memcontrol.c 168.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302

	bool		oom_lock;
	atomic_t	under_oom;
303
	atomic_t	oom_wakeups;
304

305
	int	swappiness;
306 307
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
308

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
325
	unsigned long move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
345
#endif
346
#if defined(CONFIG_MEMCG_KMEM)
347 348
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
349 350 351 352
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
353 354 355 356 357 358 359

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
360

361 362 363 364
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370
/* internal only representation about the status of kmem accounting. */
enum {
371
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
373 374 375 376 377 378 379
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
380 381 382 383 384 385 386 387

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
388 389 390 391 392
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
393 394 395 396 397 398 399 400 401
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
402 403
#endif

404 405
/* Stuffs for move charges at task migration. */
/*
406 407
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
408 409
 */
enum move_type {
410
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
411
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
412 413 414
	NR_MOVE_TYPE,
};

415 416
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
417
	spinlock_t	  lock; /* for from, to */
418 419
	struct mem_cgroup *from;
	struct mem_cgroup *to;
420
	unsigned long immigrate_flags;
421
	unsigned long precharge;
422
	unsigned long moved_charge;
423
	unsigned long moved_swap;
424 425 426
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
427
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
428 429
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
430

D
Daisuke Nishimura 已提交
431 432
static bool move_anon(void)
{
433
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
434 435
}

436 437
static bool move_file(void)
{
438
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
439 440
}

441 442 443 444
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
445
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
446
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
447

448 449
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
450
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
451
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
452
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
453 454 455
	NR_CHARGE_TYPE,
};

456
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
457 458 459 460
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
461
	_KMEM,
G
Glauber Costa 已提交
462 463
};

464 465
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
466
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
467 468
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
469

470 471 472 473 474 475 476
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

477 478
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
479
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
480 481
}

482 483 484 485 486 487 488 489 490 491 492 493 494
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

495 496 497 498 499
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

500 501 502 503 504 505
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
506 507
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
508
	return memcg->css.id;
L
Li Zefan 已提交
509 510 511 512 513 514
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

515
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
516 517 518
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
519
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
520
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
521 522 523

void sock_update_memcg(struct sock *sk)
{
524
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
525
		struct mem_cgroup *memcg;
526
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
527 528 529

		BUG_ON(!sk->sk_prot->proto_cgroup);

530 531 532 533 534 535 536 537 538 539
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
540
			css_get(&sk->sk_cgrp->memcg->css);
541 542 543
			return;
		}

G
Glauber Costa 已提交
544 545
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
546
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
547
		if (!mem_cgroup_is_root(memcg) &&
548 549
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
550
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
551 552 553 554 555 556 557 558
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
559
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
560 561 562
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
563
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
564 565
	}
}
G
Glauber Costa 已提交
566 567 568 569 570 571

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

572
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
573 574
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
575

576 577
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
578
	if (!memcg_proto_activated(&memcg->tcp_mem))
579 580 581 582 583 584 585 586 587
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

588
#ifdef CONFIG_MEMCG_KMEM
589 590
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
591 592 593 594 595
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
596 597 598 599 600 601
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
602 603
int memcg_limited_groups_array_size;

604 605 606 607 608 609
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
610
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
611 612
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
613
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
614 615 616
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
617
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
618

619 620 621 622 623 624
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
625
struct static_key memcg_kmem_enabled_key;
626
EXPORT_SYMBOL(memcg_kmem_enabled_key);
627

628 629
static void memcg_free_cache_id(int id);

630 631
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
632
	if (memcg_kmem_is_active(memcg)) {
633
		static_key_slow_dec(&memcg_kmem_enabled_key);
634
		memcg_free_cache_id(memcg->kmemcg_id);
635
	}
636 637 638 639
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
640
	WARN_ON(page_counter_read(&memcg->kmem));
641 642 643 644 645 646 647 648 649 650 651 652 653
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

654
static void drain_all_stock_async(struct mem_cgroup *memcg);
655

656
static struct mem_cgroup_per_zone *
657
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
658
{
659 660 661
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

662
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
663 664
}

665
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
666
{
667
	return &memcg->css;
668 669
}

670
static struct mem_cgroup_per_zone *
671
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
672
{
673 674
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
675

676
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
677 678
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

694 695
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
696
					 unsigned long new_usage_in_excess)
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

726 727
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
728 729 730 731 732 733 734
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

735 736
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
737
{
738 739 740
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
741
	__mem_cgroup_remove_exceeded(mz, mctz);
742
	spin_unlock_irqrestore(&mctz->lock, flags);
743 744
}

745 746 747 748 749 750 751 752 753 754 755
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
756 757 758

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
759
	unsigned long excess;
760 761 762
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

763
	mctz = soft_limit_tree_from_page(page);
764 765 766 767 768
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
769
		mz = mem_cgroup_page_zoneinfo(memcg, page);
770
		excess = soft_limit_excess(memcg);
771 772 773 774 775
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
776 777 778
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
779 780
			/* if on-tree, remove it */
			if (mz->on_tree)
781
				__mem_cgroup_remove_exceeded(mz, mctz);
782 783 784 785
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
786
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
787
			spin_unlock_irqrestore(&mctz->lock, flags);
788 789 790 791 792 793 794
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
795 796
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
797

798 799 800 801
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
802
			mem_cgroup_remove_exceeded(mz, mctz);
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
825
	__mem_cgroup_remove_exceeded(mz, mctz);
826
	if (!soft_limit_excess(mz->memcg) ||
827
	    !css_tryget_online(&mz->memcg->css))
828 829 830 831 832 833 834 835 836 837
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

838
	spin_lock_irq(&mctz->lock);
839
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
840
	spin_unlock_irq(&mctz->lock);
841 842 843
	return mz;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
863
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
864
				 enum mem_cgroup_stat_index idx)
865
{
866
	long val = 0;
867 868
	int cpu;

869 870
	get_online_cpus();
	for_each_online_cpu(cpu)
871
		val += per_cpu(memcg->stat->count[idx], cpu);
872
#ifdef CONFIG_HOTPLUG_CPU
873 874 875
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
876 877
#endif
	put_online_cpus();
878 879 880
	return val;
}

881
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
882 883 884 885 886
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

887
	get_online_cpus();
888
	for_each_online_cpu(cpu)
889
		val += per_cpu(memcg->stat->events[idx], cpu);
890
#ifdef CONFIG_HOTPLUG_CPU
891 892 893
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
894
#endif
895
	put_online_cpus();
896 897 898
	return val;
}

899
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
900
					 struct page *page,
901
					 int nr_pages)
902
{
903 904 905 906
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
907
	if (PageAnon(page))
908
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
909
				nr_pages);
910
	else
911
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
912
				nr_pages);
913

914 915 916 917
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

918 919
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
920
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
921
	else {
922
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
923 924
		nr_pages = -nr_pages; /* for event */
	}
925

926
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
927 928
}

929
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
930 931 932 933 934 935 936
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

937 938 939
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
940
{
941
	unsigned long nr = 0;
942 943
	int zid;

944
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
945

946 947 948 949 950 951 952 953 954 955 956 957
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
958
}
959

960
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
961
			unsigned int lru_mask)
962
{
963
	unsigned long nr = 0;
964
	int nid;
965

966
	for_each_node_state(nid, N_MEMORY)
967 968
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
969 970
}

971 972
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
973 974 975
{
	unsigned long val, next;

976
	val = __this_cpu_read(memcg->stat->nr_page_events);
977
	next = __this_cpu_read(memcg->stat->targets[target]);
978
	/* from time_after() in jiffies.h */
979 980 981 982 983
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
984 985 986
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
987 988 989 990 991 992 993 994
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
995
	}
996
	return false;
997 998 999 1000 1001 1002
}

/*
 * Check events in order.
 *
 */
1003
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1004 1005
{
	/* threshold event is triggered in finer grain than soft limit */
1006 1007
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1008
		bool do_softlimit;
1009
		bool do_numainfo __maybe_unused;
1010

1011 1012
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1013 1014 1015 1016
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
1017
		mem_cgroup_threshold(memcg);
1018 1019
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1020
#if MAX_NUMNODES > 1
1021
		if (unlikely(do_numainfo))
1022
			atomic_inc(&memcg->numainfo_events);
1023
#endif
1024
	}
1025 1026
}

1027
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1028
{
1029 1030 1031 1032 1033 1034 1035 1036
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1037
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1038 1039
}

1040
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1041
{
1042
	struct mem_cgroup *memcg = NULL;
1043

1044 1045
	rcu_read_lock();
	do {
1046 1047 1048 1049 1050 1051
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1052
			memcg = root_mem_cgroup;
1053 1054 1055 1056 1057
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1058
	} while (!css_tryget_online(&memcg->css));
1059
	rcu_read_unlock();
1060
	return memcg;
1061 1062
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1080
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1081
				   struct mem_cgroup *prev,
1082
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1083
{
1084 1085
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1086
	struct mem_cgroup *memcg = NULL;
1087
	struct mem_cgroup *pos = NULL;
1088

1089 1090
	if (mem_cgroup_disabled())
		return NULL;
1091

1092 1093
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1094

1095
	if (prev && !reclaim)
1096
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1097

1098 1099
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1100
			goto out;
1101
		return root;
1102
	}
K
KAMEZAWA Hiroyuki 已提交
1103

1104
	rcu_read_lock();
M
Michal Hocko 已提交
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1140
		}
K
KAMEZAWA Hiroyuki 已提交
1141

1142 1143 1144 1145 1146 1147
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1148

1149 1150
		if (css == &root->css)
			break;
1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		if (css_tryget_online(css)) {
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;

			css_put(css);
1162
		}
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		memcg = NULL;
	}

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1186
	}
1187

1188 1189
out_unlock:
	rcu_read_unlock();
1190
out:
1191 1192 1193
	if (prev && prev != root)
		css_put(&prev->css);

1194
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1195
}
K
KAMEZAWA Hiroyuki 已提交
1196

1197 1198 1199 1200 1201 1202 1203
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1204 1205 1206 1207 1208 1209
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1210

1211 1212 1213 1214 1215 1216
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1217
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1218
	     iter != NULL;				\
1219
	     iter = mem_cgroup_iter(root, iter, NULL))
1220

1221
#define for_each_mem_cgroup(iter)			\
1222
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1223
	     iter != NULL;				\
1224
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1225

1226
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1227
{
1228
	struct mem_cgroup *memcg;
1229 1230

	rcu_read_lock();
1231 1232
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1233 1234 1235 1236
		goto out;

	switch (idx) {
	case PGFAULT:
1237 1238 1239 1240
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1241 1242 1243 1244 1245 1246 1247
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1248
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1249

1250 1251 1252
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1253
 * @memcg: memcg of the wanted lruvec
1254 1255 1256 1257 1258 1259 1260 1261 1262
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1263
	struct lruvec *lruvec;
1264

1265 1266 1267 1268
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1269

1270
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1281 1282 1283
}

/**
1284
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1285
 * @page: the page
1286
 * @zone: zone of the page
1287
 */
1288
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1289 1290
{
	struct mem_cgroup_per_zone *mz;
1291 1292
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1293
	struct lruvec *lruvec;
1294

1295 1296 1297 1298
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1299

K
KAMEZAWA Hiroyuki 已提交
1300
	pc = lookup_page_cgroup(page);
1301
	memcg = pc->mem_cgroup;
1302 1303

	/*
1304
	 * Surreptitiously switch any uncharged offlist page to root:
1305 1306 1307 1308 1309 1310 1311
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1312
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1313 1314
		pc->mem_cgroup = memcg = root_mem_cgroup;

1315
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1326
}
1327

1328
/**
1329 1330 1331 1332
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1333
 *
1334 1335
 * This function must be called when a page is added to or removed from an
 * lru list.
1336
 */
1337 1338
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1339 1340
{
	struct mem_cgroup_per_zone *mz;
1341
	unsigned long *lru_size;
1342 1343 1344 1345

	if (mem_cgroup_disabled())
		return;

1346 1347 1348 1349
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1350
}
1351

1352
/*
1353
 * Checks whether given mem is same or in the root_mem_cgroup's
1354 1355
 * hierarchy subtree
 */
1356 1357
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1358
{
1359 1360
	if (root_memcg == memcg)
		return true;
1361
	if (!root_memcg->use_hierarchy || !memcg)
1362
		return false;
1363
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1364 1365 1366 1367 1368 1369 1370
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1371
	rcu_read_lock();
1372
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1373 1374
	rcu_read_unlock();
	return ret;
1375 1376
}

1377 1378
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1379
{
1380
	struct mem_cgroup *curr = NULL;
1381
	struct task_struct *p;
1382
	bool ret;
1383

1384
	p = find_lock_task_mm(task);
1385
	if (p) {
1386
		curr = get_mem_cgroup_from_mm(p->mm);
1387 1388 1389 1390 1391 1392 1393
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1394
		rcu_read_lock();
1395 1396 1397
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1398
		rcu_read_unlock();
1399
	}
1400
	/*
1401
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1402
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1403 1404
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1405
	 */
1406
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1407
	css_put(&curr->css);
1408 1409 1410
	return ret;
}

1411
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1412
{
1413
	unsigned long inactive_ratio;
1414
	unsigned long inactive;
1415
	unsigned long active;
1416
	unsigned long gb;
1417

1418 1419
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1420

1421 1422 1423 1424 1425 1426
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1427
	return inactive * inactive_ratio < active;
1428 1429
}

1430
#define mem_cgroup_from_counter(counter, member)	\
1431 1432
	container_of(counter, struct mem_cgroup, member)

1433
/**
1434
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1435
 * @memcg: the memory cgroup
1436
 *
1437
 * Returns the maximum amount of memory @mem can be charged with, in
1438
 * pages.
1439
 */
1440
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1441
{
1442 1443 1444
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1459 1460
}

1461
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1462 1463
{
	/* root ? */
1464
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1465 1466
		return vm_swappiness;

1467
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1468 1469
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1484

1485
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1486
{
1487
	atomic_inc(&memcg->moving_account);
1488 1489 1490
	synchronize_rcu();
}

1491
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1492
{
1493 1494 1495 1496
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1497
	if (memcg)
1498
		atomic_dec(&memcg->moving_account);
1499
}
1500

1501
/*
Q
Qiang Huang 已提交
1502
 * A routine for checking "mem" is under move_account() or not.
1503
 *
Q
Qiang Huang 已提交
1504 1505 1506
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1507
 */
1508
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1509
{
1510 1511
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1512
	bool ret = false;
1513 1514 1515 1516 1517 1518 1519 1520 1521
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1522

1523 1524
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1525 1526
unlock:
	spin_unlock(&mc.lock);
1527 1528 1529
	return ret;
}

1530
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1531 1532
{
	if (mc.moving_task && current != mc.moving_task) {
1533
		if (mem_cgroup_under_move(memcg)) {
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1563
#define K(x) ((x) << (PAGE_SHIFT-10))
1564
/**
1565
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1566 1567 1568 1569 1570 1571 1572 1573
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1574
	/* oom_info_lock ensures that parallel ooms do not interleave */
1575
	static DEFINE_MUTEX(oom_info_lock);
1576 1577
	struct mem_cgroup *iter;
	unsigned int i;
1578

1579
	if (!p)
1580 1581
		return;

1582
	mutex_lock(&oom_info_lock);
1583 1584
	rcu_read_lock();

T
Tejun Heo 已提交
1585 1586 1587 1588 1589
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1590 1591 1592

	rcu_read_unlock();

1593 1594 1595 1596 1597 1598 1599 1600 1601
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1602 1603

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1604 1605
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1621
	mutex_unlock(&oom_info_lock);
1622 1623
}

1624 1625 1626 1627
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1628
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1629 1630
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1631 1632
	struct mem_cgroup *iter;

1633
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1634
		num++;
1635 1636 1637
	return num;
}

D
David Rientjes 已提交
1638 1639 1640
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1641
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1642
{
1643
	unsigned long limit;
D
David Rientjes 已提交
1644

1645
	limit = memcg->memory.limit;
1646
	if (mem_cgroup_swappiness(memcg)) {
1647
		unsigned long memsw_limit;
1648

1649 1650
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1651 1652
	}
	return limit;
D
David Rientjes 已提交
1653 1654
}

1655 1656
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1657 1658 1659 1660 1661 1662 1663
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1664
	/*
1665 1666 1667
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1668
	 */
1669
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1670 1671 1672 1673 1674
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1675
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1676
	for_each_mem_cgroup_tree(iter, memcg) {
1677
		struct css_task_iter it;
1678 1679
		struct task_struct *task;

1680 1681
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1694
				css_task_iter_end(&it);
1695 1696 1697 1698 1699 1700 1701 1702
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1715
		}
1716
		css_task_iter_end(&it);
1717 1718 1719 1720 1721 1722 1723 1724 1725
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1726 1727
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1728
 * @memcg: the target memcg
1729 1730 1731 1732 1733 1734 1735
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1736
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1737 1738
		int nid, bool noswap)
{
1739
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1740 1741 1742
		return true;
	if (noswap || !total_swap_pages)
		return false;
1743
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1744 1745 1746 1747
		return true;
	return false;

}
1748
#if MAX_NUMNODES > 1
1749 1750 1751 1752 1753 1754 1755

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1756
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1757 1758
{
	int nid;
1759 1760 1761 1762
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1763
	if (!atomic_read(&memcg->numainfo_events))
1764
		return;
1765
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1766 1767 1768
		return;

	/* make a nodemask where this memcg uses memory from */
1769
	memcg->scan_nodes = node_states[N_MEMORY];
1770

1771
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1772

1773 1774
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1775
	}
1776

1777 1778
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1793
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1794 1795 1796
{
	int node;

1797 1798
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1799

1800
	node = next_node(node, memcg->scan_nodes);
1801
	if (node == MAX_NUMNODES)
1802
		node = first_node(memcg->scan_nodes);
1803 1804 1805 1806 1807 1808 1809 1810 1811
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1812
	memcg->last_scanned_node = node;
1813 1814 1815
	return node;
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1851
#else
1852
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1853 1854 1855
{
	return 0;
}
1856

1857 1858 1859 1860
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1861 1862
#endif

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1878
	excess = soft_limit_excess(root_memcg);
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1909
		if (!soft_limit_excess(root_memcg))
1910
			break;
1911
	}
1912 1913
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1914 1915
}

1916 1917 1918 1919 1920 1921
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1922 1923
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1924 1925 1926 1927
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1928
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1929
{
1930
	struct mem_cgroup *iter, *failed = NULL;
1931

1932 1933
	spin_lock(&memcg_oom_lock);

1934
	for_each_mem_cgroup_tree(iter, memcg) {
1935
		if (iter->oom_lock) {
1936 1937 1938 1939 1940
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1941 1942
			mem_cgroup_iter_break(memcg, iter);
			break;
1943 1944
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1945
	}
K
KAMEZAWA Hiroyuki 已提交
1946

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1958
		}
1959 1960
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1961 1962 1963 1964

	spin_unlock(&memcg_oom_lock);

	return !failed;
1965
}
1966

1967
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1968
{
K
KAMEZAWA Hiroyuki 已提交
1969 1970
	struct mem_cgroup *iter;

1971
	spin_lock(&memcg_oom_lock);
1972
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1973
	for_each_mem_cgroup_tree(iter, memcg)
1974
		iter->oom_lock = false;
1975
	spin_unlock(&memcg_oom_lock);
1976 1977
}

1978
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1979 1980 1981
{
	struct mem_cgroup *iter;

1982
	for_each_mem_cgroup_tree(iter, memcg)
1983 1984 1985
		atomic_inc(&iter->under_oom);
}

1986
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1987 1988 1989
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1990 1991 1992 1993 1994
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1995
	for_each_mem_cgroup_tree(iter, memcg)
1996
		atomic_add_unless(&iter->under_oom, -1, 0);
1997 1998
}

K
KAMEZAWA Hiroyuki 已提交
1999 2000
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2001
struct oom_wait_info {
2002
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2003 2004 2005 2006 2007 2008
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2009 2010
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2011 2012 2013
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2014
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2015 2016

	/*
2017
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2018 2019
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2020 2021
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2022 2023 2024 2025
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2026
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2027
{
2028
	atomic_inc(&memcg->oom_wakeups);
2029 2030
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2031 2032
}

2033
static void memcg_oom_recover(struct mem_cgroup *memcg)
2034
{
2035 2036
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2037 2038
}

2039
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2040
{
2041 2042
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2043
	/*
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2056
	 */
2057 2058 2059 2060
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2061 2062 2063 2064
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2065
 * @handle: actually kill/wait or just clean up the OOM state
2066
 *
2067 2068
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2069
 *
2070
 * Memcg supports userspace OOM handling where failed allocations must
2071 2072 2073 2074
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2075
 * the end of the page fault to complete the OOM handling.
2076 2077
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2078
 * completed, %false otherwise.
2079
 */
2080
bool mem_cgroup_oom_synchronize(bool handle)
2081
{
2082
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2083
	struct oom_wait_info owait;
2084
	bool locked;
2085 2086 2087

	/* OOM is global, do not handle */
	if (!memcg)
2088
		return false;
2089

2090 2091
	if (!handle)
		goto cleanup;
2092 2093 2094 2095 2096 2097

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2098

2099
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2113
		schedule();
2114 2115 2116 2117 2118
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2119 2120 2121 2122 2123 2124 2125 2126
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2127 2128
cleanup:
	current->memcg_oom.memcg = NULL;
2129
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2130
	return true;
2131 2132
}

2133 2134 2135 2136 2137
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
2138
 *
2139 2140 2141
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2142
 *
2143 2144 2145 2146
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
2147
 *
2148 2149 2150
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
2151
 *
2152 2153 2154 2155 2156
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2157
 */
2158 2159 2160
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2161 2162 2163 2164
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

2165 2166 2167 2168 2169
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;

2170 2171 2172 2173
	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2174 2175 2176
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2177
	if (atomic_read(&memcg->moving_account) <= 0)
2178
		return memcg;
2179 2180 2181 2182 2183 2184 2185

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
2186 2187

	return memcg;
2188 2189
}

2190 2191 2192 2193 2194 2195 2196 2197
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
			      unsigned long flags)
2198
{
2199 2200
	if (memcg && locked)
		move_unlock_mem_cgroup(memcg, &flags);
2201

2202
	rcu_read_unlock();
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212 2213
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2214
				 enum mem_cgroup_stat_index idx, int val)
2215
{
2216
	VM_BUG_ON(!rcu_read_lock_held());
2217

2218 2219
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2220
}
2221

2222 2223 2224 2225
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2226
#define CHARGE_BATCH	32U
2227 2228
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2229
	unsigned int nr_pages;
2230
	struct work_struct work;
2231
	unsigned long flags;
2232
#define FLUSHING_CACHED_CHARGE	0
2233 2234
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2235
static DEFINE_MUTEX(percpu_charge_mutex);
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2247
 */
2248
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2249 2250
{
	struct memcg_stock_pcp *stock;
2251
	bool ret = false;
2252

2253
	if (nr_pages > CHARGE_BATCH)
2254
		return ret;
2255

2256
	stock = &get_cpu_var(memcg_stock);
2257
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2258
		stock->nr_pages -= nr_pages;
2259 2260
		ret = true;
	}
2261 2262 2263 2264 2265
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2266
 * Returns stocks cached in percpu and reset cached information.
2267 2268 2269 2270 2271
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2272
	if (stock->nr_pages) {
2273
		page_counter_uncharge(&old->memory, stock->nr_pages);
2274
		if (do_swap_account)
2275
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2276
		css_put_many(&old->css, stock->nr_pages);
2277
		stock->nr_pages = 0;
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2288
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2289
	drain_stock(stock);
2290
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2291 2292
}

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2304
/*
2305
 * Cache charges(val) to local per_cpu area.
2306
 * This will be consumed by consume_stock() function, later.
2307
 */
2308
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2309 2310 2311
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2312
	if (stock->cached != memcg) { /* reset if necessary */
2313
		drain_stock(stock);
2314
		stock->cached = memcg;
2315
	}
2316
	stock->nr_pages += nr_pages;
2317 2318 2319 2320
	put_cpu_var(memcg_stock);
}

/*
2321
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2322 2323
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2324
 */
2325
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2326
{
2327
	int cpu, curcpu;
2328

2329 2330
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2331
	curcpu = get_cpu();
2332 2333
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2334
		struct mem_cgroup *memcg;
2335

2336 2337
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2338
			continue;
2339
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2340
			continue;
2341 2342 2343 2344 2345 2346
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2347
	}
2348
	put_cpu();
2349 2350 2351 2352 2353 2354

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2355
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2356 2357 2358
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2359
	put_online_cpus();
2360 2361 2362 2363 2364
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
2365
 * expects some charges will be back later but cannot wait for it.
2366
 */
2367
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2368
{
2369 2370 2371 2372 2373
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2374
	drain_all_stock(root_memcg, false);
2375
	mutex_unlock(&percpu_charge_mutex);
2376 2377 2378
}

/* This is a synchronous drain interface. */
2379
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2380 2381
{
	/* called when force_empty is called */
2382
	mutex_lock(&percpu_charge_mutex);
2383
	drain_all_stock(root_memcg, true);
2384
	mutex_unlock(&percpu_charge_mutex);
2385 2386
}

2387 2388 2389 2390
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2391
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2392 2393 2394
{
	int i;

2395
	spin_lock(&memcg->pcp_counter_lock);
2396
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2397
		long x = per_cpu(memcg->stat->count[i], cpu);
2398

2399 2400
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2401
	}
2402
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2403
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2404

2405 2406
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2407
	}
2408
	spin_unlock(&memcg->pcp_counter_lock);
2409 2410
}

2411
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2412 2413 2414 2415 2416
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2417
	struct mem_cgroup *iter;
2418

2419
	if (action == CPU_ONLINE)
2420 2421
		return NOTIFY_OK;

2422
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2423
		return NOTIFY_OK;
2424

2425
	for_each_mem_cgroup(iter)
2426 2427
		mem_cgroup_drain_pcp_counter(iter, cpu);

2428 2429 2430 2431 2432
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2433 2434
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2435
{
2436
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2437
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2438
	struct mem_cgroup *mem_over_limit;
2439
	struct page_counter *counter;
2440
	unsigned long nr_reclaimed;
2441 2442
	bool may_swap = true;
	bool drained = false;
2443
	int ret = 0;
2444

2445 2446
	if (mem_cgroup_is_root(memcg))
		goto done;
2447
retry:
2448 2449
	if (consume_stock(memcg, nr_pages))
		goto done;
2450

2451
	if (!do_swap_account ||
2452 2453
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2454
			goto done_restock;
2455
		if (do_swap_account)
2456 2457
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2458
	} else {
2459
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2460
		may_swap = false;
2461
	}
2462

2463 2464 2465 2466
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2467

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2482 2483
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2484

2485 2486
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2487

2488
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2489
		goto retry;
2490

2491 2492 2493 2494 2495 2496
	if (!drained) {
		drain_all_stock_async(mem_over_limit);
		drained = true;
		goto retry;
	}

2497 2498
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2499 2500 2501 2502 2503 2504 2505 2506 2507
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2508
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2509 2510 2511 2512 2513 2514 2515 2516
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2517 2518 2519
	if (nr_retries--)
		goto retry;

2520 2521 2522
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2523 2524 2525
	if (fatal_signal_pending(current))
		goto bypass;

2526
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2527
nomem:
2528
	if (!(gfp_mask & __GFP_NOFAIL))
2529
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2530
bypass:
2531
	return -EINTR;
2532 2533

done_restock:
2534
	css_get_many(&memcg->css, batch);
2535 2536 2537
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2538
	return ret;
2539
}
2540

2541
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2542
{
2543 2544 2545
	if (mem_cgroup_is_root(memcg))
		return;

2546
	page_counter_uncharge(&memcg->memory, nr_pages);
2547
	if (do_swap_account)
2548
		page_counter_uncharge(&memcg->memsw, nr_pages);
2549 2550

	css_put_many(&memcg->css, nr_pages);
2551 2552
}

2553 2554
/*
 * A helper function to get mem_cgroup from ID. must be called under
2555 2556 2557
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2558 2559 2560 2561 2562 2563
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2564
	return mem_cgroup_from_id(id);
2565 2566
}

2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2577
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2578
{
2579
	struct mem_cgroup *memcg = NULL;
2580
	struct page_cgroup *pc;
2581
	unsigned short id;
2582 2583
	swp_entry_t ent;

2584
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2585 2586

	pc = lookup_page_cgroup(page);
2587
	if (PageCgroupUsed(pc)) {
2588
		memcg = pc->mem_cgroup;
2589
		if (memcg && !css_tryget_online(&memcg->css))
2590
			memcg = NULL;
2591
	} else if (PageSwapCache(page)) {
2592
		ent.val = page_private(page);
2593
		id = lookup_swap_cgroup_id(ent);
2594
		rcu_read_lock();
2595
		memcg = mem_cgroup_lookup(id);
2596
		if (memcg && !css_tryget_online(&memcg->css))
2597
			memcg = NULL;
2598
		rcu_read_unlock();
2599
	}
2600
	return memcg;
2601 2602
}

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2634
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2635
			  bool lrucare)
2636
{
2637
	struct page_cgroup *pc = lookup_page_cgroup(page);
2638
	int isolated;
2639

2640
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2641 2642 2643 2644
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2645 2646 2647 2648 2649

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2650 2651
	if (lrucare)
		lock_page_lru(page, &isolated);
2652

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	/*
	 * Nobody should be changing or seriously looking at
	 * pc->mem_cgroup and pc->flags at this point:
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2667
	pc->mem_cgroup = memcg;
2668
	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2669

2670 2671
	if (lrucare)
		unlock_page_lru(page, isolated);
2672
}
2673

2674
#ifdef CONFIG_MEMCG_KMEM
2675 2676 2677 2678 2679 2680
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2681 2682
static DEFINE_MUTEX(activate_kmem_mutex);

G
Glauber Costa 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2693
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2694 2695
}

2696
#ifdef CONFIG_SLABINFO
2697
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2698
{
2699
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2700 2701
	struct memcg_cache_params *params;

2702
	if (!memcg_kmem_is_active(memcg))
2703 2704 2705 2706
		return -EIO;

	print_slabinfo_header(m);

2707
	mutex_lock(&memcg_slab_mutex);
2708 2709
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2710
	mutex_unlock(&memcg_slab_mutex);
2711 2712 2713 2714 2715

	return 0;
}
#endif

2716 2717
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2718
{
2719
	struct page_counter *counter;
2720 2721
	int ret = 0;

2722 2723
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2724 2725
		return ret;

2726
	ret = try_charge(memcg, gfp, nr_pages);
2727 2728
	if (ret == -EINTR)  {
		/*
2729 2730 2731 2732 2733 2734
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2735 2736 2737
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2738 2739 2740
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2741 2742
		 * directed to the root cgroup in memcontrol.h
		 */
2743
		page_counter_charge(&memcg->memory, nr_pages);
2744
		if (do_swap_account)
2745
			page_counter_charge(&memcg->memsw, nr_pages);
2746
		css_get_many(&memcg->css, nr_pages);
2747 2748
		ret = 0;
	} else if (ret)
2749
		page_counter_uncharge(&memcg->kmem, nr_pages);
2750 2751 2752 2753

	return ret;
}

2754 2755
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2756
{
2757
	page_counter_uncharge(&memcg->memory, nr_pages);
2758
	if (do_swap_account)
2759
		page_counter_uncharge(&memcg->memsw, nr_pages);
2760 2761

	/* Not down to 0 */
2762 2763
	if (page_counter_uncharge(&memcg->kmem, nr_pages)) {
		css_put_many(&memcg->css, nr_pages);
2764
		return;
2765
	}
2766

2767 2768 2769 2770 2771 2772 2773 2774
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2775
	if (memcg_kmem_test_and_clear_dead(memcg))
2776
		css_put(&memcg->css);
2777 2778

	css_put_many(&memcg->css, nr_pages);
2779 2780
}

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2791
static int memcg_alloc_cache_id(void)
2792
{
2793 2794 2795 2796 2797 2798 2799
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2800

2801 2802 2803 2804 2805 2806 2807 2808 2809
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2810 2811 2812 2813 2814
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2829 2830 2831 2832 2833 2834 2835 2836 2837
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2838
	memcg_limited_groups_array_size = num;
2839 2840
}

2841 2842
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2843
{
2844 2845
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2846
	struct kmem_cache *cachep;
2847 2848
	int id;

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2859 2860
		return;

2861
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2862
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2863
	/*
2864 2865 2866
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2867
	 */
2868 2869
	if (!cachep)
		return;
2870

2871
	css_get(&memcg->css);
2872
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2873

2874
	/*
2875 2876 2877
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2878
	 */
2879 2880
	smp_wmb();

2881 2882
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2883
}
2884

2885
static void memcg_unregister_cache(struct kmem_cache *cachep)
2886
{
2887
	struct kmem_cache *root_cache;
2888 2889 2890
	struct mem_cgroup *memcg;
	int id;

2891
	lockdep_assert_held(&memcg_slab_mutex);
2892

2893
	BUG_ON(is_root_cache(cachep));
2894

2895 2896
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2897
	id = memcg_cache_id(memcg);
2898

2899 2900
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2901

2902 2903 2904
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2905 2906 2907

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
2908 2909
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

2941
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2942 2943
{
	struct kmem_cache *c;
2944
	int i, failed = 0;
2945

2946
	mutex_lock(&memcg_slab_mutex);
2947 2948
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2949 2950 2951
		if (!c)
			continue;

2952
		memcg_unregister_cache(c);
2953 2954 2955

		if (cache_from_memcg_idx(s, i))
			failed++;
2956
	}
2957
	mutex_unlock(&memcg_slab_mutex);
2958
	return failed;
2959 2960
}

2961
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2962 2963
{
	struct kmem_cache *cachep;
2964
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2965 2966 2967 2968

	if (!memcg_kmem_is_active(memcg))
		return;

2969 2970
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2971
		cachep = memcg_params_to_cache(params);
2972 2973
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2974
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2975
	}
2976
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2977 2978
}

2979
struct memcg_register_cache_work {
2980 2981 2982 2983 2984
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2985
static void memcg_register_cache_func(struct work_struct *w)
2986
{
2987 2988
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2989 2990
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2991

2992
	mutex_lock(&memcg_slab_mutex);
2993
	memcg_register_cache(memcg, cachep);
2994 2995
	mutex_unlock(&memcg_slab_mutex);

2996
	css_put(&memcg->css);
2997 2998 2999 3000 3001 3002
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3003 3004
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3005
{
3006
	struct memcg_register_cache_work *cw;
3007

3008
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3009 3010
	if (cw == NULL) {
		css_put(&memcg->css);
3011 3012 3013 3014 3015 3016
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3017
	INIT_WORK(&cw->work, memcg_register_cache_func);
3018 3019 3020
	schedule_work(&cw->work);
}

3021 3022
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3023 3024 3025 3026
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3027
	 * in __memcg_schedule_register_cache will recurse.
3028 3029 3030 3031 3032 3033 3034 3035
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3036
	__memcg_schedule_register_cache(memcg, cachep);
3037 3038
	memcg_resume_kmem_account();
}
3039 3040 3041

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
3042
	unsigned int nr_pages = 1 << order;
3043 3044
	int res;

3045
	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
3046
	if (!res)
3047
		atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
3048 3049 3050 3051 3052
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
3053 3054 3055 3056
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
	atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
3057 3058
}

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3076
	struct kmem_cache *memcg_cachep;
3077 3078 3079 3080

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3081 3082 3083
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3084 3085 3086
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

3087
	if (!memcg_kmem_is_active(memcg))
3088
		goto out;
3089

3090 3091 3092
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3093
		goto out;
3094 3095
	}

3096
	/* The corresponding put will be done in the workqueue. */
3097
	if (!css_tryget_online(&memcg->css))
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3109 3110 3111
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3112
	 */
3113
	memcg_schedule_register_cache(memcg, cachep);
3114 3115 3116 3117
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3118 3119
}

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3141 3142 3143 3144

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3145 3146 3147 3148 3149 3150
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3151 3152 3153 3154 3155 3156
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3157 3158 3159
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3170
	memcg = get_mem_cgroup_from_mm(current->mm);
3171

3172
	if (!memcg_kmem_is_active(memcg)) {
3173 3174 3175 3176
		css_put(&memcg->css);
		return true;
	}

3177
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
3194
		memcg_uncharge_kmem(memcg, 1 << order);
3195 3196
		return;
	}
3197 3198 3199 3200
	/*
	 * The page is freshly allocated and not visible to any
	 * outside callers yet.  Set up pc non-atomically.
	 */
3201 3202
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
3203
	pc->flags = PCG_USED;
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

3216 3217
	memcg = pc->mem_cgroup;
	pc->flags = 0;
3218 3219 3220 3221 3222 3223 3224 3225

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3226
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3227
	memcg_uncharge_kmem(memcg, 1 << order);
3228
}
G
Glauber Costa 已提交
3229
#else
3230
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3231 3232
{
}
3233 3234
#endif /* CONFIG_MEMCG_KMEM */

3235 3236 3237 3238
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3239 3240 3241
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3242
 */
3243
void mem_cgroup_split_huge_fixup(struct page *head)
3244 3245
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3246
	struct page_cgroup *pc;
3247
	struct mem_cgroup *memcg;
3248
	int i;
3249

3250 3251
	if (mem_cgroup_disabled())
		return;
3252 3253

	memcg = head_pc->mem_cgroup;
3254 3255
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3256
		pc->mem_cgroup = memcg;
3257
		pc->flags = head_pc->flags;
3258
	}
3259 3260
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3261
}
3262
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3263

3264
/**
3265
 * mem_cgroup_move_account - move account of the page
3266
 * @page: the page
3267
 * @nr_pages: number of regular pages (>1 for huge pages)
3268 3269 3270 3271 3272
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3273
 * - page is not on LRU (isolate_page() is useful.)
3274
 * - compound_lock is held when nr_pages > 1
3275
 *
3276 3277
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3278
 */
3279 3280 3281 3282
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3283
				   struct mem_cgroup *to)
3284
{
3285 3286
	unsigned long flags;
	int ret;
3287

3288
	VM_BUG_ON(from == to);
3289
	VM_BUG_ON_PAGE(PageLRU(page), page);
3290 3291 3292 3293 3294 3295 3296
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3297
	if (nr_pages > 1 && !PageTransHuge(page))
3298 3299
		goto out;

3300 3301 3302 3303 3304 3305 3306
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3307 3308 3309

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3310
		goto out_unlock;
3311

3312
	move_lock_mem_cgroup(from, &flags);
3313

3314
	if (!PageAnon(page) && page_mapped(page)) {
3315 3316 3317 3318 3319
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3320

3321 3322 3323 3324 3325 3326
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3327

3328 3329 3330 3331 3332
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3333

3334
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3335
	pc->mem_cgroup = to;
3336
	move_unlock_mem_cgroup(from, &flags);
3337
	ret = 0;
3338 3339 3340

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3341
	memcg_check_events(to, page);
3342
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3343
	memcg_check_events(from, page);
3344 3345 3346
	local_irq_enable();
out_unlock:
	unlock_page(page);
3347
out:
3348 3349 3350
	return ret;
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3371
 */
3372 3373
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3374
				  struct mem_cgroup *child)
3375 3376
{
	struct mem_cgroup *parent;
3377
	unsigned int nr_pages;
3378
	unsigned long uninitialized_var(flags);
3379 3380
	int ret;

3381
	VM_BUG_ON(mem_cgroup_is_root(child));
3382

3383 3384 3385 3386 3387
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3388

3389
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3390

3391 3392 3393 3394 3395 3396
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3397

3398
	if (nr_pages > 1) {
3399
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3400
		flags = compound_lock_irqsave(page);
3401
	}
3402

3403
	ret = mem_cgroup_move_account(page, nr_pages,
3404
				pc, child, parent);
3405
	if (!ret) {
3406 3407
		if (!mem_cgroup_is_root(parent))
			css_get_many(&parent->css, nr_pages);
3408 3409 3410 3411
		/* Take charge off the local counters */
		page_counter_cancel(&child->memory, nr_pages);
		if (do_swap_account)
			page_counter_cancel(&child->memsw, nr_pages);
3412
		css_put_many(&child->css, nr_pages);
3413
	}
3414

3415
	if (nr_pages > 1)
3416
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3417
	putback_lru_page(page);
3418
put:
3419
	put_page(page);
3420
out:
3421 3422 3423
	return ret;
}

A
Andrew Morton 已提交
3424
#ifdef CONFIG_MEMCG_SWAP
3425 3426
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3427
{
3428 3429
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3430
}
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3443
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3444 3445 3446
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3447
				struct mem_cgroup *from, struct mem_cgroup *to)
3448 3449 3450
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3451 3452
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3453 3454 3455

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3456
		mem_cgroup_swap_statistics(to, true);
3457
		/*
3458
		 * This function is only called from task migration context now.
3459
		 * It postpones page_counter and refcount handling till the end
3460
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3461 3462 3463 3464 3465 3466
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3467
		 */
L
Li Zefan 已提交
3468
		css_get(&to->css);
3469 3470 3471 3472 3473 3474
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3475
				struct mem_cgroup *from, struct mem_cgroup *to)
3476 3477 3478
{
	return -EINVAL;
}
3479
#endif
K
KAMEZAWA Hiroyuki 已提交
3480

3481 3482 3483 3484 3485 3486
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3487 3488 3489 3490 3491
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3511 3512
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
3513 3514 3515 3516
	}
}
#endif

3517 3518
static DEFINE_MUTEX(memcg_limit_mutex);

3519
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3520
				   unsigned long limit)
3521
{
3522 3523 3524
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3525
	int retry_count;
3526
	int ret;
3527 3528 3529 3530 3531 3532

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3533 3534
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3535

3536
	oldusage = page_counter_read(&memcg->memory);
3537

3538
	do {
3539 3540 3541 3542
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3543 3544 3545 3546

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3547
			ret = -EINVAL;
3548 3549
			break;
		}
3550 3551 3552 3553
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3554 3555 3556 3557

		if (!ret)
			break;

3558 3559
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3560
		curusage = page_counter_read(&memcg->memory);
3561
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3562
		if (curusage >= oldusage)
3563 3564 3565
			retry_count--;
		else
			oldusage = curusage;
3566 3567
	} while (retry_count);

3568 3569
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3570

3571 3572 3573
	return ret;
}

L
Li Zefan 已提交
3574
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3575
					 unsigned long limit)
3576
{
3577 3578 3579
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3580
	int retry_count;
3581
	int ret;
3582

3583
	/* see mem_cgroup_resize_res_limit */
3584 3585 3586 3587 3588 3589
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3590 3591 3592 3593
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3594 3595 3596 3597

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3598 3599 3600
			ret = -EINVAL;
			break;
		}
3601 3602 3603 3604
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3605 3606 3607 3608

		if (!ret)
			break;

3609 3610
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3611
		curusage = page_counter_read(&memcg->memsw);
3612
		/* Usage is reduced ? */
3613
		if (curusage >= oldusage)
3614
			retry_count--;
3615 3616
		else
			oldusage = curusage;
3617 3618
	} while (retry_count);

3619 3620
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3621

3622 3623 3624
	return ret;
}

3625 3626 3627 3628 3629 3630 3631 3632 3633
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3634
	unsigned long excess;
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3659
		spin_lock_irq(&mctz->lock);
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
3687
		__mem_cgroup_remove_exceeded(mz, mctz);
3688
		excess = soft_limit_excess(mz->memcg);
3689 3690 3691 3692 3693 3694 3695 3696 3697
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3698
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3699
		spin_unlock_irq(&mctz->lock);
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3717 3718 3719 3720 3721 3722 3723
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3724
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3725 3726
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3727
 */
3728
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3729
				int node, int zid, enum lru_list lru)
3730
{
3731
	struct lruvec *lruvec;
3732
	unsigned long flags;
3733
	struct list_head *list;
3734 3735
	struct page *busy;
	struct zone *zone;
3736

K
KAMEZAWA Hiroyuki 已提交
3737
	zone = &NODE_DATA(node)->node_zones[zid];
3738 3739
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3740

3741
	busy = NULL;
3742
	do {
3743
		struct page_cgroup *pc;
3744 3745
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3746
		spin_lock_irqsave(&zone->lru_lock, flags);
3747
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3748
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3749
			break;
3750
		}
3751 3752 3753
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3754
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3755
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3756 3757
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3758
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3759

3760
		pc = lookup_page_cgroup(page);
3761

3762
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3763
			/* found lock contention or "pc" is obsolete. */
3764
			busy = page;
3765 3766
		} else
			busy = NULL;
3767
		cond_resched();
3768
	} while (!list_empty(list));
3769 3770 3771
}

/*
3772 3773
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3774
 * This enables deleting this mem_cgroup.
3775 3776
 *
 * Caller is responsible for holding css reference on the memcg.
3777
 */
3778
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3779
{
3780
	int node, zid;
3781

3782
	do {
3783 3784
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3785 3786
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3787
		for_each_node_state(node, N_MEMORY) {
3788
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3789 3790
				enum lru_list lru;
				for_each_lru(lru) {
3791
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3792
							node, zid, lru);
3793
				}
3794
			}
3795
		}
3796 3797
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3798
		cond_resched();
3799

3800
		/*
3801 3802 3803 3804 3805
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
3806 3807 3808 3809 3810 3811
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
3812 3813
	} while (page_counter_read(&memcg->memory) -
		 page_counter_read(&memcg->kmem) > 0);
3814 3815
}

3816 3817 3818 3819 3820 3821
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3822 3823
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3824 3825
	bool ret;

3826
	/*
3827 3828 3829 3830
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3831
	 */
3832 3833 3834 3835 3836 3837
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3838 3839
}

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3850 3851
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3852
	/* try to free all pages in this cgroup */
3853
	while (nr_retries && page_counter_read(&memcg->memory)) {
3854
		int progress;
3855

3856 3857 3858
		if (signal_pending(current))
			return -EINTR;

3859 3860
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3861
		if (!progress) {
3862
			nr_retries--;
3863
			/* maybe some writeback is necessary */
3864
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3865
		}
3866 3867

	}
3868 3869

	return 0;
3870 3871
}

3872 3873 3874
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3875
{
3876
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3877

3878 3879
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3880
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3881 3882
}

3883 3884
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3885
{
3886
	return mem_cgroup_from_css(css)->use_hierarchy;
3887 3888
}

3889 3890
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3891 3892
{
	int retval = 0;
3893
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3894
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3895

3896
	mutex_lock(&memcg_create_mutex);
3897 3898 3899 3900

	if (memcg->use_hierarchy == val)
		goto out;

3901
	/*
3902
	 * If parent's use_hierarchy is set, we can't make any modifications
3903 3904 3905 3906 3907 3908
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3909
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3910
				(val == 1 || val == 0)) {
3911
		if (!memcg_has_children(memcg))
3912
			memcg->use_hierarchy = val;
3913 3914 3915 3916
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3917 3918

out:
3919
	mutex_unlock(&memcg_create_mutex);
3920 3921 3922 3923

	return retval;
}

3924 3925
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3943 3944 3945 3946 3947 3948
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3949
		if (!swap)
3950
			val = page_counter_read(&memcg->memory);
3951
		else
3952
			val = page_counter_read(&memcg->memsw);
3953 3954 3955 3956
	}
	return val << PAGE_SHIFT;
}

3957 3958 3959 3960 3961 3962 3963
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3964

3965
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3966
			       struct cftype *cft)
B
Balbir Singh 已提交
3967
{
3968
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3969
	struct page_counter *counter;
3970

3971
	switch (MEMFILE_TYPE(cft->private)) {
3972
	case _MEM:
3973 3974
		counter = &memcg->memory;
		break;
3975
	case _MEMSWAP:
3976 3977
		counter = &memcg->memsw;
		break;
3978
	case _KMEM:
3979
		counter = &memcg->kmem;
3980
		break;
3981 3982 3983
	default:
		BUG();
	}
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
4003
}
4004 4005

#ifdef CONFIG_MEMCG_KMEM
4006 4007
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4008
				 unsigned long nr_pages)
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4034
	mutex_lock(&memcg_create_mutex);
4035 4036
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4037 4038 4039 4040
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4041

4042
	memcg_id = memcg_alloc_cache_id();
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
4055
	err = page_counter_limit(&memcg->kmem, nr_pages);
4056 4057 4058 4059 4060 4061 4062 4063 4064
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4065
out:
4066 4067 4068 4069 4070
	memcg_resume_kmem_account();
	return err;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
4071
			       unsigned long nr_pages)
4072 4073 4074 4075
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
4076
	ret = __memcg_activate_kmem(memcg, nr_pages);
4077 4078 4079 4080 4081
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4082
				   unsigned long limit)
4083 4084 4085
{
	int ret;

4086
	mutex_lock(&memcg_limit_mutex);
4087
	if (!memcg_kmem_is_active(memcg))
4088
		ret = memcg_activate_kmem(memcg, limit);
4089
	else
4090 4091
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
4092 4093 4094
	return ret;
}

4095
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4096
{
4097
	int ret = 0;
4098
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4099

4100 4101
	if (!parent)
		return 0;
4102

4103
	mutex_lock(&activate_kmem_mutex);
4104
	/*
4105 4106
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
4107
	 */
4108
	if (memcg_kmem_is_active(parent))
4109
		ret = __memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
4110
	mutex_unlock(&activate_kmem_mutex);
4111
	return ret;
4112
}
4113 4114
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4115
				   unsigned long limit)
4116 4117 4118
{
	return -EINVAL;
}
4119
#endif /* CONFIG_MEMCG_KMEM */
4120

4121 4122 4123 4124
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4125 4126
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
4127
{
4128
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4129
	unsigned long nr_pages;
4130 4131
	int ret;

4132
	buf = strstrip(buf);
4133 4134 4135
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
4136

4137
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4138
	case RES_LIMIT:
4139 4140 4141 4142
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4143 4144 4145
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
4146
			break;
4147 4148
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
4149
			break;
4150 4151 4152 4153
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
4154
		break;
4155 4156 4157
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
4158 4159
		break;
	}
4160
	return ret ?: nbytes;
B
Balbir Singh 已提交
4161 4162
}

4163 4164
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
4165
{
4166
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4167
	struct page_counter *counter;
4168

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
4182

4183
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
4184
	case RES_MAX_USAGE:
4185
		page_counter_reset_watermark(counter);
4186 4187
		break;
	case RES_FAILCNT:
4188
		counter->failcnt = 0;
4189
		break;
4190 4191
	default:
		BUG();
4192
	}
4193

4194
	return nbytes;
4195 4196
}

4197
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4198 4199
					struct cftype *cft)
{
4200
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4201 4202
}

4203
#ifdef CONFIG_MMU
4204
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4205 4206
					struct cftype *cft, u64 val)
{
4207
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4208 4209 4210

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
4211

4212
	/*
4213 4214 4215 4216
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
4217
	 */
4218
	memcg->move_charge_at_immigrate = val;
4219 4220
	return 0;
}
4221
#else
4222
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4223 4224 4225 4226 4227
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4228

4229
#ifdef CONFIG_NUMA
4230
static int memcg_numa_stat_show(struct seq_file *m, void *v)
4231
{
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4244
	int nid;
4245
	unsigned long nr;
4246
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4247

4248 4249 4250 4251 4252 4253 4254 4255 4256
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4257 4258
	}

4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4274 4275 4276 4277 4278 4279
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4280 4281 4282 4283 4284
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4285
static int memcg_stat_show(struct seq_file *m, void *v)
4286
{
4287
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4288
	unsigned long memory, memsw;
4289 4290
	struct mem_cgroup *mi;
	unsigned int i;
4291

4292
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4293
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4294
			continue;
4295 4296
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4297
	}
L
Lee Schermerhorn 已提交
4298

4299 4300 4301 4302 4303 4304 4305 4306
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4307
	/* Hierarchical information */
4308 4309 4310 4311
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
4312
	}
4313 4314 4315 4316 4317
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4318

4319 4320 4321
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4322
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4323
			continue;
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4344
	}
K
KAMEZAWA Hiroyuki 已提交
4345

K
KOSAKI Motohiro 已提交
4346 4347 4348 4349
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4350
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4351 4352 4353 4354 4355
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4356
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4357
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4358

4359 4360 4361 4362
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4363
			}
4364 4365 4366 4367
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4368 4369 4370
	}
#endif

4371 4372 4373
	return 0;
}

4374 4375
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4376
{
4377
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4378

4379
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4380 4381
}

4382 4383
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4384
{
4385
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4386

4387
	if (val > 100)
K
KOSAKI Motohiro 已提交
4388 4389
		return -EINVAL;

4390
	if (css->parent)
4391 4392 4393
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4394

K
KOSAKI Motohiro 已提交
4395 4396 4397
	return 0;
}

4398 4399 4400
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4401
	unsigned long usage;
4402 4403 4404 4405
	int i;

	rcu_read_lock();
	if (!swap)
4406
		t = rcu_dereference(memcg->thresholds.primary);
4407
	else
4408
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4409 4410 4411 4412

	if (!t)
		goto unlock;

4413
	usage = mem_cgroup_usage(memcg, swap);
4414 4415

	/*
4416
	 * current_threshold points to threshold just below or equal to usage.
4417 4418 4419
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4420
	i = t->current_threshold;
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4444
	t->current_threshold = i - 1;
4445 4446 4447 4448 4449 4450
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4451 4452 4453 4454 4455 4456 4457
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4458 4459 4460 4461 4462 4463 4464
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4465 4466 4467 4468 4469 4470 4471
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4472 4473
}

4474
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4475 4476 4477
{
	struct mem_cgroup_eventfd_list *ev;

4478 4479
	spin_lock(&memcg_oom_lock);

4480
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4481
		eventfd_signal(ev->eventfd, 1);
4482 4483

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4484 4485 4486
	return 0;
}

4487
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4488
{
K
KAMEZAWA Hiroyuki 已提交
4489 4490
	struct mem_cgroup *iter;

4491
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4492
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4493 4494
}

4495
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4496
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4497
{
4498 4499
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4500 4501
	unsigned long threshold;
	unsigned long usage;
4502
	int i, size, ret;
4503

4504
	ret = page_counter_memparse(args, &threshold);
4505 4506 4507 4508
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4509

4510
	if (type == _MEM) {
4511
		thresholds = &memcg->thresholds;
4512
		usage = mem_cgroup_usage(memcg, false);
4513
	} else if (type == _MEMSWAP) {
4514
		thresholds = &memcg->memsw_thresholds;
4515
		usage = mem_cgroup_usage(memcg, true);
4516
	} else
4517 4518 4519
		BUG();

	/* Check if a threshold crossed before adding a new one */
4520
	if (thresholds->primary)
4521 4522
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4523
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4524 4525

	/* Allocate memory for new array of thresholds */
4526
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4527
			GFP_KERNEL);
4528
	if (!new) {
4529 4530 4531
		ret = -ENOMEM;
		goto unlock;
	}
4532
	new->size = size;
4533 4534

	/* Copy thresholds (if any) to new array */
4535 4536
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4537
				sizeof(struct mem_cgroup_threshold));
4538 4539
	}

4540
	/* Add new threshold */
4541 4542
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4543 4544

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4545
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4546 4547 4548
			compare_thresholds, NULL);

	/* Find current threshold */
4549
	new->current_threshold = -1;
4550
	for (i = 0; i < size; i++) {
4551
		if (new->entries[i].threshold <= usage) {
4552
			/*
4553 4554
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4555 4556
			 * it here.
			 */
4557
			++new->current_threshold;
4558 4559
		} else
			break;
4560 4561
	}

4562 4563 4564 4565 4566
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4567

4568
	/* To be sure that nobody uses thresholds */
4569 4570 4571 4572 4573 4574 4575 4576
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4577
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4578 4579
	struct eventfd_ctx *eventfd, const char *args)
{
4580
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4581 4582
}

4583
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4584 4585
	struct eventfd_ctx *eventfd, const char *args)
{
4586
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4587 4588
}

4589
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4590
	struct eventfd_ctx *eventfd, enum res_type type)
4591
{
4592 4593
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4594
	unsigned long usage;
4595
	int i, j, size;
4596 4597

	mutex_lock(&memcg->thresholds_lock);
4598 4599

	if (type == _MEM) {
4600
		thresholds = &memcg->thresholds;
4601
		usage = mem_cgroup_usage(memcg, false);
4602
	} else if (type == _MEMSWAP) {
4603
		thresholds = &memcg->memsw_thresholds;
4604
		usage = mem_cgroup_usage(memcg, true);
4605
	} else
4606 4607
		BUG();

4608 4609 4610
	if (!thresholds->primary)
		goto unlock;

4611 4612 4613 4614
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4615 4616 4617
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4618 4619 4620
			size++;
	}

4621
	new = thresholds->spare;
4622

4623 4624
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4625 4626
		kfree(new);
		new = NULL;
4627
		goto swap_buffers;
4628 4629
	}

4630
	new->size = size;
4631 4632

	/* Copy thresholds and find current threshold */
4633 4634 4635
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4636 4637
			continue;

4638
		new->entries[j] = thresholds->primary->entries[i];
4639
		if (new->entries[j].threshold <= usage) {
4640
			/*
4641
			 * new->current_threshold will not be used
4642 4643 4644
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4645
			++new->current_threshold;
4646 4647 4648 4649
		}
		j++;
	}

4650
swap_buffers:
4651 4652
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4653 4654 4655 4656 4657 4658
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4659
	rcu_assign_pointer(thresholds->primary, new);
4660

4661
	/* To be sure that nobody uses thresholds */
4662
	synchronize_rcu();
4663
unlock:
4664 4665
	mutex_unlock(&memcg->thresholds_lock);
}
4666

4667
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4668 4669
	struct eventfd_ctx *eventfd)
{
4670
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4671 4672
}

4673
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4674 4675
	struct eventfd_ctx *eventfd)
{
4676
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4677 4678
}

4679
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4680
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4681 4682 4683 4684 4685 4686 4687
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4688
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4689 4690 4691 4692 4693

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4694
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4695
		eventfd_signal(eventfd, 1);
4696
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4697 4698 4699 4700

	return 0;
}

4701
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4702
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4703 4704 4705
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4706
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4707

4708
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4709 4710 4711 4712 4713 4714
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4715
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4716 4717
}

4718
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4719
{
4720
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4721

4722 4723
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4724 4725 4726
	return 0;
}

4727
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4728 4729
	struct cftype *cft, u64 val)
{
4730
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4731 4732

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4733
	if (!css->parent || !((val == 0) || (val == 1)))
4734 4735
		return -EINVAL;

4736
	memcg->oom_kill_disable = val;
4737
	if (!val)
4738
		memcg_oom_recover(memcg);
4739

4740 4741 4742
	return 0;
}

A
Andrew Morton 已提交
4743
#ifdef CONFIG_MEMCG_KMEM
4744
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4745
{
4746 4747
	int ret;

4748
	memcg->kmemcg_id = -1;
4749 4750 4751
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4752

4753
	return mem_cgroup_sockets_init(memcg, ss);
4754
}
4755

4756
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4757
{
4758
	mem_cgroup_sockets_destroy(memcg);
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
4779 4780 4781 4782
	 * css_offline() when the referencemight have dropped down to 0 and
	 * shouldn't be incremented anymore (css_tryget_online() would
	 * fail) we do not have other options because of the kmem
	 * allocations lifetime.
4783 4784
	 */
	css_get(&memcg->css);
4785 4786 4787

	memcg_kmem_mark_dead(memcg);

4788
	if (page_counter_read(&memcg->kmem))
4789 4790 4791
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
4792
		css_put(&memcg->css);
G
Glauber Costa 已提交
4793
}
4794
#else
4795
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4796 4797 4798
{
	return 0;
}
G
Glauber Costa 已提交
4799

4800 4801 4802 4803 4804
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4805 4806
{
}
4807 4808
#endif

4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4822 4823 4824 4825 4826
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4827
static void memcg_event_remove(struct work_struct *work)
4828
{
4829 4830
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4831
	struct mem_cgroup *memcg = event->memcg;
4832 4833 4834

	remove_wait_queue(event->wqh, &event->wait);

4835
	event->unregister_event(memcg, event->eventfd);
4836 4837 4838 4839 4840 4841

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4842
	css_put(&memcg->css);
4843 4844 4845 4846 4847 4848 4849
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4850 4851
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4852
{
4853 4854
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4855
	struct mem_cgroup *memcg = event->memcg;
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4868
		spin_lock(&memcg->event_list_lock);
4869 4870 4871 4872 4873 4874 4875 4876
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4877
		spin_unlock(&memcg->event_list_lock);
4878 4879 4880 4881 4882
	}

	return 0;
}

4883
static void memcg_event_ptable_queue_proc(struct file *file,
4884 4885
		wait_queue_head_t *wqh, poll_table *pt)
{
4886 4887
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4888 4889 4890 4891 4892 4893

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4894 4895
 * DO NOT USE IN NEW FILES.
 *
4896 4897 4898 4899 4900
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4901 4902
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4903
{
4904
	struct cgroup_subsys_state *css = of_css(of);
4905
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4906
	struct mem_cgroup_event *event;
4907 4908 4909 4910
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4911
	const char *name;
4912 4913 4914
	char *endp;
	int ret;

4915 4916 4917
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4918 4919
	if (*endp != ' ')
		return -EINVAL;
4920
	buf = endp + 1;
4921

4922
	cfd = simple_strtoul(buf, &endp, 10);
4923 4924
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4925
	buf = endp + 1;
4926 4927 4928 4929 4930

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4931
	event->memcg = memcg;
4932
	INIT_LIST_HEAD(&event->list);
4933 4934 4935
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4961 4962 4963 4964 4965
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4966 4967
	 *
	 * DO NOT ADD NEW FILES.
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4981 4982
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4983 4984 4985 4986 4987
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4988
	/*
4989 4990 4991
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4992
	 */
4993 4994
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
4995
	ret = -EINVAL;
4996
	if (IS_ERR(cfile_css))
4997
		goto out_put_cfile;
4998 4999
	if (cfile_css != css) {
		css_put(cfile_css);
5000
		goto out_put_cfile;
5001
	}
5002

5003
	ret = event->register_event(memcg, event->eventfd, buf);
5004 5005 5006 5007 5008
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5009 5010 5011
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5012 5013 5014 5015

	fdput(cfile);
	fdput(efile);

5016
	return nbytes;
5017 5018

out_put_css:
5019
	css_put(css);
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5032 5033
static struct cftype mem_cgroup_files[] = {
	{
5034
		.name = "usage_in_bytes",
5035
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5036
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5037
	},
5038 5039
	{
		.name = "max_usage_in_bytes",
5040
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5041
		.write = mem_cgroup_reset,
5042
		.read_u64 = mem_cgroup_read_u64,
5043
	},
B
Balbir Singh 已提交
5044
	{
5045
		.name = "limit_in_bytes",
5046
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5047
		.write = mem_cgroup_write,
5048
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5049
	},
5050 5051 5052
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5053
		.write = mem_cgroup_write,
5054
		.read_u64 = mem_cgroup_read_u64,
5055
	},
B
Balbir Singh 已提交
5056 5057
	{
		.name = "failcnt",
5058
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5059
		.write = mem_cgroup_reset,
5060
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5061
	},
5062 5063
	{
		.name = "stat",
5064
		.seq_show = memcg_stat_show,
5065
	},
5066 5067
	{
		.name = "force_empty",
5068
		.write = mem_cgroup_force_empty_write,
5069
	},
5070 5071 5072 5073 5074
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5075
	{
5076
		.name = "cgroup.event_control",		/* XXX: for compat */
5077
		.write = memcg_write_event_control,
5078 5079 5080
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
5081 5082 5083 5084 5085
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5086 5087 5088 5089 5090
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5091 5092
	{
		.name = "oom_control",
5093
		.seq_show = mem_cgroup_oom_control_read,
5094
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5095 5096
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5097 5098 5099
	{
		.name = "pressure_level",
	},
5100 5101 5102
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5103
		.seq_show = memcg_numa_stat_show,
5104 5105
	},
#endif
5106 5107 5108 5109
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5110
		.write = mem_cgroup_write,
5111
		.read_u64 = mem_cgroup_read_u64,
5112 5113 5114 5115
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5116
		.read_u64 = mem_cgroup_read_u64,
5117 5118 5119 5120
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5121
		.write = mem_cgroup_reset,
5122
		.read_u64 = mem_cgroup_read_u64,
5123 5124 5125 5126
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5127
		.write = mem_cgroup_reset,
5128
		.read_u64 = mem_cgroup_read_u64,
5129
	},
5130 5131 5132
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
5133
		.seq_show = mem_cgroup_slabinfo_read,
5134 5135
	},
#endif
5136
#endif
5137
	{ },	/* terminate */
5138
};
5139

5140 5141 5142 5143 5144
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5145
		.read_u64 = mem_cgroup_read_u64,
5146 5147 5148 5149
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5150
		.write = mem_cgroup_reset,
5151
		.read_u64 = mem_cgroup_read_u64,
5152 5153 5154 5155
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5156
		.write = mem_cgroup_write,
5157
		.read_u64 = mem_cgroup_read_u64,
5158 5159 5160 5161
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5162
		.write = mem_cgroup_reset,
5163
		.read_u64 = mem_cgroup_read_u64,
5164 5165 5166 5167
	},
	{ },	/* terminate */
};
#endif
5168
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5169 5170
{
	struct mem_cgroup_per_node *pn;
5171
	struct mem_cgroup_per_zone *mz;
5172
	int zone, tmp = node;
5173 5174 5175 5176 5177 5178 5179 5180
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5181 5182
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5183
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5184 5185
	if (!pn)
		return 1;
5186 5187 5188

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5189
		lruvec_init(&mz->lruvec);
5190 5191
		mz->usage_in_excess = 0;
		mz->on_tree = false;
5192
		mz->memcg = memcg;
5193
	}
5194
	memcg->nodeinfo[node] = pn;
5195 5196 5197
	return 0;
}

5198
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5199
{
5200
	kfree(memcg->nodeinfo[node]);
5201 5202
}

5203 5204
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5205
	struct mem_cgroup *memcg;
5206
	size_t size;
5207

5208 5209
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5210

5211
	memcg = kzalloc(size, GFP_KERNEL);
5212
	if (!memcg)
5213 5214
		return NULL;

5215 5216
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5217
		goto out_free;
5218 5219
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5220 5221

out_free:
5222
	kfree(memcg);
5223
	return NULL;
5224 5225
}

5226
/*
5227 5228 5229 5230 5231 5232 5233 5234
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5235
 */
5236 5237

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5238
{
5239
	int node;
5240

5241
	mem_cgroup_remove_from_trees(memcg);
5242 5243 5244 5245 5246 5247

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5259
	disarm_static_keys(memcg);
5260
	kfree(memcg);
5261
}
5262

5263 5264 5265
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5266
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5267
{
5268
	if (!memcg->memory.parent)
5269
		return NULL;
5270
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
5271
}
G
Glauber Costa 已提交
5272
EXPORT_SYMBOL(parent_mem_cgroup);
5273

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
5297
static struct cgroup_subsys_state * __ref
5298
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5299
{
5300
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5301
	long error = -ENOMEM;
5302
	int node;
B
Balbir Singh 已提交
5303

5304 5305
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5306
		return ERR_PTR(error);
5307

B
Bob Liu 已提交
5308
	for_each_node(node)
5309
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5310
			goto free_out;
5311

5312
	/* root ? */
5313
	if (parent_css == NULL) {
5314
		root_mem_cgroup = memcg;
5315 5316 5317
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5318
	}
5319

5320 5321 5322 5323 5324
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5325
	vmpressure_init(&memcg->vmpressure);
5326 5327
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5328 5329 5330 5331 5332 5333 5334 5335 5336

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5337
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5338
{
5339
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5340
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5341
	int ret;
5342

5343
	if (css->id > MEM_CGROUP_ID_MAX)
5344 5345
		return -ENOSPC;

T
Tejun Heo 已提交
5346
	if (!parent)
5347 5348
		return 0;

5349
	mutex_lock(&memcg_create_mutex);
5350 5351 5352 5353 5354 5355

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5356 5357 5358
		page_counter_init(&memcg->memory, &parent->memory);
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5359

5360
		/*
5361 5362
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5363
		 */
5364
	} else {
5365 5366 5367
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5368 5369 5370 5371 5372
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5373
		if (parent != root_mem_cgroup)
5374
			memory_cgrp_subsys.broken_hierarchy = true;
5375
	}
5376
	mutex_unlock(&memcg_create_mutex);
5377

5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
5390 5391
}

5392
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5393
{
5394
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5395
	struct mem_cgroup_event *event, *tmp;
5396
	struct cgroup_subsys_state *iter;
5397 5398 5399 5400 5401 5402

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5403 5404
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5405 5406 5407
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5408
	spin_unlock(&memcg->event_list_lock);
5409

5410 5411
	kmem_cgroup_css_offline(memcg);

5412 5413 5414 5415 5416 5417 5418
	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

5419
	memcg_unregister_all_caches(memcg);
5420
	vmpressure_cleanup(&memcg->vmpressure);
5421 5422
}

5423
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5424
{
5425
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5426 5427 5428
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
5429
	 * memcg does not do css_tryget_online() and page_counter charging
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
5443
	 *                           css_tryget_online()
5444
	 *                           rcu_read_unlock()
5445
	 * disable css_tryget_online()
5446 5447 5448
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
5449
	 *                           page_counter_try_charge()
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
5462

5463
	memcg_destroy_kmem(memcg);
5464
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5465 5466
}

5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5484 5485 5486 5487
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
	memcg->soft_limit = 0;
5488 5489
}

5490
#ifdef CONFIG_MMU
5491
/* Handlers for move charge at task migration. */
5492
static int mem_cgroup_do_precharge(unsigned long count)
5493
{
5494
	int ret;
5495 5496

	/* Try a single bulk charge without reclaim first */
5497
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5498
	if (!ret) {
5499 5500 5501
		mc.precharge += count;
		return ret;
	}
5502
	if (ret == -EINTR) {
5503
		cancel_charge(root_mem_cgroup, count);
5504 5505
		return ret;
	}
5506 5507

	/* Try charges one by one with reclaim */
5508
	while (count--) {
5509
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5510 5511 5512
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5513 5514
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5515
		 */
5516
		if (ret == -EINTR)
5517
			cancel_charge(root_mem_cgroup, 1);
5518 5519
		if (ret)
			return ret;
5520
		mc.precharge++;
5521
		cond_resched();
5522
	}
5523
	return 0;
5524 5525 5526
}

/**
5527
 * get_mctgt_type - get target type of moving charge
5528 5529 5530
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5531
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5532 5533 5534 5535 5536 5537
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5538 5539 5540
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5541 5542 5543 5544 5545
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5546
	swp_entry_t	ent;
5547 5548 5549
};

enum mc_target_type {
5550
	MC_TARGET_NONE = 0,
5551
	MC_TARGET_PAGE,
5552
	MC_TARGET_SWAP,
5553 5554
};

D
Daisuke Nishimura 已提交
5555 5556
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5557
{
D
Daisuke Nishimura 已提交
5558
	struct page *page = vm_normal_page(vma, addr, ptent);
5559

D
Daisuke Nishimura 已提交
5560 5561 5562 5563
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5564
		if (!move_anon())
D
Daisuke Nishimura 已提交
5565
			return NULL;
5566 5567
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5568 5569 5570 5571 5572 5573 5574
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5575
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5576 5577 5578 5579 5580 5581 5582 5583
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5584 5585 5586 5587
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5588
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5589 5590 5591 5592 5593
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5594 5595 5596 5597 5598 5599 5600
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5601

5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5621 5622
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5635
#endif
5636 5637 5638
	return page;
}

5639
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5640 5641 5642 5643
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5644
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5645 5646 5647 5648 5649 5650
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5651 5652
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5653 5654

	if (!page && !ent.val)
5655
		return ret;
5656 5657 5658
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5659 5660 5661
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5662 5663 5664 5665 5666 5667 5668 5669 5670
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5671 5672
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5673
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5674 5675 5676
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5677 5678 5679 5680
	}
	return ret;
}

5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5695
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5716 5717 5718 5719 5720 5721 5722 5723
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5724
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5725 5726
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5727
		spin_unlock(ptl);
5728
		return 0;
5729
	}
5730

5731 5732
	if (pmd_trans_unstable(pmd))
		return 0;
5733 5734
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5735
		if (get_mctgt_type(vma, addr, *pte, NULL))
5736 5737 5738 5739
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5740 5741 5742
	return 0;
}

5743 5744 5745 5746 5747
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5748
	down_read(&mm->mmap_sem);
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5760
	up_read(&mm->mmap_sem);
5761 5762 5763 5764 5765 5766 5767 5768 5769

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5770 5771 5772 5773 5774
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5775 5776
}

5777 5778
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5779
{
5780 5781 5782
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5783
	/* we must uncharge all the leftover precharges from mc.to */
5784
	if (mc.precharge) {
5785
		cancel_charge(mc.to, mc.precharge);
5786 5787 5788 5789 5790 5791 5792
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5793
		cancel_charge(mc.from, mc.moved_charge);
5794
		mc.moved_charge = 0;
5795
	}
5796 5797 5798
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5799
		if (!mem_cgroup_is_root(mc.from))
5800
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5801

5802
		/*
5803 5804
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5805
		 */
5806
		if (!mem_cgroup_is_root(mc.to))
5807 5808
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5809
		css_put_many(&mc.from->css, mc.moved_swap);
5810

L
Li Zefan 已提交
5811
		/* we've already done css_get(mc.to) */
5812 5813
		mc.moved_swap = 0;
	}
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5829
	spin_lock(&mc.lock);
5830 5831
	mc.from = NULL;
	mc.to = NULL;
5832
	spin_unlock(&mc.lock);
5833
	mem_cgroup_end_move(from);
5834 5835
}

5836
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5837
				 struct cgroup_taskset *tset)
5838
{
5839
	struct task_struct *p = cgroup_taskset_first(tset);
5840
	int ret = 0;
5841
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5842
	unsigned long move_charge_at_immigrate;
5843

5844 5845 5846 5847 5848 5849 5850
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5851 5852 5853
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5854
		VM_BUG_ON(from == memcg);
5855 5856 5857 5858 5859

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5860 5861 5862 5863
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5864
			VM_BUG_ON(mc.moved_charge);
5865
			VM_BUG_ON(mc.moved_swap);
5866
			mem_cgroup_start_move(from);
5867
			spin_lock(&mc.lock);
5868
			mc.from = from;
5869
			mc.to = memcg;
5870
			mc.immigrate_flags = move_charge_at_immigrate;
5871
			spin_unlock(&mc.lock);
5872
			/* We set mc.moving_task later */
5873 5874 5875 5876

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5877 5878
		}
		mmput(mm);
5879 5880 5881 5882
	}
	return ret;
}

5883
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5884
				     struct cgroup_taskset *tset)
5885
{
5886
	mem_cgroup_clear_mc();
5887 5888
}

5889 5890 5891
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5892
{
5893 5894 5895 5896
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5897 5898 5899 5900
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5901

5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5912
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5913
		if (mc.precharge < HPAGE_PMD_NR) {
5914
			spin_unlock(ptl);
5915 5916 5917 5918 5919 5920 5921 5922
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5923
							pc, mc.from, mc.to)) {
5924 5925 5926 5927 5928 5929 5930
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5931
		spin_unlock(ptl);
5932
		return 0;
5933 5934
	}

5935 5936
	if (pmd_trans_unstable(pmd))
		return 0;
5937 5938 5939 5940
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5941
		swp_entry_t ent;
5942 5943 5944 5945

		if (!mc.precharge)
			break;

5946
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5947 5948 5949 5950 5951
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5952
			if (!mem_cgroup_move_account(page, 1, pc,
5953
						     mc.from, mc.to)) {
5954
				mc.precharge--;
5955 5956
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5957 5958
			}
			putback_lru_page(page);
5959
put:			/* get_mctgt_type() gets the page */
5960 5961
			put_page(page);
			break;
5962 5963
		case MC_TARGET_SWAP:
			ent = target.ent;
5964
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5965
				mc.precharge--;
5966 5967 5968
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5969
			break;
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5984
		ret = mem_cgroup_do_precharge(1);
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6028
	up_read(&mm->mmap_sem);
6029 6030
}

6031
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6032
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6033
{
6034
	struct task_struct *p = cgroup_taskset_first(tset);
6035
	struct mm_struct *mm = get_task_mm(p);
6036 6037

	if (mm) {
6038 6039
		if (mc.to)
			mem_cgroup_move_charge(mm);
6040 6041
		mmput(mm);
	}
6042 6043
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6044
}
6045
#else	/* !CONFIG_MMU */
6046
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6047
				 struct cgroup_taskset *tset)
6048 6049 6050
{
	return 0;
}
6051
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6052
				     struct cgroup_taskset *tset)
6053 6054
{
}
6055
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6056
				 struct cgroup_taskset *tset)
6057 6058 6059
{
}
#endif
B
Balbir Singh 已提交
6060

6061 6062
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6063 6064
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6065
 */
6066
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6067 6068
{
	/*
6069
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6070 6071 6072
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6073
	if (cgroup_on_dfl(root_css->cgroup))
6074
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6075 6076
}

6077
struct cgroup_subsys memory_cgrp_subsys = {
6078
	.css_alloc = mem_cgroup_css_alloc,
6079
	.css_online = mem_cgroup_css_online,
6080 6081
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6082
	.css_reset = mem_cgroup_css_reset,
6083 6084
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6085
	.attach = mem_cgroup_move_task,
6086
	.bind = mem_cgroup_bind,
6087
	.legacy_cftypes = mem_cgroup_files,
6088
	.early_init = 0,
B
Balbir Singh 已提交
6089
};
6090

A
Andrew Morton 已提交
6091
#ifdef CONFIG_MEMCG_SWAP
6092 6093
static int __init enable_swap_account(char *s)
{
6094
	if (!strcmp(s, "1"))
6095
		really_do_swap_account = 1;
6096
	else if (!strcmp(s, "0"))
6097 6098 6099
		really_do_swap_account = 0;
	return 1;
}
6100
__setup("swapaccount=", enable_swap_account);
6101

6102 6103
static void __init memsw_file_init(void)
{
6104 6105
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
6106 6107 6108 6109 6110 6111 6112 6113
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6114
}
6115

6116
#else
6117
static void __init enable_swap_cgroup(void)
6118 6119
{
}
6120
#endif
6121

6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);

	/* Readahead page, never charged */
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);

	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
	VM_BUG_ON_PAGE(oldid, page);

	pc->flags &= ~PCG_MEMSW;
	css_get(&pc->mem_cgroup->css);
	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
6175
		if (!mem_cgroup_is_root(memcg))
6176
			page_counter_uncharge(&memcg->memsw, 1);
6177 6178 6179 6180 6181 6182 6183
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
		if (PageCgroupUsed(pc))
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6281 6282
	commit_charge(page, memcg, lrucare);

6283 6284 6285 6286 6287
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

6288 6289 6290 6291
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

6333 6334 6335 6336 6337 6338 6339
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_mem, unsigned long nr_memsw,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
	unsigned long flags;

6340 6341
	if (!mem_cgroup_is_root(memcg)) {
		if (nr_mem)
6342
			page_counter_uncharge(&memcg->memory, nr_mem);
6343
		if (nr_memsw)
6344
			page_counter_uncharge(&memcg->memsw, nr_memsw);
6345 6346
		memcg_oom_recover(memcg);
	}
6347 6348 6349 6350 6351 6352 6353 6354 6355

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
6356 6357 6358

	if (!mem_cgroup_is_root(memcg))
		css_put_many(&memcg->css, max(nr_mem, nr_memsw));
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_memsw = 0;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	unsigned long nr_mem = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
		if (!PageCgroupUsed(pc))
			continue;

		/*
		 * Nobody should be changing or seriously looking at
		 * pc->mem_cgroup and pc->flags at this point, we have
		 * fully exclusive access to the page.
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
					       nr_anon, nr_file, nr_huge, page);
				pgpgout = nr_mem = nr_memsw = 0;
				nr_anon = nr_file = nr_huge = 0;
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

		if (pc->flags & PCG_MEM)
			nr_mem += nr_pages;
		if (pc->flags & PCG_MEMSW)
			nr_memsw += nr_pages;
		pc->flags = 0;

		pgpgout++;
	} while (next != page_list);

	if (memcg)
		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
			       nr_anon, nr_file, nr_huge, page);
}

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6443
	/* Don't touch page->lru of any random page, pre-check: */
6444 6445 6446 6447
	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

6448 6449 6450
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6451

6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6463

6464 6465
	if (!list_empty(page_list))
		uncharge_list(page_list);
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6489 6490
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
	if (PageCgroupUsed(pc))
		return;

	/* Re-entrant migration: old page already uncharged? */
	pc = lookup_page_cgroup(oldpage);
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

	pc->flags = 0;

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6516
	commit_charge(newpage, pc->mem_cgroup, lrucare);
6517 6518
}

6519
/*
6520 6521 6522 6523 6524 6525
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6526 6527 6528 6529
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6530
	enable_swap_cgroup();
6531
	mem_cgroup_soft_limit_tree_init();
6532
	memcg_stock_init();
6533 6534 6535
	return 0;
}
subsys_initcall(mem_cgroup_init);