cpsw.c 85.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90 91 92 93 94 95 96 97

#define HOST_PORT_NUM		0
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
122 123
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
124 125 126

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
127
#define CPDMA_TX_PRIORITY_MAP	0x01234567
128

129 130 131
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

132 133 134
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135

136 137 138 139 140 141 142
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

143 144 145
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
146
#define IRQ_NUM			2
147
#define CPSW_MAX_QUEUES		8
148
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149

150 151 152 153 154 155 156 157 158 159 160 161
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

162 163 164 165
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

166
struct cpsw_wr_regs {
167 168 169 170 171 172 173 174
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
175 176 177 178 179 180 181 182 183
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

184 185
};

186
struct cpsw_ss_regs {
187 188 189 190 191
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
192 193 194 195 196 197 198 199
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
200 201
};

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 248
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 250 251 252 253 254
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

255 256 257
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258

259 260 261 262 263 264 265 266 267 268 269 270 271
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 273 274 275 276 277 278 279 280

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281

282 283 284 285 286 287 288 289
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

290 291 292 293
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

294 295 296
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
297
	u32	tx_in_ctl;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

355
struct cpsw_slave {
356
	void __iomem			*regs;
357 358 359 360 361
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
362 363
	struct net_device		*ndev;
	u32				port_vlan;
364 365
};

366 367
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
368
	return readl_relaxed(slave->regs + offset);
369 370 371 372
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
373
	writel_relaxed(val, slave->regs + offset);
374 375
}

376 377 378 379 380
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

381
struct cpsw_common {
382
	struct device			*dev;
383
	struct cpsw_platform_data	data;
384 385
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
386 387 388 389
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
390 391 392 393
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
394
	struct cpsw_slave		*slaves;
395
	struct cpdma_ctlr		*dma;
396 397
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
398
	struct cpsw_ale			*ale;
399 400 401 402
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
403
	struct cpts			*cpts;
404
	int				rx_ch_num, tx_ch_num;
405
	int				speed;
406
	int				usage_count;
407 408 409
};

struct cpsw_priv {
410 411 412 413
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
414 415
	bool				rx_pause;
	bool				tx_pause;
416
	u32 emac_port;
417
	struct cpsw_common *cpsw;
418 419
};

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
498

499
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
500
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
501 502
#define for_each_slave(priv, func, arg...)				\
	do {								\
503
		struct cpsw_slave *slave;				\
504
		struct cpsw_common *cpsw = (priv)->cpsw;		\
505
		int n;							\
506 507
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
508
		else							\
509 510
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
511 512
					n; n--)				\
				(func)(slave++, ##arg);			\
513 514
	} while (0)

515
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
516
	do {								\
517
		if (!cpsw->data.dual_emac)				\
518 519
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
520
			ndev = cpsw->slaves[0].ndev;			\
521 522
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
523
			ndev = cpsw->slaves[1].ndev;			\
524 525
			skb->dev = ndev;				\
		}							\
526
	} while (0)
527
#define cpsw_add_mcast(cpsw, priv, addr)				\
528
	do {								\
529 530
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
531
						priv->emac_port;	\
532
			int slave_port = cpsw_get_slave_port(		\
533
						slave->slave_num);	\
534
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
535
				1 << slave_port | ALE_PORT_HOST,	\
536 537
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
538
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
539
				ALE_ALL_PORTS,				\
540 541 542 543
				0, 0, 0);				\
		}							\
	} while (0)

544
static inline int cpsw_get_slave_port(u32 slave_num)
545
{
546
	return slave_num + 1;
547
}
548

549 550
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
551 552
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
553 554
	int i;

555
	if (cpsw->data.dual_emac) {
556 557 558 559 560 561
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
562 563
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

585
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
586
			for (i = 0; i <= cpsw->data.slaves; i++) {
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
603
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
604 605 606 607 608

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
609
			/* Don't Flood All Unicast Packets to Host port */
610 611
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

612
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
613
			for (i = 0; i <= cpsw->data.slaves; i++) {
614 615 616 617 618 619 620 621 622 623
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

624 625 626
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
627
	struct cpsw_common *cpsw = priv->cpsw;
628 629
	int vid;

630 631
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
632
	else
633
		vid = cpsw->data.default_vlan;
634 635 636

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
637
		cpsw_set_promiscious(ndev, true);
638
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
639
		return;
640 641 642
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
643 644
	}

645
	/* Restore allmulti on vlans if necessary */
646
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
647

648
	/* Clear all mcast from ALE */
649
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
650 651 652 653 654 655

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
656
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
657 658 659 660
		}
	}
}

661
static void cpsw_intr_enable(struct cpsw_common *cpsw)
662
{
663 664
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
665

666
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
667 668 669
	return;
}

670
static void cpsw_intr_disable(struct cpsw_common *cpsw)
671
{
672 673
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
674

675
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
676 677 678
	return;
}

679
static void cpsw_tx_handler(void *token, int len, int status)
680
{
681
	struct netdev_queue	*txq;
682 683
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
684
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
685

686 687 688
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
689 690 691 692
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

693
	cpts_tx_timestamp(cpsw->cpts, skb);
694 695
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
696 697 698
	dev_kfree_skb_any(skb);
}

699
static void cpsw_rx_handler(void *token, int len, int status)
700
{
701
	struct cpdma_chan	*ch;
702
	struct sk_buff		*skb = token;
703
	struct sk_buff		*new_skb;
704 705
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
706
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
707

708
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
709

710
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
711
		/* In dual emac mode check for all interfaces */
712
		if (cpsw->data.dual_emac && cpsw->usage_count &&
713
		    (status >= 0)) {
714 715
			/* The packet received is for the interface which
			 * is already down and the other interface is up
716
			 * and running, instead of freeing which results
717 718 719 720 721 722 723
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

724
		/* the interface is going down, skbs are purged */
725 726 727
		dev_kfree_skb_any(skb);
		return;
	}
728

729
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
730
	if (new_skb) {
731
		skb_copy_queue_mapping(new_skb, skb);
732
		skb_put(skb, len);
733
		cpts_rx_timestamp(cpsw->cpts, skb);
734 735
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
736 737
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
738
		kmemleak_not_leak(new_skb);
739
	} else {
740
		ndev->stats.rx_dropped++;
741
		new_skb = skb;
742 743
	}

744
requeue:
745 746 747 748 749
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

750
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
751
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
752
				skb_tailroom(new_skb), 0);
753 754
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
755 756
}

757
static void cpsw_split_res(struct net_device *ndev)
758 759
{
	struct cpsw_priv *priv = netdev_priv(ndev);
760
	u32 consumed_rate = 0, bigest_rate = 0;
761 762
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
763
	int i, ch_weight, rlim_ch_num = 0;
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
779 780 781 782
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
783
	} else {
784 785 786 787 788 789 790 791 792 793
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
794

795 796 797 798 799 800 801
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

802
	/* split tx weight/budget */
803 804 805 806 807 808
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
809
				txv[i].budget++;
810 811 812 813
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
814 815 816 817 818

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
819 820 821 822
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
823
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

844
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
845
{
846
	struct cpsw_common *cpsw = dev_id;
847

848
	writel(0, &cpsw->wr_regs->tx_en);
849
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
850

851 852 853
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
854 855
	}

856
	napi_schedule(&cpsw->napi_tx);
857 858 859 860 861
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
862
	struct cpsw_common *cpsw = dev_id;
863

864
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
865
	writel(0, &cpsw->wr_regs->rx_en);
866

867 868 869
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
870 871
	}

872
	napi_schedule(&cpsw->napi_rx);
873
	return IRQ_HANDLED;
874 875
}

876 877
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
878
	u32			ch_map;
879
	int			num_tx, cur_budget, ch;
880
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
881
	struct cpsw_vector	*txv;
882

883 884
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
885
	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
886 887 888
		if (!(ch_map & 0x01))
			continue;

889 890 891 892 893 894 895
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
896 897
		if (num_tx >= budget)
			break;
898 899
	}

900 901
	if (num_tx < budget) {
		napi_complete(napi_tx);
902
		writel(0xff, &cpsw->wr_regs->tx_en);
903 904 905
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
906
		}
907 908 909 910 911 912
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
913
{
914
	u32			ch_map;
915
	int			num_rx, cur_budget, ch;
916
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
917
	struct cpsw_vector	*rxv;
918

919 920
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
921
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
922 923 924
		if (!(ch_map & 0x01))
			continue;

925 926 927 928 929 930 931
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
932 933
		if (num_rx >= budget)
			break;
934 935
	}

936
	if (num_rx < budget) {
937
		napi_complete_done(napi_rx, num_rx);
938
		writel(0xff, &cpsw->wr_regs->rx_en);
939 940 941
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
942
		}
943 944 945 946 947 948 949 950 951
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

952
	writel_relaxed(1, reg);
953 954
	do {
		cpu_relax();
955
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
956

957
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
958 959 960 961 962 963 964 965 966
}

#define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
			 ((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
967 968
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
969 970 971 972 973 974 975 976
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
977
	struct cpsw_common *cpsw = priv->cpsw;
978 979 980 981

	if (!phy)
		return;

982
	slave_port = cpsw_get_slave_port(slave->slave_num);
983 984

	if (phy->link) {
985
		mac_control = cpsw->data.mac_control;
986 987

		/* enable forwarding */
988
		cpsw_ale_control_set(cpsw->ale, slave_port,
989 990 991 992 993 994
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
995 996 997 998

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
999 1000
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
1001

1002 1003 1004 1005 1006 1007
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1008 1009 1010 1011
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
1012
		cpsw_ale_control_set(cpsw->ale, slave_port,
1013 1014 1015 1016 1017
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1018
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1019 1020 1021 1022 1023
	}

	slave->mac_control = mac_control;
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1062 1063 1064
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1065
	struct cpsw_common	*cpsw = priv->cpsw;
1066 1067 1068 1069 1070
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1071 1072 1073
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1074 1075
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1076
			netif_tx_wake_all_queues(ndev);
1077 1078
	} else {
		netif_carrier_off(ndev);
1079
		netif_tx_stop_all_queues(ndev);
1080 1081 1082
	}
}

1083 1084 1085
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1086
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1087

1088
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1101
	struct cpsw_common *cpsw = priv->cpsw;
1102 1103 1104

	coal_intvl = coal->rx_coalesce_usecs;

1105
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1106
	prescale = cpsw->bus_freq_mhz * 4;
1107

1108 1109 1110 1111 1112
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1134 1135
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1136 1137 1138 1139

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1140 1141

update_return:
1142
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1143 1144

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1145
	cpsw->coal_intvl = coal_intvl;
1146 1147 1148 1149

	return 0;
}

1150 1151
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1152 1153
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1154 1155
	switch (sset) {
	case ETH_SS_STATS:
1156 1157 1158
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1159 1160 1161 1162 1163
	default:
		return -EOPNOTSUPP;
	}
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1181 1182
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1183
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1184 1185 1186 1187 1188
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1189
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1190 1191 1192 1193
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1194 1195 1196

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1197 1198 1199 1200 1201 1202 1203 1204
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1205
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1206 1207
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1208 1209

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1210 1211 1212 1213 1214
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1215
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1216 1217 1218 1219 1220 1221
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1222

1223
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1224
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1225 1226 1227 1228
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1229 1230 1231 1232
		}
	}
}

1233
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1234 1235
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1236
{
1237 1238
	struct cpsw_common *cpsw = priv->cpsw;

1239
	skb_tx_timestamp(skb);
1240
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1241
				 priv->emac_port + cpsw->data.dual_emac);
1242 1243 1244 1245 1246 1247
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1248
	struct cpsw_common *cpsw = priv->cpsw;
1249
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1250

1251
	if (cpsw->version == CPSW_VERSION_1)
1252 1253 1254
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1255
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1256
			  port_mask, port_mask, 0);
1257
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1258
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1259 1260 1261
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1262 1263
}

1264
static void soft_reset_slave(struct cpsw_slave *slave)
1265 1266 1267
{
	char name[32];

1268
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1269
	soft_reset(name, &slave->sliver->soft_reset);
1270 1271 1272 1273 1274
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1275
	struct phy_device *phy;
1276
	struct cpsw_common *cpsw = priv->cpsw;
1277 1278

	soft_reset_slave(slave);
1279 1280

	/* setup priority mapping */
1281
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1282

1283
	switch (cpsw->version) {
1284 1285
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1286 1287 1288 1289 1290 1291
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1292 1293
		break;
	case CPSW_VERSION_2:
1294
	case CPSW_VERSION_3:
1295
	case CPSW_VERSION_4:
1296
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1297 1298 1299 1300 1301 1302
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1303 1304
		break;
	}
1305 1306

	/* setup max packet size, and mac address */
1307
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1308 1309 1310 1311
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1312
	slave_port = cpsw_get_slave_port(slave->slave_num);
1313

1314
	if (cpsw->data.dual_emac)
1315 1316
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1317
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1318
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1319

1320
	if (slave->data->phy_node) {
1321
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1322
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1323
		if (!phy) {
1324 1325
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1326 1327 1328 1329
				slave->slave_num);
			return;
		}
	} else {
1330
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1331
				 &cpsw_adjust_link, slave->data->phy_if);
1332
		if (IS_ERR(phy)) {
1333 1334 1335
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1336
				PTR_ERR(phy));
1337 1338 1339
			return;
		}
	}
1340

1341 1342
	slave->phy = phy;

1343
	phy_attached_info(slave->phy);
1344

1345 1346 1347
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1348
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1349 1350
}

1351 1352
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1353 1354
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1355 1356
	u32 reg;
	int i;
1357
	int unreg_mcast_mask;
1358

1359
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1360 1361
	       CPSW2_PORT_VLAN;

1362
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1363

1364 1365
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1366

1367 1368 1369 1370 1371
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1372
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1373 1374
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1375 1376
}

1377 1378
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1379
	u32 fifo_mode;
1380 1381
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1382

1383
	/* soft reset the controller and initialize ale */
1384
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1385
	cpsw_ale_start(cpsw->ale);
1386 1387

	/* switch to vlan unaware mode */
1388
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1389
			     CPSW_ALE_VLAN_AWARE);
1390
	control_reg = readl(&cpsw->regs->control);
1391
	control_reg |= CPSW_VLAN_AWARE;
1392
	writel(control_reg, &cpsw->regs->control);
1393
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1394
		     CPSW_FIFO_NORMAL_MODE;
1395
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1396 1397

	/* setup host port priority mapping */
1398 1399 1400
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1401

1402
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1403 1404
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1405
	if (!cpsw->data.dual_emac) {
1406
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1407
				   0, 0);
1408
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1409
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1410
	}
1411 1412
}

1413 1414 1415 1416 1417
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1418 1419 1420
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1421
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1422 1423 1424 1425 1426 1427 1428 1429
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1430

1431
			skb_set_queue_mapping(skb, ch);
1432 1433 1434
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1435 1436 1437 1438 1439 1440 1441 1442
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1443 1444
		}

1445 1446 1447
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1448

1449
	return 0;
1450 1451
}

1452
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1453
{
1454 1455
	u32 slave_port;

1456
	slave_port = cpsw_get_slave_port(slave->slave_num);
1457

1458 1459 1460 1461 1462
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1463
	cpsw_ale_control_set(cpsw->ale, slave_port,
1464
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1465
	soft_reset_slave(slave);
1466 1467
}

1468 1469 1470
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1471
	struct cpsw_common *cpsw = priv->cpsw;
1472
	int ret;
1473 1474
	u32 reg;

1475
	ret = pm_runtime_get_sync(cpsw->dev);
1476
	if (ret < 0) {
1477
		pm_runtime_put_noidle(cpsw->dev);
1478 1479
		return ret;
	}
1480

1481 1482
	netif_carrier_off(ndev);

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1496
	reg = cpsw->version;
1497 1498 1499 1500 1501

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1502 1503
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1504
		cpsw_init_host_port(priv);
1505 1506
	for_each_slave(priv, cpsw_slave_open, priv);

1507
	/* Add default VLAN */
1508
	if (!cpsw->data.dual_emac)
1509 1510
		cpsw_add_default_vlan(priv);
	else
1511
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1512
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1513

1514 1515
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1516
		/* disable priority elevation */
1517
		writel_relaxed(0, &cpsw->regs->ptype);
1518

1519
		/* enable statistics collection only on all ports */
1520
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1521

1522
		/* Enable internal fifo flow control */
1523
		writel(0x7, &cpsw->regs->flow_control);
1524

1525 1526
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1527

1528 1529 1530
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1531 1532
		}

1533 1534 1535
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1536 1537
		}

1538 1539 1540
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1541

1542
		if (cpts_register(cpsw->cpts))
1543 1544
			dev_err(priv->dev, "error registering cpts device\n");

1545 1546
	}

1547
	/* Enable Interrupt pacing if configured */
1548
	if (cpsw->coal_intvl != 0) {
1549 1550
		struct ethtool_coalesce coal;

1551
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1552 1553 1554
		cpsw_set_coalesce(ndev, &coal);
	}

1555 1556
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1557
	cpsw->usage_count++;
1558

1559 1560
	return 0;

1561
err_cleanup:
1562
	cpdma_ctlr_stop(cpsw->dma);
1563
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1564
	pm_runtime_put_sync(cpsw->dev);
1565 1566
	netif_carrier_off(priv->ndev);
	return ret;
1567 1568 1569 1570 1571
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1572
	struct cpsw_common *cpsw = priv->cpsw;
1573 1574

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1575
	netif_tx_stop_all_queues(priv->ndev);
1576
	netif_carrier_off(priv->ndev);
1577

1578
	if (cpsw->usage_count <= 1) {
1579 1580
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1581
		cpts_unregister(cpsw->cpts);
1582 1583
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1584
		cpsw_ale_stop(cpsw->ale);
1585
	}
1586
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1587 1588 1589 1590

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1591
	cpsw->usage_count--;
1592
	pm_runtime_put_sync(cpsw->dev);
1593 1594 1595 1596 1597 1598 1599
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1600
	struct cpsw_common *cpsw = priv->cpsw;
1601
	struct cpts *cpts = cpsw->cpts;
1602 1603 1604
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1605 1606 1607

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1608
		ndev->stats.tx_dropped++;
1609
		return NET_XMIT_DROP;
1610 1611
	}

1612
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1613
	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1614 1615
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

1616 1617 1618 1619
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1620
	txch = cpsw->txv[q_idx].ch;
1621
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1622 1623 1624 1625 1626
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1627 1628 1629
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1630 1631 1632 1633
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1634

1635 1636
	return NETDEV_TX_OK;
fail:
1637
	ndev->stats.tx_dropped++;
1638 1639
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1640 1641 1642
	return NETDEV_TX_BUSY;
}

1643
#if IS_ENABLED(CONFIG_TI_CPTS)
1644

1645
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1646
{
1647
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1648 1649
	u32 ts_en, seq_id;

1650 1651
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
1652 1653 1654 1655 1656 1657 1658
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1659
	if (cpts_is_tx_enabled(cpsw->cpts))
1660 1661
		ts_en |= CPSW_V1_TS_TX_EN;

1662
	if (cpts_is_rx_enabled(cpsw->cpts))
1663 1664 1665 1666 1667 1668 1669 1670
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1671
	struct cpsw_slave *slave;
1672
	struct cpsw_common *cpsw = priv->cpsw;
1673 1674
	u32 ctrl, mtype;

1675
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1676

1677
	ctrl = slave_read(slave, CPSW2_CONTROL);
1678
	switch (cpsw->version) {
1679 1680
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1681

1682
		if (cpts_is_tx_enabled(cpsw->cpts))
1683
			ctrl |= CTRL_V2_TX_TS_BITS;
1684

1685
		if (cpts_is_rx_enabled(cpsw->cpts))
1686
			ctrl |= CTRL_V2_RX_TS_BITS;
1687
		break;
1688 1689 1690 1691
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1692
		if (cpts_is_tx_enabled(cpsw->cpts))
1693 1694
			ctrl |= CTRL_V3_TX_TS_BITS;

1695
		if (cpts_is_rx_enabled(cpsw->cpts))
1696
			ctrl |= CTRL_V3_RX_TS_BITS;
1697
		break;
1698
	}
1699 1700 1701 1702 1703

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1704
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1705 1706
}

1707
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1708
{
1709
	struct cpsw_priv *priv = netdev_priv(dev);
1710
	struct hwtstamp_config cfg;
1711 1712
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1713

1714 1715 1716
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1717 1718
		return -EOPNOTSUPP;

1719 1720 1721 1722 1723 1724 1725
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1726
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1727 1728 1729 1730
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1731
		cpts_rx_enable(cpts, 0);
1732 1733
		break;
	case HWTSTAMP_FILTER_ALL:
1734 1735
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
1736 1737 1738
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1739 1740 1741
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
1742 1743 1744 1745 1746 1747 1748 1749 1750
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1751
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1752 1753 1754 1755 1756 1757
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1758
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1759

1760
	switch (cpsw->version) {
1761
	case CPSW_VERSION_1:
1762
		cpsw_hwtstamp_v1(cpsw);
1763 1764
		break;
	case CPSW_VERSION_2:
1765
	case CPSW_VERSION_3:
1766 1767 1768
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1769
		WARN_ON(1);
1770 1771 1772 1773 1774
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1775 1776
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1777 1778
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1779 1780
	struct hwtstamp_config cfg;

1781 1782 1783
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1784 1785 1786
		return -EOPNOTSUPP;

	cfg.flags = 0;
1787 1788 1789
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1790
			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1791 1792 1793

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1794 1795 1796 1797 1798
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1799

1800 1801 1802 1803
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1804 1805 1806 1807
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1808
	struct cpsw_priv *priv = netdev_priv(dev);
1809 1810
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1811

1812 1813 1814
	if (!netif_running(dev))
		return -EINVAL;

1815 1816
	switch (cmd) {
	case SIOCSHWTSTAMP:
1817 1818 1819
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1820 1821
	}

1822
	if (!cpsw->slaves[slave_no].phy)
1823
		return -EOPNOTSUPP;
1824
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1825 1826
}

1827 1828 1829
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1830
	struct cpsw_common *cpsw = priv->cpsw;
1831
	int ch;
1832 1833

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1834
	ndev->stats.tx_errors++;
1835
	cpsw_intr_disable(cpsw);
1836
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1837 1838
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1839 1840
	}

1841
	cpsw_intr_enable(cpsw);
1842 1843
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
1844 1845
}

1846 1847 1848 1849
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1850
	struct cpsw_common *cpsw = priv->cpsw;
1851 1852
	int flags = 0;
	u16 vid = 0;
1853
	int ret;
1854 1855 1856 1857

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1858
	ret = pm_runtime_get_sync(cpsw->dev);
1859
	if (ret < 0) {
1860
		pm_runtime_put_noidle(cpsw->dev);
1861 1862 1863
		return ret;
	}

1864 1865
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1866 1867 1868
		flags = ALE_VLAN;
	}

1869
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1870
			   flags, vid);
1871
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1872 1873 1874 1875 1876 1877
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1878
	pm_runtime_put(cpsw->dev);
1879

1880 1881 1882
	return 0;
}

1883 1884 1885
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1886
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1887

1888 1889 1890 1891
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1892 1893 1894
}
#endif

1895 1896 1897 1898
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1899 1900
	int unreg_mcast_mask = 0;
	u32 port_mask;
1901
	struct cpsw_common *cpsw = priv->cpsw;
1902

1903
	if (cpsw->data.dual_emac) {
1904
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1916

1917
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1918
				unreg_mcast_mask);
1919 1920 1921
	if (ret != 0)
		return ret;

1922
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1923
				 HOST_PORT_NUM, ALE_VLAN, vid);
1924 1925 1926
	if (ret != 0)
		goto clean_vid;

1927
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1928
				 port_mask, ALE_VLAN, vid, 0);
1929 1930 1931 1932 1933
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1934
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1935
			   HOST_PORT_NUM, ALE_VLAN, vid);
1936
clean_vid:
1937
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1938 1939 1940 1941
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1942
				    __be16 proto, u16 vid)
1943 1944
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1945
	struct cpsw_common *cpsw = priv->cpsw;
1946
	int ret;
1947

1948
	if (vid == cpsw->data.default_vlan)
1949 1950
		return 0;

1951
	ret = pm_runtime_get_sync(cpsw->dev);
1952
	if (ret < 0) {
1953
		pm_runtime_put_noidle(cpsw->dev);
1954 1955 1956
		return ret;
	}

1957
	if (cpsw->data.dual_emac) {
1958 1959 1960 1961 1962 1963
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1964 1965
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1966 1967 1968 1969
				return -EINVAL;
		}
	}

1970
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1971 1972
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1973
	pm_runtime_put(cpsw->dev);
1974
	return ret;
1975 1976 1977
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1978
				     __be16 proto, u16 vid)
1979 1980
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1981
	struct cpsw_common *cpsw = priv->cpsw;
1982 1983
	int ret;

1984
	if (vid == cpsw->data.default_vlan)
1985 1986
		return 0;

1987
	ret = pm_runtime_get_sync(cpsw->dev);
1988
	if (ret < 0) {
1989
		pm_runtime_put_noidle(cpsw->dev);
1990 1991 1992
		return ret;
	}

1993
	if (cpsw->data.dual_emac) {
1994 1995
		int i;

1996 1997
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1998 1999 2000 2001
				return -EINVAL;
		}
	}

2002
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2003
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2004 2005 2006
	if (ret != 0)
		return ret;

2007
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2008
				 HOST_PORT_NUM, ALE_VLAN, vid);
2009 2010 2011
	if (ret != 0)
		return ret;

2012
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2013
				 0, ALE_VLAN, vid);
2014
	pm_runtime_put(cpsw->dev);
2015
	return ret;
2016 2017
}

2018 2019 2020 2021
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2022
	struct cpsw_slave *slave;
2023
	u32 min_rate;
2024
	u32 ch_rate;
2025
	int i, ret;
2026 2027 2028 2029 2030

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2031 2032 2033 2034 2035
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2036 2037 2038
		return -EINVAL;
	}

2039
	if (rate > cpsw->speed) {
2040
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2041 2042 2043 2044 2045 2046 2047 2048 2049
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2050 2051
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2052

2053 2054
	if (ret)
		return ret;
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2065
	cpsw_split_res(ndev);
2066 2067 2068
	return ret;
}

2069 2070 2071 2072
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2073
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2074
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2075 2076
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2077
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2078
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2079 2080 2081
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2082 2083
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2084 2085
};

2086 2087
static int cpsw_get_regs_len(struct net_device *ndev)
{
2088
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2089

2090
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2091 2092 2093 2094 2095 2096
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2097
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2098 2099

	/* update CPSW IP version */
2100
	regs->version = cpsw->version;
2101

2102
	cpsw_ale_dump(cpsw->ale, reg);
2103 2104
}

2105 2106 2107
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2108
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2109
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2110

2111
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2112
	strlcpy(info->version, "1.0", sizeof(info->version));
2113
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2128
#if IS_ENABLED(CONFIG_TI_CPTS)
2129 2130 2131
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2132
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2133 2134 2135 2136 2137 2138 2139 2140

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2141
	info->phc_index = cpsw->cpts->phc_index;
2142 2143 2144 2145 2146
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2147
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2148
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2149 2150
	return 0;
}
2151
#else
2152 2153 2154
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2155 2156 2157 2158 2159 2160 2161 2162 2163
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2164
#endif
2165

2166 2167
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2168 2169
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2170 2171
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2172

2173
	if (!cpsw->slaves[slave_no].phy)
2174
		return -EOPNOTSUPP;
2175 2176 2177

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2178 2179
}

2180 2181
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2182 2183
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2184 2185
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2186

2187
	if (cpsw->slaves[slave_no].phy)
2188 2189
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2190 2191 2192 2193
	else
		return -EOPNOTSUPP;
}

2194 2195 2196
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2197 2198
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2199 2200 2201 2202

	wol->supported = 0;
	wol->wolopts = 0;

2203 2204
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2205 2206 2207 2208 2209
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2210 2211
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2212

2213 2214
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2215 2216 2217 2218
	else
		return -EOPNOTSUPP;
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2242 2243 2244
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2245
	struct cpsw_common *cpsw = priv->cpsw;
2246 2247
	int ret;

2248
	ret = pm_runtime_get_sync(cpsw->dev);
2249 2250
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2251
		pm_runtime_put_noidle(cpsw->dev);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2262
	ret = pm_runtime_put(priv->cpsw->dev);
2263 2264 2265 2266
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2303
	struct netdev_queue *queue;
2304
	struct cpsw_vector *vec;
2305 2306 2307 2308
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
2309
		vec = cpsw->rxv;
2310 2311 2312
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2313
		vec = cpsw->txv;
2314 2315 2316 2317
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2318
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2319 2320
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2321

2322 2323
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2324

2325
		if (!vec[*ch].ch)
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2336
		ret = cpdma_chan_destroy(vec[*ch].ch);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2363
static void cpsw_suspend_data_pass(struct net_device *ndev)
2364
{
2365
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2366
	struct cpsw_slave *slave;
2367
	int i;
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
2400
	if (cpsw->usage_count) {
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2454
	if (cpsw->usage_count)
2455
		cpsw_split_res(ndev);
2456

2457 2458 2459
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2460 2461 2462 2463 2464 2465
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2502 2503 2504 2505 2506 2507 2508 2509 2510
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2511
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2512 2513 2514 2515 2516 2517 2518 2519
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2520
	int ret;
2521 2522 2523 2524

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2525 2526
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2527 2528 2529 2530 2531
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

2532
	cpsw_suspend_data_pass(ndev);
2533 2534 2535

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

2536
	if (cpsw->usage_count)
2537 2538
		cpdma_chan_split_pool(cpsw->dma);

2539 2540 2541
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2542

2543
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2544 2545 2546 2547
	dev_close(ndev);
	return ret;
}

2548 2549 2550 2551 2552
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2553
	.get_ts_info	= cpsw_get_ts_info,
2554 2555
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2556 2557 2558
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2559 2560
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2561 2562
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2563 2564
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2565 2566
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2567 2568
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2569 2570
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2571 2572
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2573
	.nway_reset	= cpsw_nway_reset,
2574 2575
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2576 2577
};

2578
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2579
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2580
{
2581
	void __iomem		*regs = cpsw->regs;
2582
	int			slave_num = slave->slave_num;
2583
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2584 2585

	slave->data	= data;
2586 2587
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2588
	slave->port_vlan = data->dual_emac_res_vlan;
2589 2590
}

2591
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2603
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2604 2605 2606 2607
		return -EINVAL;
	}
	data->slaves = prop;

2608
	if (of_property_read_u32(node, "active_slave", &prop)) {
2609
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2610
		return -EINVAL;
2611
	}
2612
	data->active_slave = prop;
2613

2614 2615 2616
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2617
	if (!data->slave_data)
2618
		return -ENOMEM;
2619 2620

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2621
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2622
		return -EINVAL;
2623 2624 2625 2626
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2627
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2628
		return -EINVAL;
2629 2630 2631 2632
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2633
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2634
		return -EINVAL;
2635 2636 2637 2638
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2639
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2640
		return -EINVAL;
2641 2642 2643
	}
	data->mac_control = prop;

2644 2645
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2646

2647 2648 2649 2650 2651 2652
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2653
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2654

2655
	for_each_available_child_of_node(node, slave_node) {
2656 2657
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2658 2659 2660
		int lenp;
		const __be32 *parp;

2661 2662 2663 2664
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2665 2666
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2667
		parp = of_get_property(slave_node, "phy_id", &lenp);
2668 2669
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
2670 2671
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
2672
		} else if (of_phy_is_fixed_link(slave_node)) {
2673 2674 2675
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2676
			ret = of_phy_register_fixed_link(slave_node);
2677 2678 2679
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2680
				return ret;
2681
			}
2682
			slave_data->phy_node = of_node_get(slave_node);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2702
			put_device(&mdio->dev);
2703
		} else {
2704 2705 2706
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2707
			goto no_phy_slave;
2708
		}
2709 2710 2711 2712 2713 2714 2715 2716
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2717
		mac_addr = of_get_mac_address(slave_node);
2718
		if (mac_addr) {
2719
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2720
		} else {
2721 2722 2723 2724
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2725
		}
2726
		if (data->dual_emac) {
2727
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2728
						 &prop)) {
2729
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2730
				slave_data->dual_emac_res_vlan = i+1;
2731 2732
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2733 2734 2735 2736 2737
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2738
		i++;
2739 2740
		if (i == data->slaves)
			break;
2741 2742 2743 2744 2745
	}

	return 0;
}

2746 2747
static void cpsw_remove_dt(struct platform_device *pdev)
{
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

2761 2762
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2763 2764 2765 2766 2767 2768 2769 2770

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2771 2772 2773
	of_platform_depopulate(&pdev->dev);
}

2774
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2775
{
2776 2777
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2778 2779
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2780
	int ret = 0;
2781

2782
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2783
	if (!ndev) {
2784
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2785 2786 2787 2788
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2789
	priv_sl2->cpsw = cpsw;
2790 2791 2792 2793 2794 2795 2796
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2797 2798
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2799 2800
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2801 2802
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2803 2804 2805 2806
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2807
	cpsw->slaves[1].ndev = ndev;
2808
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2809 2810

	ndev->netdev_ops = &cpsw_netdev_ops;
2811
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2812 2813

	/* register the network device */
2814
	SET_NETDEV_DEV(ndev, cpsw->dev);
2815 2816
	ret = register_netdev(ndev);
	if (ret) {
2817
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2818 2819 2820 2821 2822 2823 2824
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2825 2826
#define CPSW_QUIRK_IRQ		BIT(0)

2827
static const struct platform_device_id cpsw_devtype[] = {
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2863
static int cpsw_probe(struct platform_device *pdev)
2864
{
2865
	struct clk			*clk;
2866
	struct cpsw_platform_data	*data;
2867 2868 2869 2870
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2871
	void __iomem			*ss_regs;
2872
	void __iomem			*cpts_regs;
2873
	struct resource			*res, *ss_res;
2874
	const struct of_device_id	*of_id;
2875
	struct gpio_descs		*mode;
2876
	u32 slave_offset, sliver_offset, slave_size;
2877
	struct cpsw_common		*cpsw;
2878 2879
	int ret = 0, i;
	int irq;
2880

2881
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2882 2883 2884
	if (!cpsw)
		return -ENOMEM;

2885
	cpsw->dev = &pdev->dev;
2886

2887
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2888
	if (!ndev) {
2889
		dev_err(&pdev->dev, "error allocating net_device\n");
2890 2891 2892 2893 2894
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2895
	priv->cpsw = cpsw;
2896 2897 2898
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2899
	cpsw->rx_packet_max = max(rx_packet_max, 128);
2900

2901 2902 2903 2904 2905 2906 2907
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2908 2909 2910 2911 2912
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2913 2914 2915
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2916 2917 2918 2919 2920 2921
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
2922
		goto clean_runtime_disable_ret;
2923
	}
2924

2925 2926
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2927
		goto clean_dt_ret;
2928

2929
	data = &cpsw->data;
2930 2931
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2932

2933 2934
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2935
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2936
	} else {
J
Joe Perches 已提交
2937
		eth_random_addr(priv->mac_addr);
2938
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2939 2940 2941 2942
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2943
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2944 2945
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2946
	if (!cpsw->slaves) {
2947
		ret = -ENOMEM;
2948
		goto clean_dt_ret;
2949 2950
	}
	for (i = 0; i < data->slaves; i++)
2951
		cpsw->slaves[i].slave_num = i;
2952

2953
	cpsw->slaves[0].ndev = ndev;
2954 2955
	priv->emac_port = 0;

2956 2957
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2958
		dev_err(priv->dev, "fck is not found\n");
2959
		ret = -ENODEV;
2960
		goto clean_dt_ret;
2961
	}
2962
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2963

2964 2965 2966 2967
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
2968
		goto clean_dt_ret;
2969
	}
2970
	cpsw->regs = ss_regs;
2971

2972
	cpsw->version = readl(&cpsw->regs->id_ver);
2973

2974
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2975 2976 2977
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
2978
		goto clean_dt_ret;
2979 2980 2981
	}

	memset(&dma_params, 0, sizeof(dma_params));
2982 2983
	memset(&ale_params, 0, sizeof(ale_params));

2984
	switch (cpsw->version) {
2985
	case CPSW_VERSION_1:
2986
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2987
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
2988
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2989 2990 2991 2992 2993 2994 2995 2996 2997
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
2998
	case CPSW_VERSION_3:
2999
	case CPSW_VERSION_4:
3000
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3001
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3002
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3003 3004 3005 3006 3007 3008 3009
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3010
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3011 3012
		break;
	default:
3013
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3014
		ret = -ENODEV;
3015
		goto clean_dt_ret;
3016
	}
3017 3018 3019 3020
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3021 3022 3023 3024
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3025
	dma_params.dev		= &pdev->dev;
3026 3027 3028 3029 3030
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3031 3032 3033 3034 3035 3036 3037

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3038
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3039
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3040
	dma_params.descs_pool_size	= descs_pool_size;
3041

3042 3043
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3044 3045
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3046
		goto clean_dt_ret;
3047 3048
	}

3049 3050 3051
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3052 3053 3054 3055 3056
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

3057
	ale_params.dev			= &pdev->dev;
3058 3059 3060 3061
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= data->slaves;

3062 3063
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3064 3065 3066 3067 3068
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3069
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3070 3071 3072 3073 3074
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
		goto clean_ale_ret;
	}

3075
	ndev->irq = platform_get_irq(pdev, 1);
3076 3077
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3078
		ret = ndev->irq;
3079 3080 3081
		goto clean_ale_ret;
	}

3082 3083 3084 3085
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
3086
			cpsw->quirk_irq = true;
3087 3088
	}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
	cpsw_split_res(ndev);

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
		goto clean_ale_ret;
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3114 3115 3116 3117 3118 3119 3120
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3121

3122
	/* RX IRQ */
3123
	irq = platform_get_irq(pdev, 1);
3124 3125
	if (irq < 0) {
		ret = irq;
3126
		goto clean_ale_ret;
3127
	}
3128

3129
	cpsw->irqs_table[0] = irq;
3130
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3131
			       0, dev_name(&pdev->dev), cpsw);
3132 3133 3134 3135 3136
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
	}

3137
	/* TX IRQ */
3138
	irq = platform_get_irq(pdev, 2);
3139 3140
	if (irq < 0) {
		ret = irq;
3141
		goto clean_ale_ret;
3142
	}
3143

3144
	cpsw->irqs_table[1] = irq;
3145
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3146
			       0, dev_name(&pdev->dev), cpsw);
3147 3148 3149
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
3150
	}
3151

3152 3153 3154
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3155

3156 3157
	pm_runtime_put(&pdev->dev);

3158 3159
	return 0;

3160 3161
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3162
clean_ale_ret:
3163
	cpsw_ale_destroy(cpsw->ale);
3164
clean_dma_ret:
3165
	cpdma_ctlr_destroy(cpsw->dma);
3166 3167
clean_dt_ret:
	cpsw_remove_dt(pdev);
3168
	pm_runtime_put_sync(&pdev->dev);
3169
clean_runtime_disable_ret:
3170
	pm_runtime_disable(&pdev->dev);
3171
clean_ndev_ret:
3172
	free_netdev(priv->ndev);
3173 3174 3175
	return ret;
}

B
Bill Pemberton 已提交
3176
static int cpsw_remove(struct platform_device *pdev)
3177 3178
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3179
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3180 3181 3182 3183 3184 3185 3186
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3187

3188 3189
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3190
	unregister_netdev(ndev);
3191

3192
	cpts_release(cpsw->cpts);
3193
	cpsw_ale_destroy(cpsw->ale);
3194
	cpdma_ctlr_destroy(cpsw->dma);
3195
	cpsw_remove_dt(pdev);
3196 3197
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3198 3199
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3200 3201 3202 3203
	free_netdev(ndev);
	return 0;
}

3204
#ifdef CONFIG_PM_SLEEP
3205 3206 3207 3208
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3209
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3210

3211
	if (cpsw->data.dual_emac) {
3212
		int i;
3213

3214 3215 3216
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3217 3218 3219 3220 3221
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3222

3223
	/* Select sleep pin state */
3224
	pinctrl_pm_select_sleep_state(dev);
3225

3226 3227 3228 3229 3230 3231 3232
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3233
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3234

3235
	/* Select default pin state */
3236
	pinctrl_pm_select_default_state(dev);
3237

3238 3239
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3240
	if (cpsw->data.dual_emac) {
3241 3242
		int i;

3243 3244 3245
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3246 3247 3248 3249 3250
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3251 3252
	rtnl_unlock();

3253 3254
	return 0;
}
3255
#endif
3256

3257
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3258 3259 3260 3261 3262

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3263
		.of_match_table = cpsw_of_mtable,
3264 3265
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3266
	.remove = cpsw_remove,
3267 3268
};

3269
module_platform_driver(cpsw_driver);
3270 3271 3272 3273 3274

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");