cpsw.c 86.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90 91 92 93 94 95 96 97

#define HOST_PORT_NUM		0
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
122 123
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
124 125 126

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
127
#define CPDMA_TX_PRIORITY_MAP	0x01234567
128

129 130 131
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

132 133 134
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135

136 137 138 139 140 141 142
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

143 144 145
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
146
#define IRQ_NUM			2
147
#define CPSW_MAX_QUEUES		8
148
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149

150 151 152 153 154 155 156 157 158 159 160 161
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

162 163 164 165
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

166
struct cpsw_wr_regs {
167 168 169 170 171 172 173 174
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
175 176 177 178 179 180 181 182 183
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

184 185
};

186
struct cpsw_ss_regs {
187 188 189 190 191
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
192 193 194 195 196 197 198 199
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
200 201
};

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 248
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 250 251 252 253 254
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

255 256 257
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258

259 260 261 262 263 264 265 266 267 268 269 270 271
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 273 274 275 276 277 278 279 280

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281

282 283 284 285 286 287 288 289
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

290 291 292 293
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

294 295 296
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
297
	u32	tx_in_ctl;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
struct cpsw_slave_data {
	struct device_node *phy_node;
	char		phy_id[MII_BUS_ID_SIZE];
	int		phy_if;
	u8		mac_addr[ETH_ALEN];
	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
};

struct cpsw_platform_data {
	struct cpsw_slave_data	*slave_data;
	u32	ss_reg_ofs;	/* Subsystem control register offset */
	u32	channels;	/* number of cpdma channels (symmetric) */
	u32	slaves;		/* number of slave cpgmac ports */
	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
	u32	ale_entries;	/* ale table size */
	u32	bd_ram_size;  /*buffer descriptor ram size */
	u32	mac_control;	/* Mac control register */
	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
	bool	dual_emac;	/* Enable Dual EMAC mode */
};

376
struct cpsw_slave {
377
	void __iomem			*regs;
378 379 380 381 382
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
383 384
	struct net_device		*ndev;
	u32				port_vlan;
385 386
};

387 388
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
389
	return readl_relaxed(slave->regs + offset);
390 391 392 393
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
394
	writel_relaxed(val, slave->regs + offset);
395 396
}

397 398 399 400 401
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

402
struct cpsw_common {
403
	struct device			*dev;
404
	struct cpsw_platform_data	data;
405 406
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
407 408 409 410
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
411 412 413 414
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
415
	struct cpsw_slave		*slaves;
416
	struct cpdma_ctlr		*dma;
417 418
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
419
	struct cpsw_ale			*ale;
420 421 422 423
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
424
	struct cpts			*cpts;
425
	int				rx_ch_num, tx_ch_num;
426
	int				speed;
427
	int				usage_count;
428 429 430
};

struct cpsw_priv {
431 432 433 434
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
435 436
	bool				rx_pause;
	bool				tx_pause;
437
	u32 emac_port;
438
	struct cpsw_common *cpsw;
439 440
};

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
519

520
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
521
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
522 523
#define for_each_slave(priv, func, arg...)				\
	do {								\
524
		struct cpsw_slave *slave;				\
525
		struct cpsw_common *cpsw = (priv)->cpsw;		\
526
		int n;							\
527 528
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
529
		else							\
530 531
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
532 533
					n; n--)				\
				(func)(slave++, ##arg);			\
534 535
	} while (0)

536
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
537
	do {								\
538
		if (!cpsw->data.dual_emac)				\
539 540
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
541
			ndev = cpsw->slaves[0].ndev;			\
542 543
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
544
			ndev = cpsw->slaves[1].ndev;			\
545 546
			skb->dev = ndev;				\
		}							\
547
	} while (0)
548
#define cpsw_add_mcast(cpsw, priv, addr)				\
549
	do {								\
550 551
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
552
						priv->emac_port;	\
553
			int slave_port = cpsw_get_slave_port(		\
554
						slave->slave_num);	\
555
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
556
				1 << slave_port | ALE_PORT_HOST,	\
557 558
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
559
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
560
				ALE_ALL_PORTS,				\
561 562 563 564
				0, 0, 0);				\
		}							\
	} while (0)

565
static inline int cpsw_get_slave_port(u32 slave_num)
566
{
567
	return slave_num + 1;
568
}
569

570 571
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
572 573
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
574 575
	int i;

576
	if (cpsw->data.dual_emac) {
577 578 579 580 581 582
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
583 584
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

606
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
607
			for (i = 0; i <= cpsw->data.slaves; i++) {
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
624
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
625 626 627 628 629

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
630
			/* Don't Flood All Unicast Packets to Host port */
631 632
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

633
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
634
			for (i = 0; i <= cpsw->data.slaves; i++) {
635 636 637 638 639 640 641 642 643 644
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

645 646 647
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
648
	struct cpsw_common *cpsw = priv->cpsw;
649 650
	int vid;

651 652
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
653
	else
654
		vid = cpsw->data.default_vlan;
655 656 657

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
658
		cpsw_set_promiscious(ndev, true);
659
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
660
		return;
661 662 663
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
664 665
	}

666
	/* Restore allmulti on vlans if necessary */
667
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
668

669
	/* Clear all mcast from ALE */
670
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
671 672 673 674 675 676

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
677
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
678 679 680 681
		}
	}
}

682
static void cpsw_intr_enable(struct cpsw_common *cpsw)
683
{
684 685
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
686

687
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
688 689 690
	return;
}

691
static void cpsw_intr_disable(struct cpsw_common *cpsw)
692
{
693 694
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
695

696
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
697 698 699
	return;
}

700
static void cpsw_tx_handler(void *token, int len, int status)
701
{
702
	struct netdev_queue	*txq;
703 704
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
705
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
706

707 708 709
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
710 711 712 713
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

714
	cpts_tx_timestamp(cpsw->cpts, skb);
715 716
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
717 718 719
	dev_kfree_skb_any(skb);
}

720
static void cpsw_rx_handler(void *token, int len, int status)
721
{
722
	struct cpdma_chan	*ch;
723
	struct sk_buff		*skb = token;
724
	struct sk_buff		*new_skb;
725 726
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
727
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
728

729
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
730

731
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
732
		/* In dual emac mode check for all interfaces */
733
		if (cpsw->data.dual_emac && cpsw->usage_count &&
734
		    (status >= 0)) {
735 736
			/* The packet received is for the interface which
			 * is already down and the other interface is up
737
			 * and running, instead of freeing which results
738 739 740 741 742 743 744
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

745
		/* the interface is going down, skbs are purged */
746 747 748
		dev_kfree_skb_any(skb);
		return;
	}
749

750
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
751
	if (new_skb) {
752
		skb_copy_queue_mapping(new_skb, skb);
753
		skb_put(skb, len);
754
		cpts_rx_timestamp(cpsw->cpts, skb);
755 756
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
757 758
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
759
		kmemleak_not_leak(new_skb);
760
	} else {
761
		ndev->stats.rx_dropped++;
762
		new_skb = skb;
763 764
	}

765
requeue:
766 767 768 769 770
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

771
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
772
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
773
				skb_tailroom(new_skb), 0);
774 775
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
776 777
}

778
static void cpsw_split_res(struct net_device *ndev)
779 780
{
	struct cpsw_priv *priv = netdev_priv(ndev);
781
	u32 consumed_rate = 0, bigest_rate = 0;
782 783
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
784
	int i, ch_weight, rlim_ch_num = 0;
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
800 801 802 803
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
804
	} else {
805 806 807 808 809 810 811 812 813 814
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
815

816 817 818 819 820 821 822
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

823
	/* split tx weight/budget */
824 825 826 827 828 829
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
830
				txv[i].budget++;
831 832 833 834
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
835 836 837 838 839

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
840 841 842 843
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
844
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

865
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
866
{
867
	struct cpsw_common *cpsw = dev_id;
868

869
	writel(0, &cpsw->wr_regs->tx_en);
870
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
871

872 873 874
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
875 876
	}

877
	napi_schedule(&cpsw->napi_tx);
878 879 880 881 882
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
883
	struct cpsw_common *cpsw = dev_id;
884

885
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
886
	writel(0, &cpsw->wr_regs->rx_en);
887

888 889 890
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
891 892
	}

893
	napi_schedule(&cpsw->napi_rx);
894
	return IRQ_HANDLED;
895 896
}

897 898
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
899
	u32			ch_map;
900
	int			num_tx, cur_budget, ch;
901
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
902
	struct cpsw_vector	*txv;
903

904 905
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
906
	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
907 908 909
		if (!(ch_map & 0x01))
			continue;

910 911 912 913 914 915 916
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
917 918
		if (num_tx >= budget)
			break;
919 920
	}

921 922
	if (num_tx < budget) {
		napi_complete(napi_tx);
923
		writel(0xff, &cpsw->wr_regs->tx_en);
924 925 926
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
927
		}
928 929 930 931 932 933
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
934
{
935
	u32			ch_map;
936
	int			num_rx, cur_budget, ch;
937
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
938
	struct cpsw_vector	*rxv;
939

940 941
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
942
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
943 944 945
		if (!(ch_map & 0x01))
			continue;

946 947 948 949 950 951 952
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
953 954
		if (num_rx >= budget)
			break;
955 956
	}

957
	if (num_rx < budget) {
958
		napi_complete_done(napi_rx, num_rx);
959
		writel(0xff, &cpsw->wr_regs->rx_en);
960 961 962
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
963
		}
964 965 966 967 968 969 970 971 972
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

973
	writel_relaxed(1, reg);
974 975
	do {
		cpu_relax();
976
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
977

978
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
979 980 981 982 983
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
984 985
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
986 987 988 989 990 991 992 993
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
994
	struct cpsw_common *cpsw = priv->cpsw;
995 996 997 998

	if (!phy)
		return;

999
	slave_port = cpsw_get_slave_port(slave->slave_num);
1000 1001

	if (phy->link) {
1002
		mac_control = cpsw->data.mac_control;
1003 1004

		/* enable forwarding */
1005
		cpsw_ale_control_set(cpsw->ale, slave_port,
1006 1007 1008 1009 1010 1011
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1012 1013 1014 1015

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1016 1017
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
1018

1019 1020 1021 1022 1023 1024
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1025 1026 1027 1028
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
1029
		cpsw_ale_control_set(cpsw->ale, slave_port,
1030 1031 1032 1033 1034
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1035
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1036 1037 1038 1039 1040
	}

	slave->mac_control = mac_control;
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1079 1080 1081
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1082
	struct cpsw_common	*cpsw = priv->cpsw;
1083 1084 1085 1086 1087
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1088 1089 1090
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1091 1092
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1093
			netif_tx_wake_all_queues(ndev);
1094 1095
	} else {
		netif_carrier_off(ndev);
1096
		netif_tx_stop_all_queues(ndev);
1097 1098 1099
	}
}

1100 1101 1102
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1103
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1104

1105
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1118
	struct cpsw_common *cpsw = priv->cpsw;
1119 1120 1121

	coal_intvl = coal->rx_coalesce_usecs;

1122
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1123
	prescale = cpsw->bus_freq_mhz * 4;
1124

1125 1126 1127 1128 1129
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1151 1152
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1153 1154 1155 1156

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1157 1158

update_return:
1159
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1160 1161

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1162
	cpsw->coal_intvl = coal_intvl;
1163 1164 1165 1166

	return 0;
}

1167 1168
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1169 1170
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1171 1172
	switch (sset) {
	case ETH_SS_STATS:
1173 1174 1175
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1176 1177 1178 1179 1180
	default:
		return -EOPNOTSUPP;
	}
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1198 1199
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1200
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1201 1202 1203 1204 1205
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1206
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1207 1208 1209 1210
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1211 1212 1213

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1214 1215 1216 1217 1218 1219 1220 1221
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1222
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1223 1224
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1225 1226

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1227 1228 1229 1230 1231
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1232
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1233 1234 1235 1236 1237 1238
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1239

1240
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1241
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1242 1243 1244 1245
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1246 1247 1248 1249
		}
	}
}

1250
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1251 1252
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1253
{
1254 1255
	struct cpsw_common *cpsw = priv->cpsw;

1256
	skb_tx_timestamp(skb);
1257
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1258
				 priv->emac_port + cpsw->data.dual_emac);
1259 1260 1261 1262 1263 1264
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1265
	struct cpsw_common *cpsw = priv->cpsw;
1266
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1267

1268
	if (cpsw->version == CPSW_VERSION_1)
1269 1270 1271
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1272
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1273
			  port_mask, port_mask, 0);
1274
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1275
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1276 1277 1278
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1279 1280
}

1281
static void soft_reset_slave(struct cpsw_slave *slave)
1282 1283 1284
{
	char name[32];

1285
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1286
	soft_reset(name, &slave->sliver->soft_reset);
1287 1288 1289 1290 1291
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1292
	struct phy_device *phy;
1293
	struct cpsw_common *cpsw = priv->cpsw;
1294 1295

	soft_reset_slave(slave);
1296 1297

	/* setup priority mapping */
1298
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1299

1300
	switch (cpsw->version) {
1301 1302
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1303 1304 1305 1306 1307 1308
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1309 1310
		break;
	case CPSW_VERSION_2:
1311
	case CPSW_VERSION_3:
1312
	case CPSW_VERSION_4:
1313
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1314 1315 1316 1317 1318 1319
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1320 1321
		break;
	}
1322 1323

	/* setup max packet size, and mac address */
1324
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1325 1326 1327 1328
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1329
	slave_port = cpsw_get_slave_port(slave->slave_num);
1330

1331
	if (cpsw->data.dual_emac)
1332 1333
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1334
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1335
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1336

1337
	if (slave->data->phy_node) {
1338
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1339
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1340
		if (!phy) {
1341 1342
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1343 1344 1345 1346
				slave->slave_num);
			return;
		}
	} else {
1347
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1348
				 &cpsw_adjust_link, slave->data->phy_if);
1349
		if (IS_ERR(phy)) {
1350 1351 1352
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1353
				PTR_ERR(phy));
1354 1355 1356
			return;
		}
	}
1357

1358 1359
	slave->phy = phy;

1360
	phy_attached_info(slave->phy);
1361

1362 1363 1364
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1365
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1366 1367
}

1368 1369
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1370 1371
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1372 1373
	u32 reg;
	int i;
1374
	int unreg_mcast_mask;
1375

1376
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1377 1378
	       CPSW2_PORT_VLAN;

1379
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1380

1381 1382
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1383

1384 1385 1386 1387 1388
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1389
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1390 1391
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1392 1393
}

1394 1395
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1396
	u32 fifo_mode;
1397 1398
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1399

1400
	/* soft reset the controller and initialize ale */
1401
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1402
	cpsw_ale_start(cpsw->ale);
1403 1404

	/* switch to vlan unaware mode */
1405
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1406
			     CPSW_ALE_VLAN_AWARE);
1407
	control_reg = readl(&cpsw->regs->control);
1408
	control_reg |= CPSW_VLAN_AWARE;
1409
	writel(control_reg, &cpsw->regs->control);
1410
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1411
		     CPSW_FIFO_NORMAL_MODE;
1412
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1413 1414

	/* setup host port priority mapping */
1415 1416 1417
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1418

1419
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1420 1421
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1422
	if (!cpsw->data.dual_emac) {
1423
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1424
				   0, 0);
1425
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1426
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1427
	}
1428 1429
}

1430 1431 1432 1433 1434
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1435 1436 1437
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1438
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1439 1440 1441 1442 1443 1444 1445 1446
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1447

1448
			skb_set_queue_mapping(skb, ch);
1449 1450 1451
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1452 1453 1454 1455 1456 1457 1458 1459
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1460 1461
		}

1462 1463 1464
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1465

1466
	return 0;
1467 1468
}

1469
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1470
{
1471 1472
	u32 slave_port;

1473
	slave_port = cpsw_get_slave_port(slave->slave_num);
1474

1475 1476 1477 1478 1479
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1480
	cpsw_ale_control_set(cpsw->ale, slave_port,
1481
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1482
	soft_reset_slave(slave);
1483 1484
}

1485 1486 1487
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1488
	struct cpsw_common *cpsw = priv->cpsw;
1489
	int ret;
1490 1491
	u32 reg;

1492
	ret = pm_runtime_get_sync(cpsw->dev);
1493
	if (ret < 0) {
1494
		pm_runtime_put_noidle(cpsw->dev);
1495 1496
		return ret;
	}
1497

1498 1499
	netif_carrier_off(ndev);

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1513
	reg = cpsw->version;
1514 1515 1516 1517 1518

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1519 1520
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1521
		cpsw_init_host_port(priv);
1522 1523
	for_each_slave(priv, cpsw_slave_open, priv);

1524
	/* Add default VLAN */
1525
	if (!cpsw->data.dual_emac)
1526 1527
		cpsw_add_default_vlan(priv);
	else
1528
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1529
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1530

1531 1532
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1533
		/* disable priority elevation */
1534
		writel_relaxed(0, &cpsw->regs->ptype);
1535

1536
		/* enable statistics collection only on all ports */
1537
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1538

1539
		/* Enable internal fifo flow control */
1540
		writel(0x7, &cpsw->regs->flow_control);
1541

1542 1543
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1544

1545 1546 1547
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1548 1549
		}

1550 1551 1552
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1553 1554
		}

1555 1556 1557
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1558

1559
		if (cpts_register(cpsw->cpts))
1560 1561
			dev_err(priv->dev, "error registering cpts device\n");

1562 1563
	}

1564
	/* Enable Interrupt pacing if configured */
1565
	if (cpsw->coal_intvl != 0) {
1566 1567
		struct ethtool_coalesce coal;

1568
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1569 1570 1571
		cpsw_set_coalesce(ndev, &coal);
	}

1572 1573
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1574
	cpsw->usage_count++;
1575

1576 1577
	return 0;

1578
err_cleanup:
1579
	cpdma_ctlr_stop(cpsw->dma);
1580
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1581
	pm_runtime_put_sync(cpsw->dev);
1582 1583
	netif_carrier_off(priv->ndev);
	return ret;
1584 1585 1586 1587 1588
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1589
	struct cpsw_common *cpsw = priv->cpsw;
1590 1591

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1592
	netif_tx_stop_all_queues(priv->ndev);
1593
	netif_carrier_off(priv->ndev);
1594

1595
	if (cpsw->usage_count <= 1) {
1596 1597
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1598
		cpts_unregister(cpsw->cpts);
1599 1600
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1601
		cpsw_ale_stop(cpsw->ale);
1602
	}
1603
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1604 1605 1606 1607

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1608
	cpsw->usage_count--;
1609
	pm_runtime_put_sync(cpsw->dev);
1610 1611 1612 1613 1614 1615 1616
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1617
	struct cpsw_common *cpsw = priv->cpsw;
1618
	struct cpts *cpts = cpsw->cpts;
1619 1620 1621
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1622 1623 1624

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1625
		ndev->stats.tx_dropped++;
1626
		return NET_XMIT_DROP;
1627 1628
	}

1629
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1630
	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1631 1632
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

1633 1634 1635 1636
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1637
	txch = cpsw->txv[q_idx].ch;
1638
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1639 1640 1641 1642 1643
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1644 1645 1646
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1647 1648 1649 1650
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1651

1652 1653
	return NETDEV_TX_OK;
fail:
1654
	ndev->stats.tx_dropped++;
1655 1656
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1657 1658 1659
	return NETDEV_TX_BUSY;
}

1660
#if IS_ENABLED(CONFIG_TI_CPTS)
1661

1662
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1663
{
1664
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1665 1666
	u32 ts_en, seq_id;

1667 1668
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
1669 1670 1671 1672 1673 1674 1675
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1676
	if (cpts_is_tx_enabled(cpsw->cpts))
1677 1678
		ts_en |= CPSW_V1_TS_TX_EN;

1679
	if (cpts_is_rx_enabled(cpsw->cpts))
1680 1681 1682 1683 1684 1685 1686 1687
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1688
	struct cpsw_slave *slave;
1689
	struct cpsw_common *cpsw = priv->cpsw;
1690 1691
	u32 ctrl, mtype;

1692
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1693

1694
	ctrl = slave_read(slave, CPSW2_CONTROL);
1695
	switch (cpsw->version) {
1696 1697
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1698

1699
		if (cpts_is_tx_enabled(cpsw->cpts))
1700
			ctrl |= CTRL_V2_TX_TS_BITS;
1701

1702
		if (cpts_is_rx_enabled(cpsw->cpts))
1703
			ctrl |= CTRL_V2_RX_TS_BITS;
1704
		break;
1705 1706 1707 1708
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1709
		if (cpts_is_tx_enabled(cpsw->cpts))
1710 1711
			ctrl |= CTRL_V3_TX_TS_BITS;

1712
		if (cpts_is_rx_enabled(cpsw->cpts))
1713
			ctrl |= CTRL_V3_RX_TS_BITS;
1714
		break;
1715
	}
1716 1717 1718 1719 1720

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1721
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1722 1723
}

1724
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1725
{
1726
	struct cpsw_priv *priv = netdev_priv(dev);
1727
	struct hwtstamp_config cfg;
1728 1729
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1730

1731 1732 1733
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1734 1735
		return -EOPNOTSUPP;

1736 1737 1738 1739 1740 1741 1742
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1743
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1744 1745 1746 1747
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1748
		cpts_rx_enable(cpts, 0);
1749 1750
		break;
	case HWTSTAMP_FILTER_ALL:
1751 1752
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
1753 1754 1755
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1756 1757 1758
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
1759 1760 1761 1762 1763 1764 1765 1766 1767
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1768
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1769 1770 1771 1772 1773 1774
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1775
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1776

1777
	switch (cpsw->version) {
1778
	case CPSW_VERSION_1:
1779
		cpsw_hwtstamp_v1(cpsw);
1780 1781
		break;
	case CPSW_VERSION_2:
1782
	case CPSW_VERSION_3:
1783 1784 1785
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1786
		WARN_ON(1);
1787 1788 1789 1790 1791
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1792 1793
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1794 1795
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1796 1797
	struct hwtstamp_config cfg;

1798 1799 1800
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1801 1802 1803
		return -EOPNOTSUPP;

	cfg.flags = 0;
1804 1805 1806
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1807
			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1808 1809 1810

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1811 1812 1813 1814 1815
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1816

1817 1818 1819 1820
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1821 1822 1823 1824
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1825
	struct cpsw_priv *priv = netdev_priv(dev);
1826 1827
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1828

1829 1830 1831
	if (!netif_running(dev))
		return -EINVAL;

1832 1833
	switch (cmd) {
	case SIOCSHWTSTAMP:
1834 1835 1836
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1837 1838
	}

1839
	if (!cpsw->slaves[slave_no].phy)
1840
		return -EOPNOTSUPP;
1841
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1842 1843
}

1844 1845 1846
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1847
	struct cpsw_common *cpsw = priv->cpsw;
1848
	int ch;
1849 1850

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1851
	ndev->stats.tx_errors++;
1852
	cpsw_intr_disable(cpsw);
1853
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1854 1855
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1856 1857
	}

1858
	cpsw_intr_enable(cpsw);
1859 1860
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
1861 1862
}

1863 1864 1865 1866
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1867
	struct cpsw_common *cpsw = priv->cpsw;
1868 1869
	int flags = 0;
	u16 vid = 0;
1870
	int ret;
1871 1872 1873 1874

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1875
	ret = pm_runtime_get_sync(cpsw->dev);
1876
	if (ret < 0) {
1877
		pm_runtime_put_noidle(cpsw->dev);
1878 1879 1880
		return ret;
	}

1881 1882
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1883 1884 1885
		flags = ALE_VLAN;
	}

1886
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1887
			   flags, vid);
1888
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1889 1890 1891 1892 1893 1894
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1895
	pm_runtime_put(cpsw->dev);
1896

1897 1898 1899
	return 0;
}

1900 1901 1902
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1903
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1904

1905 1906 1907 1908
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1909 1910 1911
}
#endif

1912 1913 1914 1915
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1916 1917
	int unreg_mcast_mask = 0;
	u32 port_mask;
1918
	struct cpsw_common *cpsw = priv->cpsw;
1919

1920
	if (cpsw->data.dual_emac) {
1921
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1933

1934
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1935
				unreg_mcast_mask);
1936 1937 1938
	if (ret != 0)
		return ret;

1939
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1940
				 HOST_PORT_NUM, ALE_VLAN, vid);
1941 1942 1943
	if (ret != 0)
		goto clean_vid;

1944
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1945
				 port_mask, ALE_VLAN, vid, 0);
1946 1947 1948 1949 1950
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1951
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1952
			   HOST_PORT_NUM, ALE_VLAN, vid);
1953
clean_vid:
1954
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1955 1956 1957 1958
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1959
				    __be16 proto, u16 vid)
1960 1961
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1962
	struct cpsw_common *cpsw = priv->cpsw;
1963
	int ret;
1964

1965
	if (vid == cpsw->data.default_vlan)
1966 1967
		return 0;

1968
	ret = pm_runtime_get_sync(cpsw->dev);
1969
	if (ret < 0) {
1970
		pm_runtime_put_noidle(cpsw->dev);
1971 1972 1973
		return ret;
	}

1974
	if (cpsw->data.dual_emac) {
1975 1976 1977 1978 1979 1980
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1981 1982
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1983 1984 1985 1986
				return -EINVAL;
		}
	}

1987
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1988 1989
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1990
	pm_runtime_put(cpsw->dev);
1991
	return ret;
1992 1993 1994
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1995
				     __be16 proto, u16 vid)
1996 1997
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1998
	struct cpsw_common *cpsw = priv->cpsw;
1999 2000
	int ret;

2001
	if (vid == cpsw->data.default_vlan)
2002 2003
		return 0;

2004
	ret = pm_runtime_get_sync(cpsw->dev);
2005
	if (ret < 0) {
2006
		pm_runtime_put_noidle(cpsw->dev);
2007 2008 2009
		return ret;
	}

2010
	if (cpsw->data.dual_emac) {
2011 2012
		int i;

2013 2014
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2015 2016 2017 2018
				return -EINVAL;
		}
	}

2019
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2020
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2021 2022 2023
	if (ret != 0)
		return ret;

2024
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2025
				 HOST_PORT_NUM, ALE_VLAN, vid);
2026 2027 2028
	if (ret != 0)
		return ret;

2029
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2030
				 0, ALE_VLAN, vid);
2031
	pm_runtime_put(cpsw->dev);
2032
	return ret;
2033 2034
}

2035 2036 2037 2038
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2039
	struct cpsw_slave *slave;
2040
	u32 min_rate;
2041
	u32 ch_rate;
2042
	int i, ret;
2043 2044 2045 2046 2047

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2048 2049 2050 2051 2052
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2053 2054 2055
		return -EINVAL;
	}

2056
	if (rate > cpsw->speed) {
2057
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2058 2059 2060 2061 2062 2063 2064 2065 2066
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2067 2068
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2069

2070 2071
	if (ret)
		return ret;
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2082
	cpsw_split_res(ndev);
2083 2084 2085
	return ret;
}

2086 2087 2088 2089
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2090
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2091
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2092 2093
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2094
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2095
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2096 2097 2098
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2099 2100
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2101 2102
};

2103 2104
static int cpsw_get_regs_len(struct net_device *ndev)
{
2105
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2106

2107
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2108 2109 2110 2111 2112 2113
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2114
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2115 2116

	/* update CPSW IP version */
2117
	regs->version = cpsw->version;
2118

2119
	cpsw_ale_dump(cpsw->ale, reg);
2120 2121
}

2122 2123 2124
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2125
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2126
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2127

2128
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2129
	strlcpy(info->version, "1.0", sizeof(info->version));
2130
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2145
#if IS_ENABLED(CONFIG_TI_CPTS)
2146 2147 2148
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2149
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2150 2151 2152 2153 2154 2155 2156 2157

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2158
	info->phc_index = cpsw->cpts->phc_index;
2159 2160 2161 2162 2163
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2164
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2165
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2166 2167
	return 0;
}
2168
#else
2169 2170 2171
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2172 2173 2174 2175 2176 2177 2178 2179 2180
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2181
#endif
2182

2183 2184
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2185 2186
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2187 2188
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2189

2190
	if (!cpsw->slaves[slave_no].phy)
2191
		return -EOPNOTSUPP;
2192 2193 2194

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2195 2196
}

2197 2198
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2199 2200
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2201 2202
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2203

2204
	if (cpsw->slaves[slave_no].phy)
2205 2206
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2207 2208 2209 2210
	else
		return -EOPNOTSUPP;
}

2211 2212 2213
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2214 2215
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2216 2217 2218 2219

	wol->supported = 0;
	wol->wolopts = 0;

2220 2221
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2222 2223 2224 2225 2226
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2227 2228
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2229

2230 2231
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2232 2233 2234 2235
	else
		return -EOPNOTSUPP;
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2259 2260 2261
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2262
	struct cpsw_common *cpsw = priv->cpsw;
2263 2264
	int ret;

2265
	ret = pm_runtime_get_sync(cpsw->dev);
2266 2267
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2268
		pm_runtime_put_noidle(cpsw->dev);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2279
	ret = pm_runtime_put(priv->cpsw->dev);
2280 2281 2282 2283
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2320
	struct netdev_queue *queue;
2321
	struct cpsw_vector *vec;
2322 2323 2324 2325
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
2326
		vec = cpsw->rxv;
2327 2328 2329
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2330
		vec = cpsw->txv;
2331 2332 2333 2334
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2335
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2336 2337
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2338

2339 2340
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2341

2342
		if (!vec[*ch].ch)
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2353
		ret = cpdma_chan_destroy(vec[*ch].ch);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2380
static void cpsw_suspend_data_pass(struct net_device *ndev)
2381
{
2382
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2383
	struct cpsw_slave *slave;
2384
	int i;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
2417
	if (cpsw->usage_count) {
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2471
	if (cpsw->usage_count)
2472
		cpsw_split_res(ndev);
2473

2474 2475 2476
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2477 2478 2479 2480 2481 2482
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2519 2520 2521 2522 2523 2524 2525 2526 2527
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2528
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2529 2530 2531 2532 2533 2534 2535 2536
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2537
	int ret;
2538 2539 2540 2541

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2542 2543
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2544 2545 2546 2547 2548
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

2549
	cpsw_suspend_data_pass(ndev);
2550 2551 2552

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

2553
	if (cpsw->usage_count)
2554 2555
		cpdma_chan_split_pool(cpsw->dma);

2556 2557 2558
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2559

2560
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2561 2562 2563 2564
	dev_close(ndev);
	return ret;
}

2565 2566 2567 2568 2569
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2570
	.get_ts_info	= cpsw_get_ts_info,
2571 2572
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2573 2574 2575
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2576 2577
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2578 2579
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2580 2581
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2582 2583
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2584 2585
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2586 2587
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2588 2589
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2590
	.nway_reset	= cpsw_nway_reset,
2591 2592
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2593 2594
};

2595
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2596
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2597
{
2598
	void __iomem		*regs = cpsw->regs;
2599
	int			slave_num = slave->slave_num;
2600
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2601 2602

	slave->data	= data;
2603 2604
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2605
	slave->port_vlan = data->dual_emac_res_vlan;
2606 2607
}

2608
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2620
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2621 2622 2623 2624
		return -EINVAL;
	}
	data->slaves = prop;

2625
	if (of_property_read_u32(node, "active_slave", &prop)) {
2626
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2627
		return -EINVAL;
2628
	}
2629
	data->active_slave = prop;
2630

2631 2632 2633
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2634
	if (!data->slave_data)
2635
		return -ENOMEM;
2636 2637

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2638
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2639
		return -EINVAL;
2640 2641 2642 2643
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2644
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2645
		return -EINVAL;
2646 2647 2648 2649
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2650
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2651
		return -EINVAL;
2652 2653 2654 2655
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2656
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2657
		return -EINVAL;
2658 2659 2660
	}
	data->mac_control = prop;

2661 2662
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2663

2664 2665 2666 2667 2668 2669
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2670
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2671

2672
	for_each_available_child_of_node(node, slave_node) {
2673 2674
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2675 2676 2677
		int lenp;
		const __be32 *parp;

2678 2679 2680 2681
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2682 2683
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2684
		parp = of_get_property(slave_node, "phy_id", &lenp);
2685 2686
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
2687 2688
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
2689
		} else if (of_phy_is_fixed_link(slave_node)) {
2690 2691 2692
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2693
			ret = of_phy_register_fixed_link(slave_node);
2694 2695 2696
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2697
				return ret;
2698
			}
2699
			slave_data->phy_node = of_node_get(slave_node);
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2719
			put_device(&mdio->dev);
2720
		} else {
2721 2722 2723
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2724
			goto no_phy_slave;
2725
		}
2726 2727 2728 2729 2730 2731 2732 2733
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2734
		mac_addr = of_get_mac_address(slave_node);
2735
		if (mac_addr) {
2736
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2737
		} else {
2738 2739 2740 2741
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2742
		}
2743
		if (data->dual_emac) {
2744
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2745
						 &prop)) {
2746
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2747
				slave_data->dual_emac_res_vlan = i+1;
2748 2749
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2750 2751 2752 2753 2754
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2755
		i++;
2756 2757
		if (i == data->slaves)
			break;
2758 2759 2760 2761 2762
	}

	return 0;
}

2763 2764
static void cpsw_remove_dt(struct platform_device *pdev)
{
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

2778 2779
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2780 2781 2782 2783 2784 2785 2786 2787

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2788 2789 2790
	of_platform_depopulate(&pdev->dev);
}

2791
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2792
{
2793 2794
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2795 2796
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2797
	int ret = 0;
2798

2799
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2800
	if (!ndev) {
2801
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2802 2803 2804 2805
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2806
	priv_sl2->cpsw = cpsw;
2807 2808 2809 2810 2811 2812 2813
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2814 2815
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2816 2817
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2818 2819
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2820 2821 2822 2823
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2824
	cpsw->slaves[1].ndev = ndev;
2825
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2826 2827

	ndev->netdev_ops = &cpsw_netdev_ops;
2828
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2829 2830

	/* register the network device */
2831
	SET_NETDEV_DEV(ndev, cpsw->dev);
2832 2833
	ret = register_netdev(ndev);
	if (ret) {
2834
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2835 2836 2837 2838 2839 2840 2841
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2842 2843
#define CPSW_QUIRK_IRQ		BIT(0)

2844
static const struct platform_device_id cpsw_devtype[] = {
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2880
static int cpsw_probe(struct platform_device *pdev)
2881
{
2882
	struct clk			*clk;
2883
	struct cpsw_platform_data	*data;
2884 2885 2886 2887
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2888
	void __iomem			*ss_regs;
2889
	void __iomem			*cpts_regs;
2890
	struct resource			*res, *ss_res;
2891
	const struct of_device_id	*of_id;
2892
	struct gpio_descs		*mode;
2893
	u32 slave_offset, sliver_offset, slave_size;
2894
	struct cpsw_common		*cpsw;
2895 2896
	int ret = 0, i;
	int irq;
2897

2898
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2899 2900 2901
	if (!cpsw)
		return -ENOMEM;

2902
	cpsw->dev = &pdev->dev;
2903

2904
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2905
	if (!ndev) {
2906
		dev_err(&pdev->dev, "error allocating net_device\n");
2907 2908 2909 2910 2911
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2912
	priv->cpsw = cpsw;
2913 2914 2915
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2916
	cpsw->rx_packet_max = max(rx_packet_max, 128);
2917

2918 2919 2920 2921 2922 2923 2924
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2925 2926 2927 2928 2929
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2930 2931 2932
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2933 2934 2935 2936 2937 2938
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
2939
		goto clean_runtime_disable_ret;
2940
	}
2941

2942 2943
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2944
		goto clean_dt_ret;
2945

2946
	data = &cpsw->data;
2947 2948
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2949

2950 2951
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2952
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2953
	} else {
J
Joe Perches 已提交
2954
		eth_random_addr(priv->mac_addr);
2955
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2956 2957 2958 2959
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2960
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2961 2962
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2963
	if (!cpsw->slaves) {
2964
		ret = -ENOMEM;
2965
		goto clean_dt_ret;
2966 2967
	}
	for (i = 0; i < data->slaves; i++)
2968
		cpsw->slaves[i].slave_num = i;
2969

2970
	cpsw->slaves[0].ndev = ndev;
2971 2972
	priv->emac_port = 0;

2973 2974
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2975
		dev_err(priv->dev, "fck is not found\n");
2976
		ret = -ENODEV;
2977
		goto clean_dt_ret;
2978
	}
2979
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2980

2981 2982 2983 2984
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
2985
		goto clean_dt_ret;
2986
	}
2987
	cpsw->regs = ss_regs;
2988

2989
	cpsw->version = readl(&cpsw->regs->id_ver);
2990

2991
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2992 2993 2994
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
2995
		goto clean_dt_ret;
2996 2997 2998
	}

	memset(&dma_params, 0, sizeof(dma_params));
2999 3000
	memset(&ale_params, 0, sizeof(ale_params));

3001
	switch (cpsw->version) {
3002
	case CPSW_VERSION_1:
3003
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3004
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3005
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3006 3007 3008 3009 3010 3011 3012 3013 3014
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3015
	case CPSW_VERSION_3:
3016
	case CPSW_VERSION_4:
3017
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3018
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3019
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3020 3021 3022 3023 3024 3025 3026
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3027
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3028 3029
		break;
	default:
3030
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3031
		ret = -ENODEV;
3032
		goto clean_dt_ret;
3033
	}
3034 3035 3036 3037
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3038 3039 3040 3041
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3042
	dma_params.dev		= &pdev->dev;
3043 3044 3045 3046 3047
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3048 3049 3050 3051 3052 3053 3054

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3055
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3056
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3057
	dma_params.descs_pool_size	= descs_pool_size;
3058

3059 3060
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3061 3062
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3063
		goto clean_dt_ret;
3064 3065
	}

3066 3067 3068
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3069 3070 3071 3072 3073
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

3074
	ale_params.dev			= &pdev->dev;
3075 3076 3077 3078
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= data->slaves;

3079 3080
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3081 3082 3083 3084 3085
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3086
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3087 3088 3089 3090 3091
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
		goto clean_ale_ret;
	}

3092
	ndev->irq = platform_get_irq(pdev, 1);
3093 3094
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3095
		ret = ndev->irq;
3096 3097 3098
		goto clean_ale_ret;
	}

3099 3100 3101 3102
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
3103
			cpsw->quirk_irq = true;
3104 3105
	}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
	cpsw_split_res(ndev);

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
		goto clean_ale_ret;
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3131 3132 3133 3134 3135 3136 3137
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3138

3139
	/* RX IRQ */
3140
	irq = platform_get_irq(pdev, 1);
3141 3142
	if (irq < 0) {
		ret = irq;
3143
		goto clean_ale_ret;
3144
	}
3145

3146
	cpsw->irqs_table[0] = irq;
3147
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3148
			       0, dev_name(&pdev->dev), cpsw);
3149 3150 3151 3152 3153
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
	}

3154
	/* TX IRQ */
3155
	irq = platform_get_irq(pdev, 2);
3156 3157
	if (irq < 0) {
		ret = irq;
3158
		goto clean_ale_ret;
3159
	}
3160

3161
	cpsw->irqs_table[1] = irq;
3162
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3163
			       0, dev_name(&pdev->dev), cpsw);
3164 3165 3166
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
3167
	}
3168

3169 3170 3171
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3172

3173 3174
	pm_runtime_put(&pdev->dev);

3175 3176
	return 0;

3177 3178
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3179
clean_ale_ret:
3180
	cpsw_ale_destroy(cpsw->ale);
3181
clean_dma_ret:
3182
	cpdma_ctlr_destroy(cpsw->dma);
3183 3184
clean_dt_ret:
	cpsw_remove_dt(pdev);
3185
	pm_runtime_put_sync(&pdev->dev);
3186
clean_runtime_disable_ret:
3187
	pm_runtime_disable(&pdev->dev);
3188
clean_ndev_ret:
3189
	free_netdev(priv->ndev);
3190 3191 3192
	return ret;
}

B
Bill Pemberton 已提交
3193
static int cpsw_remove(struct platform_device *pdev)
3194 3195
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3196
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3197 3198 3199 3200 3201 3202 3203
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3204

3205 3206
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3207
	unregister_netdev(ndev);
3208

3209
	cpts_release(cpsw->cpts);
3210
	cpsw_ale_destroy(cpsw->ale);
3211
	cpdma_ctlr_destroy(cpsw->dma);
3212
	cpsw_remove_dt(pdev);
3213 3214
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3215 3216
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3217 3218 3219 3220
	free_netdev(ndev);
	return 0;
}

3221
#ifdef CONFIG_PM_SLEEP
3222 3223 3224 3225
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3226
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3227

3228
	if (cpsw->data.dual_emac) {
3229
		int i;
3230

3231 3232 3233
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3234 3235 3236 3237 3238
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3239

3240
	/* Select sleep pin state */
3241
	pinctrl_pm_select_sleep_state(dev);
3242

3243 3244 3245 3246 3247 3248 3249
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3250
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3251

3252
	/* Select default pin state */
3253
	pinctrl_pm_select_default_state(dev);
3254

3255 3256
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3257
	if (cpsw->data.dual_emac) {
3258 3259
		int i;

3260 3261 3262
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3263 3264 3265 3266 3267
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3268 3269
	rtnl_unlock();

3270 3271
	return 0;
}
3272
#endif
3273

3274
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3275 3276 3277 3278 3279

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3280
		.of_match_table = cpsw_of_mtable,
3281 3282
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3283
	.remove = cpsw_remove,
3284 3285
};

3286
module_platform_driver(cpsw_driver);
3287 3288 3289 3290 3291

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");