iwl-nvm-parse.c 30.7 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
8
 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
27
 * in the file called COPYING.
28 29
 *
 * Contact Information:
30
 *  Intel Linux Wireless <linuxwifi@intel.com>
31 32 33 34
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
35
 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36
 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37
 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
69
#include <linux/etherdevice.h>
70
#include <linux/pci.h>
71

72
#include "iwl-drv.h"
73 74
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
75
#include "iwl-prph.h"
76 77
#include "iwl-io.h"
#include "iwl-csr.h"
78
#include "fw/acpi.h"
79
#include "fw/api/nvm-reg.h"
80 81

/* NVM offsets (in words) definitions */
82
enum nvm_offsets {
83
	/* NVM HW-Section offset (in words) definitions */
84
	SUBSYSTEM_ID = 0x0A,
85 86
	HW_ADDR = 0x15,

87
	/* NVM SW-Section offset (in words) definitions */
88 89 90 91 92 93 94
	NVM_SW_SECTION = 0x1C0,
	NVM_VERSION = 0,
	RADIO_CFG = 1,
	SKU = 2,
	N_HW_ADDRS = 3,
	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,

95
	/* NVM calibration section offset (in words) definitions */
96
	NVM_CALIB_SECTION = 0x2B8,
97 98 99 100
	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,

	/* NVM REGULATORY -Section offset (in words) definitions */
	NVM_CHANNELS_SDP = 0,
101 102
};

103
enum ext_nvm_offsets {
104
	/* NVM HW-Section offset (in words) definitions */
105
	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
106 107

	/* NVM SW-Section offset (in words) definitions */
108 109
	NVM_VERSION_EXT_NVM = 0,
	RADIO_CFG_FAMILY_EXT_NVM = 0,
110 111
	SKU_FAMILY_8000 = 2,
	N_HW_ADDRS_FAMILY_8000 = 3,
112

113
	/* NVM REGULATORY -Section offset (in words) definitions */
114 115 116 117
	NVM_CHANNELS_EXTENDED = 0,
	NVM_LAR_OFFSET_OLD = 0x4C7,
	NVM_LAR_OFFSET = 0x507,
	NVM_LAR_ENABLED = 0x7,
118 119
};

120 121
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
122 123 124 125 126
	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
127 128 129 130 131 132 133 134 135 136 137 138 139 140
};

/*
 * These are the channel numbers in the order that they are stored in the NVM
 */
static const u8 iwl_nvm_channels[] = {
	/* 2.4 GHz */
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
	/* 5 GHz */
	36, 40, 44 , 48, 52, 56, 60, 64,
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165
};

141
static const u8 iwl_ext_nvm_channels[] = {
142
	/* 2.4 GHz */
143
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
144 145 146 147 148 149
	/* 5 GHz */
	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
	149, 153, 157, 161, 165, 169, 173, 177, 181
};

150 151
#define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
152
#define NUM_2GHZ_CHANNELS		14
153
#define NUM_2GHZ_CHANNELS_EXT	14
154 155
#define FIRST_2GHZ_HT_MINUS		5
#define LAST_2GHZ_HT_PLUS		9
156 157
#define LAST_5GHZ_HT			165
#define LAST_5GHZ_HT_FAMILY_8000	181
158
#define N_HW_ADDR_MASK			0xF
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188

/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS	0
#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS	4
#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)

/**
 * enum iwl_nvm_channel_flags - channel flags in NVM
 * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
 * @NVM_CHANNEL_IBSS: usable as an IBSS channel
 * @NVM_CHANNEL_ACTIVE: active scanning allowed
 * @NVM_CHANNEL_RADAR: radar detection required
189 190 191
 * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
 * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
 *	on same channel on 2.4 or same UNII band on 5.2
192 193 194 195 196 197
 * @NVM_CHANNEL_UNIFORM: uniform spreading required
 * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
 * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
 * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
 * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
 * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
198 199
 */
enum iwl_nvm_channel_flags {
200 201 202 203 204 205 206 207 208 209 210 211
	NVM_CHANNEL_VALID		= BIT(0),
	NVM_CHANNEL_IBSS		= BIT(1),
	NVM_CHANNEL_ACTIVE		= BIT(3),
	NVM_CHANNEL_RADAR		= BIT(4),
	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
	NVM_CHANNEL_UNIFORM		= BIT(7),
	NVM_CHANNEL_20MHZ		= BIT(8),
	NVM_CHANNEL_40MHZ		= BIT(9),
	NVM_CHANNEL_80MHZ		= BIT(10),
	NVM_CHANNEL_160MHZ		= BIT(11),
	NVM_CHANNEL_DC_HIGH		= BIT(12),
212 213
};

214 215 216
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
					       int chan, u16 flags)
{
217
#define CHECK_AND_PRINT_I(x)	\
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	((flags & NVM_CHANNEL_##x) ? " " #x : "")

	if (!(flags & NVM_CHANNEL_VALID)) {
		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
			      chan, flags);
		return;
	}

	/* Note: already can print up to 101 characters, 110 is the limit! */
	IWL_DEBUG_DEV(dev, level,
		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
		      chan, flags,
		      CHECK_AND_PRINT_I(VALID),
		      CHECK_AND_PRINT_I(IBSS),
		      CHECK_AND_PRINT_I(ACTIVE),
		      CHECK_AND_PRINT_I(RADAR),
		      CHECK_AND_PRINT_I(INDOOR_ONLY),
		      CHECK_AND_PRINT_I(GO_CONCURRENT),
		      CHECK_AND_PRINT_I(UNIFORM),
		      CHECK_AND_PRINT_I(20MHZ),
		      CHECK_AND_PRINT_I(40MHZ),
		      CHECK_AND_PRINT_I(80MHZ),
		      CHECK_AND_PRINT_I(160MHZ),
		      CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
244

245
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
246
				 u16 nvm_flags, const struct iwl_cfg *cfg)
247 248
{
	u32 flags = IEEE80211_CHAN_NO_HT40;
249 250
	u32 last_5ghz_ht = LAST_5GHZ_HT;

251
	if (cfg->nvm_type == IWL_NVM_EXT)
252
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
253 254 255 256 257 258

	if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (ch_num <= LAST_2GHZ_HT_PLUS)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		if (ch_num >= FIRST_2GHZ_HT_MINUS)
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
259
	} else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
		else
			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
	}
	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= IEEE80211_CHAN_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= IEEE80211_CHAN_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_IBSS))
		flags |= IEEE80211_CHAN_NO_IR;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= IEEE80211_CHAN_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= IEEE80211_CHAN_RADAR;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= IEEE80211_CHAN_INDOOR_ONLY;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & IEEE80211_CHAN_NO_IR))
287
		flags |= IEEE80211_CHAN_IR_CONCURRENT;
288 289 290 291

	return flags;
}

292 293
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
				struct iwl_nvm_data *data,
294
				const __le16 * const nvm_ch_flags,
295
				bool lar_supported, bool no_wide_in_5ghz)
296 297 298 299 300
{
	int ch_idx;
	int n_channels = 0;
	struct ieee80211_channel *channel;
	u16 ch_flags;
301
	int num_of_ch, num_2ghz_channels;
302 303
	const u8 *nvm_chan;

304
	if (cfg->nvm_type != IWL_NVM_EXT) {
305
		num_of_ch = IWL_NVM_NUM_CHANNELS;
306
		nvm_chan = &iwl_nvm_channels[0];
307
		num_2ghz_channels = NUM_2GHZ_CHANNELS;
308
	} else {
309
		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
310 311
		nvm_chan = &iwl_ext_nvm_channels[0];
		num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
312
	}
313

314
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
315 316
		bool is_5ghz = (ch_idx >= num_2ghz_channels);

317
		ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
318

319
		if (is_5ghz && !data->sku_cap_band_52GHz_enable)
320
			continue;
321

322 323 324 325 326 327 328
		/* workaround to disable wide channels in 5GHz */
		if (no_wide_in_5ghz && is_5ghz) {
			ch_flags &= ~(NVM_CHANNEL_40MHZ |
				     NVM_CHANNEL_80MHZ |
				     NVM_CHANNEL_160MHZ);
		}

329 330 331
		if (ch_flags & NVM_CHANNEL_160MHZ)
			data->vht160_supported = true;

332
		if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
333 334 335 336 337
			/*
			 * Channels might become valid later if lar is
			 * supported, hence we still want to add them to
			 * the list of supported channels to cfg80211.
			 */
338 339
			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
						    nvm_chan[ch_idx], ch_flags);
340 341 342 343 344 345
			continue;
		}

		channel = &data->channels[n_channels];
		n_channels++;

346
		channel->hw_value = nvm_chan[ch_idx];
347 348
		channel->band = is_5ghz ?
				NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
349 350 351 352 353 354
		channel->center_freq =
			ieee80211_channel_to_frequency(
				channel->hw_value, channel->band);

		/* Initialize regulatory-based run-time data */

355 356 357 358
		/*
		 * Default value - highest tx power value.  max_power
		 * is not used in mvm, and is used for backwards compatibility
		 */
359
		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
360 361 362 363 364

		/* don't put limitations in case we're using LAR */
		if (!lar_supported)
			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
							       ch_idx, is_5ghz,
365
							       ch_flags, cfg);
366 367 368
		else
			channel->flags = 0;

369 370 371 372
		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
					    channel->hw_value, ch_flags);
		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
				 channel->hw_value, channel->max_power);
373 374 375 376 377
	}

	return n_channels;
}

378 379
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
				  struct iwl_nvm_data *data,
380 381
				  struct ieee80211_sta_vht_cap *vht_cap,
				  u8 tx_chains, u8 rx_chains)
382
{
383 384
	int num_rx_ants = num_of_ant(rx_chains);
	int num_tx_ants = num_of_ant(tx_chains);
385 386
	unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
					   IEEE80211_VHT_MAX_AMPDU_1024K);
387

388 389 390 391 392
	vht_cap->vht_supported = true;

	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
		       IEEE80211_VHT_CAP_RXSTBC_1 |
		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
393
		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
394 395
		       max_ampdu_exponent <<
		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
396

397
	if (data->vht160_supported)
398 399
		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
				IEEE80211_VHT_CAP_SHORT_GI_160;
400

401 402 403
	if (cfg->vht_mu_mimo_supported)
		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;

E
Eyal Shapira 已提交
404 405 406
	if (cfg->ht_params->ldpc)
		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;

407 408 409 410 411
	if (data->sku_cap_mimo_disabled) {
		num_rx_ants = 1;
		num_tx_ants = 1;
	}

412
	if (num_tx_ants > 1)
413
		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
414 415
	else
		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
416

417
	switch (iwlwifi_mod_params.amsdu_size) {
418 419 420 421 422 423 424
	case IWL_AMSDU_DEF:
		if (cfg->mq_rx_supported)
			vht_cap->cap |=
				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		else
			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
425 426 427 428
	case IWL_AMSDU_4K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
		break;
	case IWL_AMSDU_8K:
429
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
430 431 432 433 434 435 436
		break;
	case IWL_AMSDU_12K:
		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
		break;
	default:
		break;
	}
437 438 439 440 441 442 443 444 445 446 447

	vht_cap->vht_mcs.rx_mcs_map =
		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);

448 449
	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
450 451 452 453 454 455 456 457
		/* this works because NOT_SUPPORTED == 3 */
		vht_cap->vht_mcs.rx_mcs_map |=
			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
	}

	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}

458 459
void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
		     struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
460 461
		     u8 tx_chains, u8 rx_chains, bool lar_supported,
		     bool no_wide_in_5ghz)
462
{
463
	int n_channels;
464 465 466
	int n_used = 0;
	struct ieee80211_supported_band *sband;

467
	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
468
					  lar_supported, no_wide_in_5ghz);
469 470
	sband = &data->bands[NL80211_BAND_2GHZ];
	sband->band = NL80211_BAND_2GHZ;
471 472 473
	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
	sband->n_bitrates = N_RATES_24;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
474 475
					  NL80211_BAND_2GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
476
			     tx_chains, rx_chains);
477

478 479
	sband = &data->bands[NL80211_BAND_5GHZ];
	sband->band = NL80211_BAND_5GHZ;
480 481 482
	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
	sband->n_bitrates = N_RATES_52;
	n_used += iwl_init_sband_channels(data, sband, n_channels,
483 484
					  NL80211_BAND_5GHZ);
	iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
485
			     tx_chains, rx_chains);
486
	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
487 488
		iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
				      tx_chains, rx_chains);
489 490 491 492 493

	if (n_channels != n_used)
		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
			    n_used, n_channels);
}
494
IWL_EXPORT_SYMBOL(iwl_init_sbands);
495

496 497
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
		       const __le16 *phy_sku)
498
{
499
	if (cfg->nvm_type != IWL_NVM_EXT)
500
		return le16_to_cpup(nvm_sw + SKU);
501

502
	return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
503 504
}

505
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
506
{
507
	if (cfg->nvm_type != IWL_NVM_EXT)
508 509 510
		return le16_to_cpup(nvm_sw + NVM_VERSION);
	else
		return le32_to_cpup((__le32 *)(nvm_sw +
511
					       NVM_VERSION_EXT_NVM));
512 513
}

514 515
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
			     const __le16 *phy_sku)
516
{
517
	if (cfg->nvm_type != IWL_NVM_EXT)
518
		return le16_to_cpup(nvm_sw + RADIO_CFG);
519

520
	return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
521

522 523
}

524
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
525
{
526 527
	int n_hw_addr;

528
	if (cfg->nvm_type != IWL_NVM_EXT)
529
		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
530

531
	n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
532 533

	return n_hw_addr & N_HW_ADDR_MASK;
534 535 536 537 538 539
}

static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
			      struct iwl_nvm_data *data,
			      u32 radio_cfg)
{
540
	if (cfg->nvm_type != IWL_NVM_EXT) {
541 542 543 544 545 546 547 548
		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
		return;
	}

	/* set the radio configuration for family 8000 */
549 550 551 552 553 554
	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
555 556
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
	const u8 *hw_addr;

	hw_addr = (const u8 *)&mac_addr0;
	dest[0] = hw_addr[3];
	dest[1] = hw_addr[2];
	dest[2] = hw_addr[1];
	dest[3] = hw_addr[0];

	hw_addr = (const u8 *)&mac_addr1;
	dest[4] = hw_addr[1];
	dest[5] = hw_addr[0];
}

572 573
void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
				 struct iwl_nvm_data *data)
574 575 576 577
{
	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));

578 579 580 581 582 583 584 585 586 587
	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
	/*
	 * If the OEM fused a valid address, use it instead of the one in the
	 * OTP
	 */
	if (is_valid_ether_addr(data->hw_addr))
		return;

	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
588 589 590

	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}
591
IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
592

593
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
594
					   const struct iwl_cfg *cfg,
595 596
					   struct iwl_nvm_data *data,
					   const __le16 *mac_override,
597
					   const __be16 *nvm_hw)
598 599 600 601
{
	const u8 *hw_addr;

	if (mac_override) {
602 603 604 605
		static const u8 reserved_mac[] = {
			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
		};

606
		hw_addr = (const u8 *)(mac_override +
607
				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
608

609 610 611 612 613
		/*
		 * Store the MAC address from MAO section.
		 * No byte swapping is required in MAO section
		 */
		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
614

615 616 617 618 619 620
		/*
		 * Force the use of the OTP MAC address in case of reserved MAC
		 * address in the NVM, or if address is given but invalid.
		 */
		if (is_valid_ether_addr(data->hw_addr) &&
		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
621
			return;
622

623 624
		IWL_ERR(trans,
			"mac address from nvm override section is not valid\n");
625 626
	}

627
	if (nvm_hw) {
628 629 630 631 632
		/* read the mac address from WFMP registers */
		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_0));
		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
						WFMP_MAC_ADDR_1));
633 634

		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
635

636 637
		return;
	}
638

639 640 641
	IWL_ERR(trans, "mac address is not found\n");
}

642 643
static int iwl_set_hw_address(struct iwl_trans *trans,
			      const struct iwl_cfg *cfg,
644
			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
645
			      const __le16 *mac_override)
646
{
647 648
	if (cfg->mac_addr_from_csr) {
		iwl_set_hw_address_from_csr(trans, data);
649
	} else if (cfg->nvm_type != IWL_NVM_EXT) {
650 651 652 653 654 655 656 657 658 659 660 661 662
		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);

		/* The byte order is little endian 16 bit, meaning 214365 */
		data->hw_addr[0] = hw_addr[1];
		data->hw_addr[1] = hw_addr[0];
		data->hw_addr[2] = hw_addr[3];
		data->hw_addr[3] = hw_addr[2];
		data->hw_addr[4] = hw_addr[5];
		data->hw_addr[5] = hw_addr[4];
	} else {
		iwl_set_hw_address_family_8000(trans, cfg, data,
					       mac_override, nvm_hw);
	}
663 664 665 666 667 668

	if (!is_valid_ether_addr(data->hw_addr)) {
		IWL_ERR(trans, "no valid mac address was found\n");
		return -EINVAL;
	}

669 670
	IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);

671
	return 0;
672 673
}

674 675
static bool
iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
676
			const __be16 *nvm_hw)
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
{
	/*
	 * Workaround a bug in Indonesia SKUs where the regulatory in
	 * some 7000-family OTPs erroneously allow wide channels in
	 * 5GHz.  To check for Indonesia, we take the SKU value from
	 * bits 1-4 in the subsystem ID and check if it is either 5 or
	 * 9.  In those cases, we need to force-disable wide channels
	 * in 5GHz otherwise the FW will throw a sysassert when we try
	 * to use them.
	 */
	if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
		/*
		 * Unlike the other sections in the NVM, the hw
		 * section uses big-endian.
		 */
692
		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
693 694 695 696 697 698 699 700 701 702 703 704 705
		u8 sku = (subsystem_id & 0x1e) >> 1;

		if (sku == 5 || sku == 9) {
			IWL_DEBUG_EEPROM(dev,
					 "disabling wide channels in 5GHz (0x%0x %d)\n",
					 subsystem_id, sku);
			return true;
		}
	}

	return false;
}

706
struct iwl_nvm_data *
707
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
708
		   const __be16 *nvm_hw, const __le16 *nvm_sw,
709
		   const __le16 *nvm_calib, const __le16 *regulatory,
710
		   const __le16 *mac_override, const __le16 *phy_sku,
711
		   u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
712
{
713
	struct device *dev = trans->dev;
714
	struct iwl_nvm_data *data;
715
	bool lar_enabled;
716
	bool no_wide_in_5ghz = iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw);
717
	u32 sku, radio_cfg;
718
	u16 lar_config;
719
	const __le16 *ch_section;
720

721
	if (cfg->nvm_type != IWL_NVM_EXT)
722 723
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
724
			       IWL_NVM_NUM_CHANNELS,
725 726 727 728
			       GFP_KERNEL);
	else
		data = kzalloc(sizeof(*data) +
			       sizeof(struct ieee80211_channel) *
729
			       IWL_NVM_NUM_CHANNELS_EXT,
730
			       GFP_KERNEL);
731 732 733
	if (!data)
		return NULL;

734
	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
735

736
	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
737
	iwl_set_radio_cfg(cfg, data, radio_cfg);
738 739 740 741
	if (data->valid_tx_ant)
		tx_chains &= data->valid_tx_ant;
	if (data->valid_rx_ant)
		rx_chains &= data->valid_rx_ant;
742

743
	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
744 745 746 747 748
	data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
	data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
		data->sku_cap_11n_enable = false;
749 750
	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
				    (sku & NVM_SKU_CAP_11AC_ENABLE);
751
	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
752

753
	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
754

755
	if (cfg->nvm_type != IWL_NVM_EXT) {
756 757
		/* Checking for required sections */
		if (!nvm_calib) {
758 759
			IWL_ERR(trans,
				"Can't parse empty Calib NVM sections\n");
760
			kfree(data);
761 762
			return NULL;
		}
763 764 765 766 767

		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
			     &regulatory[NVM_CHANNELS_SDP] :
			     &nvm_sw[NVM_CHANNELS];

768 769 770
		/* in family 8000 Xtal calibration values moved to OTP */
		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
771
		lar_enabled = true;
772
	} else {
773
		u16 lar_offset = data->nvm_version < 0xE39 ?
774 775
				 NVM_LAR_OFFSET_OLD :
				 NVM_LAR_OFFSET;
776 777

		lar_config = le16_to_cpup(regulatory + lar_offset);
778
		data->lar_enabled = !!(lar_config &
779
				       NVM_LAR_ENABLED);
780
		lar_enabled = data->lar_enabled;
781
		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
782
	}
783

784 785 786 787 788 789
	/* If no valid mac address was found - bail out */
	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
		kfree(data);
		return NULL;
	}

790
	iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
791
			lar_fw_supported && lar_enabled, no_wide_in_5ghz);
792
	data->calib_version = 255;
793 794 795

	return data;
}
796
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
797 798

static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
799 800
				       int ch_idx, u16 nvm_flags,
				       const struct iwl_cfg *cfg)
801 802
{
	u32 flags = NL80211_RRF_NO_HT40;
803 804
	u32 last_5ghz_ht = LAST_5GHZ_HT;

805
	if (cfg->nvm_type == IWL_NVM_EXT)
806
		last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
807 808 809 810 811 812 813

	if (ch_idx < NUM_2GHZ_CHANNELS &&
	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
			flags &= ~NL80211_RRF_NO_HT40MINUS;
814
	} else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
		   (nvm_flags & NVM_CHANNEL_40MHZ)) {
		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
			flags &= ~NL80211_RRF_NO_HT40PLUS;
		else
			flags &= ~NL80211_RRF_NO_HT40MINUS;
	}

	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
		flags |= NL80211_RRF_NO_80MHZ;
	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
		flags |= NL80211_RRF_NO_160MHZ;

	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
		flags |= NL80211_RRF_NO_IR;

	if (nvm_flags & NVM_CHANNEL_RADAR)
		flags |= NL80211_RRF_DFS;

	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
		flags |= NL80211_RRF_NO_OUTDOOR;

	/* Set the GO concurrent flag only in case that NO_IR is set.
	 * Otherwise it is meaningless
	 */
	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
	    (flags & NL80211_RRF_NO_IR))
		flags |= NL80211_RRF_GO_CONCURRENT;

	return flags;
}

846 847 848 849 850
struct regdb_ptrs {
	struct ieee80211_wmm_rule *rule;
	u32 token;
};

851
struct ieee80211_regdomain *
852
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
853 854
		       int num_of_ch, __le32 *channels, u16 fw_mcc,
		       u16 geo_info)
855 856
{
	int ch_idx;
857 858
	u16 ch_flags;
	u32 reg_rule_flags, prev_reg_rule_flags = 0;
859
	const u8 *nvm_chan = cfg->nvm_type == IWL_NVM_EXT ?
860
			     iwl_ext_nvm_channels : iwl_nvm_channels;
861 862 863
	struct ieee80211_regdomain *regd, *copy_rd;
	int size_of_regd, regd_to_copy, wmms_to_copy;
	int size_of_wmms = 0;
864
	struct ieee80211_reg_rule *rule;
865 866
	struct ieee80211_wmm_rule *wmm_rule, *d_wmm, *s_wmm;
	struct regdb_ptrs *regdb_ptrs;
867
	enum nl80211_band band;
868
	int center_freq, prev_center_freq = 0;
869 870
	int valid_rules = 0, n_wmms = 0;
	int i;
871
	bool new_rule;
872
	int max_num_ch = cfg->nvm_type == IWL_NVM_EXT ?
873
			 IWL_NVM_NUM_CHANNELS_EXT : IWL_NVM_NUM_CHANNELS;
874 875 876 877

	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
		return ERR_PTR(-EINVAL);

878 879 880
	if (WARN_ON(num_of_ch > max_num_ch))
		num_of_ch = max_num_ch;

881 882 883 884 885 886 887 888
	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
		      num_of_ch);

	/* build a regdomain rule for every valid channel */
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		num_of_ch * sizeof(struct ieee80211_reg_rule);

889 890 891 892 893
	if (geo_info & GEO_WMM_ETSI_5GHZ_INFO)
		size_of_wmms =
			num_of_ch * sizeof(struct ieee80211_wmm_rule);

	regd = kzalloc(size_of_regd + size_of_wmms, GFP_KERNEL);
894 895 896
	if (!regd)
		return ERR_PTR(-ENOMEM);

897 898 899 900 901 902 903 904 905 906 907 908
	regdb_ptrs = kcalloc(num_of_ch, sizeof(*regdb_ptrs), GFP_KERNEL);
	if (!regdb_ptrs) {
		copy_rd = ERR_PTR(-ENOMEM);
		goto out;
	}

	/* set alpha2 from FW. */
	regd->alpha2[0] = fw_mcc >> 8;
	regd->alpha2[1] = fw_mcc & 0xff;

	wmm_rule = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);

909 910 911
	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
		band = (ch_idx < NUM_2GHZ_CHANNELS) ?
912
		       NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
913 914 915 916 917
		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
							     band);
		new_rule = false;

		if (!(ch_flags & NVM_CHANNEL_VALID)) {
918 919
			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
						    nvm_chan[ch_idx], ch_flags);
920 921 922
			continue;
		}

923 924 925
		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
							     ch_flags, cfg);

926
		/* we can't continue the same rule */
927
		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		    center_freq - prev_center_freq > 20) {
			valid_rules++;
			new_rule = true;
		}

		rule = &regd->reg_rules[valid_rules - 1];

		if (new_rule)
			rule->freq_range.start_freq_khz =
						MHZ_TO_KHZ(center_freq - 10);

		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);

		/* this doesn't matter - not used by FW */
		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
943 944
		rule->power_rule.max_eirp =
			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
945

946
		rule->flags = reg_rule_flags;
947 948 949 950 951 952

		/* rely on auto-calculation to merge BW of contiguous chans */
		rule->flags |= NL80211_RRF_AUTO_BW;
		rule->freq_range.max_bandwidth_khz = 0;

		prev_center_freq = center_freq;
953
		prev_reg_rule_flags = reg_rule_flags;
954

955 956
		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
					    nvm_chan[ch_idx], ch_flags);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
		    band == NL80211_BAND_2GHZ)
			continue;

		if (!reg_query_regdb_wmm(regd->alpha2, center_freq,
					 &regdb_ptrs[n_wmms].token, wmm_rule)) {
			/* Add only new rules */
			for (i = 0; i < n_wmms; i++) {
				if (regdb_ptrs[i].token ==
				    regdb_ptrs[n_wmms].token) {
					rule->wmm_rule = regdb_ptrs[i].rule;
					break;
				}
			}
			if (i == n_wmms) {
				rule->wmm_rule = wmm_rule;
				regdb_ptrs[n_wmms++].rule = wmm_rule;
				wmm_rule++;
			}
		}
978 979 980
	}

	regd->n_reg_rules = valid_rules;
981
	regd->n_wmm_rules = n_wmms;
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	/*
	 * Narrow down regdom for unused regulatory rules to prevent hole
	 * between reg rules to wmm rules.
	 */
	regd_to_copy = sizeof(struct ieee80211_regdomain) +
		valid_rules * sizeof(struct ieee80211_reg_rule);

	wmms_to_copy = sizeof(struct ieee80211_wmm_rule) * n_wmms;

	copy_rd = kzalloc(regd_to_copy + wmms_to_copy, GFP_KERNEL);
	if (!copy_rd) {
		copy_rd = ERR_PTR(-ENOMEM);
		goto out;
	}

	memcpy(copy_rd, regd, regd_to_copy);
	memcpy((u8 *)copy_rd + regd_to_copy, (u8 *)regd + size_of_regd,
	       wmms_to_copy);

	d_wmm = (struct ieee80211_wmm_rule *)((u8 *)copy_rd + regd_to_copy);
	s_wmm = (struct ieee80211_wmm_rule *)((u8 *)regd + size_of_regd);

	for (i = 0; i < regd->n_reg_rules; i++) {
		if (!regd->reg_rules[i].wmm_rule)
			continue;

		copy_rd->reg_rules[i].wmm_rule = d_wmm +
			(regd->reg_rules[i].wmm_rule - s_wmm) /
			sizeof(struct ieee80211_wmm_rule);
	}
1013

1014 1015 1016 1017
out:
	kfree(regdb_ptrs);
	kfree(regd);
	return copy_rd;
1018 1019
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);