filemap.c 99.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
13
#include <linux/export.h>
L
Linus Torvalds 已提交
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
L
Linus Torvalds 已提交
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
L
Linus Torvalds 已提交
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
L
Linus Torvalds 已提交
22 23 24 25 26 27
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
28
#include <linux/error-injection.h>
L
Linus Torvalds 已提交
29 30
#include <linux/hash.h>
#include <linux/writeback.h>
31
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
32 33 34
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
35
#include <linux/cpuset.h>
36
#include <linux/hugetlb.h>
37
#include <linux/memcontrol.h>
38
#include <linux/cleancache.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43
#include <linux/ramfs.h>
44 45
#include "internal.h"

R
Robert Jarzmik 已提交
46 47 48
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
49 50 51
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
52
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
71
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
72
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
73
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
74
 *        ->i_pages lock
L
Linus Torvalds 已提交
75
 *
76
 *  ->i_mutex
77
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
78
 *
79
 *  ->mmap_lock
80
 *    ->i_mmap_rwsem
81
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
82
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
83
 *
84
 *  ->mmap_lock
L
Linus Torvalds 已提交
85 86
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
87
 *  ->i_mutex			(generic_perform_write)
88
 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
89
 *
90
 *  bdi->wb.list_lock
91
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
92
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
93
 *
94
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
95 96 97
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
98
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
99
 *
100
 *  ->page_table_lock or pte_lock
101
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
102
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
103
 *    ->i_pages lock		(try_to_unmap_one)
104 105
 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
106
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
107
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
108
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
109
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
110
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
111
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
112
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
113 114
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
115
 * ->i_mmap_rwsem
116
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
117 118
 */

119
static void page_cache_delete(struct address_space *mapping,
120 121
				   struct page *page, void *shadow)
{
122 123
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
124

125
	mapping_set_update(&xas, mapping);
126

127 128 129
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
130
		nr = compound_nr(page);
131
	}
132

133 134 135
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136

137 138
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
139

140 141 142
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

143 144 145 146 147 148 149 150 151 152 153
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
154 155
}

156 157
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
158
{
159
	int nr;
L
Linus Torvalds 已提交
160

161 162 163 164 165 166 167 168
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
169
		cleancache_invalidate_page(mapping, page);
170

171
	VM_BUG_ON_PAGE(PageTail(page), page);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
192
			page_ref_sub(page, mapcount);
193 194 195
		}
	}

196
	/* hugetlb pages do not participate in page cache accounting. */
197 198
	if (PageHuge(page))
		return;
199

200 201
	nr = hpage_nr_pages(page);

202
	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
203
	if (PageSwapBacked(page)) {
204
		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
205 206
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
207 208
	} else if (PageTransHuge(page)) {
		__dec_node_page_state(page, NR_FILE_THPS);
209
		filemap_nr_thps_dec(mapping);
210
	}
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
229
 * is safe.  The caller must hold the i_pages lock.
230 231 232 233 234 235 236 237
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
238
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

258 259 260 261 262 263 264 265 266
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
267
{
268
	struct address_space *mapping = page_mapping(page);
269
	unsigned long flags;
L
Linus Torvalds 已提交
270

M
Matt Mackall 已提交
271
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
272
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
273
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
274
	xa_unlock_irqrestore(&mapping->i_pages, flags);
275

276
	page_cache_free_page(mapping, page);
277 278 279
}
EXPORT_SYMBOL(delete_from_page_cache);

280
/*
281
 * page_cache_delete_batch - delete several pages from page cache
282 283 284
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
285
 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 287
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
288
 * It tolerates holes in @pvec (mapping entries at those indices are not
289
 * modified). The function expects only THP head pages to be present in the
290
 * @pvec.
291
 *
M
Matthew Wilcox 已提交
292
 * The function expects the i_pages lock to be held.
293
 */
294
static void page_cache_delete_batch(struct address_space *mapping,
295 296
			     struct pagevec *pvec)
{
297
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298
	int total_pages = 0;
299
	int i = 0;
300 301
	struct page *page;

302 303
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
304
		if (i >= pagevec_count(pvec))
305
			break;
306 307

		/* A swap/dax/shadow entry got inserted? Skip it. */
308
		if (xa_is_value(page))
309
			continue;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
326
			page->mapping = NULL;
327 328 329 330 331 332 333 334
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + compound_nr(page) - 1 == xas.xa_index)
335
			i++;
336
		xas_store(&xas, NULL);
337 338 339 340 341 342 343 344 345 346 347 348 349 350
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
351
	xa_lock_irqsave(&mapping->i_pages, flags);
352 353 354 355 356
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
357
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
358
	xa_unlock_irqrestore(&mapping->i_pages, flags);
359 360 361 362 363

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

364
int filemap_check_errors(struct address_space *mapping)
365 366 367
{
	int ret = 0;
	/* Check for outstanding write errors */
368 369
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370
		ret = -ENOSPC;
371 372
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
373 374 375
		ret = -EIO;
	return ret;
}
376
EXPORT_SYMBOL(filemap_check_errors);
377

378 379 380 381 382 383 384 385 386 387
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
388
/**
389
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 391
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
392
 * @end:	offset in bytes where the range ends (inclusive)
393
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
394
 *
395 396 397
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
398
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
400 401
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
402 403
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
404
 */
405 406
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
407 408 409 410
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
411
		.nr_to_write = LONG_MAX,
412 413
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
414 415
	};

416 417
	if (!mapping_cap_writeback_dirty(mapping) ||
	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
L
Linus Torvalds 已提交
418 419
		return 0;

420
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
421
	ret = do_writepages(mapping, &wbc);
422
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
423 424 425 426 427 428
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
429
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
430 431 432 433 434 435 436 437
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

438
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439
				loff_t end)
L
Linus Torvalds 已提交
440 441 442
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
443
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
444

445 446 447 448
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
449 450
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
451 452
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
453 454 455 456 457 458 459
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

460 461 462 463 464 465 466 467
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
468 469 470
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
471 472 473 474
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
475
	struct page *page;
476 477
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
478 479 480 481

	if (end_byte < start_byte)
		return false;

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
498

499
	return page != NULL;
500 501 502
}
EXPORT_SYMBOL(filemap_range_has_page);

503
static void __filemap_fdatawait_range(struct address_space *mapping,
504
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
505
{
506 507
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
508 509 510
	struct pagevec pvec;
	int nr_pages;

511
	if (end_byte < start_byte)
512
		return;
L
Linus Torvalds 已提交
513

514
	pagevec_init(&pvec);
515
	while (index <= end) {
L
Linus Torvalds 已提交
516 517
		unsigned i;

518
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519
				end, PAGECACHE_TAG_WRITEBACK);
520 521 522
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
523 524 525 526
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
527
			ClearPageError(page);
L
Linus Torvalds 已提交
528 529 530 531
		}
		pagevec_release(&pvec);
		cond_resched();
	}
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
547 548
 *
 * Return: error status of the address space.
549 550 551 552
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
553 554
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
555
}
556 557
EXPORT_SYMBOL(filemap_fdatawait_range);

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/**
 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space in the
 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 * this function does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
 */
int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
		loff_t start_byte, loff_t end_byte)
{
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_and_keep_errors(mapping);
}
EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);

580 581 582 583 584 585 586 587 588 589 590 591 592
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
593 594
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 596 597 598 599 600 601 602 603
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
604

605 606 607 608 609 610 611 612 613 614 615
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
616 617
 *
 * Return: error status of the address space.
618
 */
619
int filemap_fdatawait_keep_errors(struct address_space *mapping)
620
{
621
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622
	return filemap_check_and_keep_errors(mapping);
623
}
624
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625

626
/* Returns true if writeback might be needed or already in progress. */
627
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
628
{
629 630 631 632
	if (dax_mapping(mapping))
		return mapping->nrexceptional;

	return mapping->nrpages;
L
Linus Torvalds 已提交
633 634
}

635 636 637 638 639 640
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
641 642
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
643
 * Note that @lend is inclusive (describes the last byte to be written) so
644
 * that this function can be used to write to the very end-of-file (end = -1).
645 646
 *
 * Return: error status of the address space.
647
 */
L
Linus Torvalds 已提交
648 649 650
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
651
	int err = 0;
L
Linus Torvalds 已提交
652

653
	if (mapping_needs_writeback(mapping)) {
654 655
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
656 657 658 659 660 661
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
662
		if (err != -EIO) {
663 664
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
665 666
			if (!err)
				err = err2;
667 668 669
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
670
		}
671 672
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
673
	}
674
	return err;
L
Linus Torvalds 已提交
675
}
676
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
677

678 679
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
680
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
707 708
 *
 * Return: %0 on success, negative error code otherwise.
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
726 727 728 729 730 731 732 733

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
751 752
 *
 * Return: %0 on success, negative error code otherwise.
753 754 755 756 757 758
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

759
	if (mapping_needs_writeback(mapping)) {
760 761 762 763 764 765 766 767 768 769 770 771 772
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

773 774 775 776 777 778 779 780 781 782 783 784
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
785
 * The remove + add is atomic.  This function cannot fail.
786 787
 *
 * Return: %0
788 789 790
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
791 792 793 794 795
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
796

797 798 799
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
800

801 802 803
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
804

805 806
	mem_cgroup_migrate(old, new);

807 808
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
809

810 811 812
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
813
		__dec_lruvec_page_state(old, NR_FILE_PAGES);
814
	if (!PageHuge(new))
815
		__inc_lruvec_page_state(new, NR_FILE_PAGES);
816
	if (PageSwapBacked(old))
817
		__dec_lruvec_page_state(old, NR_SHMEM);
818
	if (PageSwapBacked(new))
819
		__inc_lruvec_page_state(new, NR_SHMEM);
820 821 822 823
	xas_unlock_irqrestore(&xas, flags);
	if (freepage)
		freepage(old);
	put_page(old);
824

825
	return 0;
826 827 828
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

829 830 831 832
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
833
{
834
	XA_STATE(xas, &mapping->i_pages, offset);
835
	int huge = PageHuge(page);
N
Nick Piggin 已提交
836
	int error;
837
	void *old;
N
Nick Piggin 已提交
838

839 840
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
842

843
	get_page(page);
844 845 846
	page->mapping = mapping;
	page->index = offset;

847
	if (!huge) {
848
		error = mem_cgroup_charge(page, current->mm, gfp_mask);
849 850 851 852
		if (error)
			goto error;
	}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
871
			__inc_lruvec_page_state(page, NR_FILE_PAGES);
872 873 874 875
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

876 877
	if (xas_error(&xas)) {
		error = xas_error(&xas);
878
		goto error;
879
	}
880

881 882
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
883
error:
884 885
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
886
	put_page(page);
887
	return error;
L
Linus Torvalds 已提交
888
}
889
ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
890 891 892 893 894 895 896 897 898 899

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
900 901
 *
 * Return: %0 on success, negative error code otherwise.
902 903 904 905 906 907 908
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
909
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
910 911

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
912
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
913
{
914
	void *shadow = NULL;
915 916
	int ret;

917
	__SetPageLocked(page);
918 919 920
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
921
		__ClearPageLocked(page);
922 923 924 925 926
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
927 928 929
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
930
		 */
931 932 933
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
934 935
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
936 937
	return ret;
}
938
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
939

940
#ifdef CONFIG_NUMA
941
struct page *__page_cache_alloc(gfp_t gfp)
942
{
943 944 945
	int n;
	struct page *page;

946
	if (cpuset_do_page_mem_spread()) {
947 948
		unsigned int cpuset_mems_cookie;
		do {
949
			cpuset_mems_cookie = read_mems_allowed_begin();
950
			n = cpuset_mem_spread_node();
951
			page = __alloc_pages_node(n, gfp, 0);
952
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
953

954
		return page;
955
	}
956
	return alloc_pages(gfp, 0);
957
}
958
EXPORT_SYMBOL(__page_cache_alloc);
959 960
#endif

L
Linus Torvalds 已提交
961 962 963 964 965 966 967 968 969 970
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
971 972 973 974 975
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
976
{
977
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
978 979
}

980
void __init pagecache_init(void)
L
Linus Torvalds 已提交
981
{
982
	int i;
L
Linus Torvalds 已提交
983

984 985 986 987
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
988 989
}

990
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
991
{
992
	int ret;
993 994 995 996
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

997
	if (!wake_page_match(wait_page, key))
998
		return 0;
L
Linus Torvalds 已提交
999

1000
	/*
1001 1002 1003 1004 1005 1006 1007
	 * If it's an exclusive wait, we get the bit for it, and
	 * stop walking if we can't.
	 *
	 * If it's a non-exclusive wait, then the fact that this
	 * wake function was called means that the bit already
	 * was cleared, and we don't care if somebody then
	 * re-took it.
1008
	 */
1009 1010 1011 1012 1013 1014 1015
	ret = 0;
	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
		if (test_and_set_bit(key->bit_nr, &key->page->flags))
			return -1;
		ret = 1;
	}
	wait->flags |= WQ_FLAG_WOKEN;
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	wake_up_state(wait->private, mode);

	/*
	 * Ok, we have successfully done what we're waiting for,
	 * and we can unconditionally remove the wait entry.
	 *
	 * Note that this has to be the absolute last thing we do,
	 * since after list_del_init(&wait->entry) the wait entry
	 * might be de-allocated and the process might even have
	 * exited.
	 */
1028
	list_del_init_careful(&wait->entry);
1029
	return ret;
1030 1031
}

1032
static void wake_up_page_bit(struct page *page, int bit_nr)
1033
{
1034 1035 1036
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1037
	wait_queue_entry_t bookmark;
1038

1039 1040 1041 1042
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1043 1044 1045 1046 1047
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1048
	spin_lock_irqsave(&q->lock, flags);
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1085 1086 1087 1088 1089 1090 1091

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/*
 * Attempt to check (or get) the page bit, and mark the
 * waiter woken if successful.
 */
static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
					struct wait_queue_entry *wait)
{
	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
		if (test_and_set_bit(bit_nr, &page->flags))
			return false;
	} else if (test_bit(bit_nr, &page->flags))
		return false;

	wait->flags |= WQ_FLAG_WOKEN;
	return true;
}

1125
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1126
	struct page *page, int bit_nr, int state, enum behavior behavior)
1127 1128
{
	struct wait_page_queue wait_page;
1129
	wait_queue_entry_t *wait = &wait_page.wait;
1130
	bool thrashing = false;
1131
	bool delayacct = false;
1132
	unsigned long pflags;
1133

1134
	if (bit_nr == PG_locked &&
1135
	    !PageUptodate(page) && PageWorkingset(page)) {
1136
		if (!PageSwapBacked(page)) {
1137
			delayacct_thrashing_start();
1138 1139
			delayacct = true;
		}
1140
		psi_memstall_enter(&pflags);
1141 1142 1143
		thrashing = true;
	}

1144
	init_wait(wait);
1145
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1146 1147 1148 1149
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	/*
	 * Do one last check whether we can get the
	 * page bit synchronously.
	 *
	 * Do the SetPageWaiters() marking before that
	 * to let any waker we _just_ missed know they
	 * need to wake us up (otherwise they'll never
	 * even go to the slow case that looks at the
	 * page queue), and add ourselves to the wait
	 * queue if we need to sleep.
	 *
	 * This part needs to be done under the queue
	 * lock to avoid races.
	 */
	spin_lock_irq(&q->lock);
	SetPageWaiters(page);
	if (!trylock_page_bit_common(page, bit_nr, wait))
		__add_wait_queue_entry_tail(q, wait);
	spin_unlock_irq(&q->lock);
1169

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	/*
	 * From now on, all the logic will be based on
	 * the WQ_FLAG_WOKEN flag, and the and the page
	 * bit testing (and setting) will be - or has
	 * already been - done by the wake function.
	 *
	 * We can drop our reference to the page.
	 */
	if (behavior == DROP)
		put_page(page);
1180

1181
	for (;;) {
1182 1183
		set_current_state(state);

1184
		if (signal_pending_state(state, current))
1185
			break;
1186

1187
		if (wait->flags & WQ_FLAG_WOKEN)
1188
			break;
1189 1190

		io_schedule();
1191 1192 1193 1194
	}

	finish_wait(q, wait);

1195
	if (thrashing) {
1196
		if (delayacct)
1197 1198 1199
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1200

1201 1202 1203 1204 1205 1206 1207 1208
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

1209
	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1210 1211 1212 1213 1214
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1215
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1216 1217 1218 1219 1220 1221
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1222
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1223
}
1224
EXPORT_SYMBOL(wait_on_page_bit_killable);
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
static int __wait_on_page_locked_async(struct page *page,
				       struct wait_page_queue *wait, bool set)
{
	struct wait_queue_head *q = page_waitqueue(page);
	int ret = 0;

	wait->page = page;
	wait->bit_nr = PG_locked;

	spin_lock_irq(&q->lock);
	__add_wait_queue_entry_tail(q, &wait->wait);
	SetPageWaiters(page);
	if (set)
		ret = !trylock_page(page);
	else
		ret = PageLocked(page);
	/*
	 * If we were succesful now, we know we're still on the
	 * waitqueue as we're still under the lock. This means it's
	 * safe to remove and return success, we know the callback
	 * isn't going to trigger.
	 */
	if (!ret)
		__remove_wait_queue(q, &wait->wait);
	else
		ret = -EIOCBQUEUED;
	spin_unlock_irq(&q->lock);
	return ret;
}

1256 1257 1258 1259 1260 1261 1262 1263
static int wait_on_page_locked_async(struct page *page,
				     struct wait_page_queue *wait)
{
	if (!PageLocked(page))
		return 0;
	return __wait_on_page_locked_async(compound_head(page), wait, false);
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1283 1284
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1285 1286
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1287 1288 1289
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1290
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1291 1292 1293 1294 1295
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1296
	__add_wait_queue_entry_tail(q, waiter);
1297
	SetPageWaiters(page);
1298 1299 1300 1301
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1313
 * being cleared, but a memory barrier should be unnecessary since it is
1314 1315 1316 1317 1318 1319
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1320
	return test_bit(PG_waiters, mem);
1321 1322 1323 1324
}

#endif

L
Linus Torvalds 已提交
1325
/**
1326
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1327 1328 1329 1330
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1331
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1332 1333
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1334 1335 1336 1337 1338
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1339
 */
H
Harvey Harrison 已提交
1340
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1341
{
1342
	BUILD_BUG_ON(PG_waiters != 7);
1343
	page = compound_head(page);
1344
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1345 1346
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1347 1348 1349
}
EXPORT_SYMBOL(unlock_page);

1350 1351 1352
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1353 1354 1355
 */
void end_page_writeback(struct page *page)
{
1356 1357 1358 1359 1360 1361 1362 1363 1364
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1365
		rotate_reclaimable_page(page);
1366
	}
1367 1368 1369 1370

	if (!test_clear_page_writeback(page))
		BUG();

1371
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1372 1373 1374 1375
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1376 1377 1378 1379
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1380
void page_endio(struct page *page, bool is_write, int err)
1381
{
1382
	if (!is_write) {
1383 1384 1385 1386 1387 1388 1389
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1390
	} else {
1391
		if (err) {
1392 1393
			struct address_space *mapping;

1394
			SetPageError(page);
1395 1396 1397
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1398 1399 1400 1401 1402 1403
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1404 1405
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1406
 * @__page: the page to lock
L
Linus Torvalds 已提交
1407
 */
1408
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1409
{
1410 1411
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1412 1413
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1414 1415 1416
}
EXPORT_SYMBOL(__lock_page);

1417
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1418
{
1419 1420
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1421 1422
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1423
}
1424
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1425

1426 1427 1428 1429 1430
int __lock_page_async(struct page *page, struct wait_page_queue *wait)
{
	return __wait_on_page_locked_async(page, wait, true);
}

1431 1432
/*
 * Return values:
1433
 * 1 - page is locked; mmap_lock is still held.
1434
 * 0 - page is not locked.
1435
 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1436
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1437
 *     which case mmap_lock is still held.
1438 1439
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1440
 * with the page locked and the mmap_lock unperturbed.
1441
 */
1442 1443 1444
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1445
	if (fault_flag_allow_retry_first(flags)) {
1446
		/*
1447
		 * CAUTION! In this case, mmap_lock is not released
1448 1449 1450 1451 1452
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

1453
		mmap_read_unlock(mm);
1454 1455 1456
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1457
			wait_on_page_locked(page);
1458
		return 0;
1459 1460 1461 1462 1463 1464
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
1465
				mmap_read_unlock(mm);
1466 1467 1468 1469 1470
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1471 1472 1473
	}
}

1474
/**
1475 1476 1477 1478
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1479
 *
1480 1481
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1482
 *
1483 1484 1485 1486 1487
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1488
 *
1489 1490 1491
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1492
 */
1493
pgoff_t page_cache_next_miss(struct address_space *mapping,
1494 1495
			     pgoff_t index, unsigned long max_scan)
{
1496
	XA_STATE(xas, &mapping->i_pages, index);
1497

1498 1499 1500
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1501
			break;
1502
		if (xas.xa_index == 0)
1503 1504 1505
			break;
	}

1506
	return xas.xa_index;
1507
}
1508
EXPORT_SYMBOL(page_cache_next_miss);
1509 1510

/**
L
Laurent Dufour 已提交
1511
 * page_cache_prev_miss() - Find the previous gap in the page cache.
1512 1513 1514
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1515
 *
1516 1517
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1518
 *
1519 1520 1521 1522 1523
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1524
 *
1525 1526 1527
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1528
 */
1529
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1530 1531
			     pgoff_t index, unsigned long max_scan)
{
1532
	XA_STATE(xas, &mapping->i_pages, index);
1533

1534 1535 1536
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1537
			break;
1538
		if (xas.xa_index == ULONG_MAX)
1539 1540 1541
			break;
	}

1542
	return xas.xa_index;
1543
}
1544
EXPORT_SYMBOL(page_cache_prev_miss);
1545

1546
/**
1547
 * find_get_entry - find and get a page cache entry
1548
 * @mapping: the address_space to search
1549 1550 1551 1552
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1553
 *
1554 1555
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1556
 *
1557
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1558
 */
1559
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1560
{
1561
	XA_STATE(xas, &mapping->i_pages, offset);
1562
	struct page *page;
L
Linus Torvalds 已提交
1563

N
Nick Piggin 已提交
1564 1565
	rcu_read_lock();
repeat:
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1576

1577
	if (!page_cache_get_speculative(page))
1578
		goto repeat;
1579

1580
	/*
1581
	 * Has the page moved or been split?
1582 1583 1584 1585
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1586
		put_page(page);
1587
		goto repeat;
N
Nick Piggin 已提交
1588
	}
1589
	page = find_subpage(page, offset);
N
Nick Piggin 已提交
1590
out:
N
Nick Piggin 已提交
1591 1592
	rcu_read_unlock();

L
Linus Torvalds 已提交
1593 1594 1595
	return page;
}

1596 1597 1598 1599 1600 1601 1602 1603 1604
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1605 1606
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1607 1608
 *
 * find_lock_entry() may sleep.
1609 1610
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1611 1612
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1613 1614 1615 1616
{
	struct page *page;

repeat:
1617
	page = find_get_entry(mapping, offset);
1618
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1619 1620
		lock_page(page);
		/* Has the page been truncated? */
1621
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1622
			unlock_page(page);
1623
			put_page(page);
N
Nick Piggin 已提交
1624
			goto repeat;
L
Linus Torvalds 已提交
1625
		}
1626
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1627 1628 1629
	}
	return page;
}
1630 1631 1632
EXPORT_SYMBOL(find_lock_entry);

/**
1633 1634 1635 1636 1637
 * pagecache_get_page - Find and get a reference to a page.
 * @mapping: The address_space to search.
 * @index: The page index.
 * @fgp_flags: %FGP flags modify how the page is returned.
 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
L
Linus Torvalds 已提交
1638
 *
1639
 * Looks up the page cache entry at @mapping & @index.
1640
 *
1641
 * @fgp_flags can be zero or more of these flags:
1642
 *
1643 1644 1645 1646 1647 1648 1649 1650
 * * %FGP_ACCESSED - The page will be marked accessed.
 * * %FGP_LOCK - The page is returned locked.
 * * %FGP_CREAT - If no page is present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU list.
 *   The page is returned locked and with an increased refcount.
 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
 *   page is already in cache.  If the page was allocated, unlock it before
 *   returning so the caller can do the same dance.
L
Linus Torvalds 已提交
1651
 *
1652 1653
 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
 * if the %GFP flags specified for %FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1654
 *
1655
 * If there is a page cache page, it is returned with an increased refcount.
1656
 *
1657
 * Return: The found page or %NULL otherwise.
L
Linus Torvalds 已提交
1658
 */
1659 1660
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
		int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1661
{
N
Nick Piggin 已提交
1662
	struct page *page;
1663

L
Linus Torvalds 已提交
1664
repeat:
1665
	page = find_get_entry(mapping, index);
1666
	if (xa_is_value(page))
1667 1668 1669 1670 1671 1672 1673
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1674
				put_page(page);
1675 1676 1677 1678 1679 1680 1681
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
1682
		if (unlikely(compound_head(page)->mapping != mapping)) {
1683
			unlock_page(page);
1684
			put_page(page);
1685 1686
			goto repeat;
		}
1687
		VM_BUG_ON_PAGE(page->index != index, page);
1688 1689
	}

1690
	if (fgp_flags & FGP_ACCESSED)
1691 1692 1693 1694 1695 1696
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1697 1698 1699
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1700

1701
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1702 1703
		if (!page)
			return NULL;
1704

1705
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1706 1707
			fgp_flags |= FGP_LOCK;

1708
		/* Init accessed so avoid atomic mark_page_accessed later */
1709
		if (fgp_flags & FGP_ACCESSED)
1710
			__SetPageReferenced(page);
1711

1712
		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
N
Nick Piggin 已提交
1713
		if (unlikely(err)) {
1714
			put_page(page);
N
Nick Piggin 已提交
1715 1716 1717
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1718
		}
1719 1720 1721 1722 1723 1724 1725

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1726
	}
1727

L
Linus Torvalds 已提交
1728 1729
	return page;
}
1730
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1731

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1749 1750
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1751
 *
1752 1753 1754 1755 1756
 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
 * stops at that page: the caller is likely to have a better way to handle
 * the compound page as a whole, and then skip its extent, than repeatedly
 * calling find_get_entries() to return all its tails.
 *
1757
 * Return: the number of pages and shadow entries which were found.
1758 1759 1760 1761 1762
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1763 1764
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1765 1766 1767 1768 1769 1770
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1771 1772
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1773
			continue;
1774 1775 1776 1777 1778 1779
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1780
			goto export;
1781

1782
		if (!page_cache_get_speculative(page))
1783
			goto retry;
1784

1785
		/* Has the page moved or been split? */
1786 1787 1788
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;

1789 1790 1791 1792 1793 1794 1795 1796
		/*
		 * Terminate early on finding a THP, to allow the caller to
		 * handle it all at once; but continue if this is hugetlbfs.
		 */
		if (PageTransHuge(page) && !PageHuge(page)) {
			page = find_subpage(page, xas.xa_index);
			nr_entries = ret + 1;
		}
1797
export:
1798
		indices[ret] = xas.xa_index;
1799 1800 1801
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1802 1803
		continue;
put_page:
1804
		put_page(page);
1805 1806
retry:
		xas_reset(&xas);
1807 1808 1809 1810 1811
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1812
/**
J
Jan Kara 已提交
1813
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1814 1815
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1816
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1817 1818 1819
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1820 1821 1822 1823
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1824 1825 1826
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1827
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1828
 *
1829 1830
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1831
 * reached.
L
Linus Torvalds 已提交
1832
 */
J
Jan Kara 已提交
1833 1834 1835
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1836
{
1837 1838
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1839 1840 1841 1842
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1843 1844

	rcu_read_lock();
1845 1846
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1847
			continue;
1848 1849
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1850
			continue;
N
Nick Piggin 已提交
1851

1852
		if (!page_cache_get_speculative(page))
1853
			goto retry;
1854

1855
		/* Has the page moved or been split? */
1856 1857
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1858

1859
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1860
		if (++ret == nr_pages) {
1861
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1862 1863
			goto out;
		}
1864 1865
		continue;
put_page:
1866
		put_page(page);
1867 1868
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1869
	}
1870

J
Jan Kara 已提交
1871 1872 1873
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1874
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1875 1876 1877 1878 1879 1880 1881
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1882
	rcu_read_unlock();
1883

L
Linus Torvalds 已提交
1884 1885 1886
	return ret;
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1897
 * Return: the number of pages which were found.
1898 1899 1900 1901
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1902 1903
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1904 1905 1906 1907
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1908 1909

	rcu_read_lock();
1910 1911 1912 1913 1914 1915 1916 1917
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1918
			break;
1919

1920
		if (!page_cache_get_speculative(page))
1921
			goto retry;
1922

1923
		/* Has the page moved or been split? */
1924 1925
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1926

1927
		pages[ret] = find_subpage(page, xas.xa_index);
1928 1929
		if (++ret == nr_pages)
			break;
1930 1931
		continue;
put_page:
1932
		put_page(page);
1933 1934
retry:
		xas_reset(&xas);
1935
	}
N
Nick Piggin 已提交
1936 1937
	rcu_read_unlock();
	return ret;
1938
}
1939
EXPORT_SYMBOL(find_get_pages_contig);
1940

1941
/**
1942
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1943 1944
 * @mapping:	the address_space to search
 * @index:	the starting page index
1945
 * @end:	The final page index (inclusive)
1946 1947 1948 1949
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1950
 * Like find_get_pages, except we only return pages which are tagged with
1951
 * @tag.   We update @index to index the next page for the traversal.
1952 1953
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1954
 */
1955
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1956
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1957
			struct page **pages)
L
Linus Torvalds 已提交
1958
{
1959 1960
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1961 1962 1963 1964
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1965 1966

	rcu_read_lock();
1967 1968
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1969
			continue;
1970 1971 1972 1973 1974 1975
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1976
			continue;
N
Nick Piggin 已提交
1977

1978
		if (!page_cache_get_speculative(page))
1979
			goto retry;
N
Nick Piggin 已提交
1980

1981
		/* Has the page moved or been split? */
1982 1983
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1984

1985
		pages[ret] = find_subpage(page, xas.xa_index);
1986
		if (++ret == nr_pages) {
1987
			*index = xas.xa_index + 1;
1988 1989
			goto out;
		}
1990 1991
		continue;
put_page:
1992
		put_page(page);
1993 1994
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1995
	}
1996

1997
	/*
1998
	 * We come here when we got to @end. We take care to not overflow the
1999
	 * index @index as it confuses some of the callers. This breaks the
2000 2001
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
2002 2003 2004 2005 2006 2007
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
2008
	rcu_read_unlock();
L
Linus Torvalds 已提交
2009 2010 2011

	return ret;
}
2012
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
2029
static void shrink_readahead_size_eio(struct file_ra_state *ra)
2030 2031 2032 2033
{
	ra->ra_pages /= 4;
}

2034
/**
2035 2036
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
2037 2038
 * @iter:	data destination
 * @written:	already copied
2039
 *
L
Linus Torvalds 已提交
2040
 * This is a generic file read routine, and uses the
2041
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
2042 2043 2044
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
2045 2046 2047 2048
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
2049
 */
2050
ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
2052
{
2053
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
2054
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
2055
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
2056
	struct file_ra_state *ra = &filp->f_ra;
2057
	loff_t *ppos = &iocb->ki_pos;
2058 2059 2060 2061
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
2062
	unsigned int prev_offset;
2063
	int error = 0;
L
Linus Torvalds 已提交
2064

2065
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2066
		return 0;
2067 2068
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2069 2070 2071 2072 2073
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2074 2075 2076

	for (;;) {
		struct page *page;
2077
		pgoff_t end_index;
N
NeilBrown 已提交
2078
		loff_t isize;
L
Linus Torvalds 已提交
2079 2080 2081 2082
		unsigned long nr, ret;

		cond_resched();
find_page:
2083 2084 2085 2086 2087
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2088
		page = find_get_page(mapping, index);
2089
		if (!page) {
2090
			if (iocb->ki_flags & IOCB_NOIO)
2091
				goto would_block;
2092
			page_cache_sync_readahead(mapping,
2093
					ra, filp,
2094 2095 2096 2097 2098 2099
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2100 2101 2102 2103
			if (iocb->ki_flags & IOCB_NOIO) {
				put_page(page);
				goto out;
			}
2104
			page_cache_async_readahead(mapping,
2105
					ra, filp, page,
2106
					index, last_index - index);
L
Linus Torvalds 已提交
2107
		}
2108
		if (!PageUptodate(page)) {
2109 2110 2111 2112 2113
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
			if (iocb->ki_flags & IOCB_WAITQ) {
				if (written) {
					put_page(page);
					goto out;
				}
				error = wait_on_page_locked_async(page,
								iocb->ki_waitq);
			} else {
				if (iocb->ki_flags & IOCB_NOWAIT) {
					put_page(page);
					goto would_block;
				}
				error = wait_on_page_locked_killable(page);
			}
2128 2129
			if (unlikely(error))
				goto readpage_error;
2130 2131 2132
			if (PageUptodate(page))
				goto page_ok;

2133
			if (inode->i_blkbits == PAGE_SHIFT ||
2134 2135
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2136
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2137
			if (unlikely(iov_iter_is_pipe(iter)))
2138
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2139
			if (!trylock_page(page))
2140
				goto page_not_up_to_date;
2141 2142 2143
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2144
			if (!mapping->a_ops->is_partially_uptodate(page,
2145
							offset, iter->count))
2146 2147 2148
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2149
page_ok:
N
NeilBrown 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2160
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2161
		if (unlikely(!isize || index > end_index)) {
2162
			put_page(page);
N
NeilBrown 已提交
2163 2164 2165 2166
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2167
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2168
		if (index == end_index) {
2169
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2170
			if (nr <= offset) {
2171
				put_page(page);
N
NeilBrown 已提交
2172 2173 2174 2175
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2185 2186
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2187
		 */
2188
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2189 2190 2191 2192 2193 2194 2195
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2196 2197

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2198
		offset += ret;
2199 2200
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2201
		prev_offset = offset;
L
Linus Torvalds 已提交
2202

2203
		put_page(page);
2204 2205 2206 2207 2208 2209 2210 2211
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2212 2213 2214

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2215 2216 2217 2218
		if (iocb->ki_flags & IOCB_WAITQ)
			error = lock_page_async(page, iocb->ki_waitq);
		else
			error = lock_page_killable(page);
2219 2220
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2221

2222
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2223
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2224 2225
		if (!page->mapping) {
			unlock_page(page);
2226
			put_page(page);
L
Linus Torvalds 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2237
		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2238 2239 2240 2241
			unlock_page(page);
			put_page(page);
			goto would_block;
		}
2242 2243 2244 2245 2246 2247
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2248 2249 2250
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2251 2252
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2253
				put_page(page);
2254
				error = 0;
2255 2256
				goto find_page;
			}
L
Linus Torvalds 已提交
2257
			goto readpage_error;
2258
		}
L
Linus Torvalds 已提交
2259 2260

		if (!PageUptodate(page)) {
2261 2262 2263
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2264 2265 2266
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2267
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2268 2269
					 */
					unlock_page(page);
2270
					put_page(page);
L
Linus Torvalds 已提交
2271 2272 2273
					goto find_page;
				}
				unlock_page(page);
2274
				shrink_readahead_size_eio(ra);
2275 2276
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281 2282 2283 2284
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2285
		put_page(page);
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2293
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2294
		if (!page) {
2295
			error = -ENOMEM;
N
Nick Piggin 已提交
2296
			goto out;
L
Linus Torvalds 已提交
2297
		}
2298
		error = add_to_page_cache_lru(page, mapping, index,
2299
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2300
		if (error) {
2301
			put_page(page);
2302 2303
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2304
				goto find_page;
2305
			}
L
Linus Torvalds 已提交
2306 2307 2308 2309 2310
			goto out;
		}
		goto readpage;
	}

2311 2312
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2313
out:
2314
	ra->prev_pos = prev_index;
2315
	ra->prev_pos <<= PAGE_SHIFT;
2316
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2317

2318
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2319
	file_accessed(filp);
2320
	return written ? written : error;
L
Linus Torvalds 已提交
2321
}
2322
EXPORT_SYMBOL_GPL(generic_file_buffered_read);
L
Linus Torvalds 已提交
2323

2324
/**
A
Al Viro 已提交
2325
 * generic_file_read_iter - generic filesystem read routine
2326
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2327
 * @iter:	destination for the data read
2328
 *
A
Al Viro 已提交
2329
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2330
 * that can use the page cache directly.
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
 *
 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
 * be returned when no data can be read without waiting for I/O requests
 * to complete; it doesn't prevent readahead.
 *
 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
 * requests shall be made for the read or for readahead.  When no data
 * can be read, -EAGAIN shall be returned.  When readahead would be
 * triggered, a partial, possibly empty read shall be returned.
 *
2341 2342
 * Return:
 * * number of bytes copied, even for partial reads
2343
 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
L
Linus Torvalds 已提交
2344 2345
 */
ssize_t
A
Al Viro 已提交
2346
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2347
{
2348
	size_t count = iov_iter_count(iter);
2349
	ssize_t retval = 0;
2350 2351 2352

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2353

2354
	if (iocb->ki_flags & IOCB_DIRECT) {
2355
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2356 2357
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2358
		loff_t size;
L
Linus Torvalds 已提交
2359 2360

		size = i_size_read(inode);
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2372

2373 2374
		file_accessed(file);

2375
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2376
		if (retval >= 0) {
2377
			iocb->ki_pos += retval;
2378
			count -= retval;
2379
		}
A
Al Viro 已提交
2380
		iov_iter_revert(iter, count - iov_iter_count(iter));
2381

2382 2383 2384 2385 2386 2387
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2388 2389
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2390
		 */
2391
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2392
		    IS_DAX(inode))
2393
			goto out;
L
Linus Torvalds 已提交
2394 2395
	}

2396
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2397 2398 2399
out:
	return retval;
}
A
Al Viro 已提交
2400
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2401 2402 2403

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2404
/*
2405
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2406 2407 2408 2409
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
2410
 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2411
 * It differs in that it actually returns the page locked if it returns 1 and 0
2412
 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2413 2414 2415 2416 2417 2418 2419 2420
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2421 2422
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2423
	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2424 2425
	 * is supposed to work. We have way too many special cases..
	 */
2426 2427 2428 2429 2430 2431 2432
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
2433
			 * We didn't have the right flags to drop the mmap_lock,
2434 2435
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
2436
			 * mmap_lock here and return 0 if we don't have a fpin.
2437 2438
			 */
			if (*fpin == NULL)
2439
				mmap_read_unlock(vmf->vma->vm_mm);
2440 2441 2442 2443 2444 2445 2446
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2447

2448
/*
2449 2450 2451 2452 2453
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2454
 */
2455
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2456
{
2457 2458
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2459
	struct address_space *mapping = file->f_mapping;
2460
	struct file *fpin = NULL;
2461
	pgoff_t offset = vmf->pgoff;
2462 2463

	/* If we don't want any read-ahead, don't bother */
2464
	if (vmf->vma->vm_flags & VM_RAND_READ)
2465
		return fpin;
2466
	if (!ra->ra_pages)
2467
		return fpin;
2468

2469
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2470
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2471 2472
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2473
		return fpin;
2474 2475
	}

2476 2477
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2478 2479 2480 2481 2482 2483 2484
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
2485
		return fpin;
2486

2487 2488 2489
	/*
	 * mmap read-around
	 */
2490
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2491 2492 2493
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2494
	ra_submit(ra, mapping, file);
2495
	return fpin;
2496 2497 2498 2499
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2500
 * so we want to possibly extend the readahead further.  We return the file that
2501
 * was pinned if we have to drop the mmap_lock in order to do IO.
2502
 */
2503 2504
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2505
{
2506 2507
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2508
	struct address_space *mapping = file->f_mapping;
2509
	struct file *fpin = NULL;
2510
	pgoff_t offset = vmf->pgoff;
2511 2512

	/* If we don't want any read-ahead, don't bother */
2513
	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2514
		return fpin;
2515 2516
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
2517 2518
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2519 2520
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2521 2522
	}
	return fpin;
2523 2524
}

2525
/**
2526
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2527
 * @vmf:	struct vm_fault containing details of the fault
2528
 *
2529
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2535
 *
2536
 * vma->vm_mm->mmap_lock must be held on entry.
2537
 *
2538
 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2539
 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2540
 *
2541
 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2542 2543 2544
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2545 2546
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2547
 */
2548
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2549 2550
{
	int error;
2551
	struct file *file = vmf->vma->vm_file;
2552
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2553 2554 2555
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2556
	pgoff_t offset = vmf->pgoff;
2557
	pgoff_t max_off;
L
Linus Torvalds 已提交
2558
	struct page *page;
2559
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2560

2561 2562
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2563
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2564 2565

	/*
2566
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2567
	 */
2568
	page = find_get_page(mapping, offset);
2569
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2570
		/*
2571 2572
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2573
		 */
2574
		fpin = do_async_mmap_readahead(vmf, page);
2575
	} else if (!page) {
2576 2577
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2578
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2579
		ret = VM_FAULT_MAJOR;
2580
		fpin = do_sync_mmap_readahead(vmf);
2581
retry_find:
2582 2583 2584
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2585 2586 2587
		if (!page) {
			if (fpin)
				goto out_retry;
2588
			return VM_FAULT_OOM;
2589
		}
L
Linus Torvalds 已提交
2590 2591
	}

2592 2593
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2594 2595

	/* Did it get truncated? */
2596
	if (unlikely(compound_head(page)->mapping != mapping)) {
2597 2598 2599 2600
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2601
	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2602

L
Linus Torvalds 已提交
2603
	/*
2604 2605
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2606
	 */
2607
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2608 2609
		goto page_not_uptodate;

2610
	/*
2611
	 * We've made it this far and we had to drop our mmap_lock, now is the
2612 2613 2614 2615 2616 2617 2618 2619
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2620 2621 2622 2623
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2624 2625
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2626
		unlock_page(page);
2627
		put_page(page);
2628
		return VM_FAULT_SIGBUS;
2629 2630
	}

N
Nick Piggin 已提交
2631
	vmf->page = page;
N
Nick Piggin 已提交
2632
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2642
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2643
	error = mapping->a_ops->readpage(file, page);
2644 2645 2646 2647 2648
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2649 2650
	if (fpin)
		goto out_retry;
2651
	put_page(page);
2652 2653

	if (!error || error == AOP_TRUNCATED_PAGE)
2654
		goto retry_find;
L
Linus Torvalds 已提交
2655

2656
	shrink_readahead_size_eio(ra);
N
Nick Piggin 已提交
2657
	return VM_FAULT_SIGBUS;
2658 2659 2660

out_retry:
	/*
2661
	 * We dropped the mmap_lock, we need to return to the fault handler to
2662 2663 2664 2665 2666 2667 2668 2669
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2670 2671 2672
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2673
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2674
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2675
{
J
Jan Kara 已提交
2676
	struct file *file = vmf->vma->vm_file;
2677
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2678
	pgoff_t last_pgoff = start_pgoff;
2679
	unsigned long max_idx;
2680
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2681
	struct page *page;
2682 2683

	rcu_read_lock();
2684 2685 2686 2687
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2688
			goto next;
2689

2690 2691 2692 2693
		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
2694
		if (PageLocked(page))
2695
			goto next;
2696
		if (!page_cache_get_speculative(page))
2697
			goto next;
2698

2699
		/* Has the page moved or been split? */
2700 2701
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2702
		page = find_subpage(page, xas.xa_index);
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2714 2715
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2716 2717 2718 2719
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2720

2721
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2722
		if (vmf->pte)
2723 2724
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
2725
		if (alloc_set_pte(vmf, page))
2726
			goto unlock;
2727 2728 2729 2730 2731
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2732
		put_page(page);
2733
next:
2734
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2735
		if (pmd_trans_huge(*vmf->pmd))
2736
			break;
2737 2738 2739 2740 2741
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2742
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2743 2744
{
	struct page *page = vmf->page;
2745
	struct inode *inode = file_inode(vmf->vma->vm_file);
2746
	vm_fault_t ret = VM_FAULT_LOCKED;
2747

2748
	sb_start_pagefault(inode->i_sb);
2749
	file_update_time(vmf->vma->vm_file);
2750 2751 2752 2753 2754 2755
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2756 2757 2758 2759 2760 2761
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2762
	wait_for_stable_page(page);
2763
out:
2764
	sb_end_pagefault(inode->i_sb);
2765 2766 2767
	return ret;
}

2768
const struct vm_operations_struct generic_file_vm_ops = {
2769
	.fault		= filemap_fault,
2770
	.map_pages	= filemap_map_pages,
2771
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2797
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2798
{
S
Souptick Joarder 已提交
2799
	return VM_FAULT_SIGBUS;
2800
}
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2811
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2812 2813 2814
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2815 2816 2817 2818 2819
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2820
			put_page(page);
S
Sasha Levin 已提交
2821 2822 2823 2824 2825 2826
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2827
static struct page *do_read_cache_page(struct address_space *mapping,
2828
				pgoff_t index,
2829
				int (*filler)(void *, struct page *),
2830 2831
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2832
{
N
Nick Piggin 已提交
2833
	struct page *page;
L
Linus Torvalds 已提交
2834 2835 2836 2837
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2838
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2839 2840
		if (!page)
			return ERR_PTR(-ENOMEM);
2841
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2842
		if (unlikely(err)) {
2843
			put_page(page);
N
Nick Piggin 已提交
2844 2845
			if (err == -EEXIST)
				goto repeat;
2846
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2847 2848
			return ERR_PTR(err);
		}
2849 2850

filler:
2851 2852 2853 2854 2855
		if (filler)
			err = filler(data, page);
		else
			err = mapping->a_ops->readpage(data, page);

L
Linus Torvalds 已提交
2856
		if (err < 0) {
2857
			put_page(page);
2858
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2859 2860
		}

2861 2862 2863 2864 2865
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2866 2867 2868
	if (PageUptodate(page))
		goto out;

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2905
	lock_page(page);
2906 2907

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2908 2909
	if (!page->mapping) {
		unlock_page(page);
2910
		put_page(page);
2911
		goto repeat;
L
Linus Torvalds 已提交
2912
	}
2913 2914

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2915 2916 2917 2918
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2919 2920 2921 2922 2923 2924 2925 2926

	/*
	 * A previous I/O error may have been due to temporary
	 * failures.
	 * Clear page error before actual read, PG_error will be
	 * set again if read page fails.
	 */
	ClearPageError(page);
2927 2928
	goto filler;

2929
out:
2930 2931 2932
	mark_page_accessed(page);
	return page;
}
2933 2934

/**
S
Sasha Levin 已提交
2935
 * read_cache_page - read into page cache, fill it if needed
2936 2937 2938
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2939
 * @data:	first arg to filler(data, page) function, often left as NULL
2940 2941
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2942
 * not set, try to fill the page and wait for it to become unlocked.
2943 2944
 *
 * If the page does not get brought uptodate, return -EIO.
2945 2946
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2947
 */
S
Sasha Levin 已提交
2948
struct page *read_cache_page(struct address_space *mapping,
2949
				pgoff_t index,
2950
				int (*filler)(void *, struct page *),
2951 2952
				void *data)
{
2953 2954
	return do_read_cache_page(mapping, index, filler, data,
			mapping_gfp_mask(mapping));
2955
}
S
Sasha Levin 已提交
2956
EXPORT_SYMBOL(read_cache_page);
2957 2958 2959 2960 2961 2962 2963 2964

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2965
 * any new page allocations done using the specified allocation flags.
2966 2967
 *
 * If the page does not get brought uptodate, return -EIO.
2968 2969
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2970 2971 2972 2973 2974
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
2975
	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2976 2977 2978
}
EXPORT_SYMBOL(read_cache_page_gfp);

2979 2980 2981 2982 2983 2984 2985 2986
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
2987 2988
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

2999 3000 3001 3002 3003 3004 3005 3006 3007
	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;

	*count = min(*count, max_size - pos);

	return 0;
3008 3009
}

L
Linus Torvalds 已提交
3010 3011 3012
/*
 * Performs necessary checks before doing a write
 *
3013
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
3014 3015 3016
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
3017
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3018
{
3019
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
3020
	struct inode *inode = file->f_mapping->host;
3021 3022
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
3023

3024 3025 3026
	if (IS_SWAPFILE(inode))
		return -ETXTBSY;

3027 3028
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
3029

3030
	/* FIXME: this is for backwards compatibility with 2.4 */
3031
	if (iocb->ki_flags & IOCB_APPEND)
3032
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
3033

3034 3035 3036
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

3037 3038 3039 3040
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3041

3042
	iov_iter_truncate(from, count);
3043
	return iov_iter_count(from);
L
Linus Torvalds 已提交
3044 3045 3046
}
EXPORT_SYMBOL(generic_write_checks);

3047 3048 3049
/*
 * Performs necessary checks before doing a clone.
 *
3050
 * Can adjust amount of bytes to clone via @req_count argument.
3051 3052 3053 3054 3055
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
3056
			 loff_t *req_count, unsigned int remap_flags)
3057 3058 3059 3060 3061 3062 3063
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
3064
	int ret;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
3078
	if ((remap_flags & REMAP_FILE_DEDUP) &&
3079 3080 3081 3082 3083 3084 3085 3086 3087
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

3088 3089 3090
	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3091 3092

	/*
3093 3094 3095 3096 3097
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3098
	 */
3099 3100 3101 3102
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3103
			count = ALIGN_DOWN(count, bs);
3104
		bcount = count;
L
Linus Torvalds 已提交
3105 3106
	}

3107 3108 3109 3110 3111 3112
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3113
	/*
3114 3115
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3116
	 */
3117
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3118
		return -EINVAL;
L
Linus Torvalds 已提交
3119

3120
	*req_count = count;
3121
	return 0;
L
Linus Torvalds 已提交
3122 3123
}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147

/*
 * Performs common checks before doing a file copy/clone
 * from @file_in to @file_out.
 */
int generic_file_rw_checks(struct file *file_in, struct file *file_out)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);

	/* Don't copy dirs, pipes, sockets... */
	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
		return -EISDIR;
	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
		return -EINVAL;

	if (!(file_in->f_mode & FMODE_READ) ||
	    !(file_out->f_mode & FMODE_WRITE) ||
	    (file_out->f_flags & O_APPEND))
		return -EBADF;

	return 0;
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
/*
 * Performs necessary checks before doing a file copy
 *
 * Can adjust amount of bytes to copy via @req_count argument.
 * Returns appropriate error code that caller should return or
 * zero in case the copy should be allowed.
 */
int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
			     struct file *file_out, loff_t pos_out,
			     size_t *req_count, unsigned int flags)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);
	uint64_t count = *req_count;
	loff_t size_in;
	int ret;

	ret = generic_file_rw_checks(file_in, file_out);
	if (ret)
		return ret;

	/* Don't touch certain kinds of inodes */
	if (IS_IMMUTABLE(inode_out))
		return -EPERM;

	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
		return -ETXTBSY;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EOVERFLOW;

	/* Shorten the copy to EOF */
	size_in = i_size_read(inode_in);
	if (pos_in >= size_in)
		count = 0;
	else
		count = min(count, size_in - (uint64_t)pos_in);

	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;

	/* Don't allow overlapped copying within the same file. */
	if (inode_in == inode_out &&
	    pos_out + count > pos_in &&
	    pos_out < pos_in + count)
		return -EINVAL;

	*req_count = count;
	return 0;
}

3201 3202 3203 3204 3205 3206
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3207
	return aops->write_begin(file, mapping, pos, len, flags,
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3218
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3219 3220 3221
}
EXPORT_SYMBOL(pagecache_write_end);

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
/*
 * Warn about a page cache invalidation failure during a direct I/O write.
 */
void dio_warn_stale_pagecache(struct file *filp)
{
	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
	char pathname[128];
	struct inode *inode = file_inode(filp);
	char *path;

	errseq_set(&inode->i_mapping->wb_err, -EIO);
	if (__ratelimit(&_rs)) {
		path = file_path(filp, pathname, sizeof(pathname));
		if (IS_ERR(path))
			path = "(unknown)";
		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
			current->comm);
	}
}

L
Linus Torvalds 已提交
3243
ssize_t
3244
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3245 3246 3247 3248
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3249
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3250
	ssize_t		written;
3251 3252
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3253

A
Al Viro 已提交
3254
	write_len = iov_iter_count(from);
3255
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3256

3257 3258 3259
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3260
					   pos + write_len - 1))
3261 3262 3263 3264 3265 3266 3267
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3268 3269 3270 3271 3272

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3273
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3274
	 */
3275
	written = invalidate_inode_pages2_range(mapping,
3276
					pos >> PAGE_SHIFT, end);
3277 3278 3279 3280 3281 3282 3283 3284
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3285 3286
	}

3287
	written = mapping->a_ops->direct_IO(iocb, from);
3288 3289 3290 3291 3292 3293 3294 3295

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3296 3297 3298 3299
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
3300 3301
	 * them by removing it completely.
	 *
3302 3303
	 * Noticeable example is a blkdev_direct_IO().
	 *
3304
	 * Skip invalidation for async writes or if mapping has no pages.
3305
	 */
3306 3307 3308
	if (written > 0 && mapping->nrpages &&
	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
		dio_warn_stale_pagecache(file);
3309

L
Linus Torvalds 已提交
3310
	if (written > 0) {
3311
		pos += written;
3312
		write_len -= written;
3313 3314
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3315 3316
			mark_inode_dirty(inode);
		}
3317
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3318
	}
3319
	iov_iter_revert(from, write_len - iov_iter_count(from));
3320
out:
L
Linus Torvalds 已提交
3321 3322 3323 3324
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3325 3326 3327 3328
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3329 3330
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3331 3332
{
	struct page *page;
3333
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3334

3335
	if (flags & AOP_FLAG_NOFS)
3336 3337 3338
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3339
			mapping_gfp_mask(mapping));
3340
	if (page)
3341
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3342 3343 3344

	return page;
}
3345
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3346

3347
ssize_t generic_perform_write(struct file *file,
3348 3349 3350 3351 3352 3353
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3354 3355
	unsigned int flags = 0;

3356 3357 3358 3359 3360 3361 3362
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3363 3364
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3365 3366 3367
						iov_iter_count(i));

again:
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3383 3384 3385 3386 3387
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3388
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3389
						&page, &fsdata);
3390
		if (unlikely(status < 0))
3391 3392
			break;

3393 3394
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3395

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3407
		iov_iter_advance(i, copied);
3408 3409 3410 3411 3412 3413 3414 3415 3416
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3417
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3429
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3430

3431
/**
3432
 * __generic_file_write_iter - write data to a file
3433
 * @iocb:	IO state structure (file, offset, etc.)
3434
 * @from:	iov_iter with data to write
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3447 3448 3449 3450
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3451
 */
3452
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3453 3454
{
	struct file *file = iocb->ki_filp;
3455
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3456
	struct inode 	*inode = mapping->host;
3457
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3458
	ssize_t		err;
3459
	ssize_t		status;
L
Linus Torvalds 已提交
3460 3461

	/* We can write back this queue in page reclaim */
3462
	current->backing_dev_info = inode_to_bdi(inode);
3463
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3464 3465 3466
	if (err)
		goto out;

3467 3468 3469
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3470

3471
	if (iocb->ki_flags & IOCB_DIRECT) {
3472
		loff_t pos, endbyte;
3473

3474
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3475
		/*
3476 3477 3478 3479 3480
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3481
		 */
3482
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3483 3484
			goto out;

3485
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3486
		/*
3487
		 * If generic_perform_write() returned a synchronous error
3488 3489 3490 3491 3492
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3493
		if (unlikely(status < 0)) {
3494
			err = status;
3495 3496 3497 3498 3499 3500 3501
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3502
		endbyte = pos + status - 1;
3503
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3504
		if (err == 0) {
3505
			iocb->ki_pos = endbyte + 1;
3506
			written += status;
3507
			invalidate_mapping_pages(mapping,
3508 3509
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3510 3511 3512 3513 3514 3515 3516
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3517 3518 3519
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3520
	}
L
Linus Torvalds 已提交
3521 3522 3523 3524
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3525
EXPORT_SYMBOL(__generic_file_write_iter);
3526 3527

/**
3528
 * generic_file_write_iter - write data to a file
3529
 * @iocb:	IO state structure
3530
 * @from:	iov_iter with data to write
3531
 *
3532
 * This is a wrapper around __generic_file_write_iter() to be used by most
3533 3534
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3535 3536 3537 3538
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3539
 */
3540
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3541 3542
{
	struct file *file = iocb->ki_filp;
3543
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3544 3545
	ssize_t ret;

A
Al Viro 已提交
3546
	inode_lock(inode);
3547 3548
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3549
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3550
	inode_unlock(inode);
L
Linus Torvalds 已提交
3551

3552 3553
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3554 3555
	return ret;
}
3556
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3557

3558 3559 3560 3561 3562 3563 3564
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3565
 * (presumably at page->private).
3566
 *
3567 3568 3569
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3570
 * The @gfp_mask argument specifies whether I/O may be performed to release
3571
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3572
 *
3573
 * Return: %1 if the release was successful, otherwise return zero.
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);