mmu.c 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 *  linux/arch/arm/mm/mmu.c
 *
 *  Copyright (C) 1995-2005 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
10
#include <linux/module.h>
11 12 13 14 15
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
R
Russell King 已提交
16
#include <linux/memblock.h>
17
#include <linux/fs.h>
18
#include <linux/vmalloc.h>
19
#include <linux/sizes.h>
20

21
#include <asm/cp15.h>
22
#include <asm/cputype.h>
R
Russell King 已提交
23
#include <asm/sections.h>
24
#include <asm/cachetype.h>
K
Kees Cook 已提交
25
#include <asm/fixmap.h>
26
#include <asm/sections.h>
27
#include <asm/setup.h>
28
#include <asm/smp_plat.h>
29
#include <asm/tlb.h>
N
Nicolas Pitre 已提交
30
#include <asm/highmem.h>
31
#include <asm/system_info.h>
32
#include <asm/traps.h>
33 34
#include <asm/procinfo.h>
#include <asm/memory.h>
35 36 37

#include <asm/mach/arch.h>
#include <asm/mach/map.h>
R
Rob Herring 已提交
38
#include <asm/mach/pci.h>
39
#include <asm/fixmap.h>
40

41
#include "fault.h"
42
#include "mm.h"
43
#include "tcm.h"
44 45 46 47 48 49

/*
 * empty_zero_page is a special page that is used for
 * zero-initialized data and COW.
 */
struct page *empty_zero_page;
50
EXPORT_SYMBOL(empty_zero_page);
51 52 53 54 55 56

/*
 * The pmd table for the upper-most set of pages.
 */
pmd_t *top_pmd;

57 58
pmdval_t user_pmd_table = _PAGE_USER_TABLE;

59 60 61 62 63 64 65 66
#define CPOLICY_UNCACHED	0
#define CPOLICY_BUFFERED	1
#define CPOLICY_WRITETHROUGH	2
#define CPOLICY_WRITEBACK	3
#define CPOLICY_WRITEALLOC	4

static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
static unsigned int ecc_mask __initdata = 0;
67
pgprot_t pgprot_user;
68
pgprot_t pgprot_kernel;
69 70 71
pgprot_t pgprot_hyp_device;
pgprot_t pgprot_s2;
pgprot_t pgprot_s2_device;
72

73
EXPORT_SYMBOL(pgprot_user);
74 75 76 77 78
EXPORT_SYMBOL(pgprot_kernel);

struct cachepolicy {
	const char	policy[16];
	unsigned int	cr_mask;
79
	pmdval_t	pmd;
80
	pteval_t	pte;
81
	pteval_t	pte_s2;
82 83
};

84 85 86 87 88 89
#ifdef CONFIG_ARM_LPAE
#define s2_policy(policy)	policy
#else
#define s2_policy(policy)	0
#endif

90 91 92 93 94
static struct cachepolicy cache_policies[] __initdata = {
	{
		.policy		= "uncached",
		.cr_mask	= CR_W|CR_C,
		.pmd		= PMD_SECT_UNCACHED,
95
		.pte		= L_PTE_MT_UNCACHED,
96
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
97 98 99 100
	}, {
		.policy		= "buffered",
		.cr_mask	= CR_C,
		.pmd		= PMD_SECT_BUFFERED,
101
		.pte		= L_PTE_MT_BUFFERABLE,
102
		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
103 104 105 106
	}, {
		.policy		= "writethrough",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WT,
107
		.pte		= L_PTE_MT_WRITETHROUGH,
108
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
109 110 111 112
	}, {
		.policy		= "writeback",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WB,
113
		.pte		= L_PTE_MT_WRITEBACK,
114
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
115 116 117 118
	}, {
		.policy		= "writealloc",
		.cr_mask	= 0,
		.pmd		= PMD_SECT_WBWA,
119
		.pte		= L_PTE_MT_WRITEALLOC,
120
		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
121 122 123
	}
};

124
#ifdef CONFIG_CPU_CP15
125 126
static unsigned long initial_pmd_value __initdata = 0;

127
/*
128 129 130 131 132
 * Initialise the cache_policy variable with the initial state specified
 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 * the C code sets the page tables up with the same policy as the head
 * assembly code, which avoids an illegal state where the TLBs can get
 * confused.  See comments in early_cachepolicy() for more information.
133
 */
134
void __init init_default_cache_policy(unsigned long pmd)
135 136 137
{
	int i;

138 139
	initial_pmd_value = pmd;

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;

	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
		if (cache_policies[i].pmd == pmd) {
			cachepolicy = i;
			break;
		}

	if (i == ARRAY_SIZE(cache_policies))
		pr_err("ERROR: could not find cache policy\n");
}

/*
 * These are useful for identifying cache coherency problems by allowing
 * the cache or the cache and writebuffer to be turned off.  (Note: the
 * write buffer should not be on and the cache off).
 */
static int __init early_cachepolicy(char *p)
{
	int i, selected = -1;

161 162 163
	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
		int len = strlen(cache_policies[i].policy);

164
		if (memcmp(p, cache_policies[i].policy, len) == 0) {
165
			selected = i;
166 167 168
			break;
		}
	}
169 170 171 172

	if (selected == -1)
		pr_err("ERROR: unknown or unsupported cache policy\n");

173 174 175 176 177 178 179
	/*
	 * This restriction is partly to do with the way we boot; it is
	 * unpredictable to have memory mapped using two different sets of
	 * memory attributes (shared, type, and cache attribs).  We can not
	 * change these attributes once the initial assembly has setup the
	 * page tables.
	 */
180 181 182 183 184 185 186 187 188 189 190
	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
			cache_policies[cachepolicy].policy);
		return 0;
	}

	if (selected != cachepolicy) {
		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
		cachepolicy = selected;
		flush_cache_all();
		set_cr(cr);
191
	}
192
	return 0;
193
}
194
early_param("cachepolicy", early_cachepolicy);
195

196
static int __init early_nocache(char *__unused)
197 198
{
	char *p = "buffered";
R
Russell King 已提交
199
	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
200 201
	early_cachepolicy(p);
	return 0;
202
}
203
early_param("nocache", early_nocache);
204

205
static int __init early_nowrite(char *__unused)
206 207
{
	char *p = "uncached";
R
Russell King 已提交
208
	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
209 210
	early_cachepolicy(p);
	return 0;
211
}
212
early_param("nowb", early_nowrite);
213

214
#ifndef CONFIG_ARM_LPAE
215
static int __init early_ecc(char *p)
216
{
217
	if (memcmp(p, "on", 2) == 0)
218
		ecc_mask = PMD_PROTECTION;
219
	else if (memcmp(p, "off", 3) == 0)
220
		ecc_mask = 0;
221
	return 0;
222
}
223
early_param("ecc", early_ecc);
224
#endif
225

226 227 228 229
#else /* ifdef CONFIG_CPU_CP15 */

static int __init early_cachepolicy(char *p)
{
230
	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
231 232 233 234 235
}
early_param("cachepolicy", early_cachepolicy);

static int __init noalign_setup(char *__unused)
{
236
	pr_warn("noalign kernel parameter not supported without cp15\n");
237 238 239 240 241
}
__setup("noalign", noalign_setup);

#endif /* ifdef CONFIG_CPU_CP15 / else */

242
#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
243
#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
244
#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
245

246
static struct mem_type mem_types[] = {
247
	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
248 249
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
				  L_PTE_SHARED,
250 251 252
		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
				  L_PTE_SHARED,
253
		.prot_l1	= PMD_TYPE_TABLE,
254
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
255 256 257
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
258
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
259
		.prot_l1	= PMD_TYPE_TABLE,
260
		.prot_sect	= PROT_SECT_DEVICE,
261 262 263
		.domain		= DOMAIN_IO,
	},
	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
264
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
265 266 267
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
		.domain		= DOMAIN_IO,
R
Rob Herring 已提交
268
	},
269
	[MT_DEVICE_WC] = {	/* ioremap_wc */
270
		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
271
		.prot_l1	= PMD_TYPE_TABLE,
272
		.prot_sect	= PROT_SECT_DEVICE,
273
		.domain		= DOMAIN_IO,
274
	},
275 276 277 278 279 280
	[MT_UNCACHED] = {
		.prot_pte	= PROT_PTE_DEVICE,
		.prot_l1	= PMD_TYPE_TABLE,
		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
		.domain		= DOMAIN_IO,
	},
281
	[MT_CACHECLEAN] = {
282
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
283 284
		.domain    = DOMAIN_KERNEL,
	},
285
#ifndef CONFIG_ARM_LPAE
286
	[MT_MINICLEAN] = {
287
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
288 289
		.domain    = DOMAIN_KERNEL,
	},
290
#endif
291 292
	[MT_LOW_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
293
				L_PTE_RDONLY,
294
		.prot_l1   = PMD_TYPE_TABLE,
295
		.domain    = DOMAIN_VECTORS,
296 297 298
	},
	[MT_HIGH_VECTORS] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299
				L_PTE_USER | L_PTE_RDONLY,
300
		.prot_l1   = PMD_TYPE_TABLE,
301
		.domain    = DOMAIN_VECTORS,
302
	},
303
	[MT_MEMORY_RWX] = {
304
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
305
		.prot_l1   = PMD_TYPE_TABLE,
306
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
307 308
		.domain    = DOMAIN_KERNEL,
	},
309 310 311 312 313 314 315
	[MT_MEMORY_RW] = {
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
			     L_PTE_XN,
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
316
	[MT_ROM] = {
317
		.prot_sect = PMD_TYPE_SECT,
318 319
		.domain    = DOMAIN_KERNEL,
	},
320
	[MT_MEMORY_RWX_NONCACHED] = {
321
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
322
				L_PTE_MT_BUFFERABLE,
323
		.prot_l1   = PMD_TYPE_TABLE,
324 325 326
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
		.domain    = DOMAIN_KERNEL,
	},
327
	[MT_MEMORY_RW_DTCM] = {
328
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329
				L_PTE_XN,
330 331 332
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
333
	},
334
	[MT_MEMORY_RWX_ITCM] = {
335
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
336
		.prot_l1   = PMD_TYPE_TABLE,
337
		.domain    = DOMAIN_KERNEL,
338
	},
339
	[MT_MEMORY_RW_SO] = {
340
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341
				L_PTE_MT_UNCACHED | L_PTE_XN,
342 343 344 345 346
		.prot_l1   = PMD_TYPE_TABLE,
		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
				PMD_SECT_UNCACHED | PMD_SECT_XN,
		.domain    = DOMAIN_KERNEL,
	},
347
	[MT_MEMORY_DMA_READY] = {
348 349
		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
				L_PTE_XN,
350 351 352
		.prot_l1   = PMD_TYPE_TABLE,
		.domain    = DOMAIN_KERNEL,
	},
353 354
};

355 356 357 358
const struct mem_type *get_mem_type(unsigned int type)
{
	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
}
359
EXPORT_SYMBOL(get_mem_type);
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);

static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;

static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
{
	return &bm_pte[pte_index(addr)];
}

static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
{
	return pte_offset_kernel(dir, addr);
}

static inline pmd_t * __init fixmap_pmd(unsigned long addr)
{
	pgd_t *pgd = pgd_offset_k(addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);

	return pmd;
}

void __init early_fixmap_init(void)
{
	pmd_t *pmd;

	/*
	 * The early fixmap range spans multiple pmds, for which
	 * we are not prepared:
	 */
393
	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
394 395 396 397 398 399 400 401
		     != FIXADDR_TOP >> PMD_SHIFT);

	pmd = fixmap_pmd(FIXADDR_TOP);
	pmd_populate_kernel(&init_mm, pmd, bm_pte);

	pte_offset_fixmap = pte_offset_early_fixmap;
}

K
Kees Cook 已提交
402 403 404 405 406 407 408 409
/*
 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 * As a result, this can only be called with preemption disabled, as under
 * stop_machine().
 */
void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
{
	unsigned long vaddr = __fix_to_virt(idx);
410
	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
K
Kees Cook 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424

	/* Make sure fixmap region does not exceed available allocation. */
	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
		     FIXADDR_END);
	BUG_ON(idx >= __end_of_fixed_addresses);

	if (pgprot_val(prot))
		set_pte_at(NULL, vaddr, pte,
			pfn_pte(phys >> PAGE_SHIFT, prot));
	else
		pte_clear(NULL, vaddr, pte);
	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
}

425 426 427 428 429 430 431
/*
 * Adjust the PMD section entries according to the CPU in use.
 */
static void __init build_mem_type_table(void)
{
	struct cachepolicy *cp;
	unsigned int cr = get_cr();
432
	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
433
	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
434 435 436
	int cpu_arch = cpu_architecture();
	int i;

437
	if (cpu_arch < CPU_ARCH_ARMv6) {
438
#if defined(CONFIG_CPU_DCACHE_DISABLE)
439 440
		if (cachepolicy > CPOLICY_BUFFERED)
			cachepolicy = CPOLICY_BUFFERED;
441
#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
442 443
		if (cachepolicy > CPOLICY_WRITETHROUGH)
			cachepolicy = CPOLICY_WRITETHROUGH;
444
#endif
445
	}
446 447 448 449 450
	if (cpu_arch < CPU_ARCH_ARMv5) {
		if (cachepolicy >= CPOLICY_WRITEALLOC)
			cachepolicy = CPOLICY_WRITEBACK;
		ecc_mask = 0;
	}
451

452 453 454 455 456 457 458 459 460
	if (is_smp()) {
		if (cachepolicy != CPOLICY_WRITEALLOC) {
			pr_warn("Forcing write-allocate cache policy for SMP\n");
			cachepolicy = CPOLICY_WRITEALLOC;
		}
		if (!(initial_pmd_value & PMD_SECT_S)) {
			pr_warn("Forcing shared mappings for SMP\n");
			initial_pmd_value |= PMD_SECT_S;
		}
461
	}
462

463
	/*
464 465 466
	 * Strip out features not present on earlier architectures.
	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
	 * without extended page tables don't have the 'Shared' bit.
467
	 */
468 469 470 471 472 473
	if (cpu_arch < CPU_ARCH_ARMv5)
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
			mem_types[i].prot_sect &= ~PMD_SECT_S;
474 475

	/*
476 477 478
	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
	 * "update-able on write" bit on ARM610).  However, Xscale and
	 * Xscale3 require this bit to be cleared.
479
	 */
480
	if (cpu_is_xscale_family()) {
481
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
482
			mem_types[i].prot_sect &= ~PMD_BIT4;
483 484 485 486
			mem_types[i].prot_l1 &= ~PMD_BIT4;
		}
	} else if (cpu_arch < CPU_ARCH_ARMv6) {
		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
487 488
			if (mem_types[i].prot_l1)
				mem_types[i].prot_l1 |= PMD_BIT4;
489 490 491 492
			if (mem_types[i].prot_sect)
				mem_types[i].prot_sect |= PMD_BIT4;
		}
	}
493

494 495 496 497 498 499 500 501 502 503 504 505 506
	/*
	 * Mark the device areas according to the CPU/architecture.
	 */
	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
		if (!cpu_is_xsc3()) {
			/*
			 * Mark device regions on ARMv6+ as execute-never
			 * to prevent speculative instruction fetches.
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
507 508 509

			/* Also setup NX memory mapping */
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		}
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/*
			 * For ARMv7 with TEX remapping,
			 * - shared device is SXCB=1100
			 * - nonshared device is SXCB=0100
			 * - write combine device mem is SXCB=0001
			 * (Uncached Normal memory)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
		} else if (cpu_is_xsc3()) {
			/*
			 * For Xscale3,
			 * - shared device is TEXCB=00101
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Inner/Outer Uncacheable in xsc3 parlance)
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		} else {
			/*
			 * For ARMv6 and ARMv7 without TEX remapping,
			 * - shared device is TEXCB=00001
			 * - nonshared device is TEXCB=01000
			 * - write combine device mem is TEXCB=00100
			 * (Uncached Normal in ARMv6 parlance).
			 */
			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
		}
	} else {
		/*
		 * On others, write combining is "Uncached/Buffered"
		 */
		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
	}

	/*
	 * Now deal with the memory-type mappings
	 */
555
	cp = &cache_policies[cachepolicy];
556
	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
557
	s2_pgprot = cp->pte_s2;
558 559
	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
560

561
#ifndef CONFIG_ARM_LPAE
562 563 564 565 566 567 568
	/*
	 * We don't use domains on ARMv6 (since this causes problems with
	 * v6/v7 kernels), so we must use a separate memory type for user
	 * r/o, kernel r/w to map the vectors page.
	 */
	if (cpu_arch == CPU_ARCH_ARMv6)
		vecs_pgprot |= L_PTE_MT_VECTORS;
569 570 571 572 573 574

	/*
	 * Check is it with support for the PXN bit
	 * in the Short-descriptor translation table format descriptors.
	 */
	if (cpu_arch == CPU_ARCH_ARMv7 &&
575
		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
576 577
		user_pmd_table |= PMD_PXNTABLE;
	}
578
#endif
579

580 581 582 583
	/*
	 * ARMv6 and above have extended page tables.
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
584
#ifndef CONFIG_ARM_LPAE
585 586 587 588 589 590 591
		/*
		 * Mark cache clean areas and XIP ROM read only
		 * from SVC mode and no access from userspace.
		 */
		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
592
#endif
593

594 595 596 597 598 599
		/*
		 * If the initial page tables were created with the S bit
		 * set, then we need to do the same here for the same
		 * reasons given in early_cachepolicy().
		 */
		if (initial_pmd_value & PMD_SECT_S) {
600 601 602
			user_pgprot |= L_PTE_SHARED;
			kern_pgprot |= L_PTE_SHARED;
			vecs_pgprot |= L_PTE_SHARED;
603
			s2_pgprot |= L_PTE_SHARED;
604 605 606 607
			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
608 609
			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
610 611
			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
612
			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
613 614
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
615
		}
616 617
	}

618 619 620 621 622 623 624
	/*
	 * Non-cacheable Normal - intended for memory areas that must
	 * not cause dirty cache line writebacks when used
	 */
	if (cpu_arch >= CPU_ARCH_ARMv6) {
		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
			/* Non-cacheable Normal is XCB = 001 */
625
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
626 627 628
				PMD_SECT_BUFFERED;
		} else {
			/* For both ARMv6 and non-TEX-remapping ARMv7 */
629
			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
630 631 632
				PMD_SECT_TEX(1);
		}
	} else {
633
		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
634 635
	}

636 637 638 639 640 641
#ifdef CONFIG_ARM_LPAE
	/*
	 * Do not generate access flag faults for the kernel mappings.
	 */
	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		mem_types[i].prot_pte |= PTE_EXT_AF;
642 643
		if (mem_types[i].prot_sect)
			mem_types[i].prot_sect |= PMD_SECT_AF;
644 645 646
	}
	kern_pgprot |= PTE_EXT_AF;
	vecs_pgprot |= PTE_EXT_AF;
647 648 649 650 651

	/*
	 * Set PXN for user mappings
	 */
	user_pgprot |= PTE_EXT_PXN;
652 653
#endif

654
	for (i = 0; i < 16; i++) {
655
		pteval_t v = pgprot_val(protection_map[i]);
656
		protection_map[i] = __pgprot(v | user_pgprot);
657 658
	}

659 660
	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
661

662
	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
663
	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
664
				 L_PTE_DIRTY | kern_pgprot);
665 666 667
	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
	pgprot_s2_device  = __pgprot(s2_device_pgprot);
	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
668 669 670

	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
671 672
	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
673 674
	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
675
	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
676
	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
677 678 679 680 681 682 683 684 685 686 687
	mem_types[MT_ROM].prot_sect |= cp->pmd;

	switch (cp->pmd) {
	case PMD_SECT_WT:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
		break;
	case PMD_SECT_WB:
	case PMD_SECT_WBWA:
		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
		break;
	}
688 689
	pr_info("Memory policy: %sData cache %s\n",
		ecc_mask ? "ECC enabled, " : "", cp->policy);
690 691 692 693 694 695 696 697

	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
		struct mem_type *t = &mem_types[i];
		if (t->prot_l1)
			t->prot_l1 |= PMD_DOMAIN(t->domain);
		if (t->prot_sect)
			t->prot_sect |= PMD_DOMAIN(t->domain);
	}
698 699
}

700 701 702 703 704 705 706 707 708 709 710 711 712
#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
			      unsigned long size, pgprot_t vma_prot)
{
	if (!pfn_valid(pfn))
		return pgprot_noncached(vma_prot);
	else if (file->f_flags & O_SYNC)
		return pgprot_writecombine(vma_prot);
	return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
#endif

713 714
#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)

715
static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
R
Russell King 已提交
716
{
717
	void *ptr = __va(memblock_alloc(sz, align));
R
Russell King 已提交
718 719
	memset(ptr, 0, sz);
	return ptr;
R
Russell King 已提交
720 721
}

722 723 724 725 726
static void __init *early_alloc(unsigned long sz)
{
	return early_alloc_aligned(sz, sz);
}

727 728 729 730
static void *__init late_alloc(unsigned long sz)
{
	void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));

731 732
	if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
		BUG();
733 734 735
	return ptr;
}

736
static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
737 738
				unsigned long prot,
				void *(*alloc)(unsigned long sz))
739
{
740
	if (pmd_none(*pmd)) {
741
		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
742
		__pmd_populate(pmd, __pa(pte), prot);
743
	}
R
Russell King 已提交
744 745 746
	BUG_ON(pmd_bad(*pmd));
	return pte_offset_kernel(pmd, addr);
}
747

748 749 750
static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
				      unsigned long prot)
{
751
	return arm_pte_alloc(pmd, addr, prot, early_alloc);
752 753
}

R
Russell King 已提交
754 755
static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
				  unsigned long end, unsigned long pfn,
756
				  const struct mem_type *type,
757 758
				  void *(*alloc)(unsigned long sz),
				  bool ng)
R
Russell King 已提交
759
{
760
	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
761
	do {
762 763
		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
			    ng ? PTE_EXT_NG : 0);
764 765
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
766 767
}

768
static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
769
			unsigned long end, phys_addr_t phys,
770
			const struct mem_type *type, bool ng)
771
{
772 773
	pmd_t *p = pmd;

774
#ifndef CONFIG_ARM_LPAE
775
	/*
776 777 778 779 780 781 782
	 * In classic MMU format, puds and pmds are folded in to
	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
	 * group of L1 entries making up one logical pointer to
	 * an L2 table (2MB), where as PMDs refer to the individual
	 * L1 entries (1MB). Hence increment to get the correct
	 * offset for odd 1MB sections.
	 * (See arch/arm/include/asm/pgtable-2level.h)
783
	 */
784 785
	if (addr & SECTION_SIZE)
		pmd++;
786
#endif
787
	do {
788
		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
789 790
		phys += SECTION_SIZE;
	} while (pmd++, addr += SECTION_SIZE, addr != end);
791

792
	flush_pmd_entry(p);
793
}
794

795 796
static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
				      unsigned long end, phys_addr_t phys,
797
				      const struct mem_type *type,
798
				      void *(*alloc)(unsigned long sz), bool ng)
799 800 801 802 803
{
	pmd_t *pmd = pmd_offset(pud, addr);
	unsigned long next;

	do {
804
		/*
805 806
		 * With LPAE, we must loop over to map
		 * all the pmds for the given range.
807
		 */
808 809 810 811 812 813 814 815
		next = pmd_addr_end(addr, end);

		/*
		 * Try a section mapping - addr, next and phys must all be
		 * aligned to a section boundary.
		 */
		if (type->prot_sect &&
				((addr | next | phys) & ~SECTION_MASK) == 0) {
816
			__map_init_section(pmd, addr, next, phys, type, ng);
817 818
		} else {
			alloc_init_pte(pmd, addr, next,
819
				       __phys_to_pfn(phys), type, alloc, ng);
820 821 822 823 824
		}

		phys += next - addr;

	} while (pmd++, addr = next, addr != end);
825 826
}

827
static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
828
				  unsigned long end, phys_addr_t phys,
829
				  const struct mem_type *type,
830
				  void *(*alloc)(unsigned long sz), bool ng)
R
Russell King 已提交
831 832 833 834 835 836
{
	pud_t *pud = pud_offset(pgd, addr);
	unsigned long next;

	do {
		next = pud_addr_end(addr, end);
837
		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
R
Russell King 已提交
838 839 840 841
		phys += next - addr;
	} while (pud++, addr = next, addr != end);
}

842
#ifndef CONFIG_ARM_LPAE
843 844
static void __init create_36bit_mapping(struct mm_struct *mm,
					struct map_desc *md,
845 846
					const struct mem_type *type,
					bool ng)
847
{
848 849
	unsigned long addr, length, end;
	phys_addr_t phys;
850 851 852
	pgd_t *pgd;

	addr = md->virtual;
853
	phys = __pfn_to_phys(md->pfn);
854 855 856
	length = PAGE_ALIGN(md->length);

	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
R
Russell King 已提交
857
		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
858
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
859 860 861 862 863 864 865 866 867 868
		return;
	}

	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
	 *	Since domain assignments can in fact be arbitrary, the
	 *	'domain == 0' check below is required to insure that ARMv6
	 *	supersections are only allocated for domain 0 regardless
	 *	of the actual domain assignments in use.
	 */
	if (type->domain) {
R
Russell King 已提交
869
		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
870
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
871 872 873 874
		return;
	}

	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
R
Russell King 已提交
875
		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
876
		       (long long)__pfn_to_phys((u64)md->pfn), addr);
877 878 879 880 881 882 883 884 885
		return;
	}

	/*
	 * Shift bits [35:32] of address into bits [23:20] of PMD
	 * (See ARMv6 spec).
	 */
	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);

886
	pgd = pgd_offset(mm, addr);
887 888
	end = addr + length;
	do {
R
Russell King 已提交
889 890
		pud_t *pud = pud_offset(pgd, addr);
		pmd_t *pmd = pmd_offset(pud, addr);
891 892 893
		int i;

		for (i = 0; i < 16; i++)
894 895
			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
				       (ng ? PMD_SECT_nG : 0));
896 897 898 899 900 901

		addr += SUPERSECTION_SIZE;
		phys += SUPERSECTION_SIZE;
		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
	} while (addr != end);
}
902
#endif	/* !CONFIG_ARM_LPAE */
903

904
static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
905 906
				    void *(*alloc)(unsigned long sz),
				    bool ng)
907
{
908 909
	unsigned long addr, length, end;
	phys_addr_t phys;
910
	const struct mem_type *type;
911
	pgd_t *pgd;
912

913
	type = &mem_types[md->type];
914

915
#ifndef CONFIG_ARM_LPAE
916 917 918
	/*
	 * Catch 36-bit addresses
	 */
919
	if (md->pfn >= 0x100000) {
920
		create_36bit_mapping(mm, md, type, ng);
921
		return;
922
	}
923
#endif
924

925
	addr = md->virtual & PAGE_MASK;
926
	phys = __pfn_to_phys(md->pfn);
927
	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
928

929
	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
R
Russell King 已提交
930 931
		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
			(long long)__pfn_to_phys(md->pfn), addr);
932 933 934
		return;
	}

935
	pgd = pgd_offset(mm, addr);
936 937 938
	end = addr + length;
	do {
		unsigned long next = pgd_addr_end(addr, end);
939

940
		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
941

942 943 944
		phys += next - addr;
		addr = next;
	} while (pgd++, addr != end);
945 946
}

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections and
 * supersections.
 */
static void __init create_mapping(struct map_desc *md)
{
	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
		return;
	}

	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
	}

969
	__create_mapping(&init_mm, md, early_alloc, false);
970 971
}

972 973 974 975 976 977 978 979 980 981 982 983
void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
				bool ng)
{
#ifdef CONFIG_ARM_LPAE
	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
	if (WARN_ON(!pud))
		return;
	pmd_alloc(mm, pud, 0);
#endif
	__create_mapping(mm, md, late_alloc, ng);
}

984 985 986 987 988
/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc, int nr)
{
989 990
	struct map_desc *md;
	struct vm_struct *vm;
991
	struct static_vm *svm;
992 993 994

	if (!nr)
		return;
995

996
	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
997 998 999

	for (md = io_desc; nr; md++, nr--) {
		create_mapping(md);
1000 1001

		vm = &svm->vm;
1002 1003
		vm->addr = (void *)(md->virtual & PAGE_MASK);
		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
R
Rob Herring 已提交
1004 1005
		vm->phys_addr = __pfn_to_phys(md->pfn);
		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1006
		vm->flags |= VM_ARM_MTYPE(md->type);
1007
		vm->caller = iotable_init;
1008
		add_static_vm_early(svm++);
1009
	}
1010 1011
}

R
Rob Herring 已提交
1012 1013 1014 1015
void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
				  void *caller)
{
	struct vm_struct *vm;
1016 1017 1018
	struct static_vm *svm;

	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
R
Rob Herring 已提交
1019

1020
	vm = &svm->vm;
R
Rob Herring 已提交
1021 1022
	vm->addr = (void *)addr;
	vm->size = size;
1023
	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
R
Rob Herring 已提交
1024
	vm->caller = caller;
1025
	add_static_vm_early(svm);
R
Rob Herring 已提交
1026 1027
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
#ifndef CONFIG_ARM_LPAE

/*
 * The Linux PMD is made of two consecutive section entries covering 2MB
 * (see definition in include/asm/pgtable-2level.h).  However a call to
 * create_mapping() may optimize static mappings by using individual
 * 1MB section mappings.  This leaves the actual PMD potentially half
 * initialized if the top or bottom section entry isn't used, leaving it
 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 * the virtual space left free by that unused section entry.
 *
 * Let's avoid the issue by inserting dummy vm entries covering the unused
 * PMD halves once the static mappings are in place.
 */

static void __init pmd_empty_section_gap(unsigned long addr)
{
R
Rob Herring 已提交
1045
	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046 1047 1048 1049
}

static void __init fill_pmd_gaps(void)
{
1050
	struct static_vm *svm;
1051 1052 1053 1054
	struct vm_struct *vm;
	unsigned long addr, next = 0;
	pmd_t *pmd;

1055 1056
	list_for_each_entry(svm, &static_vmlist, list) {
		vm = &svm->vm;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		addr = (unsigned long)vm->addr;
		if (addr < next)
			continue;

		/*
		 * Check if this vm starts on an odd section boundary.
		 * If so and the first section entry for this PMD is free
		 * then we block the corresponding virtual address.
		 */
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr);
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr & PMD_MASK);
		}

		/*
		 * Then check if this vm ends on an odd section boundary.
		 * If so and the second section entry for this PMD is empty
		 * then we block the corresponding virtual address.
		 */
		addr += vm->size;
		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
			pmd = pmd_off_k(addr) + 1;
			if (pmd_none(*pmd))
				pmd_empty_section_gap(addr);
		}

		/* no need to look at any vm entry until we hit the next PMD */
		next = (addr + PMD_SIZE - 1) & PMD_MASK;
	}
}

#else
#define fill_pmd_gaps() do { } while (0)
#endif

R
Rob Herring 已提交
1093 1094 1095
#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
static void __init pci_reserve_io(void)
{
1096
	struct static_vm *svm;
R
Rob Herring 已提交
1097

1098 1099 1100
	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
	if (svm)
		return;
R
Rob Herring 已提交
1101 1102 1103 1104 1105 1106 1107

	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
}
#else
#define pci_reserve_io() do { } while (0)
#endif

R
Rob Herring 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
#ifdef CONFIG_DEBUG_LL
void __init debug_ll_io_init(void)
{
	struct map_desc map;

	debug_ll_addr(&map.pfn, &map.virtual);
	if (!map.pfn || !map.virtual)
		return;
	map.pfn = __phys_to_pfn(map.pfn);
	map.virtual &= PAGE_MASK;
	map.length = PAGE_SIZE;
	map.type = MT_DEVICE;
1120
	iotable_init(&map, 1);
R
Rob Herring 已提交
1121 1122 1123
}
#endif

1124 1125
static void * __initdata vmalloc_min =
	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1126 1127 1128 1129

/*
 * vmalloc=size forces the vmalloc area to be exactly 'size'
 * bytes. This can be used to increase (or decrease) the vmalloc
1130
 * area - the default is 240m.
1131
 */
1132
static int __init early_vmalloc(char *arg)
1133
{
R
Russell King 已提交
1134
	unsigned long vmalloc_reserve = memparse(arg, NULL);
1135 1136 1137

	if (vmalloc_reserve < SZ_16M) {
		vmalloc_reserve = SZ_16M;
R
Russell King 已提交
1138
		pr_warn("vmalloc area too small, limiting to %luMB\n",
1139 1140
			vmalloc_reserve >> 20);
	}
1141 1142 1143

	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
R
Russell King 已提交
1144
		pr_warn("vmalloc area is too big, limiting to %luMB\n",
1145 1146
			vmalloc_reserve >> 20);
	}
R
Russell King 已提交
1147 1148

	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1149
	return 0;
1150
}
1151
early_param("vmalloc", early_vmalloc);
1152

1153
phys_addr_t arm_lowmem_limit __initdata = 0;
1154

1155
void __init sanity_check_meminfo(void)
1156
{
1157
	phys_addr_t memblock_limit = 0;
L
Laura Abbott 已提交
1158
	int highmem = 0;
1159
	u64 vmalloc_limit;
L
Laura Abbott 已提交
1160
	struct memblock_region *reg;
1161
	bool should_use_highmem = false;
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171
	/*
	 * Let's use our own (unoptimized) equivalent of __pa() that is
	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
	 * The result is used as the upper bound on physical memory address
	 * and may itself be outside the valid range for which phys_addr_t
	 * and therefore __pa() is defined.
	 */
	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;

L
Laura Abbott 已提交
1172 1173 1174 1175
	for_each_memblock(memory, reg) {
		phys_addr_t block_start = reg->base;
		phys_addr_t block_end = reg->base + reg->size;
		phys_addr_t size_limit = reg->size;
1176

L
Laura Abbott 已提交
1177
		if (reg->base >= vmalloc_limit)
R
Russell King 已提交
1178
			highmem = 1;
1179
		else
L
Laura Abbott 已提交
1180
			size_limit = vmalloc_limit - reg->base;
R
Russell King 已提交
1181 1182


L
Laura Abbott 已提交
1183 1184 1185 1186
		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {

			if (highmem) {
				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
R
Russell King 已提交
1187
					  &block_start, &block_end);
L
Laura Abbott 已提交
1188
				memblock_remove(reg->base, reg->size);
1189
				should_use_highmem = true;
L
Laura Abbott 已提交
1190
				continue;
1191
			}
1192

L
Laura Abbott 已提交
1193 1194 1195
			if (reg->size > size_limit) {
				phys_addr_t overlap_size = reg->size - size_limit;

1196 1197
				pr_notice("Truncating RAM at %pa-%pa",
					  &block_start, &block_end);
L
Laura Abbott 已提交
1198
				block_end = vmalloc_limit;
1199 1200
				pr_cont(" to -%pa", &block_end);
				memblock_remove(vmalloc_limit, overlap_size);
1201
				should_use_highmem = true;
L
Laura Abbott 已提交
1202
			}
1203
		}
1204

L
Laura Abbott 已提交
1205 1206 1207 1208 1209 1210 1211
		if (!highmem) {
			if (block_end > arm_lowmem_limit) {
				if (reg->size > size_limit)
					arm_lowmem_limit = vmalloc_limit;
				else
					arm_lowmem_limit = block_end;
			}
1212 1213

			/*
1214
			 * Find the first non-pmd-aligned page, and point
1215
			 * memblock_limit at it. This relies on rounding the
1216 1217
			 * limit down to be pmd-aligned, which happens at the
			 * end of this function.
1218 1219
			 *
			 * With this algorithm, the start or end of almost any
1220 1221
			 * bank can be non-pmd-aligned. The only exception is
			 * that the start of the bank 0 must be section-
1222 1223 1224 1225 1226
			 * aligned, since otherwise memory would need to be
			 * allocated when mapping the start of bank 0, which
			 * occurs before any free memory is mapped.
			 */
			if (!memblock_limit) {
1227
				if (!IS_ALIGNED(block_start, PMD_SIZE))
L
Laura Abbott 已提交
1228
					memblock_limit = block_start;
1229
				else if (!IS_ALIGNED(block_end, PMD_SIZE))
L
Laura Abbott 已提交
1230
					memblock_limit = arm_lowmem_limit;
1231
			}
1232 1233 1234

		}
	}
L
Laura Abbott 已提交
1235

1236 1237 1238
	if (should_use_highmem)
		pr_notice("Consider using a HIGHMEM enabled kernel.\n");

1239
	high_memory = __va(arm_lowmem_limit - 1) + 1;
1240 1241

	/*
1242
	 * Round the memblock limit down to a pmd size.  This
1243
	 * helps to ensure that we will allocate memory from the
1244
	 * last full pmd, which should be mapped.
1245 1246
	 */
	if (memblock_limit)
1247
		memblock_limit = round_down(memblock_limit, PMD_SIZE);
1248 1249 1250 1251
	if (!memblock_limit)
		memblock_limit = arm_lowmem_limit;

	memblock_set_current_limit(memblock_limit);
1252 1253
}

1254
static inline void prepare_page_table(void)
1255 1256
{
	unsigned long addr;
1257
	phys_addr_t end;
1258 1259 1260 1261

	/*
	 * Clear out all the mappings below the kernel image.
	 */
1262
	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1263 1264 1265 1266
		pmd_clear(pmd_off_k(addr));

#ifdef CONFIG_XIP_KERNEL
	/* The XIP kernel is mapped in the module area -- skip over it */
1267
	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1268
#endif
1269
	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1270 1271
		pmd_clear(pmd_off_k(addr));

1272 1273 1274 1275
	/*
	 * Find the end of the first block of lowmem.
	 */
	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1276 1277
	if (end >= arm_lowmem_limit)
		end = arm_lowmem_limit;
1278

1279 1280
	/*
	 * Clear out all the kernel space mappings, except for the first
1281
	 * memory bank, up to the vmalloc region.
1282
	 */
1283
	for (addr = __phys_to_virt(end);
1284
	     addr < VMALLOC_START; addr += PMD_SIZE)
1285 1286 1287
		pmd_clear(pmd_off_k(addr));
}

1288 1289 1290 1291 1292
#ifdef CONFIG_ARM_LPAE
/* the first page is reserved for pgd */
#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
#else
1293
#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1294
#endif
1295

1296
/*
R
Russell King 已提交
1297
 * Reserve the special regions of memory
1298
 */
R
Russell King 已提交
1299
void __init arm_mm_memblock_reserve(void)
1300 1301 1302 1303 1304
{
	/*
	 * Reserve the page tables.  These are already in use,
	 * and can only be in node 0.
	 */
1305
	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1306 1307 1308 1309 1310 1311

#ifdef CONFIG_SA1111
	/*
	 * Because of the SA1111 DMA bug, we want to preserve our
	 * precious DMA-able memory...
	 */
R
Russell King 已提交
1312
	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1313 1314 1315 1316
#endif
}

/*
1317
 * Set up the device mappings.  Since we clear out the page tables for all
1318 1319 1320 1321
 * mappings above VMALLOC_START, except early fixmap, we might remove debug
 * device mappings.  This means earlycon can be used to debug this function
 * Any other function or debugging method which may touch any device _will_
 * crash the kernel.
1322
 */
1323
static void __init devicemaps_init(const struct machine_desc *mdesc)
1324 1325 1326
{
	struct map_desc map;
	unsigned long addr;
1327
	void *vectors;
1328 1329 1330 1331

	/*
	 * Allocate the vector page early.
	 */
R
Russell King 已提交
1332
	vectors = early_alloc(PAGE_SIZE * 2);
1333 1334

	early_trap_init(vectors);
1335

1336 1337 1338 1339
	/*
	 * Clear page table except top pmd used by early fixmaps
	 */
	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1340 1341 1342 1343 1344 1345 1346 1347
		pmd_clear(pmd_off_k(addr));

	/*
	 * Map the kernel if it is XIP.
	 * It is always first in the modulearea.
	 */
#ifdef CONFIG_XIP_KERNEL
	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1348
	map.virtual = MODULES_VADDR;
1349
	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	map.type = MT_ROM;
	create_mapping(&map);
#endif

	/*
	 * Map the cache flushing regions.
	 */
#ifdef FLUSH_BASE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
	map.virtual = FLUSH_BASE;
	map.length = SZ_1M;
	map.type = MT_CACHECLEAN;
	create_mapping(&map);
#endif
#ifdef FLUSH_BASE_MINICACHE
	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
	map.virtual = FLUSH_BASE_MINICACHE;
	map.length = SZ_1M;
	map.type = MT_MINICLEAN;
	create_mapping(&map);
#endif

	/*
	 * Create a mapping for the machine vectors at the high-vectors
	 * location (0xffff0000).  If we aren't using high-vectors, also
	 * create a mapping at the low-vectors virtual address.
	 */
1377
	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1378 1379
	map.virtual = 0xffff0000;
	map.length = PAGE_SIZE;
1380
#ifdef CONFIG_KUSER_HELPERS
1381
	map.type = MT_HIGH_VECTORS;
1382 1383 1384
#else
	map.type = MT_LOW_VECTORS;
#endif
1385 1386 1387 1388
	create_mapping(&map);

	if (!vectors_high()) {
		map.virtual = 0;
R
Russell King 已提交
1389
		map.length = PAGE_SIZE * 2;
1390 1391 1392 1393
		map.type = MT_LOW_VECTORS;
		create_mapping(&map);
	}

R
Russell King 已提交
1394 1395 1396 1397 1398 1399 1400
	/* Now create a kernel read-only mapping */
	map.pfn += 1;
	map.virtual = 0xffff0000 + PAGE_SIZE;
	map.length = PAGE_SIZE;
	map.type = MT_LOW_VECTORS;
	create_mapping(&map);

1401 1402 1403 1404 1405
	/*
	 * Ask the machine support to map in the statically mapped devices.
	 */
	if (mdesc->map_io)
		mdesc->map_io();
1406 1407
	else
		debug_ll_io_init();
1408
	fill_pmd_gaps();
1409

R
Rob Herring 已提交
1410 1411 1412
	/* Reserve fixed i/o space in VMALLOC region */
	pci_reserve_io();

1413 1414 1415 1416 1417 1418 1419 1420
	/*
	 * Finally flush the caches and tlb to ensure that we're in a
	 * consistent state wrt the writebuffer.  This also ensures that
	 * any write-allocated cache lines in the vector page are written
	 * back.  After this point, we can start to touch devices again.
	 */
	local_flush_tlb_all();
	flush_cache_all();
1421 1422

	/* Enable asynchronous aborts */
1423
	early_abt_enable();
1424 1425
}

N
Nicolas Pitre 已提交
1426 1427 1428
static void __init kmap_init(void)
{
#ifdef CONFIG_HIGHMEM
R
Russell King 已提交
1429 1430
	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
		PKMAP_BASE, _PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1431
#endif
R
Rob Herring 已提交
1432 1433 1434

	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
			_PAGE_KERNEL_TABLE);
N
Nicolas Pitre 已提交
1435 1436
}

1437 1438
static void __init map_lowmem(void)
{
1439
	struct memblock_region *reg;
1440 1441 1442
#ifdef CONFIG_XIP_KERNEL
	phys_addr_t kernel_x_start = round_down(__pa(_sdata), SECTION_SIZE);
#else
1443
	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1444
#endif
1445
	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1446 1447

	/* Map all the lowmem memory banks. */
1448 1449 1450 1451 1452
	for_each_memblock(memory, reg) {
		phys_addr_t start = reg->base;
		phys_addr_t end = start + reg->size;
		struct map_desc map;

1453 1454 1455
		if (memblock_is_nomap(reg))
			continue;

1456 1457
		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
1458 1459 1460
		if (start >= end)
			break;

1461
		if (end < kernel_x_start) {
1462 1463 1464 1465
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RWX;
1466

1467 1468 1469 1470 1471 1472 1473
			create_mapping(&map);
		} else if (start >= kernel_x_end) {
			map.pfn = __phys_to_pfn(start);
			map.virtual = __phys_to_virt(start);
			map.length = end - start;
			map.type = MT_MEMORY_RW;

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
			create_mapping(&map);
		} else {
			/* This better cover the entire kernel */
			if (start < kernel_x_start) {
				map.pfn = __phys_to_pfn(start);
				map.virtual = __phys_to_virt(start);
				map.length = kernel_x_start - start;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}

			map.pfn = __phys_to_pfn(kernel_x_start);
			map.virtual = __phys_to_virt(kernel_x_start);
			map.length = kernel_x_end - kernel_x_start;
			map.type = MT_MEMORY_RWX;

			create_mapping(&map);

			if (kernel_x_end < end) {
				map.pfn = __phys_to_pfn(kernel_x_end);
				map.virtual = __phys_to_virt(kernel_x_end);
				map.length = end - kernel_x_end;
				map.type = MT_MEMORY_RW;

				create_mapping(&map);
			}
		}
1502 1503 1504
	}
}

1505 1506 1507 1508 1509
#ifdef CONFIG_ARM_PV_FIXUP
extern unsigned long __atags_pointer;
typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
pgtables_remap lpae_pgtables_remap_asm;

1510 1511 1512 1513
/*
 * early_paging_init() recreates boot time page table setup, allowing machines
 * to switch over to a high (>4G) address space on LPAE systems
 */
1514
void __init early_paging_init(const struct machine_desc *mdesc)
1515
{
1516 1517 1518
	pgtables_remap *lpae_pgtables_remap;
	unsigned long pa_pgd;
	unsigned int cr, ttbcr;
1519
	long long offset;
1520
	void *boot_data;
1521

1522
	if (!mdesc->pv_fixup)
1523 1524
		return;

1525
	offset = mdesc->pv_fixup();
1526 1527
	if (offset == 0)
		return;
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	/*
	 * Get the address of the remap function in the 1:1 identity
	 * mapping setup by the early page table assembly code.  We
	 * must get this prior to the pv update.  The following barrier
	 * ensures that this is complete before we fixup any P:V offsets.
	 */
	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
	pa_pgd = __pa(swapper_pg_dir);
	boot_data = __va(__atags_pointer);
	barrier();
1539

1540 1541
	pr_info("Switching physical address space to 0x%08llx\n",
		(u64)PHYS_OFFSET + offset);
1542

1543 1544 1545
	/* Re-set the phys pfn offset, and the pv offset */
	__pv_offset += offset;
	__pv_phys_pfn_offset += PFN_DOWN(offset);
1546 1547 1548 1549 1550 1551

	/* Run the patch stub to update the constants */
	fixup_pv_table(&__pv_table_begin,
		(&__pv_table_end - &__pv_table_begin) << 2);

	/*
1552 1553 1554 1555 1556 1557 1558
	 * We changing not only the virtual to physical mapping, but also
	 * the physical addresses used to access memory.  We need to flush
	 * all levels of cache in the system with caching disabled to
	 * ensure that all data is written back, and nothing is prefetched
	 * into the caches.  We also need to prevent the TLB walkers
	 * allocating into the caches too.  Note that this is ARMv7 LPAE
	 * specific.
1559
	 */
1560 1561 1562 1563 1564
	cr = get_cr();
	set_cr(cr & ~(CR_I | CR_C));
	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
	asm volatile("mcr p15, 0, %0, c2, c0, 2"
		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1565
	flush_cache_all();
1566 1567

	/*
1568 1569 1570 1571
	 * Fixup the page tables - this must be in the idmap region as
	 * we need to disable the MMU to do this safely, and hence it
	 * needs to be assembly.  It's fairly simple, as we're using the
	 * temporary tables setup by the initial assembly code.
1572
	 */
1573
	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1574

1575 1576 1577
	/* Re-enable the caches and cacheable TLB walks */
	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
	set_cr(cr);
1578 1579 1580 1581
}

#else

1582
void __init early_paging_init(const struct machine_desc *mdesc)
1583
{
1584 1585
	long long offset;

1586
	if (!mdesc->pv_fixup)
1587 1588
		return;

1589
	offset = mdesc->pv_fixup();
1590 1591 1592 1593 1594 1595 1596
	if (offset == 0)
		return;

	pr_crit("Physical address space modification is only to support Keystone2.\n");
	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
	pr_crit("feature. Your kernel may crash now, have a good day.\n");
	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1597 1598 1599 1600
}

#endif

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void __init early_fixmap_shutdown(void)
{
	int i;
	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);

	pte_offset_fixmap = pte_offset_late_fixmap;
	pmd_clear(fixmap_pmd(va));
	local_flush_tlb_kernel_page(va);

	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
		pte_t *pte;
		struct map_desc map;

		map.virtual = fix_to_virt(i);
		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);

		/* Only i/o device mappings are supported ATM */
		if (pte_none(*pte) ||
		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
			continue;

		map.pfn = pte_pfn(*pte);
		map.type = MT_DEVICE;
		map.length = PAGE_SIZE;

		create_mapping(&map);
	}
}

1630 1631 1632 1633
/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
1634
void __init paging_init(const struct machine_desc *mdesc)
1635 1636 1637 1638
{
	void *zero_page;

	build_mem_type_table();
1639
	prepare_page_table();
1640
	map_lowmem();
1641
	memblock_set_current_limit(arm_lowmem_limit);
1642
	dma_contiguous_remap();
1643
	early_fixmap_shutdown();
1644
	devicemaps_init(mdesc);
N
Nicolas Pitre 已提交
1645
	kmap_init();
1646
	tcm_init();
1647 1648 1649

	top_pmd = pmd_off_k(0xffff0000);

R
Russell King 已提交
1650 1651
	/* allocate the zero page. */
	zero_page = early_alloc(PAGE_SIZE);
R
Russell King 已提交
1652

1653
	bootmem_init();
R
Russell King 已提交
1654

1655
	empty_zero_page = virt_to_page(zero_page);
1656
	__flush_dcache_page(NULL, empty_zero_page);
1657
}