_regs->di */
	pushq	%rsi				/* pt_regs->si */
	pushq	%rdx				/* pt_regs->dx */
	pushq	%rcx				/* pt_regs->cx */
	pushq	$-ENOSYS			/* pt_regs->ax */
	pushq	%r8				/* pt_regs->r8 */
	pushq	%r9				/* pt_regs->r9 */
	pushq	%r10				/* pt_regs->r10 */
	pushq	%r11				/* pt_regs->r11 */
	sub	$(6*8), %rsp			/* pt_regs->bp, bx, r12-15 not saved */

168 169 170 171 172 173 174
	/*
	 * If we need to do entry work or if we guess we'll need to do
	 * exit work, go straight to the slow path.
	 */
	testl	$_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
	jnz	entry_SYSCALL64_slow_path

175
entry_SYSCALL_64_fastpath:
176 177 178 179 180 181 182
	/*
	 * Easy case: enable interrupts and issue the syscall.  If the syscall
	 * needs pt_regs, we'll call a stub that disables interrupts again
	 * and jumps to the slow path.
	 */
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
183
#if __SYSCALL_MASK == ~0
184
	cmpq	$__NR_syscall_max, %rax
185
#else
186 187
	andl	$__SYSCALL_MASK, %eax
	cmpl	$__NR_syscall_max, %eax
188
#endif
189 190
	ja	1f				/* return -ENOSYS (already in pt_regs->ax) */
	movq	%r10, %rcx
191 192 193 194 195 196

	/*
	 * This call instruction is handled specially in stub_ptregs_64.
	 * It might end up jumping to the slow path.  If it jumps, RAX is
	 * clobbered.
	 */
197
	call	*sys_call_table(, %rax, 8)
198 199
.Lentry_SYSCALL_64_after_fastpath_call:

200
	movq	%rax, RAX(%rsp)
201
1:
202 203

	/*
204 205 206
	 * If we get here, then we know that pt_regs is clean for SYSRET64.
	 * If we see that no exit work is required (which we are required
	 * to check with IRQs off), then we can go straight to SYSRET64.
207
	 */
208 209
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
210
	testl	$_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
211
	jnz	1f
212

213 214 215
	LOCKDEP_SYS_EXIT
	TRACE_IRQS_ON		/* user mode is traced as IRQs on */
	RESTORE_C_REGS
216
	movq	RSP(%rsp), %rsp
217
	USERGS_SYSRET64
L
Linus Torvalds 已提交
218

219 220 221 222 223 224
1:
	/*
	 * The fast path looked good when we started, but something changed
	 * along the way and we need to switch to the slow path.  Calling
	 * raise(3) will trigger this, for example.  IRQs are off.
	 */
225 226
	TRACE_IRQS_ON
	ENABLE_INTERRUPTS(CLBR_NONE)
227
	SAVE_EXTRA_REGS
228
	movq	%rsp, %rdi
229 230
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	jmp	return_from_SYSCALL_64
231

232 233
entry_SYSCALL64_slow_path:
	/* IRQs are off. */
234
	SAVE_EXTRA_REGS
235
	movq	%rsp, %rdi
236 237 238
	call	do_syscall_64		/* returns with IRQs disabled */

return_from_SYSCALL_64:
239
	RESTORE_EXTRA_REGS
240
	TRACE_IRQS_IRETQ		/* we're about to change IF */
241 242 243 244 245

	/*
	 * Try to use SYSRET instead of IRET if we're returning to
	 * a completely clean 64-bit userspace context.
	 */
246 247 248 249
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
	cmpq	%rcx, %r11			/* RCX == RIP */
	jne	opportunistic_sysret_failed
250 251 252 253

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
254
	 * the kernel, since userspace controls RSP.
255
	 *
256
	 * If width of "canonical tail" ever becomes variable, this will need
257 258 259 260 261
	 * to be updated to remain correct on both old and new CPUs.
	 */
	.ifne __VIRTUAL_MASK_SHIFT - 47
	.error "virtual address width changed -- SYSRET checks need update"
	.endif
262

263 264 265
	/* Change top 16 bits to be the sign-extension of 47th bit */
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
266

267 268 269
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
	jne	opportunistic_sysret_failed
270

271 272
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
	jne	opportunistic_sysret_failed
273

274 275 276
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
	jne	opportunistic_sysret_failed
277 278 279 280 281 282 283 284

	/*
	 * SYSRET can't restore RF.  SYSRET can restore TF, but unlike IRET,
	 * restoring TF results in a trap from userspace immediately after
	 * SYSRET.  This would cause an infinite loop whenever #DB happens
	 * with register state that satisfies the opportunistic SYSRET
	 * conditions.  For example, single-stepping this user code:
	 *
285
	 *           movq	$stuck_here, %rcx
286 287 288 289 290 291
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
292 293
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
	jnz	opportunistic_sysret_failed
294 295 296

	/* nothing to check for RSP */

297 298
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
	jne	opportunistic_sysret_failed
299 300

	/*
301 302
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
303 304
	 */
syscall_return_via_sysret:
305 306
	/* rcx and r11 are already restored (see code above) */
	RESTORE_C_REGS_EXCEPT_RCX_R11
307
	movq	RSP(%rsp), %rsp
308 309 310 311 312
	USERGS_SYSRET64

opportunistic_sysret_failed:
	SWAPGS
	jmp	restore_c_regs_and_iret
313
END(entry_SYSCALL_64)
314

315 316 317 318 319 320 321 322 323 324 325 326 327
ENTRY(stub_ptregs_64)
	/*
	 * Syscalls marked as needing ptregs land here.
	 * If we are on the fast path, we need to save the extra regs.
	 * If we are on the slow path, the extra regs are already saved.
	 *
	 * RAX stores a pointer to the C function implementing the syscall.
	 */
	cmpq	$.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
	jne	1f

	/* Called from fast path -- pop return address and jump to slow path */
	popq	%rax
328
	jmp	entry_SYSCALL64_slow_path	/* called from fast path */
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

1:
	/* Called from C */
	jmp	*%rax				/* called from C */
END(stub_ptregs_64)

.macro ptregs_stub func
ENTRY(ptregs_\func)
	leaq	\func(%rip), %rax
	jmp	stub_ptregs_64
END(ptregs_\func)
.endm

/* Instantiate ptregs_stub for each ptregs-using syscall */
#define __SYSCALL_64_QUAL_(sym)
#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
#include <asm/syscalls_64.h>
347

348 349 350 351 352 353
/*
 * A newly forked process directly context switches into this address.
 *
 * rdi: prev task we switched from
 */
ENTRY(ret_from_fork)
354
	LOCK ; btr $TIF_FORK, TI_flags(%r8)
355

356 357
	pushq	$0x0002
	popfq					/* reset kernel eflags */
358

359
	call	schedule_tail			/* rdi: 'prev' task parameter */
360

361
	testb	$3, CS(%rsp)			/* from kernel_thread? */
362
	jnz	1f
363

364
	/*
365 366 367 368 369 370
	 * We came from kernel_thread.  This code path is quite twisted, and
	 * someone should clean it up.
	 *
	 * copy_thread_tls stashes the function pointer in RBX and the
	 * parameter to be passed in RBP.  The called function is permitted
	 * to call do_execve and thereby jump to user mode.
371
	 */
372 373 374
	movq	RBP(%rsp), %rdi
	call	*RBX(%rsp)
	movl	$0, RAX(%rsp)
375

376
	/*
377 378
	 * Fall through as though we're exiting a syscall.  This makes a
	 * twisted sort of sense if we just called do_execve.
379
	 */
380 381 382 383 384 385 386

1:
	movq	%rsp, %rdi
	call	syscall_return_slowpath	/* returns with IRQs disabled */
	TRACE_IRQS_ON			/* user mode is traced as IRQS on */
	SWAPGS
	jmp	restore_regs_and_iret
387 388
END(ret_from_fork)

389
/*
390 391
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
392
 */
393
	.align 8
394
ENTRY(irq_entries_start)
395 396
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
397
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
398 399 400 401
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
402 403
END(irq_entries_start)

404
/*
L
Linus Torvalds 已提交
405 406 407
 * Interrupt entry/exit.
 *
 * Interrupt entry points save only callee clobbered registers in fast path.
408 409 410
 *
 * Entry runs with interrupts off.
 */
L
Linus Torvalds 已提交
411

412
/* 0(%rsp): ~(interrupt number) */
L
Linus Torvalds 已提交
413
	.macro interrupt func
414
	cld
415 416 417
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
418

419
	testb	$3, CS(%rsp)
420
	jz	1f
421 422 423 424 425

	/*
	 * IRQ from user mode.  Switch to kernel gsbase and inform context
	 * tracking that we're in kernel mode.
	 */
426
	SWAPGS
427 428 429 430 431 432 433 434 435 436 437

	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).  Since TRACE_IRQS_OFF idempotent,
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

438
	CALL_enter_from_user_mode
439

440
1:
441
	/*
D
Denys Vlasenko 已提交
442
	 * Save previous stack pointer, optionally switch to interrupt stack.
443 444 445 446 447
	 * irq_count is used to check if a CPU is already on an interrupt stack
	 * or not. While this is essentially redundant with preempt_count it is
	 * a little cheaper to use a separate counter in the PDA (short of
	 * moving irq_enter into assembly, which would be too much work)
	 */
448
	movq	%rsp, %rdi
449 450
	incl	PER_CPU_VAR(irq_count)
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
451
	pushq	%rdi
452 453 454
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

455
	call	\func	/* rdi points to pt_regs */
L
Linus Torvalds 已提交
456 457
	.endm

458 459 460 461
	/*
	 * The interrupt stubs push (~vector+0x80) onto the stack and
	 * then jump to common_interrupt.
	 */
462 463
	.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
464
	ASM_CLAC
465
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
L
Linus Torvalds 已提交
466
	interrupt do_IRQ
467
	/* 0(%rsp): old RSP */
468
ret_from_intr:
469
	DISABLE_INTERRUPTS(CLBR_NONE)
470
	TRACE_IRQS_OFF
471
	decl	PER_CPU_VAR(irq_count)
472

473
	/* Restore saved previous stack */
474
	popq	%rsp
475

476
	testb	$3, CS(%rsp)
477
	jz	retint_kernel
478

479 480 481 482
	/* Interrupt came from user space */
GLOBAL(retint_user)
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
483
	TRACE_IRQS_IRETQ
484
	SWAPGS
485
	jmp	restore_regs_and_iret
486

487
/* Returning to kernel space */
488
retint_kernel:
489 490 491
#ifdef CONFIG_PREEMPT
	/* Interrupts are off */
	/* Check if we need preemption */
492
	bt	$9, EFLAGS(%rsp)		/* were interrupts off? */
493
	jnc	1f
494
0:	cmpl	$0, PER_CPU_VAR(__preempt_count)
495
	jnz	1f
496
	call	preempt_schedule_irq
497
	jmp	0b
498
1:
499
#endif
500 501 502 503
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
504 505 506 507 508

/*
 * At this label, code paths which return to kernel and to user,
 * which come from interrupts/exception and from syscalls, merge.
 */
509
GLOBAL(restore_regs_and_iret)
510
	RESTORE_EXTRA_REGS
511
restore_c_regs_and_iret:
512 513
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
514 515 516
	INTERRUPT_RETURN

ENTRY(native_iret)
517 518 519 520
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
521
#ifdef CONFIG_X86_ESPFIX64
522 523
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
524
#endif
525

526
.global native_irq_return_iret
527
native_irq_return_iret:
A
Andy Lutomirski 已提交
528 529 530 531 532 533
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
534
	iretq
I
Ingo Molnar 已提交
535

536
#ifdef CONFIG_X86_ESPFIX64
537
native_irq_return_ldt:
538 539
	pushq	%rax
	pushq	%rdi
540
	SWAPGS
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	movq	PER_CPU_VAR(espfix_waddr), %rdi
	movq	%rax, (0*8)(%rdi)		/* RAX */
	movq	(2*8)(%rsp), %rax		/* RIP */
	movq	%rax, (1*8)(%rdi)
	movq	(3*8)(%rsp), %rax		/* CS */
	movq	%rax, (2*8)(%rdi)
	movq	(4*8)(%rsp), %rax		/* RFLAGS */
	movq	%rax, (3*8)(%rdi)
	movq	(6*8)(%rsp), %rax		/* SS */
	movq	%rax, (5*8)(%rdi)
	movq	(5*8)(%rsp), %rax		/* RSP */
	movq	%rax, (4*8)(%rdi)
	andl	$0xffff0000, %eax
	popq	%rdi
	orq	PER_CPU_VAR(espfix_stack), %rax
556
	SWAPGS
557 558 559
	movq	%rax, %rsp
	popq	%rax
	jmp	native_irq_return_iret
560
#endif
561
END(common_interrupt)
562

L
Linus Torvalds 已提交
563 564
/*
 * APIC interrupts.
565
 */
566
.macro apicinterrupt3 num sym do_sym
567
ENTRY(\sym)
568
	ASM_CLAC
569
	pushq	$~(\num)
570
.Lcommon_\sym:
571
	interrupt \do_sym
572
	jmp	ret_from_intr
573 574
END(\sym)
.endm
L
Linus Torvalds 已提交
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym

.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif

.macro apicinterrupt num sym do_sym
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
.endm

593
#ifdef CONFIG_SMP
594 595
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
596
#endif
L
Linus Torvalds 已提交
597

N
Nick Piggin 已提交
598
#ifdef CONFIG_X86_UV
599
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
600
#endif
601 602 603

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
604

605
#ifdef CONFIG_HAVE_KVM
606 607
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
608 609
#endif

610
#ifdef CONFIG_X86_MCE_THRESHOLD
611
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
612 613
#endif

614
#ifdef CONFIG_X86_MCE_AMD
615
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
616 617
#endif

618
#ifdef CONFIG_X86_THERMAL_VECTOR
619
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
620
#endif
621

622
#ifdef CONFIG_SMP
623 624 625
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
626
#endif
L
Linus Torvalds 已提交
627

628 629
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
630

631
#ifdef CONFIG_IRQ_WORK
632
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
633 634
#endif

L
Linus Torvalds 已提交
635 636
/*
 * Exception entry points.
637
 */
638
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
639 640

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
641
ENTRY(\sym)
642 643 644 645 646
	/* Sanity check */
	.if \shift_ist != -1 && \paranoid == 0
	.error "using shift_ist requires paranoid=1"
	.endif

647
	ASM_CLAC
648
	PARAVIRT_ADJUST_EXCEPTION_FRAME
649 650

	.ifeq \has_error_code
651
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
652 653
	.endif

654
	ALLOC_PT_GPREGS_ON_STACK
655 656

	.if \paranoid
657
	.if \paranoid == 1
658 659
	testb	$3, CS(%rsp)			/* If coming from userspace, switch stacks */
	jnz	1f
660
	.endif
661
	call	paranoid_entry
662
	.else
663
	call	error_entry
664
	.endif
665
	/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
666 667

	.if \paranoid
668
	.if \shift_ist != -1
669
	TRACE_IRQS_OFF_DEBUG			/* reload IDT in case of recursion */
670
	.else
671
	TRACE_IRQS_OFF
672
	.endif
673
	.endif
674

675
	movq	%rsp, %rdi			/* pt_regs pointer */
676 677

	.if \has_error_code
678 679
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
680
	.else
681
	xorl	%esi, %esi			/* no error code */
682 683
	.endif

684
	.if \shift_ist != -1
685
	subq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
686 687
	.endif

688
	call	\do_sym
689

690
	.if \shift_ist != -1
691
	addq	$EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
692 693
	.endif

694
	/* these procedures expect "no swapgs" flag in ebx */
695
	.if \paranoid
696
	jmp	paranoid_exit
697
	.else
698
	jmp	error_exit
699 700
	.endif

701 702 703 704 705 706 707
	.if \paranoid == 1
	/*
	 * Paranoid entry from userspace.  Switch stacks and treat it
	 * as a normal entry.  This means that paranoid handlers
	 * run in real process context if user_mode(regs).
	 */
1:
708
	call	error_entry
709 710


711 712 713
	movq	%rsp, %rdi			/* pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
714

715
	movq	%rsp, %rdi			/* pt_regs pointer */
716 717

	.if \has_error_code
718 719
	movq	ORIG_RAX(%rsp), %rsi		/* get error code */
	movq	$-1, ORIG_RAX(%rsp)		/* no syscall to restart */
720
	.else
721
	xorl	%esi, %esi			/* no error code */
722 723
	.endif

724
	call	\do_sym
725

726
	jmp	error_exit			/* %ebx: no swapgs flag */
727
	.endif
728
END(\sym)
729
.endm
730

731
#ifdef CONFIG_TRACING
732 733 734
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
735 736
.endm
#else
737 738
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
739 740 741
.endm
#endif

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
idtentry divide_error			do_divide_error			has_error_code=0
idtentry overflow			do_overflow			has_error_code=0
idtentry bounds				do_bounds			has_error_code=0
idtentry invalid_op			do_invalid_op			has_error_code=0
idtentry device_not_available		do_device_not_available		has_error_code=0
idtentry double_fault			do_double_fault			has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun	do_coprocessor_segment_overrun	has_error_code=0
idtentry invalid_TSS			do_invalid_TSS			has_error_code=1
idtentry segment_not_present		do_segment_not_present		has_error_code=1
idtentry spurious_interrupt_bug		do_spurious_interrupt_bug	has_error_code=0
idtentry coprocessor_error		do_coprocessor_error		has_error_code=0
idtentry alignment_check		do_alignment_check		has_error_code=1
idtentry simd_coprocessor_error		do_simd_coprocessor_error	has_error_code=0


	/*
	 * Reload gs selector with exception handling
	 * edi:  new selector
	 */
761
ENTRY(native_load_gs_index)
762
	pushfq
763
	DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
764
	SWAPGS
765
gs_change:
766 767
	movl	%edi, %gs
2:	mfence					/* workaround */
768
	SWAPGS
769
	popfq
770
	ret
771
END(native_load_gs_index)
772

773 774
	_ASM_EXTABLE(gs_change, bad_gs)
	.section .fixup, "ax"
L
Linus Torvalds 已提交
775
	/* running with kernelgs */
776
bad_gs:
777 778 779 780
	SWAPGS					/* switch back to user gs */
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
781
	.previous
782

783
/* Call softirq on interrupt stack. Interrupts are off. */
784
ENTRY(do_softirq_own_stack)
785 786 787 788 789 790
	pushq	%rbp
	mov	%rsp, %rbp
	incl	PER_CPU_VAR(irq_count)
	cmove	PER_CPU_VAR(irq_stack_ptr), %rsp
	push	%rbp				/* frame pointer backlink */
	call	__do_softirq
791
	leaveq
792
	decl	PER_CPU_VAR(irq_count)
793
	ret
794
END(do_softirq_own_stack)
795

796
#ifdef CONFIG_XEN
797
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
798 799

/*
800 801 802 803 804 805 806 807 808 809 810 811
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
812 813
ENTRY(xen_do_hypervisor_callback)		/* do_hypervisor_callback(struct *pt_regs) */

814 815 816 817
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
818 819 820 821 822 823 824 825
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
11:	incl	PER_CPU_VAR(irq_count)
	movq	%rsp, %rbp
	cmovzq	PER_CPU_VAR(irq_stack_ptr), %rsp
	pushq	%rbp				/* frame pointer backlink */
	call	xen_evtchn_do_upcall
	popq	%rsp
	decl	PER_CPU_VAR(irq_count)
826
#ifndef CONFIG_PREEMPT
827
	call	xen_maybe_preempt_hcall
828
#endif
829
	jmp	error_exit
830
END(xen_do_hypervisor_callback)
831 832

/*
833 834 835 836 837 838 839 840 841 842 843 844
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
845
ENTRY(xen_failsafe_callback)
846 847 848 849 850 851 852 853 854 855 856 857
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
858
	/* All segments match their saved values => Category 2 (Bad IRET). */
859 860 861 862 863 864 865
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
	pushq	%r11
	pushq	%rcx
	jmp	general_protection
866
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
867 868 869 870
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$-1 /* orig_ax = -1 => not a system call */
871 872 873
	ALLOC_PT_GPREGS_ON_STACK
	SAVE_C_REGS
	SAVE_EXTRA_REGS
874
	jmp	error_exit
875 876
END(xen_failsafe_callback)

877
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
878 879
	xen_hvm_callback_vector xen_evtchn_do_upcall

880
#endif /* CONFIG_XEN */
881

882
#if IS_ENABLED(CONFIG_HYPERV)
883
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
884 885 886
	hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */

887 888 889 890
idtentry debug			do_debug		has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry int3			do_int3			has_error_code=0	paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment		do_stack_segment	has_error_code=1

891
#ifdef CONFIG_XEN
892 893 894
idtentry xen_debug		do_debug		has_error_code=0
idtentry xen_int3		do_int3			has_error_code=0
idtentry xen_stack_segment	do_stack_segment	has_error_code=1
895
#endif
896 897 898 899

idtentry general_protection	do_general_protection	has_error_code=1
trace_idtentry page_fault	do_page_fault		has_error_code=1

G
Gleb Natapov 已提交
900
#ifdef CONFIG_KVM_GUEST
901
idtentry async_page_fault	do_async_page_fault	has_error_code=1
G
Gleb Natapov 已提交
902
#endif
903

904
#ifdef CONFIG_X86_MCE
905
idtentry machine_check					has_error_code=0	paranoid=1 do_sym=*machine_check_vector(%rip)
906 907
#endif

908 909 910 911 912 913
/*
 * Save all registers in pt_regs, and switch gs if needed.
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
ENTRY(paranoid_entry)
914 915 916
	cld
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
917 918
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
919
	rdmsr
920 921
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
922
	SWAPGS
923
	xorl	%ebx, %ebx
924
1:	ret
925
END(paranoid_entry)
926

927 928 929 930 931 932 933 934 935
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
936 937
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
938
 */
939 940
ENTRY(paranoid_exit)
	DISABLE_INTERRUPTS(CLBR_NONE)
941
	TRACE_IRQS_OFF_DEBUG
942 943
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	paranoid_exit_no_swapgs
944
	TRACE_IRQS_IRETQ
945
	SWAPGS_UNSAFE_STACK
946
	jmp	paranoid_exit_restore
947
paranoid_exit_no_swapgs:
948
	TRACE_IRQS_IRETQ_DEBUG
949
paranoid_exit_restore:
950 951 952
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
	REMOVE_PT_GPREGS_FROM_STACK 8
953
	INTERRUPT_RETURN
954 955 956
END(paranoid_exit)

/*
957
 * Save all registers in pt_regs, and switch gs if needed.
958
 * Return: EBX=0: came from user mode; EBX=1: otherwise
959 960 961
 */
ENTRY(error_entry)
	cld
962 963
	SAVE_C_REGS 8
	SAVE_EXTRA_REGS 8
964
	xorl	%ebx, %ebx
965
	testb	$3, CS+8(%rsp)
966
	jz	.Lerror_kernelspace
967

968 969 970 971 972
.Lerror_entry_from_usermode_swapgs:
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
973
	SWAPGS
974

975
.Lerror_entry_from_usermode_after_swapgs:
976 977 978 979 980 981
	/*
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
	 * (which can take locks).
	 */
	TRACE_IRQS_OFF
982
	CALL_enter_from_user_mode
983
	ret
984

985
.Lerror_entry_done:
986 987 988
	TRACE_IRQS_OFF
	ret

989 990 991 992 993 994
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
995
.Lerror_kernelspace:
996 997 998
	incl	%ebx
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
999
	je	.Lerror_bad_iret
1000 1001
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1002
	je	.Lbstep_iret
1003
	cmpq	$gs_change, RIP+8(%rsp)
1004
	jne	.Lerror_entry_done
1005 1006 1007 1008 1009 1010

	/*
	 * hack: gs_change can fail with user gsbase.  If this happens, fix up
	 * gsbase and proceed.  We'll fix up the exception and land in
	 * gs_change's error handler with kernel gsbase.
	 */
1011
	jmp	.Lerror_entry_from_usermode_swapgs
1012

1013
.Lbstep_iret:
1014
	/* Fix truncated RIP */
1015
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1016 1017
	/* fall through */

1018
.Lerror_bad_iret:
1019 1020 1021 1022
	/*
	 * We came from an IRET to user mode, so we have user gsbase.
	 * Switch to kernel gsbase:
	 */
A
Andy Lutomirski 已提交
1023
	SWAPGS
1024 1025 1026 1027 1028 1029

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
	 * as if we faulted immediately after IRET and clear EBX so that
	 * error_exit knows that we will be returning to user mode.
	 */
1030 1031 1032
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1033
	decl	%ebx
1034
	jmp	.Lerror_entry_from_usermode_after_swapgs
1035 1036 1037
END(error_entry)


1038 1039 1040 1041 1042
/*
 * On entry, EBS is a "return to kernel mode" flag:
 *   1: already in kernel mode, don't need SWAPGS
 *   0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
 */
1043
ENTRY(error_exit)
1044
	movl	%ebx, %eax
1045 1046
	DISABLE_INTERRUPTS(CLBR_NONE)
	TRACE_IRQS_OFF
1047 1048 1049
	testl	%eax, %eax
	jnz	retint_kernel
	jmp	retint_user
1050 1051
END(error_exit)

1052
/* Runs on exception stack */
1053
ENTRY(nmi)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * Fix up the exception frame if we're on Xen.
	 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
	 * one value to the stack on native, so it may clobber the rdx
	 * scratch slot, but it won't clobber any of the important
	 * slots past it.
	 *
	 * Xen is a different story, because the Xen frame itself overlaps
	 * the "NMI executing" variable.
	 */
1064
	PARAVIRT_ADJUST_EXCEPTION_FRAME
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1083 1084 1085
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1086 1087
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1088
	 *    o Modify the "iret" location to jump to the repeat_nmi
1089 1090 1091 1092 1093 1094 1095 1096
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1097 1098 1099 1100 1101
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1102 1103
	 */

1104
	/* Use %rdx as our temp variable throughout */
1105
	pushq	%rdx
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1116 1117 1118
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1119 1120
	 */

1121
	SWAPGS_UNSAFE_STACK
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
	cld
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
	pushq   $-1		/* pt_regs->orig_ax */
	pushq   %rdi		/* pt_regs->di */
	pushq   %rsi		/* pt_regs->si */
	pushq   (%rdx)		/* pt_regs->dx */
	pushq   %rcx		/* pt_regs->cx */
	pushq   %rax		/* pt_regs->ax */
	pushq   %r8		/* pt_regs->r8 */
	pushq   %r9		/* pt_regs->r9 */
	pushq   %r10		/* pt_regs->r10 */
	pushq   %r11		/* pt_regs->r11 */
	pushq	%rbx		/* pt_regs->rbx */
	pushq	%rbp		/* pt_regs->rbp */
	pushq	%r12		/* pt_regs->r12 */
	pushq	%r13		/* pt_regs->r13 */
	pushq	%r14		/* pt_regs->r14 */
	pushq	%r15		/* pt_regs->r15 */

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi

1157
	/*
1158 1159 1160
	 * Return back to user mode.  We must *not* do the normal exit
	 * work, because we don't want to enable interrupts.  Fortunately,
	 * do_nmi doesn't modify pt_regs.
1161
	 */
1162 1163
	SWAPGS
	jmp	restore_c_regs_and_iret
1164

1165
.Lnmi_from_kernel:
1166
	/*
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1207
	/*
1208 1209
	 * Determine whether we're a nested NMI.
	 *
1210 1211 1212 1213 1214 1215
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
	 * about to about to call do_nmi anyway, so we can just
	 * resume the outer NMI.
1216
	 */
1217 1218 1219 1220 1221 1222 1223 1224

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1225

1226
	/*
1227
	 * Now check "NMI executing".  If it's set, then we're nested.
1228 1229
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1230
	 */
1231 1232
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1233 1234

	/*
1235 1236
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1237 1238 1239 1240 1241 1242 1243 1244
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1245
	 */
1246 1247 1248 1249 1250
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1251

1252 1253 1254 1255
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1256 1257 1258 1259 1260 1261 1262

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1263

1264 1265
nested_nmi:
	/*
1266 1267
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1268
	 */
1269
	subq	$8, %rsp
1270 1271 1272
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1273
	pushfq
1274 1275
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1276 1277

	/* Put stack back */
1278
	addq	$(6*8), %rsp
1279 1280

nested_nmi_out:
1281
	popq	%rdx
1282

1283
	/* We are returning to kernel mode, so this cannot result in a fault. */
1284 1285 1286
	INTERRUPT_RETURN

first_nmi:
1287
	/* Restore rdx. */
1288
	movq	(%rsp), %rdx
1289

1290 1291
	/* Make room for "NMI executing". */
	pushq	$0
1292

1293
	/* Leave room for the "iret" frame */
1294
	subq	$(5*8), %rsp
1295

1296
	/* Copy the "original" frame to the "outermost" frame */
1297
	.rept 5
1298
	pushq	11*8(%rsp)
1299
	.endr
1300

1301 1302
	/* Everything up to here is safe from nested NMIs */

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
	INTERRUPT_RETURN	/* continues at repeat_nmi below */
1:
#endif

1318
repeat_nmi:
1319 1320 1321 1322 1323 1324 1325 1326
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1327 1328 1329 1330
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1331 1332
	 * gsbase if needed before we call do_nmi.  "NMI executing"
	 * is zero.
1333
	 */
1334
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1335

1336
	/*
1337 1338 1339
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1340
	 */
1341
	addq	$(10*8), %rsp
1342
	.rept 5
1343
	pushq	-6*8(%rsp)
1344
	.endr
1345
	subq	$(5*8), %rsp
1346
end_repeat_nmi:
1347 1348

	/*
1349 1350 1351
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1352
	 */
1353
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1354 1355
	ALLOC_PT_GPREGS_ON_STACK

1356
	/*
1357
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1358 1359 1360 1361 1362
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1363
	call	paranoid_entry
1364

1365
	/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1366 1367 1368
	movq	%rsp, %rdi
	movq	$-1, %rsi
	call	do_nmi
1369

1370 1371
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1372 1373 1374
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1375 1376
	RESTORE_EXTRA_REGS
	RESTORE_C_REGS
1377 1378

	/* Point RSP at the "iret" frame. */
1379
	REMOVE_PT_GPREGS_FROM_STACK 6*8
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
	 * the SYSCALL entry and exit paths.  On a native kernel, we
	 * could just inspect RIP, but, on paravirt kernels,
	 * INTERRUPT_RETURN can translate into a jump into a
	 * hypercall page.
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1391 1392 1393 1394 1395 1396

	/*
	 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
	 * stack in a single instruction.  We are returning to kernel
	 * mode, so this cannot result in a fault.
	 */
1397
	INTERRUPT_RETURN
1398 1399 1400
END(nmi)

ENTRY(ignore_sysret)
1401
	mov	$-ENOSYS, %eax
1402 1403
	sysret
END(ignore_sysret)