filemap.c 99.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
13
#include <linux/export.h>
L
Linus Torvalds 已提交
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
L
Linus Torvalds 已提交
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
L
Linus Torvalds 已提交
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
L
Linus Torvalds 已提交
22 23 24 25 26 27
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
28
#include <linux/error-injection.h>
L
Linus Torvalds 已提交
29 30
#include <linux/hash.h>
#include <linux/writeback.h>
31
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
32 33 34
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
35
#include <linux/cpuset.h>
36
#include <linux/hugetlb.h>
37
#include <linux/memcontrol.h>
38
#include <linux/cleancache.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43
#include <linux/ramfs.h>
44
#include <linux/page_idle.h>
45 46
#include "internal.h"

R
Robert Jarzmik 已提交
47 48 49
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
50 51 52
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
53
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
72
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
73
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
74
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
75
 *        ->i_pages lock
L
Linus Torvalds 已提交
76
 *
77
 *  ->i_mutex
78
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
79
 *
80
 *  ->mmap_lock
81
 *    ->i_mmap_rwsem
82
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
83
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
84
 *
85
 *  ->mmap_lock
L
Linus Torvalds 已提交
86 87
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
88
 *  ->i_mutex			(generic_perform_write)
89
 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
90
 *
91
 *  bdi->wb.list_lock
92
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
93
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
94
 *
95
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
96 97 98
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
99
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
100
 *
101
 *  ->page_table_lock or pte_lock
102
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
103
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
104
 *    ->i_pages lock		(try_to_unmap_one)
105 106
 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
107
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
108
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
109
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
110
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
111
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
112
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
113
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
114 115
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
116
 * ->i_mmap_rwsem
117
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
118 119
 */

120
static void page_cache_delete(struct address_space *mapping,
121 122
				   struct page *page, void *shadow)
{
123 124
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
125

126
	mapping_set_update(&xas, mapping);
127

128 129 130
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
131
		nr = compound_nr(page);
132
	}
133

134 135 136
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137

138 139
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
140

141 142 143
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

144 145 146 147 148 149 150 151 152 153 154
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
155 156
}

157 158
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
159
{
160
	int nr;
L
Linus Torvalds 已提交
161

162 163 164 165 166 167 168 169
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
170
		cleancache_invalidate_page(mapping, page);
171

172
	VM_BUG_ON_PAGE(PageTail(page), page);
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
193
			page_ref_sub(page, mapcount);
194 195 196
		}
	}

197
	/* hugetlb pages do not participate in page cache accounting. */
198 199
	if (PageHuge(page))
		return;
200

201
	nr = thp_nr_pages(page);
202

203
	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204
	if (PageSwapBacked(page)) {
205
		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 207
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
208 209
	} else if (PageTransHuge(page)) {
		__dec_node_page_state(page, NR_FILE_THPS);
210
		filemap_nr_thps_dec(mapping);
211
	}
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
230
 * is safe.  The caller must hold the i_pages lock.
231 232 233 234 235 236 237 238
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
239
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
240 241
}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

259 260 261 262 263 264 265 266 267
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
268
{
269
	struct address_space *mapping = page_mapping(page);
270
	unsigned long flags;
L
Linus Torvalds 已提交
271

M
Matt Mackall 已提交
272
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
273
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
274
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
275
	xa_unlock_irqrestore(&mapping->i_pages, flags);
276

277
	page_cache_free_page(mapping, page);
278 279 280
}
EXPORT_SYMBOL(delete_from_page_cache);

281
/*
282
 * page_cache_delete_batch - delete several pages from page cache
283 284 285
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
286
 * The function walks over mapping->i_pages and removes pages passed in @pvec
287 288
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
289
 * It tolerates holes in @pvec (mapping entries at those indices are not
290
 * modified). The function expects only THP head pages to be present in the
291
 * @pvec.
292
 *
M
Matthew Wilcox 已提交
293
 * The function expects the i_pages lock to be held.
294
 */
295
static void page_cache_delete_batch(struct address_space *mapping,
296 297
			     struct pagevec *pvec)
{
298
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299
	int total_pages = 0;
300
	int i = 0;
301 302
	struct page *page;

303 304
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
305
		if (i >= pagevec_count(pvec))
306
			break;
307 308

		/* A swap/dax/shadow entry got inserted? Skip it. */
309
		if (xa_is_value(page))
310
			continue;
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
327
			page->mapping = NULL;
328 329 330 331 332 333 334 335
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + compound_nr(page) - 1 == xas.xa_index)
336
			i++;
337
		xas_store(&xas, NULL);
338 339 340 341 342 343 344 345 346 347 348 349 350 351
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
352
	xa_lock_irqsave(&mapping->i_pages, flags);
353 354 355 356 357
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
358
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
359
	xa_unlock_irqrestore(&mapping->i_pages, flags);
360 361 362 363 364

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

365
int filemap_check_errors(struct address_space *mapping)
366 367 368
{
	int ret = 0;
	/* Check for outstanding write errors */
369 370
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371
		ret = -ENOSPC;
372 373
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
374 375 376
		ret = -EIO;
	return ret;
}
377
EXPORT_SYMBOL(filemap_check_errors);
378

379 380 381 382 383 384 385 386 387 388
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
389
/**
390
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391 392
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
393
 * @end:	offset in bytes where the range ends (inclusive)
394
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
395
 *
396 397 398
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
399
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
401 402
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
403 404
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
405
 */
406 407
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
408 409 410 411
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
412
		.nr_to_write = LONG_MAX,
413 414
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
415 416
	};

417 418
	if (!mapping_cap_writeback_dirty(mapping) ||
	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
L
Linus Torvalds 已提交
419 420
		return 0;

421
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
422
	ret = do_writepages(mapping, &wbc);
423
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
424 425 426 427 428 429
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
430
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
431 432 433 434 435 436 437 438
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

439
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440
				loff_t end)
L
Linus Torvalds 已提交
441 442 443
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
444
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
445

446 447 448 449
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
450 451
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
452 453
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
454 455 456 457 458 459 460
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

461 462 463 464 465 466 467 468
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
469 470 471
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
472 473 474 475
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
476
	struct page *page;
477 478
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
479 480 481 482

	if (end_byte < start_byte)
		return false;

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
499

500
	return page != NULL;
501 502 503
}
EXPORT_SYMBOL(filemap_range_has_page);

504
static void __filemap_fdatawait_range(struct address_space *mapping,
505
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
506
{
507 508
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
509 510 511
	struct pagevec pvec;
	int nr_pages;

512
	if (end_byte < start_byte)
513
		return;
L
Linus Torvalds 已提交
514

515
	pagevec_init(&pvec);
516
	while (index <= end) {
L
Linus Torvalds 已提交
517 518
		unsigned i;

519
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520
				end, PAGECACHE_TAG_WRITEBACK);
521 522 523
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
524 525 526 527
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
528
			ClearPageError(page);
L
Linus Torvalds 已提交
529 530 531 532
		}
		pagevec_release(&pvec);
		cond_resched();
	}
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
548 549
 *
 * Return: error status of the address space.
550 551 552 553
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
554 555
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
556
}
557 558
EXPORT_SYMBOL(filemap_fdatawait_range);

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
/**
 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space in the
 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 * this function does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
 */
int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
		loff_t start_byte, loff_t end_byte)
{
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_and_keep_errors(mapping);
}
EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);

581 582 583 584 585 586 587 588 589 590 591 592 593
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
594 595
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
596 597 598 599 600 601 602 603 604
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
605

606 607 608 609 610 611 612 613 614 615 616
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
617 618
 *
 * Return: error status of the address space.
619
 */
620
int filemap_fdatawait_keep_errors(struct address_space *mapping)
621
{
622
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623
	return filemap_check_and_keep_errors(mapping);
624
}
625
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626

627
/* Returns true if writeback might be needed or already in progress. */
628
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
629
{
630 631 632 633
	if (dax_mapping(mapping))
		return mapping->nrexceptional;

	return mapping->nrpages;
L
Linus Torvalds 已提交
634 635
}

636 637 638 639 640 641
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
642 643
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
644
 * Note that @lend is inclusive (describes the last byte to be written) so
645
 * that this function can be used to write to the very end-of-file (end = -1).
646 647
 *
 * Return: error status of the address space.
648
 */
L
Linus Torvalds 已提交
649 650 651
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
652
	int err = 0;
L
Linus Torvalds 已提交
653

654
	if (mapping_needs_writeback(mapping)) {
655 656
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
657 658 659 660 661 662
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
663
		if (err != -EIO) {
664 665
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
666 667
			if (!err)
				err = err2;
668 669 670
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
671
		}
672 673
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
674
	}
675
	return err;
L
Linus Torvalds 已提交
676
}
677
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
678

679 680
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
681
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
708 709
 *
 * Return: %0 on success, negative error code otherwise.
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
727 728 729 730 731 732 733 734

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
752 753
 *
 * Return: %0 on success, negative error code otherwise.
754 755 756 757 758 759
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

760
	if (mapping_needs_writeback(mapping)) {
761 762 763 764 765 766 767 768 769 770 771 772 773
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

774 775 776 777 778 779 780 781 782 783 784 785
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
786
 * The remove + add is atomic.  This function cannot fail.
787 788
 *
 * Return: %0
789 790 791
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
792 793 794 795 796
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
797

798 799 800
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
801

802 803 804
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
805

806 807
	mem_cgroup_migrate(old, new);

808 809
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
810

811 812 813
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
814
		__dec_lruvec_page_state(old, NR_FILE_PAGES);
815
	if (!PageHuge(new))
816
		__inc_lruvec_page_state(new, NR_FILE_PAGES);
817
	if (PageSwapBacked(old))
818
		__dec_lruvec_page_state(old, NR_SHMEM);
819
	if (PageSwapBacked(new))
820
		__inc_lruvec_page_state(new, NR_SHMEM);
821 822 823 824
	xas_unlock_irqrestore(&xas, flags);
	if (freepage)
		freepage(old);
	put_page(old);
825

826
	return 0;
827 828 829
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

830 831 832 833
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
834
{
835
	XA_STATE(xas, &mapping->i_pages, offset);
836
	int huge = PageHuge(page);
N
Nick Piggin 已提交
837
	int error;
838
	void *old;
N
Nick Piggin 已提交
839

840 841
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
842
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
843

844
	get_page(page);
845 846 847
	page->mapping = mapping;
	page->index = offset;

848
	if (!huge) {
849
		error = mem_cgroup_charge(page, current->mm, gfp_mask);
850 851 852 853
		if (error)
			goto error;
	}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
872
			__inc_lruvec_page_state(page, NR_FILE_PAGES);
873 874 875 876
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

877 878
	if (xas_error(&xas)) {
		error = xas_error(&xas);
879
		goto error;
880
	}
881

882 883
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
884
error:
885 886
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
887
	put_page(page);
888
	return error;
L
Linus Torvalds 已提交
889
}
890
ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
891 892 893 894 895 896 897 898 899 900

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
901 902
 *
 * Return: %0 on success, negative error code otherwise.
903 904 905 906 907 908 909
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
910
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
911 912

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
913
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
914
{
915
	void *shadow = NULL;
916 917
	int ret;

918
	__SetPageLocked(page);
919 920 921
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
922
		__ClearPageLocked(page);
923 924 925 926 927
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
928 929 930
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
931
		 */
932 933 934
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
935 936
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
937 938
	return ret;
}
939
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
940

941
#ifdef CONFIG_NUMA
942
struct page *__page_cache_alloc(gfp_t gfp)
943
{
944 945 946
	int n;
	struct page *page;

947
	if (cpuset_do_page_mem_spread()) {
948 949
		unsigned int cpuset_mems_cookie;
		do {
950
			cpuset_mems_cookie = read_mems_allowed_begin();
951
			n = cpuset_mem_spread_node();
952
			page = __alloc_pages_node(n, gfp, 0);
953
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
954

955
		return page;
956
	}
957
	return alloc_pages(gfp, 0);
958
}
959
EXPORT_SYMBOL(__page_cache_alloc);
960 961
#endif

L
Linus Torvalds 已提交
962 963 964 965 966 967 968 969 970 971
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
972 973 974 975 976
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
977
{
978
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
979 980
}

981
void __init pagecache_init(void)
L
Linus Torvalds 已提交
982
{
983
	int i;
L
Linus Torvalds 已提交
984

985 986 987 988
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
989 990
}

991
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
992
{
993
	int ret;
994 995 996 997
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

998
	if (!wake_page_match(wait_page, key))
999
		return 0;
L
Linus Torvalds 已提交
1000

1001
	/*
1002 1003 1004 1005 1006 1007 1008
	 * If it's an exclusive wait, we get the bit for it, and
	 * stop walking if we can't.
	 *
	 * If it's a non-exclusive wait, then the fact that this
	 * wake function was called means that the bit already
	 * was cleared, and we don't care if somebody then
	 * re-took it.
1009
	 */
1010 1011 1012 1013 1014 1015 1016
	ret = 0;
	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
		if (test_and_set_bit(key->bit_nr, &key->page->flags))
			return -1;
		ret = 1;
	}
	wait->flags |= WQ_FLAG_WOKEN;
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	wake_up_state(wait->private, mode);

	/*
	 * Ok, we have successfully done what we're waiting for,
	 * and we can unconditionally remove the wait entry.
	 *
	 * Note that this has to be the absolute last thing we do,
	 * since after list_del_init(&wait->entry) the wait entry
	 * might be de-allocated and the process might even have
	 * exited.
	 */
1029
	list_del_init_careful(&wait->entry);
1030
	return ret;
1031 1032
}

1033
static void wake_up_page_bit(struct page *page, int bit_nr)
1034
{
1035 1036 1037
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1038
	wait_queue_entry_t bookmark;
1039

1040 1041 1042 1043
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1044 1045 1046 1047 1048
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1049
	spin_lock_irqsave(&q->lock, flags);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1086 1087 1088 1089 1090 1091 1092

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/*
 * Attempt to check (or get) the page bit, and mark the
 * waiter woken if successful.
 */
static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
					struct wait_queue_entry *wait)
{
	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
		if (test_and_set_bit(bit_nr, &page->flags))
			return false;
	} else if (test_bit(bit_nr, &page->flags))
		return false;

	wait->flags |= WQ_FLAG_WOKEN;
	return true;
}

1126
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1127
	struct page *page, int bit_nr, int state, enum behavior behavior)
1128 1129
{
	struct wait_page_queue wait_page;
1130
	wait_queue_entry_t *wait = &wait_page.wait;
1131
	bool thrashing = false;
1132
	bool delayacct = false;
1133
	unsigned long pflags;
1134

1135
	if (bit_nr == PG_locked &&
1136
	    !PageUptodate(page) && PageWorkingset(page)) {
1137
		if (!PageSwapBacked(page)) {
1138
			delayacct_thrashing_start();
1139 1140
			delayacct = true;
		}
1141
		psi_memstall_enter(&pflags);
1142 1143 1144
		thrashing = true;
	}

1145
	init_wait(wait);
1146
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1147 1148 1149 1150
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	/*
	 * Do one last check whether we can get the
	 * page bit synchronously.
	 *
	 * Do the SetPageWaiters() marking before that
	 * to let any waker we _just_ missed know they
	 * need to wake us up (otherwise they'll never
	 * even go to the slow case that looks at the
	 * page queue), and add ourselves to the wait
	 * queue if we need to sleep.
	 *
	 * This part needs to be done under the queue
	 * lock to avoid races.
	 */
	spin_lock_irq(&q->lock);
	SetPageWaiters(page);
	if (!trylock_page_bit_common(page, bit_nr, wait))
		__add_wait_queue_entry_tail(q, wait);
	spin_unlock_irq(&q->lock);
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
	/*
	 * From now on, all the logic will be based on
	 * the WQ_FLAG_WOKEN flag, and the and the page
	 * bit testing (and setting) will be - or has
	 * already been - done by the wake function.
	 *
	 * We can drop our reference to the page.
	 */
	if (behavior == DROP)
		put_page(page);
1181

1182
	for (;;) {
1183 1184
		set_current_state(state);

1185
		if (signal_pending_state(state, current))
1186
			break;
1187

1188
		if (wait->flags & WQ_FLAG_WOKEN)
1189
			break;
1190 1191

		io_schedule();
1192 1193 1194 1195
	}

	finish_wait(q, wait);

1196
	if (thrashing) {
1197
		if (delayacct)
1198 1199 1200
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1201

1202 1203 1204 1205 1206 1207 1208 1209
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

1210
	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1211 1212 1213 1214 1215
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1216
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1217 1218 1219 1220 1221 1222
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1223
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1224
}
1225
EXPORT_SYMBOL(wait_on_page_bit_killable);
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
static int __wait_on_page_locked_async(struct page *page,
				       struct wait_page_queue *wait, bool set)
{
	struct wait_queue_head *q = page_waitqueue(page);
	int ret = 0;

	wait->page = page;
	wait->bit_nr = PG_locked;

	spin_lock_irq(&q->lock);
	__add_wait_queue_entry_tail(q, &wait->wait);
	SetPageWaiters(page);
	if (set)
		ret = !trylock_page(page);
	else
		ret = PageLocked(page);
	/*
	 * If we were succesful now, we know we're still on the
	 * waitqueue as we're still under the lock. This means it's
	 * safe to remove and return success, we know the callback
	 * isn't going to trigger.
	 */
	if (!ret)
		__remove_wait_queue(q, &wait->wait);
	else
		ret = -EIOCBQUEUED;
	spin_unlock_irq(&q->lock);
	return ret;
}

1257 1258 1259 1260 1261 1262 1263 1264
static int wait_on_page_locked_async(struct page *page,
				     struct wait_page_queue *wait)
{
	if (!PageLocked(page))
		return 0;
	return __wait_on_page_locked_async(compound_head(page), wait, false);
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1284 1285
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1286 1287
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1288 1289 1290
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1291
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1292 1293 1294 1295 1296
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1297
	__add_wait_queue_entry_tail(q, waiter);
1298
	SetPageWaiters(page);
1299 1300 1301 1302
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1314
 * being cleared, but a memory barrier should be unnecessary since it is
1315 1316 1317 1318 1319 1320
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1321
	return test_bit(PG_waiters, mem);
1322 1323 1324 1325
}

#endif

L
Linus Torvalds 已提交
1326
/**
1327
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1328 1329 1330 1331
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1332
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1333 1334
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1335 1336 1337 1338 1339
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1340
 */
H
Harvey Harrison 已提交
1341
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1342
{
1343
	BUILD_BUG_ON(PG_waiters != 7);
1344
	page = compound_head(page);
1345
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1346 1347
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1348 1349 1350
}
EXPORT_SYMBOL(unlock_page);

1351 1352 1353
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1354 1355 1356
 */
void end_page_writeback(struct page *page)
{
1357 1358 1359 1360 1361 1362 1363 1364 1365
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1366
		rotate_reclaimable_page(page);
1367
	}
1368 1369 1370 1371

	if (!test_clear_page_writeback(page))
		BUG();

1372
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1373 1374 1375 1376
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1377 1378 1379 1380
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1381
void page_endio(struct page *page, bool is_write, int err)
1382
{
1383
	if (!is_write) {
1384 1385 1386 1387 1388 1389 1390
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1391
	} else {
1392
		if (err) {
1393 1394
			struct address_space *mapping;

1395
			SetPageError(page);
1396 1397 1398
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1399 1400 1401 1402 1403 1404
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1405 1406
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1407
 * @__page: the page to lock
L
Linus Torvalds 已提交
1408
 */
1409
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1410
{
1411 1412
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1413 1414
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1415 1416 1417
}
EXPORT_SYMBOL(__lock_page);

1418
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1419
{
1420 1421
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1422 1423
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1424
}
1425
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1426

1427 1428 1429 1430 1431
int __lock_page_async(struct page *page, struct wait_page_queue *wait)
{
	return __wait_on_page_locked_async(page, wait, true);
}

1432 1433
/*
 * Return values:
1434
 * 1 - page is locked; mmap_lock is still held.
1435
 * 0 - page is not locked.
1436
 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1437
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1438
 *     which case mmap_lock is still held.
1439 1440
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1441
 * with the page locked and the mmap_lock unperturbed.
1442
 */
1443 1444 1445
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1446
	if (fault_flag_allow_retry_first(flags)) {
1447
		/*
1448
		 * CAUTION! In this case, mmap_lock is not released
1449 1450 1451 1452 1453
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

1454
		mmap_read_unlock(mm);
1455 1456 1457
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1458
			wait_on_page_locked(page);
1459
		return 0;
1460 1461 1462 1463 1464 1465
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
1466
				mmap_read_unlock(mm);
1467 1468 1469 1470 1471
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1472 1473 1474
	}
}

1475
/**
1476 1477 1478 1479
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1480
 *
1481 1482
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1483
 *
1484 1485 1486 1487 1488
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1489
 *
1490 1491 1492
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1493
 */
1494
pgoff_t page_cache_next_miss(struct address_space *mapping,
1495 1496
			     pgoff_t index, unsigned long max_scan)
{
1497
	XA_STATE(xas, &mapping->i_pages, index);
1498

1499 1500 1501
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1502
			break;
1503
		if (xas.xa_index == 0)
1504 1505 1506
			break;
	}

1507
	return xas.xa_index;
1508
}
1509
EXPORT_SYMBOL(page_cache_next_miss);
1510 1511

/**
L
Laurent Dufour 已提交
1512
 * page_cache_prev_miss() - Find the previous gap in the page cache.
1513 1514 1515
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1516
 *
1517 1518
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1519
 *
1520 1521 1522 1523 1524
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1525
 *
1526 1527 1528
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1529
 */
1530
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1531 1532
			     pgoff_t index, unsigned long max_scan)
{
1533
	XA_STATE(xas, &mapping->i_pages, index);
1534

1535 1536 1537
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1538
			break;
1539
		if (xas.xa_index == ULONG_MAX)
1540 1541 1542
			break;
	}

1543
	return xas.xa_index;
1544
}
1545
EXPORT_SYMBOL(page_cache_prev_miss);
1546

1547
/**
1548
 * find_get_entry - find and get a page cache entry
1549
 * @mapping: the address_space to search
1550 1551 1552 1553
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1554
 *
1555 1556
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1557
 *
1558
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1559
 */
1560
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1561
{
1562
	XA_STATE(xas, &mapping->i_pages, offset);
1563
	struct page *page;
L
Linus Torvalds 已提交
1564

N
Nick Piggin 已提交
1565 1566
	rcu_read_lock();
repeat:
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1577

1578
	if (!page_cache_get_speculative(page))
1579
		goto repeat;
1580

1581
	/*
1582
	 * Has the page moved or been split?
1583 1584 1585 1586
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1587
		put_page(page);
1588
		goto repeat;
N
Nick Piggin 已提交
1589
	}
1590
	page = find_subpage(page, offset);
N
Nick Piggin 已提交
1591
out:
N
Nick Piggin 已提交
1592 1593
	rcu_read_unlock();

L
Linus Torvalds 已提交
1594 1595 1596
	return page;
}

1597 1598 1599 1600 1601 1602 1603 1604 1605
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1606 1607
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1608 1609
 *
 * find_lock_entry() may sleep.
1610 1611
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1612 1613
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1614 1615 1616 1617
{
	struct page *page;

repeat:
1618
	page = find_get_entry(mapping, offset);
1619
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1620 1621
		lock_page(page);
		/* Has the page been truncated? */
1622
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1623
			unlock_page(page);
1624
			put_page(page);
N
Nick Piggin 已提交
1625
			goto repeat;
L
Linus Torvalds 已提交
1626
		}
1627
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1628 1629 1630
	}
	return page;
}
1631 1632 1633
EXPORT_SYMBOL(find_lock_entry);

/**
1634 1635 1636 1637 1638
 * pagecache_get_page - Find and get a reference to a page.
 * @mapping: The address_space to search.
 * @index: The page index.
 * @fgp_flags: %FGP flags modify how the page is returned.
 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
L
Linus Torvalds 已提交
1639
 *
1640
 * Looks up the page cache entry at @mapping & @index.
1641
 *
1642
 * @fgp_flags can be zero or more of these flags:
1643
 *
1644 1645 1646 1647 1648 1649 1650 1651
 * * %FGP_ACCESSED - The page will be marked accessed.
 * * %FGP_LOCK - The page is returned locked.
 * * %FGP_CREAT - If no page is present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU list.
 *   The page is returned locked and with an increased refcount.
 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
 *   page is already in cache.  If the page was allocated, unlock it before
 *   returning so the caller can do the same dance.
1652 1653 1654
 * * %FGP_WRITE - The page will be written
 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
 * * %FGP_NOWAIT - Don't get blocked by page lock
L
Linus Torvalds 已提交
1655
 *
1656 1657
 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
 * if the %GFP flags specified for %FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1658
 *
1659
 * If there is a page cache page, it is returned with an increased refcount.
1660
 *
1661
 * Return: The found page or %NULL otherwise.
L
Linus Torvalds 已提交
1662
 */
1663 1664
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
		int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1665
{
N
Nick Piggin 已提交
1666
	struct page *page;
1667

L
Linus Torvalds 已提交
1668
repeat:
1669
	page = find_get_entry(mapping, index);
1670
	if (xa_is_value(page))
1671 1672 1673 1674 1675 1676 1677
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1678
				put_page(page);
1679 1680 1681 1682 1683 1684 1685
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
1686
		if (unlikely(compound_head(page)->mapping != mapping)) {
1687
			unlock_page(page);
1688
			put_page(page);
1689 1690
			goto repeat;
		}
1691
		VM_BUG_ON_PAGE(page->index != index, page);
1692 1693
	}

1694
	if (fgp_flags & FGP_ACCESSED)
1695
		mark_page_accessed(page);
1696 1697 1698 1699 1700
	else if (fgp_flags & FGP_WRITE) {
		/* Clear idle flag for buffer write */
		if (page_is_idle(page))
			clear_page_idle(page);
	}
1701 1702 1703 1704 1705

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1706 1707 1708
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1709

1710
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1711 1712
		if (!page)
			return NULL;
1713

1714
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1715 1716
			fgp_flags |= FGP_LOCK;

1717
		/* Init accessed so avoid atomic mark_page_accessed later */
1718
		if (fgp_flags & FGP_ACCESSED)
1719
			__SetPageReferenced(page);
1720

1721
		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
N
Nick Piggin 已提交
1722
		if (unlikely(err)) {
1723
			put_page(page);
N
Nick Piggin 已提交
1724 1725 1726
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1727
		}
1728 1729 1730 1731 1732 1733 1734

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1735
	}
1736

L
Linus Torvalds 已提交
1737 1738
	return page;
}
1739
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1740

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1758 1759
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1760
 *
1761 1762 1763 1764 1765
 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
 * stops at that page: the caller is likely to have a better way to handle
 * the compound page as a whole, and then skip its extent, than repeatedly
 * calling find_get_entries() to return all its tails.
 *
1766
 * Return: the number of pages and shadow entries which were found.
1767 1768 1769 1770 1771
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1772 1773
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1774 1775 1776 1777 1778 1779
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1780 1781
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1782
			continue;
1783 1784 1785 1786 1787 1788
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1789
			goto export;
1790

1791
		if (!page_cache_get_speculative(page))
1792
			goto retry;
1793

1794
		/* Has the page moved or been split? */
1795 1796 1797
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;

1798 1799 1800 1801 1802 1803 1804 1805
		/*
		 * Terminate early on finding a THP, to allow the caller to
		 * handle it all at once; but continue if this is hugetlbfs.
		 */
		if (PageTransHuge(page) && !PageHuge(page)) {
			page = find_subpage(page, xas.xa_index);
			nr_entries = ret + 1;
		}
1806
export:
1807
		indices[ret] = xas.xa_index;
1808 1809 1810
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1811 1812
		continue;
put_page:
1813
		put_page(page);
1814 1815
retry:
		xas_reset(&xas);
1816 1817 1818 1819 1820
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1821
/**
J
Jan Kara 已提交
1822
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1823 1824
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1825
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1826 1827 1828
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1829 1830 1831 1832
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1833 1834 1835
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1836
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1837
 *
1838 1839
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1840
 * reached.
L
Linus Torvalds 已提交
1841
 */
J
Jan Kara 已提交
1842 1843 1844
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1845
{
1846 1847
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1848 1849 1850 1851
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1852 1853

	rcu_read_lock();
1854 1855
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1856
			continue;
1857 1858
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1859
			continue;
N
Nick Piggin 已提交
1860

1861
		if (!page_cache_get_speculative(page))
1862
			goto retry;
1863

1864
		/* Has the page moved or been split? */
1865 1866
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1867

1868
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1869
		if (++ret == nr_pages) {
1870
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1871 1872
			goto out;
		}
1873 1874
		continue;
put_page:
1875
		put_page(page);
1876 1877
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1878
	}
1879

J
Jan Kara 已提交
1880 1881 1882
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1883
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1884 1885 1886 1887 1888 1889 1890
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1891
	rcu_read_unlock();
1892

L
Linus Torvalds 已提交
1893 1894 1895
	return ret;
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1906
 * Return: the number of pages which were found.
1907 1908 1909 1910
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1911 1912
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1913 1914 1915 1916
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1917 1918

	rcu_read_lock();
1919 1920 1921 1922 1923 1924 1925 1926
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1927
			break;
1928

1929
		if (!page_cache_get_speculative(page))
1930
			goto retry;
1931

1932
		/* Has the page moved or been split? */
1933 1934
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1935

1936
		pages[ret] = find_subpage(page, xas.xa_index);
1937 1938
		if (++ret == nr_pages)
			break;
1939 1940
		continue;
put_page:
1941
		put_page(page);
1942 1943
retry:
		xas_reset(&xas);
1944
	}
N
Nick Piggin 已提交
1945 1946
	rcu_read_unlock();
	return ret;
1947
}
1948
EXPORT_SYMBOL(find_get_pages_contig);
1949

1950
/**
1951
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1952 1953
 * @mapping:	the address_space to search
 * @index:	the starting page index
1954
 * @end:	The final page index (inclusive)
1955 1956 1957 1958
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1959
 * Like find_get_pages, except we only return pages which are tagged with
1960
 * @tag.   We update @index to index the next page for the traversal.
1961 1962
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1963
 */
1964
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1965
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1966
			struct page **pages)
L
Linus Torvalds 已提交
1967
{
1968 1969
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1970 1971 1972 1973
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1974 1975

	rcu_read_lock();
1976 1977
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1978
			continue;
1979 1980 1981 1982 1983 1984
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1985
			continue;
N
Nick Piggin 已提交
1986

1987
		if (!page_cache_get_speculative(page))
1988
			goto retry;
N
Nick Piggin 已提交
1989

1990
		/* Has the page moved or been split? */
1991 1992
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1993

1994
		pages[ret] = find_subpage(page, xas.xa_index);
1995
		if (++ret == nr_pages) {
1996
			*index = xas.xa_index + 1;
1997 1998
			goto out;
		}
1999 2000
		continue;
put_page:
2001
		put_page(page);
2002 2003
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
2004
	}
2005

2006
	/*
2007
	 * We come here when we got to @end. We take care to not overflow the
2008
	 * index @index as it confuses some of the callers. This breaks the
2009 2010
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
2011 2012 2013 2014 2015 2016
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
2017
	rcu_read_unlock();
L
Linus Torvalds 已提交
2018 2019 2020

	return ret;
}
2021
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
2038
static void shrink_readahead_size_eio(struct file_ra_state *ra)
2039 2040 2041 2042
{
	ra->ra_pages /= 4;
}

2043
/**
2044 2045
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
2046 2047
 * @iter:	data destination
 * @written:	already copied
2048
 *
L
Linus Torvalds 已提交
2049
 * This is a generic file read routine, and uses the
2050
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
2051 2052 2053
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
2054 2055 2056 2057
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
2058
 */
2059
ssize_t generic_file_buffered_read(struct kiocb *iocb,
2060
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
2061
{
2062
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
2063
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
2064
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
2065
	struct file_ra_state *ra = &filp->f_ra;
2066
	loff_t *ppos = &iocb->ki_pos;
2067 2068 2069 2070
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
2071
	unsigned int prev_offset;
2072
	int error = 0;
L
Linus Torvalds 已提交
2073

2074
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2075
		return 0;
2076 2077
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2078 2079 2080 2081 2082
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2083 2084 2085

	for (;;) {
		struct page *page;
2086
		pgoff_t end_index;
N
NeilBrown 已提交
2087
		loff_t isize;
L
Linus Torvalds 已提交
2088 2089 2090 2091
		unsigned long nr, ret;

		cond_resched();
find_page:
2092 2093 2094 2095 2096
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2097
		page = find_get_page(mapping, index);
2098
		if (!page) {
2099
			if (iocb->ki_flags & IOCB_NOIO)
2100
				goto would_block;
2101
			page_cache_sync_readahead(mapping,
2102
					ra, filp,
2103 2104 2105 2106 2107 2108
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2109 2110 2111 2112
			if (iocb->ki_flags & IOCB_NOIO) {
				put_page(page);
				goto out;
			}
2113
			page_cache_async_readahead(mapping,
2114
					ra, filp, page,
2115
					index, last_index - index);
L
Linus Torvalds 已提交
2116
		}
2117
		if (!PageUptodate(page)) {
2118 2119 2120 2121 2122
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
			if (iocb->ki_flags & IOCB_WAITQ) {
				if (written) {
					put_page(page);
					goto out;
				}
				error = wait_on_page_locked_async(page,
								iocb->ki_waitq);
			} else {
				if (iocb->ki_flags & IOCB_NOWAIT) {
					put_page(page);
					goto would_block;
				}
				error = wait_on_page_locked_killable(page);
			}
2137 2138
			if (unlikely(error))
				goto readpage_error;
2139 2140 2141
			if (PageUptodate(page))
				goto page_ok;

2142
			if (inode->i_blkbits == PAGE_SHIFT ||
2143 2144
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2145
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2146
			if (unlikely(iov_iter_is_pipe(iter)))
2147
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2148
			if (!trylock_page(page))
2149
				goto page_not_up_to_date;
2150 2151 2152
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2153
			if (!mapping->a_ops->is_partially_uptodate(page,
2154
							offset, iter->count))
2155 2156 2157
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2158
page_ok:
N
NeilBrown 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2169
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2170
		if (unlikely(!isize || index > end_index)) {
2171
			put_page(page);
N
NeilBrown 已提交
2172 2173 2174 2175
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2176
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2177
		if (index == end_index) {
2178
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2179
			if (nr <= offset) {
2180
				put_page(page);
N
NeilBrown 已提交
2181 2182 2183 2184
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2194 2195
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2196
		 */
2197
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2198 2199 2200 2201 2202 2203 2204
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2205 2206

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2207
		offset += ret;
2208 2209
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2210
		prev_offset = offset;
L
Linus Torvalds 已提交
2211

2212
		put_page(page);
2213 2214 2215 2216 2217 2218 2219 2220
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2221 2222 2223

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2224 2225 2226 2227
		if (iocb->ki_flags & IOCB_WAITQ)
			error = lock_page_async(page, iocb->ki_waitq);
		else
			error = lock_page_killable(page);
2228 2229
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2230

2231
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2232
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2233 2234
		if (!page->mapping) {
			unlock_page(page);
2235
			put_page(page);
L
Linus Torvalds 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2246
		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2247 2248 2249 2250
			unlock_page(page);
			put_page(page);
			goto would_block;
		}
2251 2252 2253 2254 2255 2256
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2257 2258 2259
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2260 2261
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2262
				put_page(page);
2263
				error = 0;
2264 2265
				goto find_page;
			}
L
Linus Torvalds 已提交
2266
			goto readpage_error;
2267
		}
L
Linus Torvalds 已提交
2268 2269

		if (!PageUptodate(page)) {
2270 2271 2272
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2273 2274 2275
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2276
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2277 2278
					 */
					unlock_page(page);
2279
					put_page(page);
L
Linus Torvalds 已提交
2280 2281 2282
					goto find_page;
				}
				unlock_page(page);
2283
				shrink_readahead_size_eio(ra);
2284 2285
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292 2293
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2294
		put_page(page);
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300 2301
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2302
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2303
		if (!page) {
2304
			error = -ENOMEM;
N
Nick Piggin 已提交
2305
			goto out;
L
Linus Torvalds 已提交
2306
		}
2307
		error = add_to_page_cache_lru(page, mapping, index,
2308
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2309
		if (error) {
2310
			put_page(page);
2311 2312
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2313
				goto find_page;
2314
			}
L
Linus Torvalds 已提交
2315 2316 2317 2318 2319
			goto out;
		}
		goto readpage;
	}

2320 2321
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2322
out:
2323
	ra->prev_pos = prev_index;
2324
	ra->prev_pos <<= PAGE_SHIFT;
2325
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2326

2327
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2328
	file_accessed(filp);
2329
	return written ? written : error;
L
Linus Torvalds 已提交
2330
}
2331
EXPORT_SYMBOL_GPL(generic_file_buffered_read);
L
Linus Torvalds 已提交
2332

2333
/**
A
Al Viro 已提交
2334
 * generic_file_read_iter - generic filesystem read routine
2335
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2336
 * @iter:	destination for the data read
2337
 *
A
Al Viro 已提交
2338
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2339
 * that can use the page cache directly.
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
 *
 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
 * be returned when no data can be read without waiting for I/O requests
 * to complete; it doesn't prevent readahead.
 *
 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
 * requests shall be made for the read or for readahead.  When no data
 * can be read, -EAGAIN shall be returned.  When readahead would be
 * triggered, a partial, possibly empty read shall be returned.
 *
2350 2351
 * Return:
 * * number of bytes copied, even for partial reads
2352
 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
L
Linus Torvalds 已提交
2353 2354
 */
ssize_t
A
Al Viro 已提交
2355
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2356
{
2357
	size_t count = iov_iter_count(iter);
2358
	ssize_t retval = 0;
2359 2360 2361

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2362

2363
	if (iocb->ki_flags & IOCB_DIRECT) {
2364
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2365 2366
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2367
		loff_t size;
L
Linus Torvalds 已提交
2368 2369

		size = i_size_read(inode);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2381

2382 2383
		file_accessed(file);

2384
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2385
		if (retval >= 0) {
2386
			iocb->ki_pos += retval;
2387
			count -= retval;
2388
		}
A
Al Viro 已提交
2389
		iov_iter_revert(iter, count - iov_iter_count(iter));
2390

2391 2392 2393 2394 2395 2396
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2397 2398
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2399
		 */
2400
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2401
		    IS_DAX(inode))
2402
			goto out;
L
Linus Torvalds 已提交
2403 2404
	}

2405
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2406 2407 2408
out:
	return retval;
}
A
Al Viro 已提交
2409
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2410 2411 2412

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2413
/*
2414
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2415 2416 2417 2418
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
2419
 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2420
 * It differs in that it actually returns the page locked if it returns 1 and 0
2421
 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2422 2423 2424 2425 2426 2427 2428 2429
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2430 2431
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2432
	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2433 2434
	 * is supposed to work. We have way too many special cases..
	 */
2435 2436 2437 2438 2439 2440 2441
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
2442
			 * We didn't have the right flags to drop the mmap_lock,
2443 2444
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
2445
			 * mmap_lock here and return 0 if we don't have a fpin.
2446 2447
			 */
			if (*fpin == NULL)
2448
				mmap_read_unlock(vmf->vma->vm_mm);
2449 2450 2451 2452 2453 2454 2455
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2456

2457
/*
2458 2459 2460 2461 2462
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2463
 */
2464
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2465
{
2466 2467
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2468
	struct address_space *mapping = file->f_mapping;
2469
	struct file *fpin = NULL;
2470
	pgoff_t offset = vmf->pgoff;
2471
	unsigned int mmap_miss;
2472 2473

	/* If we don't want any read-ahead, don't bother */
2474
	if (vmf->vma->vm_flags & VM_RAND_READ)
2475
		return fpin;
2476
	if (!ra->ra_pages)
2477
		return fpin;
2478

2479
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2480
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2481 2482
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2483
		return fpin;
2484 2485
	}

2486
	/* Avoid banging the cache line if not needed */
2487 2488 2489
	mmap_miss = READ_ONCE(ra->mmap_miss);
	if (mmap_miss < MMAP_LOTSAMISS * 10)
		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2490 2491 2492 2493 2494

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
2495
	if (mmap_miss > MMAP_LOTSAMISS)
2496
		return fpin;
2497

2498 2499 2500
	/*
	 * mmap read-around
	 */
2501
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2502 2503 2504
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2505
	ra_submit(ra, mapping, file);
2506
	return fpin;
2507 2508 2509 2510
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2511
 * so we want to possibly extend the readahead further.  We return the file that
2512
 * was pinned if we have to drop the mmap_lock in order to do IO.
2513
 */
2514 2515
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2516
{
2517 2518
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2519
	struct address_space *mapping = file->f_mapping;
2520
	struct file *fpin = NULL;
2521
	unsigned int mmap_miss;
2522
	pgoff_t offset = vmf->pgoff;
2523 2524

	/* If we don't want any read-ahead, don't bother */
2525
	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2526
		return fpin;
2527 2528 2529
	mmap_miss = READ_ONCE(ra->mmap_miss);
	if (mmap_miss)
		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2530 2531
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2532 2533
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2534 2535
	}
	return fpin;
2536 2537
}

2538
/**
2539
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2540
 * @vmf:	struct vm_fault containing details of the fault
2541
 *
2542
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2543 2544 2545 2546 2547
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2548
 *
2549
 * vma->vm_mm->mmap_lock must be held on entry.
2550
 *
2551
 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2552
 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2553
 *
2554
 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2555 2556 2557
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2558 2559
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2560
 */
2561
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2562 2563
{
	int error;
2564
	struct file *file = vmf->vma->vm_file;
2565
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2566 2567 2568
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2569
	pgoff_t offset = vmf->pgoff;
2570
	pgoff_t max_off;
L
Linus Torvalds 已提交
2571
	struct page *page;
2572
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2573

2574 2575
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2576
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2577 2578

	/*
2579
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2580
	 */
2581
	page = find_get_page(mapping, offset);
2582
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2583
		/*
2584 2585
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2586
		 */
2587
		fpin = do_async_mmap_readahead(vmf, page);
2588
	} else if (!page) {
2589 2590
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2591
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2592
		ret = VM_FAULT_MAJOR;
2593
		fpin = do_sync_mmap_readahead(vmf);
2594
retry_find:
2595 2596 2597
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2598 2599 2600
		if (!page) {
			if (fpin)
				goto out_retry;
2601
			return VM_FAULT_OOM;
2602
		}
L
Linus Torvalds 已提交
2603 2604
	}

2605 2606
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2607 2608

	/* Did it get truncated? */
2609
	if (unlikely(compound_head(page)->mapping != mapping)) {
2610 2611 2612 2613
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2614
	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2615

L
Linus Torvalds 已提交
2616
	/*
2617 2618
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2619
	 */
2620
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2621 2622
		goto page_not_uptodate;

2623
	/*
2624
	 * We've made it this far and we had to drop our mmap_lock, now is the
2625 2626 2627 2628 2629 2630 2631 2632
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2633 2634 2635 2636
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2637 2638
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2639
		unlock_page(page);
2640
		put_page(page);
2641
		return VM_FAULT_SIGBUS;
2642 2643
	}

N
Nick Piggin 已提交
2644
	vmf->page = page;
N
Nick Piggin 已提交
2645
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2655
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2656
	error = mapping->a_ops->readpage(file, page);
2657 2658 2659 2660 2661
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2662 2663
	if (fpin)
		goto out_retry;
2664
	put_page(page);
2665 2666

	if (!error || error == AOP_TRUNCATED_PAGE)
2667
		goto retry_find;
L
Linus Torvalds 已提交
2668

2669
	shrink_readahead_size_eio(ra);
N
Nick Piggin 已提交
2670
	return VM_FAULT_SIGBUS;
2671 2672 2673

out_retry:
	/*
2674
	 * We dropped the mmap_lock, we need to return to the fault handler to
2675 2676 2677 2678 2679 2680 2681 2682
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2683 2684 2685
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2686
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2687
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2688
{
J
Jan Kara 已提交
2689
	struct file *file = vmf->vma->vm_file;
2690
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2691
	pgoff_t last_pgoff = start_pgoff;
2692
	unsigned long max_idx;
2693
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2694
	struct page *page;
2695
	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2696 2697

	rcu_read_lock();
2698 2699 2700 2701
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2702
			goto next;
2703

2704 2705 2706 2707
		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
2708
		if (PageLocked(page))
2709
			goto next;
2710
		if (!page_cache_get_speculative(page))
2711
			goto next;
2712

2713
		/* Has the page moved or been split? */
2714 2715
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2716
		page = find_subpage(page, xas.xa_index);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2728 2729
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2730 2731
			goto unlock;

2732 2733
		if (mmap_miss > 0)
			mmap_miss--;
2734

2735
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2736
		if (vmf->pte)
2737 2738
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
2739
		if (alloc_set_pte(vmf, page))
2740
			goto unlock;
2741 2742 2743 2744 2745
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2746
		put_page(page);
2747
next:
2748
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2749
		if (pmd_trans_huge(*vmf->pmd))
2750
			break;
2751 2752
	}
	rcu_read_unlock();
2753
	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2754 2755 2756
}
EXPORT_SYMBOL(filemap_map_pages);

2757
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2758 2759
{
	struct page *page = vmf->page;
2760
	struct inode *inode = file_inode(vmf->vma->vm_file);
2761
	vm_fault_t ret = VM_FAULT_LOCKED;
2762

2763
	sb_start_pagefault(inode->i_sb);
2764
	file_update_time(vmf->vma->vm_file);
2765 2766 2767 2768 2769 2770
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2771 2772 2773 2774 2775 2776
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2777
	wait_for_stable_page(page);
2778
out:
2779
	sb_end_pagefault(inode->i_sb);
2780 2781 2782
	return ret;
}

2783
const struct vm_operations_struct generic_file_vm_ops = {
2784
	.fault		= filemap_fault,
2785
	.map_pages	= filemap_map_pages,
2786
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2812
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2813
{
S
Souptick Joarder 已提交
2814
	return VM_FAULT_SIGBUS;
2815
}
L
Linus Torvalds 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2826
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2827 2828 2829
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2830 2831 2832 2833 2834
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2835
			put_page(page);
S
Sasha Levin 已提交
2836 2837 2838 2839 2840 2841
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2842
static struct page *do_read_cache_page(struct address_space *mapping,
2843
				pgoff_t index,
2844
				int (*filler)(void *, struct page *),
2845 2846
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2847
{
N
Nick Piggin 已提交
2848
	struct page *page;
L
Linus Torvalds 已提交
2849 2850 2851 2852
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2853
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2854 2855
		if (!page)
			return ERR_PTR(-ENOMEM);
2856
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2857
		if (unlikely(err)) {
2858
			put_page(page);
N
Nick Piggin 已提交
2859 2860
			if (err == -EEXIST)
				goto repeat;
2861
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2862 2863
			return ERR_PTR(err);
		}
2864 2865

filler:
2866 2867 2868 2869 2870
		if (filler)
			err = filler(data, page);
		else
			err = mapping->a_ops->readpage(data, page);

L
Linus Torvalds 已提交
2871
		if (err < 0) {
2872
			put_page(page);
2873
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2874 2875
		}

2876 2877 2878 2879 2880
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2881 2882 2883
	if (PageUptodate(page))
		goto out;

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
2894
	 *    page is truncated, the data is still valid if PageUptodate as
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2920
	lock_page(page);
2921 2922

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2923 2924
	if (!page->mapping) {
		unlock_page(page);
2925
		put_page(page);
2926
		goto repeat;
L
Linus Torvalds 已提交
2927
	}
2928 2929

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2930 2931 2932 2933
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2934 2935 2936 2937 2938 2939 2940 2941

	/*
	 * A previous I/O error may have been due to temporary
	 * failures.
	 * Clear page error before actual read, PG_error will be
	 * set again if read page fails.
	 */
	ClearPageError(page);
2942 2943
	goto filler;

2944
out:
2945 2946 2947
	mark_page_accessed(page);
	return page;
}
2948 2949

/**
S
Sasha Levin 已提交
2950
 * read_cache_page - read into page cache, fill it if needed
2951 2952 2953
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2954
 * @data:	first arg to filler(data, page) function, often left as NULL
2955 2956
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2957
 * not set, try to fill the page and wait for it to become unlocked.
2958 2959
 *
 * If the page does not get brought uptodate, return -EIO.
2960 2961
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2962
 */
S
Sasha Levin 已提交
2963
struct page *read_cache_page(struct address_space *mapping,
2964
				pgoff_t index,
2965
				int (*filler)(void *, struct page *),
2966 2967
				void *data)
{
2968 2969
	return do_read_cache_page(mapping, index, filler, data,
			mapping_gfp_mask(mapping));
2970
}
S
Sasha Levin 已提交
2971
EXPORT_SYMBOL(read_cache_page);
2972 2973 2974 2975 2976 2977 2978 2979

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2980
 * any new page allocations done using the specified allocation flags.
2981 2982
 *
 * If the page does not get brought uptodate, return -EIO.
2983 2984
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2985 2986 2987 2988 2989
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
2990
	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2991 2992 2993
}
EXPORT_SYMBOL(read_cache_page_gfp);

2994 2995 2996 2997 2998 2999 3000 3001
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
3002 3003
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

3014 3015 3016 3017 3018 3019 3020 3021 3022
	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;

	*count = min(*count, max_size - pos);

	return 0;
3023 3024
}

L
Linus Torvalds 已提交
3025 3026 3027
/*
 * Performs necessary checks before doing a write
 *
3028
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
3029 3030 3031
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
3032
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3033
{
3034
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
3035
	struct inode *inode = file->f_mapping->host;
3036 3037
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
3038

3039 3040 3041
	if (IS_SWAPFILE(inode))
		return -ETXTBSY;

3042 3043
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
3044

3045
	/* FIXME: this is for backwards compatibility with 2.4 */
3046
	if (iocb->ki_flags & IOCB_APPEND)
3047
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
3048

3049 3050 3051
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

3052 3053 3054 3055
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3056

3057
	iov_iter_truncate(from, count);
3058
	return iov_iter_count(from);
L
Linus Torvalds 已提交
3059 3060 3061
}
EXPORT_SYMBOL(generic_write_checks);

3062 3063 3064
/*
 * Performs necessary checks before doing a clone.
 *
3065
 * Can adjust amount of bytes to clone via @req_count argument.
3066 3067 3068 3069 3070
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
3071
			 loff_t *req_count, unsigned int remap_flags)
3072 3073 3074 3075 3076 3077 3078
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
3079
	int ret;
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
3093
	if ((remap_flags & REMAP_FILE_DEDUP) &&
3094 3095 3096 3097 3098 3099 3100 3101 3102
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

3103 3104 3105
	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3106 3107

	/*
3108 3109 3110 3111 3112
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3113
	 */
3114 3115 3116 3117
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3118
			count = ALIGN_DOWN(count, bs);
3119
		bcount = count;
L
Linus Torvalds 已提交
3120 3121
	}

3122 3123 3124 3125 3126 3127
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3128
	/*
3129 3130
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3131
	 */
3132
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3133
		return -EINVAL;
L
Linus Torvalds 已提交
3134

3135
	*req_count = count;
3136
	return 0;
L
Linus Torvalds 已提交
3137 3138
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162

/*
 * Performs common checks before doing a file copy/clone
 * from @file_in to @file_out.
 */
int generic_file_rw_checks(struct file *file_in, struct file *file_out)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);

	/* Don't copy dirs, pipes, sockets... */
	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
		return -EISDIR;
	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
		return -EINVAL;

	if (!(file_in->f_mode & FMODE_READ) ||
	    !(file_out->f_mode & FMODE_WRITE) ||
	    (file_out->f_flags & O_APPEND))
		return -EBADF;

	return 0;
}

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
/*
 * Performs necessary checks before doing a file copy
 *
 * Can adjust amount of bytes to copy via @req_count argument.
 * Returns appropriate error code that caller should return or
 * zero in case the copy should be allowed.
 */
int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
			     struct file *file_out, loff_t pos_out,
			     size_t *req_count, unsigned int flags)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);
	uint64_t count = *req_count;
	loff_t size_in;
	int ret;

	ret = generic_file_rw_checks(file_in, file_out);
	if (ret)
		return ret;

	/* Don't touch certain kinds of inodes */
	if (IS_IMMUTABLE(inode_out))
		return -EPERM;

	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
		return -ETXTBSY;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EOVERFLOW;

	/* Shorten the copy to EOF */
	size_in = i_size_read(inode_in);
	if (pos_in >= size_in)
		count = 0;
	else
		count = min(count, size_in - (uint64_t)pos_in);

	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;

	/* Don't allow overlapped copying within the same file. */
	if (inode_in == inode_out &&
	    pos_out + count > pos_in &&
	    pos_out < pos_in + count)
		return -EINVAL;

	*req_count = count;
	return 0;
}

3216 3217 3218 3219 3220 3221
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3222
	return aops->write_begin(file, mapping, pos, len, flags,
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3233
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3234 3235 3236
}
EXPORT_SYMBOL(pagecache_write_end);

3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
/*
 * Warn about a page cache invalidation failure during a direct I/O write.
 */
void dio_warn_stale_pagecache(struct file *filp)
{
	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
	char pathname[128];
	struct inode *inode = file_inode(filp);
	char *path;

	errseq_set(&inode->i_mapping->wb_err, -EIO);
	if (__ratelimit(&_rs)) {
		path = file_path(filp, pathname, sizeof(pathname));
		if (IS_ERR(path))
			path = "(unknown)";
		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
			current->comm);
	}
}

L
Linus Torvalds 已提交
3258
ssize_t
3259
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3260 3261 3262 3263
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3264
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3265
	ssize_t		written;
3266 3267
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3268

A
Al Viro 已提交
3269
	write_len = iov_iter_count(from);
3270
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3271

3272 3273 3274
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3275
					   pos + write_len - 1))
3276 3277 3278 3279 3280 3281 3282
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3283 3284 3285 3286 3287

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3288
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3289
	 */
3290
	written = invalidate_inode_pages2_range(mapping,
3291
					pos >> PAGE_SHIFT, end);
3292 3293 3294 3295 3296 3297 3298 3299
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3300 3301
	}

3302
	written = mapping->a_ops->direct_IO(iocb, from);
3303 3304 3305 3306 3307 3308 3309 3310

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3311 3312 3313 3314
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
3315 3316
	 * them by removing it completely.
	 *
3317 3318
	 * Noticeable example is a blkdev_direct_IO().
	 *
3319
	 * Skip invalidation for async writes or if mapping has no pages.
3320
	 */
3321 3322 3323
	if (written > 0 && mapping->nrpages &&
	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
		dio_warn_stale_pagecache(file);
3324

L
Linus Torvalds 已提交
3325
	if (written > 0) {
3326
		pos += written;
3327
		write_len -= written;
3328 3329
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3330 3331
			mark_inode_dirty(inode);
		}
3332
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3333
	}
3334
	iov_iter_revert(from, write_len - iov_iter_count(from));
3335
out:
L
Linus Torvalds 已提交
3336 3337 3338 3339
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3340 3341 3342 3343
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3344 3345
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3346 3347
{
	struct page *page;
3348
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3349

3350
	if (flags & AOP_FLAG_NOFS)
3351 3352 3353
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3354
			mapping_gfp_mask(mapping));
3355
	if (page)
3356
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3357 3358 3359

	return page;
}
3360
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3361

3362
ssize_t generic_perform_write(struct file *file,
3363 3364 3365 3366 3367 3368
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3369 3370
	unsigned int flags = 0;

3371 3372 3373 3374 3375 3376 3377
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3378 3379
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3380 3381 3382
						iov_iter_count(i));

again:
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3398 3399 3400 3401 3402
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3403
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3404
						&page, &fsdata);
3405
		if (unlikely(status < 0))
3406 3407
			break;

3408 3409
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3422
		iov_iter_advance(i, copied);
3423 3424 3425 3426 3427 3428 3429 3430 3431
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3432
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3444
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3445

3446
/**
3447
 * __generic_file_write_iter - write data to a file
3448
 * @iocb:	IO state structure (file, offset, etc.)
3449
 * @from:	iov_iter with data to write
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3462 3463 3464 3465
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3466
 */
3467
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3468 3469
{
	struct file *file = iocb->ki_filp;
3470
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3471
	struct inode 	*inode = mapping->host;
3472
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3473
	ssize_t		err;
3474
	ssize_t		status;
L
Linus Torvalds 已提交
3475 3476

	/* We can write back this queue in page reclaim */
3477
	current->backing_dev_info = inode_to_bdi(inode);
3478
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3479 3480 3481
	if (err)
		goto out;

3482 3483 3484
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3485

3486
	if (iocb->ki_flags & IOCB_DIRECT) {
3487
		loff_t pos, endbyte;
3488

3489
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3490
		/*
3491 3492 3493 3494 3495
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3496
		 */
3497
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3498 3499
			goto out;

3500
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3501
		/*
3502
		 * If generic_perform_write() returned a synchronous error
3503 3504 3505 3506 3507
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3508
		if (unlikely(status < 0)) {
3509
			err = status;
3510 3511 3512 3513 3514 3515 3516
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3517
		endbyte = pos + status - 1;
3518
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3519
		if (err == 0) {
3520
			iocb->ki_pos = endbyte + 1;
3521
			written += status;
3522
			invalidate_mapping_pages(mapping,
3523 3524
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3525 3526 3527 3528 3529 3530 3531
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3532 3533 3534
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3535
	}
L
Linus Torvalds 已提交
3536 3537 3538 3539
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3540
EXPORT_SYMBOL(__generic_file_write_iter);
3541 3542

/**
3543
 * generic_file_write_iter - write data to a file
3544
 * @iocb:	IO state structure
3545
 * @from:	iov_iter with data to write
3546
 *
3547
 * This is a wrapper around __generic_file_write_iter() to be used by most
3548 3549
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3550 3551 3552 3553
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3554
 */
3555
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3556 3557
{
	struct file *file = iocb->ki_filp;
3558
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3559 3560
	ssize_t ret;

A
Al Viro 已提交
3561
	inode_lock(inode);
3562 3563
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3564
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3565
	inode_unlock(inode);
L
Linus Torvalds 已提交
3566

3567 3568
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3569 3570
	return ret;
}
3571
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3572

3573 3574 3575 3576 3577 3578 3579
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3580
 * (presumably at page->private).
3581
 *
3582 3583 3584
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3585
 * The @gfp_mask argument specifies whether I/O may be performed to release
3586
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3587
 *
3588
 * Return: %1 if the release was successful, otherwise return zero.
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);