memcontrol.c 148.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299 300 301

	bool		oom_lock;
	atomic_t	under_oom;
302
	atomic_t	oom_wakeups;
303

304
	int	swappiness;
305 306
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
307

308 309 310 311
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
312
	struct mem_cgroup_thresholds thresholds;
313

314
	/* thresholds for mem+swap usage. RCU-protected */
315
	struct mem_cgroup_thresholds memsw_thresholds;
316

K
KAMEZAWA Hiroyuki 已提交
317 318
	/* For oom notifier event fd */
	struct list_head oom_notify;
319

320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
324
	unsigned long move_charge_at_immigrate;
325 326 327 328
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
329 330
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
331
	/*
332
	 * percpu counter.
333
	 */
334
	struct mem_cgroup_stat_cpu __percpu *stat;
335 336 337 338 339 340
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
341

M
Michal Hocko 已提交
342
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
343
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
344
#endif
345
#if defined(CONFIG_MEMCG_KMEM)
346 347
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
348 349 350 351
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
352 353 354 355 356 357 358

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
359

360 361 362 363
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

364 365
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
366 367
};

368
#ifdef CONFIG_MEMCG_KMEM
369 370
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
V
Vladimir Davydov 已提交
371
	return memcg->kmemcg_id >= 0;
372
}
373 374
#endif

375 376
/* Stuffs for move charges at task migration. */
/*
377 378
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
379 380
 */
enum move_type {
381
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
382
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
383 384 385
	NR_MOVE_TYPE,
};

386 387
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
388
	spinlock_t	  lock; /* for from, to */
389 390
	struct mem_cgroup *from;
	struct mem_cgroup *to;
391
	unsigned long immigrate_flags;
392
	unsigned long precharge;
393
	unsigned long moved_charge;
394
	unsigned long moved_swap;
395 396 397
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
398
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
399 400
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
401

D
Daisuke Nishimura 已提交
402 403
static bool move_anon(void)
{
404
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
405 406
}

407 408
static bool move_file(void)
{
409
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
410 411
}

412 413 414 415
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
416
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
417
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
418

419 420
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
421
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
422
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
423
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
424 425 426
	NR_CHARGE_TYPE,
};

427
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
428 429 430 431
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
432
	_KMEM,
G
Glauber Costa 已提交
433 434
};

435 436
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
437
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
438 439
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
440

441 442 443 444 445 446 447
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

448 449
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
450
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
451 452
}

453 454 455 456 457 458 459 460 461 462 463 464 465
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

466 467 468 469 470
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

471 472 473 474 475 476
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
477 478
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
479
	return memcg->css.id;
L
Li Zefan 已提交
480 481 482 483 484 485
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

486
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
487 488 489
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
490
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
491
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
492 493 494

void sock_update_memcg(struct sock *sk)
{
495
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
496
		struct mem_cgroup *memcg;
497
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
498 499 500

		BUG_ON(!sk->sk_prot->proto_cgroup);

501 502 503 504 505 506 507 508 509 510
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
511
			css_get(&sk->sk_cgrp->memcg->css);
512 513 514
			return;
		}

G
Glauber Costa 已提交
515 516
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
517
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
518
		if (!mem_cgroup_is_root(memcg) &&
519 520
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
521
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
522 523 524 525 526 527 528 529
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
530
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
531 532 533
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
534
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
535 536
	}
}
G
Glauber Costa 已提交
537 538 539 540 541 542

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

543
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
544 545
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
546

547 548
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
549
	if (!memcg_proto_activated(&memcg->tcp_mem))
550 551 552 553 554 555 556 557 558
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

559
#ifdef CONFIG_MEMCG_KMEM
560 561
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
562 563 564 565 566
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
567 568 569 570 571 572
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
573 574
int memcg_limited_groups_array_size;

575 576 577 578 579 580
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
581
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
582 583
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
584
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
585 586 587
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
588
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
589

590 591 592 593 594 595
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
596
struct static_key memcg_kmem_enabled_key;
597
EXPORT_SYMBOL(memcg_kmem_enabled_key);
598

599 600
static void memcg_free_cache_id(int id);

601 602
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
603
	if (memcg_kmem_is_active(memcg)) {
604
		static_key_slow_dec(&memcg_kmem_enabled_key);
605
		memcg_free_cache_id(memcg->kmemcg_id);
606
	}
607 608 609 610
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
611
	WARN_ON(page_counter_read(&memcg->kmem));
612 613 614 615 616 617 618 619 620 621 622 623 624
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

625
static struct mem_cgroup_per_zone *
626
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
627
{
628 629 630
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

631
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
632 633
}

634
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
635
{
636
	return &memcg->css;
637 638
}

639
static struct mem_cgroup_per_zone *
640
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
641
{
642 643
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
644

645
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

663 664
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
665
					 unsigned long new_usage_in_excess)
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

695 696
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
697 698 699 700 701 702 703
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

704 705
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
706
{
707 708 709
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
710
	__mem_cgroup_remove_exceeded(mz, mctz);
711
	spin_unlock_irqrestore(&mctz->lock, flags);
712 713
}

714 715 716 717 718 719 720 721 722 723 724
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
725 726 727

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
728
	unsigned long excess;
729 730 731
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

732
	mctz = soft_limit_tree_from_page(page);
733 734 735 736 737
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
738
		mz = mem_cgroup_page_zoneinfo(memcg, page);
739
		excess = soft_limit_excess(memcg);
740 741 742 743 744
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
745 746 747
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
748 749
			/* if on-tree, remove it */
			if (mz->on_tree)
750
				__mem_cgroup_remove_exceeded(mz, mctz);
751 752 753 754
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
755
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
756
			spin_unlock_irqrestore(&mctz->lock, flags);
757 758 759 760 761 762 763
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
764 765
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
766

767 768 769 770
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
771
			mem_cgroup_remove_exceeded(mz, mctz);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
794
	__mem_cgroup_remove_exceeded(mz, mctz);
795
	if (!soft_limit_excess(mz->memcg) ||
796
	    !css_tryget_online(&mz->memcg->css))
797 798 799 800 801 802 803 804 805 806
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

807
	spin_lock_irq(&mctz->lock);
808
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
809
	spin_unlock_irq(&mctz->lock);
810 811 812
	return mz;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
832
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
833
				 enum mem_cgroup_stat_index idx)
834
{
835
	long val = 0;
836 837
	int cpu;

838 839
	get_online_cpus();
	for_each_online_cpu(cpu)
840
		val += per_cpu(memcg->stat->count[idx], cpu);
841
#ifdef CONFIG_HOTPLUG_CPU
842 843 844
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
845 846
#endif
	put_online_cpus();
847 848 849
	return val;
}

850
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
851 852 853 854 855
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

856
	get_online_cpus();
857
	for_each_online_cpu(cpu)
858
		val += per_cpu(memcg->stat->events[idx], cpu);
859
#ifdef CONFIG_HOTPLUG_CPU
860 861 862
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
863
#endif
864
	put_online_cpus();
865 866 867
	return val;
}

868
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
869
					 struct page *page,
870
					 int nr_pages)
871
{
872 873 874 875
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
876
	if (PageAnon(page))
877
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
878
				nr_pages);
879
	else
880
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
881
				nr_pages);
882

883 884 885 886
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

887 888
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
889
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
890
	else {
891
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
892 893
		nr_pages = -nr_pages; /* for event */
	}
894

895
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
896 897
}

898
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
899 900 901 902 903 904 905
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

906 907 908
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
909
{
910
	unsigned long nr = 0;
911 912
	int zid;

913
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
914

915 916 917 918 919 920 921 922 923 924 925 926
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
927
}
928

929
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
930
			unsigned int lru_mask)
931
{
932
	unsigned long nr = 0;
933
	int nid;
934

935
	for_each_node_state(nid, N_MEMORY)
936 937
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
938 939
}

940 941
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
942 943 944
{
	unsigned long val, next;

945
	val = __this_cpu_read(memcg->stat->nr_page_events);
946
	next = __this_cpu_read(memcg->stat->targets[target]);
947
	/* from time_after() in jiffies.h */
948 949 950 951 952
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
953 954 955
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
956 957 958 959 960 961 962 963
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
964
	}
965
	return false;
966 967 968 969 970 971
}

/*
 * Check events in order.
 *
 */
972
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
973 974
{
	/* threshold event is triggered in finer grain than soft limit */
975 976
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
977
		bool do_softlimit;
978
		bool do_numainfo __maybe_unused;
979

980 981
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
982 983 984 985
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
986
		mem_cgroup_threshold(memcg);
987 988
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
989
#if MAX_NUMNODES > 1
990
		if (unlikely(do_numainfo))
991
			atomic_inc(&memcg->numainfo_events);
992
#endif
993
	}
994 995
}

996
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
997
{
998 999 1000 1001 1002 1003 1004 1005
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1006
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1007 1008
}

1009
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1010
{
1011
	struct mem_cgroup *memcg = NULL;
1012

1013 1014
	rcu_read_lock();
	do {
1015 1016 1017 1018 1019 1020
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1021
			memcg = root_mem_cgroup;
1022 1023 1024 1025 1026
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1027
	} while (!css_tryget_online(&memcg->css));
1028
	rcu_read_unlock();
1029
	return memcg;
1030 1031
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1049
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1050
				   struct mem_cgroup *prev,
1051
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1052
{
1053 1054
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1055
	struct mem_cgroup *memcg = NULL;
1056
	struct mem_cgroup *pos = NULL;
1057

1058 1059
	if (mem_cgroup_disabled())
		return NULL;
1060

1061 1062
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1063

1064
	if (prev && !reclaim)
1065
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1066

1067 1068
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1069
			goto out;
1070
		return root;
1071
	}
K
KAMEZAWA Hiroyuki 已提交
1072

1073
	rcu_read_lock();
M
Michal Hocko 已提交
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1109
		}
K
KAMEZAWA Hiroyuki 已提交
1110

1111 1112 1113 1114 1115 1116
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1117

1118 1119
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1120

1121
		if (css_tryget(css)) {
1122 1123 1124 1125 1126 1127 1128
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1129

1130
			css_put(css);
1131
		}
1132

1133
		memcg = NULL;
1134
	}
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1155
	}
1156

1157 1158
out_unlock:
	rcu_read_unlock();
1159
out:
1160 1161 1162
	if (prev && prev != root)
		css_put(&prev->css);

1163
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1164
}
K
KAMEZAWA Hiroyuki 已提交
1165

1166 1167 1168 1169 1170 1171 1172
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1173 1174 1175 1176 1177 1178
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1179

1180 1181 1182 1183 1184 1185
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1186
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1187
	     iter != NULL;				\
1188
	     iter = mem_cgroup_iter(root, iter, NULL))
1189

1190
#define for_each_mem_cgroup(iter)			\
1191
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1192
	     iter != NULL;				\
1193
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1194

1195
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1196
{
1197
	struct mem_cgroup *memcg;
1198 1199

	rcu_read_lock();
1200 1201
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1202 1203 1204 1205
		goto out;

	switch (idx) {
	case PGFAULT:
1206 1207 1208 1209
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1210 1211 1212 1213 1214 1215 1216
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1217
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1218

1219 1220 1221
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1222
 * @memcg: memcg of the wanted lruvec
1223 1224 1225 1226 1227 1228 1229 1230 1231
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1232
	struct lruvec *lruvec;
1233

1234 1235 1236 1237
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1238

1239
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1250 1251 1252
}

/**
1253
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1254
 * @page: the page
1255
 * @zone: zone of the page
1256 1257 1258 1259
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1260
 */
1261
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1262 1263
{
	struct mem_cgroup_per_zone *mz;
1264
	struct mem_cgroup *memcg;
1265
	struct lruvec *lruvec;
1266

1267 1268 1269 1270
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1271

1272
	memcg = page->mem_cgroup;
1273
	/*
1274
	 * Swapcache readahead pages are added to the LRU - and
1275
	 * possibly migrated - before they are charged.
1276
	 */
1277 1278
	if (!memcg)
		memcg = root_mem_cgroup;
1279

1280
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1291
}
1292

1293
/**
1294 1295 1296 1297
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1298
 *
1299 1300
 * This function must be called when a page is added to or removed from an
 * lru list.
1301
 */
1302 1303
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1304 1305
{
	struct mem_cgroup_per_zone *mz;
1306
	unsigned long *lru_size;
1307 1308 1309 1310

	if (mem_cgroup_disabled())
		return;

1311 1312 1313 1314
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1315
}
1316

1317
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1318
{
1319
	if (root == memcg)
1320
		return true;
1321
	if (!root->use_hierarchy)
1322
		return false;
1323
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1324 1325
}

1326
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1327
{
1328
	struct mem_cgroup *task_memcg;
1329
	struct task_struct *p;
1330
	bool ret;
1331

1332
	p = find_lock_task_mm(task);
1333
	if (p) {
1334
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1335 1336 1337 1338 1339 1340 1341
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1342
		rcu_read_lock();
1343 1344
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1345
		rcu_read_unlock();
1346
	}
1347 1348
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1349 1350 1351
	return ret;
}

1352
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1353
{
1354
	unsigned long inactive_ratio;
1355
	unsigned long inactive;
1356
	unsigned long active;
1357
	unsigned long gb;
1358

1359 1360
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1361

1362 1363 1364 1365 1366 1367
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1368
	return inactive * inactive_ratio < active;
1369 1370
}

1371
#define mem_cgroup_from_counter(counter, member)	\
1372 1373
	container_of(counter, struct mem_cgroup, member)

1374
/**
1375
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1376
 * @memcg: the memory cgroup
1377
 *
1378
 * Returns the maximum amount of memory @mem can be charged with, in
1379
 * pages.
1380
 */
1381
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1382
{
1383 1384 1385
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1400 1401
}

1402
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1403 1404
{
	/* root ? */
1405
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1406 1407
		return vm_swappiness;

1408
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1409 1410
}

1411
/*
Q
Qiang Huang 已提交
1412
 * A routine for checking "mem" is under move_account() or not.
1413
 *
Q
Qiang Huang 已提交
1414 1415 1416
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1417
 */
1418
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1419
{
1420 1421
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1422
	bool ret = false;
1423 1424 1425 1426 1427 1428 1429 1430 1431
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1432

1433 1434
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1435 1436
unlock:
	spin_unlock(&mc.lock);
1437 1438 1439
	return ret;
}

1440
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1441 1442
{
	if (mc.moving_task && current != mc.moving_task) {
1443
		if (mem_cgroup_under_move(memcg)) {
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1456
#define K(x) ((x) << (PAGE_SHIFT-10))
1457
/**
1458
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1459 1460 1461 1462 1463 1464 1465 1466
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1467
	/* oom_info_lock ensures that parallel ooms do not interleave */
1468
	static DEFINE_MUTEX(oom_info_lock);
1469 1470
	struct mem_cgroup *iter;
	unsigned int i;
1471

1472
	if (!p)
1473 1474
		return;

1475
	mutex_lock(&oom_info_lock);
1476 1477
	rcu_read_lock();

T
Tejun Heo 已提交
1478 1479
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1480
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1481
	pr_cont_cgroup_path(memcg->css.cgroup);
1482
	pr_cont("\n");
1483 1484 1485

	rcu_read_unlock();

1486 1487 1488 1489 1490 1491 1492 1493 1494
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1495 1496

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1497 1498
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1514
	mutex_unlock(&oom_info_lock);
1515 1516
}

1517 1518 1519 1520
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1521
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1522 1523
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1524 1525
	struct mem_cgroup *iter;

1526
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1527
		num++;
1528 1529 1530
	return num;
}

D
David Rientjes 已提交
1531 1532 1533
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1534
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1535
{
1536
	unsigned long limit;
1537

1538
	limit = memcg->memory.limit;
1539
	if (mem_cgroup_swappiness(memcg)) {
1540
		unsigned long memsw_limit;
1541

1542 1543
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1544 1545
	}
	return limit;
D
David Rientjes 已提交
1546 1547
}

1548 1549
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1550 1551 1552 1553 1554 1555 1556
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1557
	/*
1558 1559 1560
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1561
	 */
1562
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1563 1564 1565 1566 1567
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1568
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1569
	for_each_mem_cgroup_tree(iter, memcg) {
1570
		struct css_task_iter it;
1571 1572
		struct task_struct *task;

1573 1574
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1587
				css_task_iter_end(&it);
1588 1589 1590 1591 1592 1593 1594 1595
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1608
		}
1609
		css_task_iter_end(&it);
1610 1611 1612 1613 1614 1615 1616 1617 1618
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1619 1620
#if MAX_NUMNODES > 1

1621 1622
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1623
 * @memcg: the target memcg
1624 1625 1626 1627 1628 1629 1630
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1631
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1632 1633
		int nid, bool noswap)
{
1634
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1635 1636 1637
		return true;
	if (noswap || !total_swap_pages)
		return false;
1638
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1639 1640 1641 1642
		return true;
	return false;

}
1643 1644 1645 1646 1647 1648 1649

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1650
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1651 1652
{
	int nid;
1653 1654 1655 1656
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1657
	if (!atomic_read(&memcg->numainfo_events))
1658
		return;
1659
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1660 1661 1662
		return;

	/* make a nodemask where this memcg uses memory from */
1663
	memcg->scan_nodes = node_states[N_MEMORY];
1664

1665
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1666

1667 1668
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1669
	}
1670

1671 1672
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1687
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1688 1689 1690
{
	int node;

1691 1692
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1693

1694
	node = next_node(node, memcg->scan_nodes);
1695
	if (node == MAX_NUMNODES)
1696
		node = first_node(memcg->scan_nodes);
1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1706
	memcg->last_scanned_node = node;
1707 1708 1709
	return node;
}
#else
1710
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1711 1712 1713 1714 1715
{
	return 0;
}
#endif

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1731
	excess = soft_limit_excess(root_memcg);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1760
		if (!soft_limit_excess(root_memcg))
1761
			break;
1762
	}
1763 1764
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1765 1766
}

1767 1768 1769 1770 1771 1772
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1773 1774
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1775 1776 1777 1778
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1779
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1780
{
1781
	struct mem_cgroup *iter, *failed = NULL;
1782

1783 1784
	spin_lock(&memcg_oom_lock);

1785
	for_each_mem_cgroup_tree(iter, memcg) {
1786
		if (iter->oom_lock) {
1787 1788 1789 1790 1791
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1792 1793
			mem_cgroup_iter_break(memcg, iter);
			break;
1794 1795
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1796
	}
K
KAMEZAWA Hiroyuki 已提交
1797

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1809
		}
1810 1811
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1812 1813 1814 1815

	spin_unlock(&memcg_oom_lock);

	return !failed;
1816
}
1817

1818
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819
{
K
KAMEZAWA Hiroyuki 已提交
1820 1821
	struct mem_cgroup *iter;

1822
	spin_lock(&memcg_oom_lock);
1823
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1824
	for_each_mem_cgroup_tree(iter, memcg)
1825
		iter->oom_lock = false;
1826
	spin_unlock(&memcg_oom_lock);
1827 1828
}

1829
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1830 1831 1832
{
	struct mem_cgroup *iter;

1833
	for_each_mem_cgroup_tree(iter, memcg)
1834 1835 1836
		atomic_inc(&iter->under_oom);
}

1837
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1838 1839 1840
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1841 1842 1843 1844 1845
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1846
	for_each_mem_cgroup_tree(iter, memcg)
1847
		atomic_add_unless(&iter->under_oom, -1, 0);
1848 1849
}

K
KAMEZAWA Hiroyuki 已提交
1850 1851
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1852
struct oom_wait_info {
1853
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1854 1855 1856 1857 1858 1859
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1860 1861
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1862 1863 1864
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1865
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1866

1867 1868
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1869 1870 1871 1872
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1873
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1874
{
1875
	atomic_inc(&memcg->oom_wakeups);
1876 1877
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1878 1879
}

1880
static void memcg_oom_recover(struct mem_cgroup *memcg)
1881
{
1882 1883
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1884 1885
}

1886
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1887
{
1888 1889
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1890
	/*
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1903
	 */
1904 1905 1906 1907
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1908 1909 1910 1911
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1912
 * @handle: actually kill/wait or just clean up the OOM state
1913
 *
1914 1915
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1916
 *
1917
 * Memcg supports userspace OOM handling where failed allocations must
1918 1919 1920 1921
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1922
 * the end of the page fault to complete the OOM handling.
1923 1924
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1925
 * completed, %false otherwise.
1926
 */
1927
bool mem_cgroup_oom_synchronize(bool handle)
1928
{
1929
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1930
	struct oom_wait_info owait;
1931
	bool locked;
1932 1933 1934

	/* OOM is global, do not handle */
	if (!memcg)
1935
		return false;
1936

1937 1938
	if (!handle)
		goto cleanup;
1939 1940 1941 1942 1943 1944

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1945

1946
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1960
		schedule();
1961 1962 1963 1964 1965
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1966 1967 1968 1969 1970 1971 1972 1973
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1974 1975
cleanup:
	current->memcg_oom.memcg = NULL;
1976
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1977
	return true;
1978 1979
}

1980 1981 1982 1983 1984
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
1985
 *
1986 1987 1988
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1989
 *
1990 1991 1992 1993
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
1994
 *
1995 1996 1997
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
1998
 *
1999 2000 2001 2002 2003
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2004
 */
2005 2006 2007
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2008 2009 2010
{
	struct mem_cgroup *memcg;

2011 2012 2013 2014
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2015
again:
2016
	memcg = page->mem_cgroup;
2017
	if (unlikely(!memcg))
2018 2019 2020
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2021
	if (atomic_read(&memcg->moving_account) <= 0)
2022
		return memcg;
2023

2024
	spin_lock_irqsave(&memcg->move_lock, *flags);
2025
	if (memcg != page->mem_cgroup) {
2026
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2027 2028 2029
		goto again;
	}
	*locked = true;
2030 2031

	return memcg;
2032 2033
}

2034 2035 2036 2037 2038 2039
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
2040 2041
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
			      unsigned long *flags)
2042
{
2043 2044
	if (memcg && *locked)
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2045

2046
	rcu_read_unlock();
2047 2048
}

2049 2050 2051 2052 2053 2054 2055 2056 2057
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2058
				 enum mem_cgroup_stat_index idx, int val)
2059
{
2060
	VM_BUG_ON(!rcu_read_lock_held());
2061

2062 2063
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2064
}
2065

2066 2067 2068 2069
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2070
#define CHARGE_BATCH	32U
2071 2072
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2073
	unsigned int nr_pages;
2074
	struct work_struct work;
2075
	unsigned long flags;
2076
#define FLUSHING_CACHED_CHARGE	0
2077 2078
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2079
static DEFINE_MUTEX(percpu_charge_mutex);
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2091
 */
2092
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2093 2094
{
	struct memcg_stock_pcp *stock;
2095
	bool ret = false;
2096

2097
	if (nr_pages > CHARGE_BATCH)
2098
		return ret;
2099

2100
	stock = &get_cpu_var(memcg_stock);
2101
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2102
		stock->nr_pages -= nr_pages;
2103 2104
		ret = true;
	}
2105 2106 2107 2108 2109
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2110
 * Returns stocks cached in percpu and reset cached information.
2111 2112 2113 2114 2115
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2116
	if (stock->nr_pages) {
2117
		page_counter_uncharge(&old->memory, stock->nr_pages);
2118
		if (do_swap_account)
2119
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2120
		css_put_many(&old->css, stock->nr_pages);
2121
		stock->nr_pages = 0;
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2132
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2133
	drain_stock(stock);
2134
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2135 2136
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2148
/*
2149
 * Cache charges(val) to local per_cpu area.
2150
 * This will be consumed by consume_stock() function, later.
2151
 */
2152
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2153 2154 2155
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2156
	if (stock->cached != memcg) { /* reset if necessary */
2157
		drain_stock(stock);
2158
		stock->cached = memcg;
2159
	}
2160
	stock->nr_pages += nr_pages;
2161 2162 2163 2164
	put_cpu_var(memcg_stock);
}

/*
2165
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2166
 * of the hierarchy under it.
2167
 */
2168
static void drain_all_stock(struct mem_cgroup *root_memcg)
2169
{
2170
	int cpu, curcpu;
2171

2172 2173 2174
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2175 2176
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2177
	curcpu = get_cpu();
2178 2179
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2180
		struct mem_cgroup *memcg;
2181

2182 2183
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2184
			continue;
2185
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2186
			continue;
2187 2188 2189 2190 2191 2192
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2193
	}
2194
	put_cpu();
A
Andrew Morton 已提交
2195
	put_online_cpus();
2196
	mutex_unlock(&percpu_charge_mutex);
2197 2198
}

2199 2200 2201 2202
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2203
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2204 2205 2206
{
	int i;

2207
	spin_lock(&memcg->pcp_counter_lock);
2208
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2209
		long x = per_cpu(memcg->stat->count[i], cpu);
2210

2211 2212
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2213
	}
2214
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2215
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2216

2217 2218
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2219
	}
2220
	spin_unlock(&memcg->pcp_counter_lock);
2221 2222
}

2223
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2224 2225 2226 2227 2228
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2229
	struct mem_cgroup *iter;
2230

2231
	if (action == CPU_ONLINE)
2232 2233
		return NOTIFY_OK;

2234
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2235
		return NOTIFY_OK;
2236

2237
	for_each_mem_cgroup(iter)
2238 2239
		mem_cgroup_drain_pcp_counter(iter, cpu);

2240 2241 2242 2243 2244
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2245 2246
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2247
{
2248
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2249
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2250
	struct mem_cgroup *mem_over_limit;
2251
	struct page_counter *counter;
2252
	unsigned long nr_reclaimed;
2253 2254
	bool may_swap = true;
	bool drained = false;
2255
	int ret = 0;
2256

2257 2258
	if (mem_cgroup_is_root(memcg))
		goto done;
2259
retry:
2260 2261
	if (consume_stock(memcg, nr_pages))
		goto done;
2262

2263
	if (!do_swap_account ||
2264 2265
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2266
			goto done_restock;
2267
		if (do_swap_account)
2268 2269
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2270
	} else {
2271
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2272
		may_swap = false;
2273
	}
2274

2275 2276 2277 2278
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2279

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2294 2295
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2296

2297 2298
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2299

2300
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2301
		goto retry;
2302

2303
	if (!drained) {
2304
		drain_all_stock(mem_over_limit);
2305 2306 2307 2308
		drained = true;
		goto retry;
	}

2309 2310
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2311 2312 2313 2314 2315 2316 2317 2318 2319
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2320
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2321 2322 2323 2324 2325 2326 2327 2328
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2329 2330 2331
	if (nr_retries--)
		goto retry;

2332 2333 2334
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2335 2336 2337
	if (fatal_signal_pending(current))
		goto bypass;

2338
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2339
nomem:
2340
	if (!(gfp_mask & __GFP_NOFAIL))
2341
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2342
bypass:
2343
	return -EINTR;
2344 2345

done_restock:
2346
	css_get_many(&memcg->css, batch);
2347 2348 2349
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2350
	return ret;
2351
}
2352

2353
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2354
{
2355 2356 2357
	if (mem_cgroup_is_root(memcg))
		return;

2358
	page_counter_uncharge(&memcg->memory, nr_pages);
2359
	if (do_swap_account)
2360
		page_counter_uncharge(&memcg->memsw, nr_pages);
2361

2362
	css_put_many(&memcg->css, nr_pages);
2363 2364
}

2365 2366
/*
 * A helper function to get mem_cgroup from ID. must be called under
2367 2368 2369
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2370 2371 2372 2373 2374 2375
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2376
	return mem_cgroup_from_id(id);
2377 2378
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2389
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2390
{
2391
	struct mem_cgroup *memcg;
2392
	unsigned short id;
2393 2394
	swp_entry_t ent;

2395
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2396

2397
	memcg = page->mem_cgroup;
2398 2399
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2400
			memcg = NULL;
2401
	} else if (PageSwapCache(page)) {
2402
		ent.val = page_private(page);
2403
		id = lookup_swap_cgroup_id(ent);
2404
		rcu_read_lock();
2405
		memcg = mem_cgroup_lookup(id);
2406
		if (memcg && !css_tryget_online(&memcg->css))
2407
			memcg = NULL;
2408
		rcu_read_unlock();
2409
	}
2410
	return memcg;
2411 2412
}

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2444
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2445
			  bool lrucare)
2446
{
2447
	int isolated;
2448

2449
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2450 2451 2452 2453 2454

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2455 2456
	if (lrucare)
		lock_page_lru(page, &isolated);
2457

2458 2459
	/*
	 * Nobody should be changing or seriously looking at
2460
	 * page->mem_cgroup at this point:
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2472
	page->mem_cgroup = memcg;
2473

2474 2475
	if (lrucare)
		unlock_page_lru(page, isolated);
2476
}
2477

2478
#ifdef CONFIG_MEMCG_KMEM
2479 2480 2481 2482 2483 2484
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

G
Glauber Costa 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2495
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2496 2497
}

2498 2499
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2500
{
2501
	struct page_counter *counter;
2502 2503
	int ret = 0;

2504 2505
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2506 2507
		return ret;

2508
	ret = try_charge(memcg, gfp, nr_pages);
2509 2510
	if (ret == -EINTR)  {
		/*
2511 2512 2513 2514 2515 2516
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2517 2518 2519
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2520 2521 2522
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2523 2524
		 * directed to the root cgroup in memcontrol.h
		 */
2525
		page_counter_charge(&memcg->memory, nr_pages);
2526
		if (do_swap_account)
2527
			page_counter_charge(&memcg->memsw, nr_pages);
2528
		css_get_many(&memcg->css, nr_pages);
2529 2530
		ret = 0;
	} else if (ret)
2531
		page_counter_uncharge(&memcg->kmem, nr_pages);
2532 2533 2534 2535

	return ret;
}

2536 2537
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2538
{
2539
	page_counter_uncharge(&memcg->memory, nr_pages);
2540
	if (do_swap_account)
2541
		page_counter_uncharge(&memcg->memsw, nr_pages);
2542

2543
	page_counter_uncharge(&memcg->kmem, nr_pages);
2544

2545
	css_put_many(&memcg->css, nr_pages);
2546 2547
}

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2558
static int memcg_alloc_cache_id(void)
2559
{
2560 2561 2562 2563 2564 2565 2566
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2567

2568 2569 2570 2571 2572 2573 2574 2575 2576
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2577 2578 2579 2580 2581
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2596 2597 2598 2599 2600 2601 2602 2603 2604
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2605
	memcg_limited_groups_array_size = num;
2606 2607
}

2608 2609
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2610
{
2611 2612
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2613
	struct kmem_cache *cachep;
2614 2615
	int id;

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2626 2627
		return;

2628
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2629
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2630
	/*
2631 2632 2633
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2634
	 */
2635 2636
	if (!cachep)
		return;
2637

2638
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2639

2640
	/*
2641 2642 2643
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2644
	 */
2645 2646
	smp_wmb();

2647 2648
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2649
}
2650

2651
static void memcg_unregister_cache(struct kmem_cache *cachep)
2652
{
2653
	struct kmem_cache *root_cache;
2654 2655 2656
	struct mem_cgroup *memcg;
	int id;

2657
	lockdep_assert_held(&memcg_slab_mutex);
2658

2659
	BUG_ON(is_root_cache(cachep));
2660

2661 2662
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2663
	id = memcg_cache_id(memcg);
2664

2665 2666
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2667

2668 2669 2670
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2671 2672
}

2673
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2674 2675
{
	struct kmem_cache *c;
2676
	int i, failed = 0;
2677

2678
	mutex_lock(&memcg_slab_mutex);
2679 2680
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2681 2682 2683
		if (!c)
			continue;

2684
		memcg_unregister_cache(c);
2685 2686 2687

		if (cache_from_memcg_idx(s, i))
			failed++;
2688
	}
2689
	mutex_unlock(&memcg_slab_mutex);
2690
	return failed;
2691 2692
}

2693
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2694 2695
{
	struct kmem_cache *cachep;
2696
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2697 2698 2699 2700

	if (!memcg_kmem_is_active(memcg))
		return;

2701 2702
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2703
		cachep = memcg_params_to_cache(params);
2704
		memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2705
	}
2706
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2707 2708
}

2709
struct memcg_register_cache_work {
2710 2711 2712 2713 2714
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2715
static void memcg_register_cache_func(struct work_struct *w)
2716
{
2717 2718
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2719 2720
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2721

2722
	mutex_lock(&memcg_slab_mutex);
2723
	memcg_register_cache(memcg, cachep);
2724 2725
	mutex_unlock(&memcg_slab_mutex);

2726
	css_put(&memcg->css);
2727 2728 2729 2730 2731 2732
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2733 2734
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
2735
{
2736
	struct memcg_register_cache_work *cw;
2737

2738
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2739
	if (!cw)
2740
		return;
2741 2742

	css_get(&memcg->css);
2743 2744 2745 2746

	cw->memcg = memcg;
	cw->cachep = cachep;

2747
	INIT_WORK(&cw->work, memcg_register_cache_func);
2748 2749 2750
	schedule_work(&cw->work);
}

2751 2752
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
2753 2754 2755 2756
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2757
	 * in __memcg_schedule_register_cache will recurse.
2758 2759 2760 2761 2762 2763 2764
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2765
	current->memcg_kmem_skip_account = 1;
2766
	__memcg_schedule_register_cache(memcg, cachep);
2767
	current->memcg_kmem_skip_account = 0;
2768
}
2769 2770 2771

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
2772
	unsigned int nr_pages = 1 << order;
2773

2774
	return memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2775 2776 2777 2778
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
2779 2780 2781
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2782 2783
}

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2797
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2798 2799
{
	struct mem_cgroup *memcg;
2800
	struct kmem_cache *memcg_cachep;
2801 2802 2803 2804

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2805
	if (current->memcg_kmem_skip_account)
2806 2807
		return cachep;

2808
	memcg = get_mem_cgroup_from_mm(current->mm);
2809
	if (!memcg_kmem_is_active(memcg))
2810
		goto out;
2811

2812
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2813 2814
	if (likely(memcg_cachep))
		return memcg_cachep;
2815 2816 2817 2818 2819 2820 2821 2822 2823

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2824 2825 2826
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2827
	 */
2828
	memcg_schedule_register_cache(memcg, cachep);
2829
out:
2830
	css_put(&memcg->css);
2831
	return cachep;
2832 2833
}

2834 2835 2836 2837 2838 2839
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2861

2862
	memcg = get_mem_cgroup_from_mm(current->mm);
2863

2864
	if (!memcg_kmem_is_active(memcg)) {
2865 2866 2867 2868
		css_put(&memcg->css);
		return true;
	}

2869
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2884
		memcg_uncharge_kmem(memcg, 1 << order);
2885 2886
		return;
	}
2887
	page->mem_cgroup = memcg;
2888 2889 2890 2891
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2892
	struct mem_cgroup *memcg = page->mem_cgroup;
2893 2894 2895 2896

	if (!memcg)
		return;

2897
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2898

2899
	memcg_uncharge_kmem(memcg, 1 << order);
2900
	page->mem_cgroup = NULL;
2901 2902 2903
}
#endif /* CONFIG_MEMCG_KMEM */

2904 2905 2906 2907
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2908 2909 2910
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2911
 */
2912
void mem_cgroup_split_huge_fixup(struct page *head)
2913
{
2914
	int i;
2915

2916 2917
	if (mem_cgroup_disabled())
		return;
2918

2919
	for (i = 1; i < HPAGE_PMD_NR; i++)
2920
		head[i].mem_cgroup = head->mem_cgroup;
2921

2922
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2923
		       HPAGE_PMD_NR);
2924
}
2925
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2926

2927
/**
2928
 * mem_cgroup_move_account - move account of the page
2929
 * @page: the page
2930
 * @nr_pages: number of regular pages (>1 for huge pages)
2931 2932 2933 2934
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2935
 * - page is not on LRU (isolate_page() is useful.)
2936
 * - compound_lock is held when nr_pages > 1
2937
 *
2938 2939
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2940
 */
2941 2942 2943
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2944
				   struct mem_cgroup *to)
2945
{
2946 2947
	unsigned long flags;
	int ret;
2948

2949
	VM_BUG_ON(from == to);
2950
	VM_BUG_ON_PAGE(PageLRU(page), page);
2951 2952 2953 2954 2955 2956 2957
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2958
	if (nr_pages > 1 && !PageTransHuge(page))
2959 2960
		goto out;

2961
	/*
2962
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2963 2964 2965 2966 2967
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2968 2969

	ret = -EINVAL;
2970
	if (page->mem_cgroup != from)
2971
		goto out_unlock;
2972

2973
	spin_lock_irqsave(&from->move_lock, flags);
2974

2975
	if (!PageAnon(page) && page_mapped(page)) {
2976 2977 2978 2979 2980
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2981

2982 2983 2984 2985 2986 2987
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2988

2989
	/*
2990
	 * It is safe to change page->mem_cgroup here because the page
2991 2992 2993
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2994

2995
	/* caller should have done css_get */
2996
	page->mem_cgroup = to;
2997 2998
	spin_unlock_irqrestore(&from->move_lock, flags);

2999
	ret = 0;
3000 3001 3002

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3003
	memcg_check_events(to, page);
3004
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3005
	memcg_check_events(from, page);
3006 3007 3008
	local_irq_enable();
out_unlock:
	unlock_page(page);
3009
out:
3010 3011 3012
	return ret;
}

A
Andrew Morton 已提交
3013
#ifdef CONFIG_MEMCG_SWAP
3014 3015
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3016
{
3017 3018
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3019
}
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3032
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3033 3034 3035
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3036
				struct mem_cgroup *from, struct mem_cgroup *to)
3037 3038 3039
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3040 3041
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3042 3043 3044

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3045
		mem_cgroup_swap_statistics(to, true);
3046 3047 3048 3049 3050 3051
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3052
				struct mem_cgroup *from, struct mem_cgroup *to)
3053 3054 3055
{
	return -EINVAL;
}
3056
#endif
K
KAMEZAWA Hiroyuki 已提交
3057

3058
static DEFINE_MUTEX(memcg_limit_mutex);
3059

3060
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3061
				   unsigned long limit)
3062
{
3063 3064 3065
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3066
	int retry_count;
3067
	int ret;
3068 3069 3070 3071 3072 3073

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3074 3075
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3076

3077
	oldusage = page_counter_read(&memcg->memory);
3078

3079
	do {
3080 3081 3082 3083
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3084 3085 3086 3087

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3088
			ret = -EINVAL;
3089 3090
			break;
		}
3091 3092 3093 3094
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3095 3096 3097 3098

		if (!ret)
			break;

3099 3100
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3101
		curusage = page_counter_read(&memcg->memory);
3102
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3103
		if (curusage >= oldusage)
3104 3105 3106
			retry_count--;
		else
			oldusage = curusage;
3107 3108
	} while (retry_count);

3109 3110
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3111

3112 3113 3114
	return ret;
}

L
Li Zefan 已提交
3115
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3116
					 unsigned long limit)
3117
{
3118 3119 3120
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3121
	int retry_count;
3122
	int ret;
3123

3124
	/* see mem_cgroup_resize_res_limit */
3125 3126 3127 3128 3129 3130
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3131 3132 3133 3134
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3135 3136 3137 3138

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3139 3140 3141
			ret = -EINVAL;
			break;
		}
3142 3143 3144 3145
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3146 3147 3148 3149

		if (!ret)
			break;

3150 3151
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3152
		curusage = page_counter_read(&memcg->memsw);
3153
		/* Usage is reduced ? */
3154
		if (curusage >= oldusage)
3155
			retry_count--;
3156 3157
		else
			oldusage = curusage;
3158 3159
	} while (retry_count);

3160 3161
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3162

3163 3164 3165
	return ret;
}

3166 3167 3168 3169 3170 3171 3172 3173 3174
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3175
	unsigned long excess;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3200
		spin_lock_irq(&mctz->lock);
3201
		__mem_cgroup_remove_exceeded(mz, mctz);
3202 3203 3204 3205 3206 3207

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3208 3209 3210
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3211
		excess = soft_limit_excess(mz->memcg);
3212 3213 3214 3215 3216 3217 3218 3219 3220
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3221
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3222
		spin_unlock_irq(&mctz->lock);
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3240 3241 3242 3243 3244 3245
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3246 3247
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3248 3249
	bool ret;

3250
	/*
3251 3252 3253 3254
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3255
	 */
3256 3257 3258 3259 3260 3261
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3262 3263
}

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3274 3275
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3276
	/* try to free all pages in this cgroup */
3277
	while (nr_retries && page_counter_read(&memcg->memory)) {
3278
		int progress;
3279

3280 3281 3282
		if (signal_pending(current))
			return -EINTR;

3283 3284
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3285
		if (!progress) {
3286
			nr_retries--;
3287
			/* maybe some writeback is necessary */
3288
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3289
		}
3290 3291

	}
3292 3293

	return 0;
3294 3295
}

3296 3297 3298
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3299
{
3300
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3301

3302 3303
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3304
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3305 3306
}

3307 3308
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3309
{
3310
	return mem_cgroup_from_css(css)->use_hierarchy;
3311 3312
}

3313 3314
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3315 3316
{
	int retval = 0;
3317
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3318
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3319

3320
	mutex_lock(&memcg_create_mutex);
3321 3322 3323 3324

	if (memcg->use_hierarchy == val)
		goto out;

3325
	/*
3326
	 * If parent's use_hierarchy is set, we can't make any modifications
3327 3328 3329 3330 3331 3332
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3333
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3334
				(val == 1 || val == 0)) {
3335
		if (!memcg_has_children(memcg))
3336
			memcg->use_hierarchy = val;
3337 3338 3339 3340
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3341 3342

out:
3343
	mutex_unlock(&memcg_create_mutex);
3344 3345 3346 3347

	return retval;
}

3348 3349
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3367 3368 3369 3370 3371 3372
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3373
		if (!swap)
3374
			val = page_counter_read(&memcg->memory);
3375
		else
3376
			val = page_counter_read(&memcg->memsw);
3377 3378 3379 3380
	}
	return val << PAGE_SHIFT;
}

3381 3382 3383 3384 3385 3386 3387
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3388

3389
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3390
			       struct cftype *cft)
B
Balbir Singh 已提交
3391
{
3392
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3393
	struct page_counter *counter;
3394

3395
	switch (MEMFILE_TYPE(cft->private)) {
3396
	case _MEM:
3397 3398
		counter = &memcg->memory;
		break;
3399
	case _MEMSWAP:
3400 3401
		counter = &memcg->memsw;
		break;
3402
	case _KMEM:
3403
		counter = &memcg->kmem;
3404
		break;
3405 3406 3407
	default:
		BUG();
	}
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3427
}
3428 3429

#ifdef CONFIG_MEMCG_KMEM
3430 3431
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3432 3433 3434 3435 3436 3437 3438
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3451
	mutex_lock(&memcg_create_mutex);
3452 3453
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3454 3455 3456 3457
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3458

3459
	memcg_id = memcg_alloc_cache_id();
3460 3461 3462 3463 3464 3465
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3466 3467
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3468
	 */
3469
	err = page_counter_limit(&memcg->kmem, nr_pages);
3470 3471 3472 3473
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3474 3475
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3476 3477 3478
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3479
	memcg->kmemcg_id = memcg_id;
3480
out:
3481 3482 3483 3484
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3485
				   unsigned long limit)
3486 3487 3488
{
	int ret;

3489
	mutex_lock(&memcg_limit_mutex);
3490
	if (!memcg_kmem_is_active(memcg))
3491
		ret = memcg_activate_kmem(memcg, limit);
3492
	else
3493 3494
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3495 3496 3497
	return ret;
}

3498
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3499
{
3500
	int ret = 0;
3501
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3502

3503 3504
	if (!parent)
		return 0;
3505

3506
	mutex_lock(&memcg_limit_mutex);
3507
	/*
3508 3509
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3510
	 */
3511
	if (memcg_kmem_is_active(parent))
3512 3513
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3514
	return ret;
3515
}
3516 3517
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3518
				   unsigned long limit)
3519 3520 3521
{
	return -EINVAL;
}
3522
#endif /* CONFIG_MEMCG_KMEM */
3523

3524 3525 3526 3527
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3528 3529
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3530
{
3531
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3532
	unsigned long nr_pages;
3533 3534
	int ret;

3535
	buf = strstrip(buf);
3536 3537 3538
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3539

3540
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3541
	case RES_LIMIT:
3542 3543 3544 3545
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3546 3547 3548
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3549
			break;
3550 3551
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3552
			break;
3553 3554 3555 3556
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3557
		break;
3558 3559 3560
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3561 3562
		break;
	}
3563
	return ret ?: nbytes;
B
Balbir Singh 已提交
3564 3565
}

3566 3567
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3568
{
3569
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3570
	struct page_counter *counter;
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3585

3586
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3587
	case RES_MAX_USAGE:
3588
		page_counter_reset_watermark(counter);
3589 3590
		break;
	case RES_FAILCNT:
3591
		counter->failcnt = 0;
3592
		break;
3593 3594
	default:
		BUG();
3595
	}
3596

3597
	return nbytes;
3598 3599
}

3600
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3601 3602
					struct cftype *cft)
{
3603
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3604 3605
}

3606
#ifdef CONFIG_MMU
3607
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3608 3609
					struct cftype *cft, u64 val)
{
3610
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3611 3612 3613

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3614

3615
	/*
3616 3617 3618 3619
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3620
	 */
3621
	memcg->move_charge_at_immigrate = val;
3622 3623
	return 0;
}
3624
#else
3625
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3626 3627 3628 3629 3630
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3631

3632
#ifdef CONFIG_NUMA
3633
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3634
{
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3647
	int nid;
3648
	unsigned long nr;
3649
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3650

3651 3652 3653 3654 3655 3656 3657 3658 3659
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3660 3661
	}

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3677 3678 3679 3680 3681 3682
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3683
static int memcg_stat_show(struct seq_file *m, void *v)
3684
{
3685
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3686
	unsigned long memory, memsw;
3687 3688
	struct mem_cgroup *mi;
	unsigned int i;
3689

3690 3691
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3692
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3693
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3694
			continue;
3695 3696
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3697
	}
L
Lee Schermerhorn 已提交
3698

3699 3700 3701 3702 3703 3704 3705 3706
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3707
	/* Hierarchical information */
3708 3709 3710 3711
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3712
	}
3713 3714 3715 3716 3717
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3718

3719 3720 3721
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3722
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3723
			continue;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3744
	}
K
KAMEZAWA Hiroyuki 已提交
3745

K
KOSAKI Motohiro 已提交
3746 3747 3748 3749
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3750
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3751 3752 3753 3754 3755
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3756
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3757
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3758

3759 3760 3761 3762
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3763
			}
3764 3765 3766 3767
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3768 3769 3770
	}
#endif

3771 3772 3773
	return 0;
}

3774 3775
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3776
{
3777
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3778

3779
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3780 3781
}

3782 3783
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3784
{
3785
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3786

3787
	if (val > 100)
K
KOSAKI Motohiro 已提交
3788 3789
		return -EINVAL;

3790
	if (css->parent)
3791 3792 3793
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3794

K
KOSAKI Motohiro 已提交
3795 3796 3797
	return 0;
}

3798 3799 3800
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3801
	unsigned long usage;
3802 3803 3804 3805
	int i;

	rcu_read_lock();
	if (!swap)
3806
		t = rcu_dereference(memcg->thresholds.primary);
3807
	else
3808
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3809 3810 3811 3812

	if (!t)
		goto unlock;

3813
	usage = mem_cgroup_usage(memcg, swap);
3814 3815

	/*
3816
	 * current_threshold points to threshold just below or equal to usage.
3817 3818 3819
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3820
	i = t->current_threshold;
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3844
	t->current_threshold = i - 1;
3845 3846 3847 3848 3849 3850
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3851 3852 3853 3854 3855 3856 3857
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3858 3859 3860 3861 3862 3863 3864
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3865 3866 3867 3868 3869 3870 3871
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3872 3873
}

3874
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3875 3876 3877
{
	struct mem_cgroup_eventfd_list *ev;

3878 3879
	spin_lock(&memcg_oom_lock);

3880
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3881
		eventfd_signal(ev->eventfd, 1);
3882 3883

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3884 3885 3886
	return 0;
}

3887
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3888
{
K
KAMEZAWA Hiroyuki 已提交
3889 3890
	struct mem_cgroup *iter;

3891
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3892
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3893 3894
}

3895
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3896
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3897
{
3898 3899
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3900 3901
	unsigned long threshold;
	unsigned long usage;
3902
	int i, size, ret;
3903

3904
	ret = page_counter_memparse(args, &threshold);
3905 3906 3907 3908
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3909

3910
	if (type == _MEM) {
3911
		thresholds = &memcg->thresholds;
3912
		usage = mem_cgroup_usage(memcg, false);
3913
	} else if (type == _MEMSWAP) {
3914
		thresholds = &memcg->memsw_thresholds;
3915
		usage = mem_cgroup_usage(memcg, true);
3916
	} else
3917 3918 3919
		BUG();

	/* Check if a threshold crossed before adding a new one */
3920
	if (thresholds->primary)
3921 3922
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3923
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3924 3925

	/* Allocate memory for new array of thresholds */
3926
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3927
			GFP_KERNEL);
3928
	if (!new) {
3929 3930 3931
		ret = -ENOMEM;
		goto unlock;
	}
3932
	new->size = size;
3933 3934

	/* Copy thresholds (if any) to new array */
3935 3936
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3937
				sizeof(struct mem_cgroup_threshold));
3938 3939
	}

3940
	/* Add new threshold */
3941 3942
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3943 3944

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3945
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3946 3947 3948
			compare_thresholds, NULL);

	/* Find current threshold */
3949
	new->current_threshold = -1;
3950
	for (i = 0; i < size; i++) {
3951
		if (new->entries[i].threshold <= usage) {
3952
			/*
3953 3954
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3955 3956
			 * it here.
			 */
3957
			++new->current_threshold;
3958 3959
		} else
			break;
3960 3961
	}

3962 3963 3964 3965 3966
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3967

3968
	/* To be sure that nobody uses thresholds */
3969 3970 3971 3972 3973 3974 3975 3976
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3977
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3978 3979
	struct eventfd_ctx *eventfd, const char *args)
{
3980
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3981 3982
}

3983
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3984 3985
	struct eventfd_ctx *eventfd, const char *args)
{
3986
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3987 3988
}

3989
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3990
	struct eventfd_ctx *eventfd, enum res_type type)
3991
{
3992 3993
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3994
	unsigned long usage;
3995
	int i, j, size;
3996 3997

	mutex_lock(&memcg->thresholds_lock);
3998 3999

	if (type == _MEM) {
4000
		thresholds = &memcg->thresholds;
4001
		usage = mem_cgroup_usage(memcg, false);
4002
	} else if (type == _MEMSWAP) {
4003
		thresholds = &memcg->memsw_thresholds;
4004
		usage = mem_cgroup_usage(memcg, true);
4005
	} else
4006 4007
		BUG();

4008 4009 4010
	if (!thresholds->primary)
		goto unlock;

4011 4012 4013 4014
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4015 4016 4017
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4018 4019 4020
			size++;
	}

4021
	new = thresholds->spare;
4022

4023 4024
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4025 4026
		kfree(new);
		new = NULL;
4027
		goto swap_buffers;
4028 4029
	}

4030
	new->size = size;
4031 4032

	/* Copy thresholds and find current threshold */
4033 4034 4035
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4036 4037
			continue;

4038
		new->entries[j] = thresholds->primary->entries[i];
4039
		if (new->entries[j].threshold <= usage) {
4040
			/*
4041
			 * new->current_threshold will not be used
4042 4043 4044
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4045
			++new->current_threshold;
4046 4047 4048 4049
		}
		j++;
	}

4050
swap_buffers:
4051 4052
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4053 4054 4055 4056 4057 4058
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4059
	rcu_assign_pointer(thresholds->primary, new);
4060

4061
	/* To be sure that nobody uses thresholds */
4062
	synchronize_rcu();
4063
unlock:
4064 4065
	mutex_unlock(&memcg->thresholds_lock);
}
4066

4067
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4068 4069
	struct eventfd_ctx *eventfd)
{
4070
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4071 4072
}

4073
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4074 4075
	struct eventfd_ctx *eventfd)
{
4076
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4077 4078
}

4079
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4080
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4081 4082 4083 4084 4085 4086 4087
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4088
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4089 4090 4091 4092 4093

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4094
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4095
		eventfd_signal(eventfd, 1);
4096
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4097 4098 4099 4100

	return 0;
}

4101
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4102
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4103 4104 4105
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4106
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4107

4108
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4109 4110 4111 4112 4113 4114
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4115
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4116 4117
}

4118
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4119
{
4120
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4121

4122 4123
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4124 4125 4126
	return 0;
}

4127
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4128 4129
	struct cftype *cft, u64 val)
{
4130
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4131 4132

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4133
	if (!css->parent || !((val == 0) || (val == 1)))
4134 4135
		return -EINVAL;

4136
	memcg->oom_kill_disable = val;
4137
	if (!val)
4138
		memcg_oom_recover(memcg);
4139

4140 4141 4142
	return 0;
}

A
Andrew Morton 已提交
4143
#ifdef CONFIG_MEMCG_KMEM
4144
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4145
{
4146 4147 4148 4149 4150
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4151

4152
	return mem_cgroup_sockets_init(memcg, ss);
4153
}
4154

4155
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4156
{
4157
	memcg_unregister_all_caches(memcg);
4158
	mem_cgroup_sockets_destroy(memcg);
4159
}
4160
#else
4161
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4162 4163 4164
{
	return 0;
}
G
Glauber Costa 已提交
4165

4166 4167 4168
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4169 4170
#endif

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4184 4185 4186 4187 4188
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4189
static void memcg_event_remove(struct work_struct *work)
4190
{
4191 4192
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4193
	struct mem_cgroup *memcg = event->memcg;
4194 4195 4196

	remove_wait_queue(event->wqh, &event->wait);

4197
	event->unregister_event(memcg, event->eventfd);
4198 4199 4200 4201 4202 4203

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4204
	css_put(&memcg->css);
4205 4206 4207 4208 4209 4210 4211
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4212 4213
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4214
{
4215 4216
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4217
	struct mem_cgroup *memcg = event->memcg;
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4230
		spin_lock(&memcg->event_list_lock);
4231 4232 4233 4234 4235 4236 4237 4238
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4239
		spin_unlock(&memcg->event_list_lock);
4240 4241 4242 4243 4244
	}

	return 0;
}

4245
static void memcg_event_ptable_queue_proc(struct file *file,
4246 4247
		wait_queue_head_t *wqh, poll_table *pt)
{
4248 4249
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4250 4251 4252 4253 4254 4255

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4256 4257
 * DO NOT USE IN NEW FILES.
 *
4258 4259 4260 4261 4262
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4263 4264
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4265
{
4266
	struct cgroup_subsys_state *css = of_css(of);
4267
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4268
	struct mem_cgroup_event *event;
4269 4270 4271 4272
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4273
	const char *name;
4274 4275 4276
	char *endp;
	int ret;

4277 4278 4279
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4280 4281
	if (*endp != ' ')
		return -EINVAL;
4282
	buf = endp + 1;
4283

4284
	cfd = simple_strtoul(buf, &endp, 10);
4285 4286
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4287
	buf = endp + 1;
4288 4289 4290 4291 4292

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4293
	event->memcg = memcg;
4294
	INIT_LIST_HEAD(&event->list);
4295 4296 4297
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4323 4324 4325 4326 4327
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4328 4329
	 *
	 * DO NOT ADD NEW FILES.
4330
	 */
A
Al Viro 已提交
4331
	name = cfile.file->f_path.dentry->d_name.name;
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4343 4344
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4345 4346 4347 4348 4349
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4350
	/*
4351 4352 4353
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4354
	 */
A
Al Viro 已提交
4355
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4356
					       &memory_cgrp_subsys);
4357
	ret = -EINVAL;
4358
	if (IS_ERR(cfile_css))
4359
		goto out_put_cfile;
4360 4361
	if (cfile_css != css) {
		css_put(cfile_css);
4362
		goto out_put_cfile;
4363
	}
4364

4365
	ret = event->register_event(memcg, event->eventfd, buf);
4366 4367 4368 4369 4370
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4371 4372 4373
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4374 4375 4376 4377

	fdput(cfile);
	fdput(efile);

4378
	return nbytes;
4379 4380

out_put_css:
4381
	css_put(css);
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4394 4395
static struct cftype mem_cgroup_files[] = {
	{
4396
		.name = "usage_in_bytes",
4397
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4398
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4399
	},
4400 4401
	{
		.name = "max_usage_in_bytes",
4402
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4403
		.write = mem_cgroup_reset,
4404
		.read_u64 = mem_cgroup_read_u64,
4405
	},
B
Balbir Singh 已提交
4406
	{
4407
		.name = "limit_in_bytes",
4408
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4409
		.write = mem_cgroup_write,
4410
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4411
	},
4412 4413 4414
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4415
		.write = mem_cgroup_write,
4416
		.read_u64 = mem_cgroup_read_u64,
4417
	},
B
Balbir Singh 已提交
4418 4419
	{
		.name = "failcnt",
4420
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4421
		.write = mem_cgroup_reset,
4422
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4423
	},
4424 4425
	{
		.name = "stat",
4426
		.seq_show = memcg_stat_show,
4427
	},
4428 4429
	{
		.name = "force_empty",
4430
		.write = mem_cgroup_force_empty_write,
4431
	},
4432 4433 4434 4435 4436
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4437
	{
4438
		.name = "cgroup.event_control",		/* XXX: for compat */
4439
		.write = memcg_write_event_control,
4440 4441 4442
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4443 4444 4445 4446 4447
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4448 4449 4450 4451 4452
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4453 4454
	{
		.name = "oom_control",
4455
		.seq_show = mem_cgroup_oom_control_read,
4456
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4457 4458
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4459 4460 4461
	{
		.name = "pressure_level",
	},
4462 4463 4464
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4465
		.seq_show = memcg_numa_stat_show,
4466 4467
	},
#endif
4468 4469 4470 4471
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4472
		.write = mem_cgroup_write,
4473
		.read_u64 = mem_cgroup_read_u64,
4474 4475 4476 4477
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4478
		.read_u64 = mem_cgroup_read_u64,
4479 4480 4481 4482
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4483
		.write = mem_cgroup_reset,
4484
		.read_u64 = mem_cgroup_read_u64,
4485 4486 4487 4488
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4489
		.write = mem_cgroup_reset,
4490
		.read_u64 = mem_cgroup_read_u64,
4491
	},
4492 4493 4494
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4495 4496 4497 4498
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4499 4500
	},
#endif
4501
#endif
4502
	{ },	/* terminate */
4503
};
4504

4505 4506 4507 4508 4509
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4510
		.read_u64 = mem_cgroup_read_u64,
4511 4512 4513 4514
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4515
		.write = mem_cgroup_reset,
4516
		.read_u64 = mem_cgroup_read_u64,
4517 4518 4519 4520
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4521
		.write = mem_cgroup_write,
4522
		.read_u64 = mem_cgroup_read_u64,
4523 4524 4525 4526
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4527
		.write = mem_cgroup_reset,
4528
		.read_u64 = mem_cgroup_read_u64,
4529 4530 4531 4532
	},
	{ },	/* terminate */
};
#endif
4533
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4534 4535
{
	struct mem_cgroup_per_node *pn;
4536
	struct mem_cgroup_per_zone *mz;
4537
	int zone, tmp = node;
4538 4539 4540 4541 4542 4543 4544 4545
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4546 4547
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4548
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4549 4550
	if (!pn)
		return 1;
4551 4552 4553

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4554
		lruvec_init(&mz->lruvec);
4555 4556
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4557
		mz->memcg = memcg;
4558
	}
4559
	memcg->nodeinfo[node] = pn;
4560 4561 4562
	return 0;
}

4563
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4564
{
4565
	kfree(memcg->nodeinfo[node]);
4566 4567
}

4568 4569
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4570
	struct mem_cgroup *memcg;
4571
	size_t size;
4572

4573 4574
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4575

4576
	memcg = kzalloc(size, GFP_KERNEL);
4577
	if (!memcg)
4578 4579
		return NULL;

4580 4581
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4582
		goto out_free;
4583 4584
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4585 4586

out_free:
4587
	kfree(memcg);
4588
	return NULL;
4589 4590
}

4591
/*
4592 4593 4594 4595 4596 4597 4598 4599
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4600
 */
4601 4602

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4603
{
4604
	int node;
4605

4606
	mem_cgroup_remove_from_trees(memcg);
4607 4608 4609 4610 4611 4612

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4613
	disarm_static_keys(memcg);
4614
	kfree(memcg);
4615
}
4616

4617 4618 4619
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4620
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4621
{
4622
	if (!memcg->memory.parent)
4623
		return NULL;
4624
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4625
}
G
Glauber Costa 已提交
4626
EXPORT_SYMBOL(parent_mem_cgroup);
4627

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4651
static struct cgroup_subsys_state * __ref
4652
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4653
{
4654
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4655
	long error = -ENOMEM;
4656
	int node;
B
Balbir Singh 已提交
4657

4658 4659
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4660
		return ERR_PTR(error);
4661

B
Bob Liu 已提交
4662
	for_each_node(node)
4663
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4664
			goto free_out;
4665

4666
	/* root ? */
4667
	if (parent_css == NULL) {
4668
		root_mem_cgroup = memcg;
4669
		page_counter_init(&memcg->memory, NULL);
4670
		memcg->soft_limit = PAGE_COUNTER_MAX;
4671 4672
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4673
	}
4674

4675 4676 4677 4678 4679
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4680
	vmpressure_init(&memcg->vmpressure);
4681 4682
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4683 4684 4685 4686
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
#endif
4687 4688 4689 4690 4691 4692 4693 4694 4695

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4696
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4697
{
4698
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4699
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4700
	int ret;
4701

4702
	if (css->id > MEM_CGROUP_ID_MAX)
4703 4704
		return -ENOSPC;

T
Tejun Heo 已提交
4705
	if (!parent)
4706 4707
		return 0;

4708
	mutex_lock(&memcg_create_mutex);
4709 4710 4711 4712 4713 4714

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4715
		page_counter_init(&memcg->memory, &parent->memory);
4716
		memcg->soft_limit = PAGE_COUNTER_MAX;
4717 4718
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4719

4720
		/*
4721 4722
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4723
		 */
4724
	} else {
4725
		page_counter_init(&memcg->memory, NULL);
4726
		memcg->soft_limit = PAGE_COUNTER_MAX;
4727 4728
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4729 4730 4731 4732 4733
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4734
		if (parent != root_mem_cgroup)
4735
			memory_cgrp_subsys.broken_hierarchy = true;
4736
	}
4737
	mutex_unlock(&memcg_create_mutex);
4738

4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4751 4752
}

4753
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4754
{
4755
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4756
	struct mem_cgroup_event *event, *tmp;
4757 4758 4759 4760 4761 4762

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4763 4764
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4765 4766 4767
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4768
	spin_unlock(&memcg->event_list_lock);
4769

4770
	vmpressure_cleanup(&memcg->vmpressure);
4771 4772
}

4773
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4774
{
4775
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4776

4777
	memcg_destroy_kmem(memcg);
4778
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4779 4780
}

4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4798 4799 4800
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4801
	memcg->soft_limit = PAGE_COUNTER_MAX;
4802 4803
}

4804
#ifdef CONFIG_MMU
4805
/* Handlers for move charge at task migration. */
4806
static int mem_cgroup_do_precharge(unsigned long count)
4807
{
4808
	int ret;
4809 4810

	/* Try a single bulk charge without reclaim first */
4811
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4812
	if (!ret) {
4813 4814 4815
		mc.precharge += count;
		return ret;
	}
4816
	if (ret == -EINTR) {
4817
		cancel_charge(root_mem_cgroup, count);
4818 4819
		return ret;
	}
4820 4821

	/* Try charges one by one with reclaim */
4822
	while (count--) {
4823
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4824 4825 4826
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4827 4828
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4829
		 */
4830
		if (ret == -EINTR)
4831
			cancel_charge(root_mem_cgroup, 1);
4832 4833
		if (ret)
			return ret;
4834
		mc.precharge++;
4835
		cond_resched();
4836
	}
4837
	return 0;
4838 4839 4840
}

/**
4841
 * get_mctgt_type - get target type of moving charge
4842 4843 4844
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4845
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4846 4847 4848 4849 4850 4851
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4852 4853 4854
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4855 4856 4857 4858 4859
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4860
	swp_entry_t	ent;
4861 4862 4863
};

enum mc_target_type {
4864
	MC_TARGET_NONE = 0,
4865
	MC_TARGET_PAGE,
4866
	MC_TARGET_SWAP,
4867 4868
};

D
Daisuke Nishimura 已提交
4869 4870
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4871
{
D
Daisuke Nishimura 已提交
4872
	struct page *page = vm_normal_page(vma, addr, ptent);
4873

D
Daisuke Nishimura 已提交
4874 4875 4876 4877
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
4878
		if (!move_anon())
D
Daisuke Nishimura 已提交
4879
			return NULL;
4880 4881
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4882 4883 4884 4885 4886 4887 4888
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4889
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4890 4891 4892 4893 4894 4895 4896 4897
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
4898 4899 4900 4901
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4902
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4903 4904 4905 4906 4907
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4908 4909 4910 4911 4912 4913 4914
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4915

4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
4929
	pgoff = linear_page_index(vma, addr);
4930 4931

	/* page is moved even if it's not RSS of this task(page-faulted). */
4932 4933
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4946
#endif
4947 4948 4949
	return page;
}

4950
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4951 4952 4953
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4954
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4955 4956 4957 4958 4959 4960
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4961
	else if (pte_none(ptent))
4962
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4963 4964

	if (!page && !ent.val)
4965
		return ret;
4966 4967
	if (page) {
		/*
4968
		 * Do only loose check w/o serialization.
4969
		 * mem_cgroup_move_account() checks the page is valid or
4970
		 * not under LRU exclusion.
4971
		 */
4972
		if (page->mem_cgroup == mc.from) {
4973 4974 4975 4976 4977 4978 4979
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4980 4981
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4982
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4983 4984 4985
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4986 4987 4988 4989
	}
	return ret;
}

4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5003
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5004 5005
	if (!move_anon())
		return ret;
5006
	if (page->mem_cgroup == mc.from) {
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5023 5024 5025 5026 5027 5028 5029 5030
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5031
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5032 5033
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5034
		spin_unlock(ptl);
5035
		return 0;
5036
	}
5037

5038 5039
	if (pmd_trans_unstable(pmd))
		return 0;
5040 5041
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5042
		if (get_mctgt_type(vma, addr, *pte, NULL))
5043 5044 5045 5046
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5047 5048 5049
	return 0;
}

5050 5051 5052 5053 5054
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5055
	down_read(&mm->mmap_sem);
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5067
	up_read(&mm->mmap_sem);
5068 5069 5070 5071 5072 5073 5074 5075 5076

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5077 5078 5079 5080 5081
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5082 5083
}

5084 5085
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5086
{
5087 5088 5089
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5090
	/* we must uncharge all the leftover precharges from mc.to */
5091
	if (mc.precharge) {
5092
		cancel_charge(mc.to, mc.precharge);
5093 5094 5095 5096 5097 5098 5099
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5100
		cancel_charge(mc.from, mc.moved_charge);
5101
		mc.moved_charge = 0;
5102
	}
5103 5104 5105
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5106
		if (!mem_cgroup_is_root(mc.from))
5107
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5108

5109
		/*
5110 5111
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5112
		 */
5113
		if (!mem_cgroup_is_root(mc.to))
5114 5115
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5116
		css_put_many(&mc.from->css, mc.moved_swap);
5117

L
Li Zefan 已提交
5118
		/* we've already done css_get(mc.to) */
5119 5120
		mc.moved_swap = 0;
	}
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5134
	spin_lock(&mc.lock);
5135 5136
	mc.from = NULL;
	mc.to = NULL;
5137
	spin_unlock(&mc.lock);
5138 5139
}

5140
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5141
				 struct cgroup_taskset *tset)
5142
{
5143
	struct task_struct *p = cgroup_taskset_first(tset);
5144
	int ret = 0;
5145
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5146
	unsigned long move_charge_at_immigrate;
5147

5148 5149 5150 5151 5152 5153 5154
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5155 5156 5157
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5158
		VM_BUG_ON(from == memcg);
5159 5160 5161 5162 5163

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5164 5165 5166 5167
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5168
			VM_BUG_ON(mc.moved_charge);
5169
			VM_BUG_ON(mc.moved_swap);
5170

5171
			spin_lock(&mc.lock);
5172
			mc.from = from;
5173
			mc.to = memcg;
5174
			mc.immigrate_flags = move_charge_at_immigrate;
5175
			spin_unlock(&mc.lock);
5176
			/* We set mc.moving_task later */
5177 5178 5179 5180

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5181 5182
		}
		mmput(mm);
5183 5184 5185 5186
	}
	return ret;
}

5187
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5188
				     struct cgroup_taskset *tset)
5189
{
5190 5191
	if (mc.to)
		mem_cgroup_clear_mc();
5192 5193
}

5194 5195 5196
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5197
{
5198 5199 5200 5201
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5202 5203 5204
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5205

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5216
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5217
		if (mc.precharge < HPAGE_PMD_NR) {
5218
			spin_unlock(ptl);
5219 5220 5221 5222 5223 5224 5225
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5226
							     mc.from, mc.to)) {
5227 5228 5229 5230 5231 5232 5233
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5234
		spin_unlock(ptl);
5235
		return 0;
5236 5237
	}

5238 5239
	if (pmd_trans_unstable(pmd))
		return 0;
5240 5241 5242 5243
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5244
		swp_entry_t ent;
5245 5246 5247 5248

		if (!mc.precharge)
			break;

5249
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5250 5251 5252 5253
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5254
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5255
				mc.precharge--;
5256 5257
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5258 5259
			}
			putback_lru_page(page);
5260
put:			/* get_mctgt_type() gets the page */
5261 5262
			put_page(page);
			break;
5263 5264
		case MC_TARGET_SWAP:
			ent = target.ent;
5265
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5266
				mc.precharge--;
5267 5268 5269
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5270
			break;
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5285
		ret = mem_cgroup_do_precharge(1);
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5298 5299 5300 5301 5302 5303 5304
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5336
	up_read(&mm->mmap_sem);
5337
	atomic_dec(&mc.from->moving_account);
5338 5339
}

5340
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5341
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5342
{
5343
	struct task_struct *p = cgroup_taskset_first(tset);
5344
	struct mm_struct *mm = get_task_mm(p);
5345 5346

	if (mm) {
5347 5348
		if (mc.to)
			mem_cgroup_move_charge(mm);
5349 5350
		mmput(mm);
	}
5351 5352
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5353
}
5354
#else	/* !CONFIG_MMU */
5355
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5356
				 struct cgroup_taskset *tset)
5357 5358 5359
{
	return 0;
}
5360
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5361
				     struct cgroup_taskset *tset)
5362 5363
{
}
5364
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5365
				 struct cgroup_taskset *tset)
5366 5367 5368
{
}
#endif
B
Balbir Singh 已提交
5369

5370 5371
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5372 5373
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5374
 */
5375
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5376 5377
{
	/*
5378
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5379 5380 5381
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5382
	if (cgroup_on_dfl(root_css->cgroup))
5383
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5384 5385
}

5386
struct cgroup_subsys memory_cgrp_subsys = {
5387
	.css_alloc = mem_cgroup_css_alloc,
5388
	.css_online = mem_cgroup_css_online,
5389 5390
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5391
	.css_reset = mem_cgroup_css_reset,
5392 5393
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5394
	.attach = mem_cgroup_move_task,
5395
	.bind = mem_cgroup_bind,
5396
	.legacy_cftypes = mem_cgroup_files,
5397
	.early_init = 0,
B
Balbir Singh 已提交
5398
};
5399

A
Andrew Morton 已提交
5400
#ifdef CONFIG_MEMCG_SWAP
5401 5402
static int __init enable_swap_account(char *s)
{
5403
	if (!strcmp(s, "1"))
5404
		really_do_swap_account = 1;
5405
	else if (!strcmp(s, "0"))
5406 5407 5408
		really_do_swap_account = 0;
	return 1;
}
5409
__setup("swapaccount=", enable_swap_account);
5410

5411 5412
static void __init memsw_file_init(void)
{
5413 5414
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5415 5416 5417 5418 5419 5420 5421 5422
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5423
}
5424

5425
#else
5426
static void __init enable_swap_cgroup(void)
5427 5428
{
}
5429
#endif
5430

5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5441
	struct mem_cgroup *memcg;
5442 5443 5444 5445 5446 5447 5448 5449
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

5450
	memcg = page->mem_cgroup;
5451 5452

	/* Readahead page, never charged */
5453
	if (!memcg)
5454 5455
		return;

5456
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5457
	VM_BUG_ON_PAGE(oldid, page);
5458 5459
	mem_cgroup_swap_statistics(memcg, true);

5460
	page->mem_cgroup = NULL;
5461

5462 5463 5464 5465 5466
	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5467

5468 5469
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5490
		if (!mem_cgroup_is_root(memcg))
5491
			page_counter_uncharge(&memcg->memsw, 1);
5492 5493 5494 5495 5496 5497 5498
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5534
		if (page->mem_cgroup)
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5595 5596
	commit_charge(page, memcg, lrucare);

5597 5598 5599 5600 5601
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5602 5603 5604 5605
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5647 5648 5649 5650
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5651
	unsigned long nr_pages = nr_anon + nr_file;
5652 5653
	unsigned long flags;

5654
	if (!mem_cgroup_is_root(memcg)) {
5655 5656 5657
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5658 5659
		memcg_oom_recover(memcg);
	}
5660 5661 5662 5663 5664 5665

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5666
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5667 5668
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5669 5670

	if (!mem_cgroup_is_root(memcg))
5671
		css_put_many(&memcg->css, nr_pages);
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5694
		if (!page->mem_cgroup)
5695 5696 5697 5698
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5699
		 * page->mem_cgroup at this point, we have fully
5700
		 * exclusive access to the page.
5701 5702
		 */

5703
		if (memcg != page->mem_cgroup) {
5704
			if (memcg) {
5705 5706 5707
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5708
			}
5709
			memcg = page->mem_cgroup;
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5723
		page->mem_cgroup = NULL;
5724 5725 5726 5727 5728

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5729 5730
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5731 5732
}

5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5745
	/* Don't touch page->lru of any random page, pre-check: */
5746
	if (!page->mem_cgroup)
5747 5748
		return;

5749 5750 5751
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5752

5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5764

5765 5766
	if (!list_empty(page_list))
		uncharge_list(page_list);
5767 5768 5769 5770 5771 5772
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5773
 * @lrucare: either or both pages might be on the LRU already
5774 5775 5776 5777 5778 5779 5780 5781
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5782
	struct mem_cgroup *memcg;
5783 5784 5785 5786 5787 5788 5789
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5790 5791
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5792 5793 5794 5795 5796

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5797
	if (newpage->mem_cgroup)
5798 5799
		return;

5800 5801 5802 5803 5804 5805
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5806
	memcg = oldpage->mem_cgroup;
5807
	if (!memcg)
5808 5809 5810 5811 5812
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5813
	oldpage->mem_cgroup = NULL;
5814 5815 5816 5817

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5818
	commit_charge(newpage, memcg, lrucare);
5819 5820
}

5821
/*
5822 5823 5824 5825 5826 5827
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5828 5829 5830 5831
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5832
	enable_swap_cgroup();
5833
	mem_cgroup_soft_limit_tree_init();
5834
	memcg_stock_init();
5835 5836 5837
	return 0;
}
subsys_initcall(mem_cgroup_init);