filemap.c 96.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
13
#include <linux/export.h>
L
Linus Torvalds 已提交
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
L
Linus Torvalds 已提交
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
L
Linus Torvalds 已提交
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
L
Linus Torvalds 已提交
22 23 24 25 26 27
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
28
#include <linux/error-injection.h>
L
Linus Torvalds 已提交
29 30
#include <linux/hash.h>
#include <linux/writeback.h>
31
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
32 33 34
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
35
#include <linux/cpuset.h>
36
#include <linux/hugetlb.h>
37
#include <linux/memcontrol.h>
38
#include <linux/cleancache.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43 44
#include "internal.h"

R
Robert Jarzmik 已提交
45 46 47
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
48 49 50
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
51
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
70
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
71
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
72
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
73
 *        ->i_pages lock
L
Linus Torvalds 已提交
74
 *
75
 *  ->i_mutex
76
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
77 78
 *
 *  ->mmap_sem
79
 *    ->i_mmap_rwsem
80
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
81
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
82 83 84 85
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
86
 *  ->i_mutex			(generic_perform_write)
87
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
88
 *
89
 *  bdi->wb.list_lock
90
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
91
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
92
 *
93
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
94 95 96
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
97
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
98
 *
99
 *  ->page_table_lock or pte_lock
100
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
101
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
102
 *    ->i_pages lock		(try_to_unmap_one)
103 104
 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
105
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
106
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
107
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
108
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
109
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
110
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
111
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
112 113
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
114
 * ->i_mmap_rwsem
115
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
116 117
 */

118
static void page_cache_delete(struct address_space *mapping,
119 120
				   struct page *page, void *shadow)
{
121 122
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
123

124
	mapping_set_update(&xas, mapping);
125

126 127 128
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
129
		nr = compound_nr(page);
130
	}
131

132 133 134
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
135

136 137
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
138

139 140 141
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

142 143 144 145 146 147 148 149 150 151 152
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
153 154
}

155 156
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
157
{
158
	int nr;
L
Linus Torvalds 已提交
159

160 161 162 163 164 165 166 167
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
168
		cleancache_invalidate_page(mapping, page);
169

170
	VM_BUG_ON_PAGE(PageTail(page), page);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
191
			page_ref_sub(page, mapcount);
192 193 194
		}
	}

195
	/* hugetlb pages do not participate in page cache accounting. */
196 197
	if (PageHuge(page))
		return;
198

199 200 201 202 203 204 205 206 207
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
	} else {
		VM_BUG_ON_PAGE(PageTransHuge(page), page);
208
	}
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
227
 * is safe.  The caller must hold the i_pages lock.
228 229 230 231 232 233 234 235
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
236
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

256 257 258 259 260 261 262 263 264
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
265
{
266
	struct address_space *mapping = page_mapping(page);
267
	unsigned long flags;
L
Linus Torvalds 已提交
268

M
Matt Mackall 已提交
269
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
270
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
271
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
272
	xa_unlock_irqrestore(&mapping->i_pages, flags);
273

274
	page_cache_free_page(mapping, page);
275 276 277
}
EXPORT_SYMBOL(delete_from_page_cache);

278
/*
279
 * page_cache_delete_batch - delete several pages from page cache
280 281 282
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
283
 * The function walks over mapping->i_pages and removes pages passed in @pvec
284 285
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
286
 * It tolerates holes in @pvec (mapping entries at those indices are not
287
 * modified). The function expects only THP head pages to be present in the
288
 * @pvec.
289
 *
M
Matthew Wilcox 已提交
290
 * The function expects the i_pages lock to be held.
291
 */
292
static void page_cache_delete_batch(struct address_space *mapping,
293 294
			     struct pagevec *pvec)
{
295
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
296
	int total_pages = 0;
297
	int i = 0;
298 299
	struct page *page;

300 301
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
302
		if (i >= pagevec_count(pvec))
303
			break;
304 305

		/* A swap/dax/shadow entry got inserted? Skip it. */
306
		if (xa_is_value(page))
307
			continue;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
324
			page->mapping = NULL;
325 326 327 328 329 330 331 332
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + compound_nr(page) - 1 == xas.xa_index)
333
			i++;
334
		xas_store(&xas, NULL);
335 336 337 338 339 340 341 342 343 344 345 346 347 348
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
349
	xa_lock_irqsave(&mapping->i_pages, flags);
350 351 352 353 354
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
355
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
356
	xa_unlock_irqrestore(&mapping->i_pages, flags);
357 358 359 360 361

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

362
int filemap_check_errors(struct address_space *mapping)
363 364 365
{
	int ret = 0;
	/* Check for outstanding write errors */
366 367
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
368
		ret = -ENOSPC;
369 370
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
371 372 373
		ret = -EIO;
	return ret;
}
374
EXPORT_SYMBOL(filemap_check_errors);
375

376 377 378 379 380 381 382 383 384 385
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
386
/**
387
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
388 389
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
390
 * @end:	offset in bytes where the range ends (inclusive)
391
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
392
 *
393 394 395
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
396
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
397
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
398 399
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
400 401
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
402
 */
403 404
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
405 406 407 408
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
409
		.nr_to_write = LONG_MAX,
410 411
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
412 413
	};

414 415
	if (!mapping_cap_writeback_dirty(mapping) ||
	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
L
Linus Torvalds 已提交
416 417
		return 0;

418
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
419
	ret = do_writepages(mapping, &wbc);
420
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
421 422 423 424 425 426
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
427
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
428 429 430 431 432 433 434 435
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

436
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437
				loff_t end)
L
Linus Torvalds 已提交
438 439 440
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
441
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
442

443 444 445 446
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
447 448
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
449 450
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
451 452 453 454 455 456 457
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

458 459 460 461 462 463 464 465
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
466 467 468
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
469 470 471 472
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
473
	struct page *page;
474 475
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
476 477 478 479

	if (end_byte < start_byte)
		return false;

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
496

497
	return page != NULL;
498 499 500
}
EXPORT_SYMBOL(filemap_range_has_page);

501
static void __filemap_fdatawait_range(struct address_space *mapping,
502
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
503
{
504 505
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
506 507 508
	struct pagevec pvec;
	int nr_pages;

509
	if (end_byte < start_byte)
510
		return;
L
Linus Torvalds 已提交
511

512
	pagevec_init(&pvec);
513
	while (index <= end) {
L
Linus Torvalds 已提交
514 515
		unsigned i;

516
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517
				end, PAGECACHE_TAG_WRITEBACK);
518 519 520
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
521 522 523 524
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
525
			ClearPageError(page);
L
Linus Torvalds 已提交
526 527 528 529
		}
		pagevec_release(&pvec);
		cond_resched();
	}
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
545 546
 *
 * Return: error status of the address space.
547 548 549 550
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
551 552
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
553
}
554 555
EXPORT_SYMBOL(filemap_fdatawait_range);

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/**
 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space in the
 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 * this function does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
 */
int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
		loff_t start_byte, loff_t end_byte)
{
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_and_keep_errors(mapping);
}
EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);

578 579 580 581 582 583 584 585 586 587 588 589 590
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
591 592
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
593 594 595 596 597 598 599 600 601
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
602

603 604 605 606 607 608 609 610 611 612 613
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
614 615
 *
 * Return: error status of the address space.
616
 */
617
int filemap_fdatawait_keep_errors(struct address_space *mapping)
618
{
619
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620
	return filemap_check_and_keep_errors(mapping);
621
}
622
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
623

624
/* Returns true if writeback might be needed or already in progress. */
625
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
626
{
627 628 629 630
	if (dax_mapping(mapping))
		return mapping->nrexceptional;

	return mapping->nrpages;
L
Linus Torvalds 已提交
631 632 633 634
}

int filemap_write_and_wait(struct address_space *mapping)
{
635
	int err = 0;
L
Linus Torvalds 已提交
636

637
	if (mapping_needs_writeback(mapping)) {
638 639 640 641 642 643 644 645 646 647 648
		err = filemap_fdatawrite(mapping);
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
		if (err != -EIO) {
			int err2 = filemap_fdatawait(mapping);
			if (!err)
				err = err2;
649 650 651
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
652
		}
653 654
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
655
	}
656
	return err;
L
Linus Torvalds 已提交
657
}
658
EXPORT_SYMBOL(filemap_write_and_wait);
L
Linus Torvalds 已提交
659

660 661 662 663 664 665
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
666 667
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
668
 * Note that @lend is inclusive (describes the last byte to be written) so
669
 * that this function can be used to write to the very end-of-file (end = -1).
670 671
 *
 * Return: error status of the address space.
672
 */
L
Linus Torvalds 已提交
673 674 675
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
676
	int err = 0;
L
Linus Torvalds 已提交
677

678
	if (mapping_needs_writeback(mapping)) {
679 680 681 682
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO) {
683 684
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
685 686
			if (!err)
				err = err2;
687 688 689
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
690
		}
691 692
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
693
	}
694
	return err;
L
Linus Torvalds 已提交
695
}
696
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
697

698 699
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
700
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
727 728
 *
 * Return: %0 on success, negative error code otherwise.
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
746 747 748 749 750 751 752 753

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
771 772
 *
 * Return: %0 on success, negative error code otherwise.
773 774 775 776 777 778
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

779
	if (mapping_needs_writeback(mapping)) {
780 781 782 783 784 785 786 787 788 789 790 791 792
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

793 794 795 796 797 798 799 800 801 802 803 804
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
805
 * The remove + add is atomic.  This function cannot fail.
806 807
 *
 * Return: %0
808 809 810
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
811 812 813 814 815
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
816

817 818 819
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
820

821 822 823
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
824

825 826
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
		__dec_node_page_state(new, NR_FILE_PAGES);
	if (!PageHuge(new))
		__inc_node_page_state(new, NR_FILE_PAGES);
	if (PageSwapBacked(old))
		__dec_node_page_state(new, NR_SHMEM);
	if (PageSwapBacked(new))
		__inc_node_page_state(new, NR_SHMEM);
	xas_unlock_irqrestore(&xas, flags);
	mem_cgroup_migrate(old, new);
	if (freepage)
		freepage(old);
	put_page(old);
843

844
	return 0;
845 846 847
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

848 849 850 851
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
852
{
853
	XA_STATE(xas, &mapping->i_pages, offset);
854 855
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
856
	int error;
857
	void *old;
N
Nick Piggin 已提交
858

859 860
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
861
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
862

863 864
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
865
					      gfp_mask, &memcg, false);
866 867 868
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
869

870
	get_page(page);
871 872 873
	page->mapping = mapping;
	page->index = offset;

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
			__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

	if (xas_error(&xas))
		goto error;
899

900
	if (!huge)
901
		mem_cgroup_commit_charge(page, memcg, false, false);
902 903
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
904
error:
905 906
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
907
	if (!huge)
908
		mem_cgroup_cancel_charge(page, memcg, false);
909
	put_page(page);
910
	return xas_error(&xas);
L
Linus Torvalds 已提交
911
}
912
ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
913 914 915 916 917 918 919 920 921 922

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
923 924
 *
 * Return: %0 on success, negative error code otherwise.
925 926 927 928 929 930 931
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
932
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
933 934

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
935
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
936
{
937
	void *shadow = NULL;
938 939
	int ret;

940
	__SetPageLocked(page);
941 942 943
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
944
		__ClearPageLocked(page);
945 946 947 948 949
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
950 951 952
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
953
		 */
954 955 956
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
957 958
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
959 960
	return ret;
}
961
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
962

963
#ifdef CONFIG_NUMA
964
struct page *__page_cache_alloc(gfp_t gfp)
965
{
966 967 968
	int n;
	struct page *page;

969
	if (cpuset_do_page_mem_spread()) {
970 971
		unsigned int cpuset_mems_cookie;
		do {
972
			cpuset_mems_cookie = read_mems_allowed_begin();
973
			n = cpuset_mem_spread_node();
974
			page = __alloc_pages_node(n, gfp, 0);
975
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
976

977
		return page;
978
	}
979
	return alloc_pages(gfp, 0);
980
}
981
EXPORT_SYMBOL(__page_cache_alloc);
982 983
#endif

L
Linus Torvalds 已提交
984 985 986 987 988 989 990 991 992 993
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
994 995 996 997 998
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
999
{
1000
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
1001 1002
}

1003
void __init pagecache_init(void)
L
Linus Torvalds 已提交
1004
{
1005
	int i;
L
Linus Torvalds 已提交
1006

1007 1008 1009 1010
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
1011 1012
}

L
Linus Torvalds 已提交
1013
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1014 1015 1016 1017 1018 1019 1020 1021 1022
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
1023
	wait_queue_entry_t wait;
1024 1025
};

1026
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1027
{
1028 1029 1030 1031 1032 1033 1034
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
1035

1036 1037
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
1038

1039 1040 1041 1042 1043 1044 1045 1046
	/*
	 * Stop walking if it's locked.
	 * Is this safe if put_and_wait_on_page_locked() is in use?
	 * Yes: the waker must hold a reference to this page, and if PG_locked
	 * has now already been set by another task, that task must also hold
	 * a reference to the *same usage* of this page; so there is no need
	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
	 */
1047
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
1048
		return -1;
1049

1050
	return autoremove_wake_function(wait, mode, sync, key);
1051 1052
}

1053
static void wake_up_page_bit(struct page *page, int bit_nr)
1054
{
1055 1056 1057
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1058
	wait_queue_entry_t bookmark;
1059

1060 1061 1062 1063
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1064 1065 1066 1067 1068
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1069
	spin_lock_irqsave(&q->lock, flags);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1106 1107 1108 1109 1110 1111 1112

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1129
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1130
	struct page *page, int bit_nr, int state, enum behavior behavior)
1131 1132
{
	struct wait_page_queue wait_page;
1133
	wait_queue_entry_t *wait = &wait_page.wait;
1134
	bool bit_is_set;
1135
	bool thrashing = false;
1136
	bool delayacct = false;
1137
	unsigned long pflags;
1138 1139
	int ret = 0;

1140
	if (bit_nr == PG_locked &&
1141
	    !PageUptodate(page) && PageWorkingset(page)) {
1142
		if (!PageSwapBacked(page)) {
1143
			delayacct_thrashing_start();
1144 1145
			delayacct = true;
		}
1146
		psi_memstall_enter(&pflags);
1147 1148 1149
		thrashing = true;
	}

1150
	init_wait(wait);
1151
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1152 1153 1154 1155 1156 1157 1158
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1159
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1160
			__add_wait_queue_entry_tail(q, wait);
1161 1162 1163 1164 1165 1166 1167
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

1168 1169 1170 1171 1172
		bit_is_set = test_bit(bit_nr, &page->flags);
		if (behavior == DROP)
			put_page(page);

		if (likely(bit_is_set))
1173 1174
			io_schedule();

1175
		if (behavior == EXCLUSIVE) {
1176 1177
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
1178
		} else if (behavior == SHARED) {
1179 1180 1181
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1182

1183
		if (signal_pending_state(state, current)) {
1184 1185 1186
			ret = -EINTR;
			break;
		}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

		if (behavior == DROP) {
			/*
			 * We can no longer safely access page->flags:
			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
			 * there is a risk of waiting forever on a page reused
			 * for something that keeps it locked indefinitely.
			 * But best check for -EINTR above before breaking.
			 */
			break;
		}
1198 1199 1200 1201
	}

	finish_wait(q, wait);

1202
	if (thrashing) {
1203
		if (delayacct)
1204 1205 1206
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1222
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1223 1224 1225 1226 1227 1228
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1229
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1230
}
1231
EXPORT_SYMBOL(wait_on_page_bit_killable);
1232

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1252 1253
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1254 1255
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1256 1257 1258
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1259
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1260 1261 1262 1263 1264
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1265
	__add_wait_queue_entry_tail(q, waiter);
1266
	SetPageWaiters(page);
1267 1268 1269 1270
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1289
	return test_bit(PG_waiters, mem);
1290 1291 1292 1293
}

#endif

L
Linus Torvalds 已提交
1294
/**
1295
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1296 1297 1298 1299
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1300
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1301 1302
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1303 1304 1305 1306 1307
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1308
 */
H
Harvey Harrison 已提交
1309
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1310
{
1311
	BUILD_BUG_ON(PG_waiters != 7);
1312
	page = compound_head(page);
1313
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1314 1315
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1316 1317 1318
}
EXPORT_SYMBOL(unlock_page);

1319 1320 1321
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1322 1323 1324
 */
void end_page_writeback(struct page *page)
{
1325 1326 1327 1328 1329 1330 1331 1332 1333
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1334
		rotate_reclaimable_page(page);
1335
	}
1336 1337 1338 1339

	if (!test_clear_page_writeback(page))
		BUG();

1340
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1341 1342 1343 1344
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1345 1346 1347 1348
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1349
void page_endio(struct page *page, bool is_write, int err)
1350
{
1351
	if (!is_write) {
1352 1353 1354 1355 1356 1357 1358
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1359
	} else {
1360
		if (err) {
1361 1362
			struct address_space *mapping;

1363
			SetPageError(page);
1364 1365 1366
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1367 1368 1369 1370 1371 1372
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1373 1374
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1375
 * @__page: the page to lock
L
Linus Torvalds 已提交
1376
 */
1377
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1378
{
1379 1380
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1381 1382
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1383 1384 1385
}
EXPORT_SYMBOL(__lock_page);

1386
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1387
{
1388 1389
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1390 1391
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1392
}
1393
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1394

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1406 1407 1408
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1421
			wait_on_page_locked(page);
1422
		return 0;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1435 1436 1437
	}
}

1438
/**
1439 1440 1441 1442
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1443
 *
1444 1445
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1446
 *
1447 1448 1449 1450 1451
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1452
 *
1453 1454 1455
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1456
 */
1457
pgoff_t page_cache_next_miss(struct address_space *mapping,
1458 1459
			     pgoff_t index, unsigned long max_scan)
{
1460
	XA_STATE(xas, &mapping->i_pages, index);
1461

1462 1463 1464
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1465
			break;
1466
		if (xas.xa_index == 0)
1467 1468 1469
			break;
	}

1470
	return xas.xa_index;
1471
}
1472
EXPORT_SYMBOL(page_cache_next_miss);
1473 1474

/**
L
Laurent Dufour 已提交
1475
 * page_cache_prev_miss() - Find the previous gap in the page cache.
1476 1477 1478
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1479
 *
1480 1481
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1482
 *
1483 1484 1485 1486 1487
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1488
 *
1489 1490 1491
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1492
 */
1493
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1494 1495
			     pgoff_t index, unsigned long max_scan)
{
1496
	XA_STATE(xas, &mapping->i_pages, index);
1497

1498 1499 1500
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1501
			break;
1502
		if (xas.xa_index == ULONG_MAX)
1503 1504 1505
			break;
	}

1506
	return xas.xa_index;
1507
}
1508
EXPORT_SYMBOL(page_cache_prev_miss);
1509

1510
/**
1511
 * find_get_entry - find and get a page cache entry
1512
 * @mapping: the address_space to search
1513 1514 1515 1516
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1517
 *
1518 1519
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1520
 *
1521
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1522
 */
1523
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1524
{
1525
	XA_STATE(xas, &mapping->i_pages, offset);
1526
	struct page *page;
L
Linus Torvalds 已提交
1527

N
Nick Piggin 已提交
1528 1529
	rcu_read_lock();
repeat:
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1540

1541
	if (!page_cache_get_speculative(page))
1542
		goto repeat;
1543

1544
	/*
1545
	 * Has the page moved or been split?
1546 1547 1548 1549
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1550
		put_page(page);
1551
		goto repeat;
N
Nick Piggin 已提交
1552
	}
1553
	page = find_subpage(page, offset);
N
Nick Piggin 已提交
1554
out:
N
Nick Piggin 已提交
1555 1556
	rcu_read_unlock();

L
Linus Torvalds 已提交
1557 1558
	return page;
}
1559
EXPORT_SYMBOL(find_get_entry);
L
Linus Torvalds 已提交
1560

1561 1562 1563 1564 1565 1566 1567 1568 1569
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1570 1571
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1572 1573
 *
 * find_lock_entry() may sleep.
1574 1575
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1576 1577
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1578 1579 1580 1581
{
	struct page *page;

repeat:
1582
	page = find_get_entry(mapping, offset);
1583
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1584 1585
		lock_page(page);
		/* Has the page been truncated? */
1586
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1587
			unlock_page(page);
1588
			put_page(page);
N
Nick Piggin 已提交
1589
			goto repeat;
L
Linus Torvalds 已提交
1590
		}
1591
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1592 1593 1594
	}
	return page;
}
1595 1596 1597
EXPORT_SYMBOL(find_lock_entry);

/**
1598
 * pagecache_get_page - find and get a page reference
1599 1600
 * @mapping: the address_space to search
 * @offset: the page index
1601
 * @fgp_flags: PCG flags
1602
 * @gfp_mask: gfp mask to use for the page cache data page allocation
1603
 *
1604
 * Looks up the page cache slot at @mapping & @offset.
L
Linus Torvalds 已提交
1605
 *
1606
 * PCG flags modify how the page is returned.
1607
 *
1608 1609 1610 1611 1612 1613 1614
 * @fgp_flags can be:
 *
 * - FGP_ACCESSED: the page will be marked accessed
 * - FGP_LOCK: Page is return locked
 * - FGP_CREAT: If page is not present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU
 *   list. The page is returned locked and with an increased
1615
 *   refcount.
1616 1617 1618
 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
 *   its own locking dance if the page is already in cache, or unlock the page
 *   before returning if we had to add the page to pagecache.
L
Linus Torvalds 已提交
1619
 *
1620 1621
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 * if the GFP flags specified for FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1622
 *
1623
 * If there is a page cache page, it is returned with an increased refcount.
1624 1625
 *
 * Return: the found page or %NULL otherwise.
L
Linus Torvalds 已提交
1626
 */
1627
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1628
	int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1629
{
N
Nick Piggin 已提交
1630
	struct page *page;
1631

L
Linus Torvalds 已提交
1632
repeat:
1633
	page = find_get_entry(mapping, offset);
1634
	if (xa_is_value(page))
1635 1636 1637 1638 1639 1640 1641
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1642
				put_page(page);
1643 1644 1645 1646 1647 1648 1649
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
1650
		if (unlikely(compound_head(page)->mapping != mapping)) {
1651
			unlock_page(page);
1652
			put_page(page);
1653 1654 1655 1656 1657
			goto repeat;
		}
		VM_BUG_ON_PAGE(page->index != offset, page);
	}

1658
	if (fgp_flags & FGP_ACCESSED)
1659 1660 1661 1662 1663 1664
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1665 1666 1667
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1668

1669
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1670 1671
		if (!page)
			return NULL;
1672

1673
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1674 1675
			fgp_flags |= FGP_LOCK;

1676
		/* Init accessed so avoid atomic mark_page_accessed later */
1677
		if (fgp_flags & FGP_ACCESSED)
1678
			__SetPageReferenced(page);
1679

1680
		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
N
Nick Piggin 已提交
1681
		if (unlikely(err)) {
1682
			put_page(page);
N
Nick Piggin 已提交
1683 1684 1685
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1686
		}
1687 1688 1689 1690 1691 1692 1693

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1694
	}
1695

L
Linus Torvalds 已提交
1696 1697
	return page;
}
1698
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1717 1718
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1719
 *
1720
 * Return: the number of pages and shadow entries which were found.
1721 1722 1723 1724 1725
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1726 1727
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1728 1729 1730 1731 1732 1733
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1734 1735
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1736
			continue;
1737 1738 1739 1740 1741 1742
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1743
			goto export;
1744

1745
		if (!page_cache_get_speculative(page))
1746
			goto retry;
1747

1748
		/* Has the page moved or been split? */
1749 1750
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
1751
		page = find_subpage(page, xas.xa_index);
1752

1753
export:
1754
		indices[ret] = xas.xa_index;
1755 1756 1757
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1758 1759
		continue;
put_page:
1760
		put_page(page);
1761 1762
retry:
		xas_reset(&xas);
1763 1764 1765 1766 1767
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1768
/**
J
Jan Kara 已提交
1769
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1770 1771
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1772
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1773 1774 1775
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1776 1777 1778 1779
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1780 1781 1782
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1783
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1784
 *
1785 1786
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1787
 * reached.
L
Linus Torvalds 已提交
1788
 */
J
Jan Kara 已提交
1789 1790 1791
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1792
{
1793 1794
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1795 1796 1797 1798
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1799 1800

	rcu_read_lock();
1801 1802
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1803
			continue;
1804 1805
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1806
			continue;
N
Nick Piggin 已提交
1807

1808
		if (!page_cache_get_speculative(page))
1809
			goto retry;
1810

1811
		/* Has the page moved or been split? */
1812 1813
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1814

1815
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1816
		if (++ret == nr_pages) {
1817
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1818 1819
			goto out;
		}
1820 1821
		continue;
put_page:
1822
		put_page(page);
1823 1824
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1825
	}
1826

J
Jan Kara 已提交
1827 1828 1829
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1830
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1831 1832 1833 1834 1835 1836 1837
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1838
	rcu_read_unlock();
1839

L
Linus Torvalds 已提交
1840 1841 1842
	return ret;
}

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1853
 * Return: the number of pages which were found.
1854 1855 1856 1857
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1858 1859
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1860 1861 1862 1863
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1864 1865

	rcu_read_lock();
1866 1867 1868 1869 1870 1871 1872 1873
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1874
			break;
1875

1876
		if (!page_cache_get_speculative(page))
1877
			goto retry;
1878

1879
		/* Has the page moved or been split? */
1880 1881
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1882

1883
		pages[ret] = find_subpage(page, xas.xa_index);
1884 1885
		if (++ret == nr_pages)
			break;
1886 1887
		continue;
put_page:
1888
		put_page(page);
1889 1890
retry:
		xas_reset(&xas);
1891
	}
N
Nick Piggin 已提交
1892 1893
	rcu_read_unlock();
	return ret;
1894
}
1895
EXPORT_SYMBOL(find_get_pages_contig);
1896

1897
/**
1898
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1899 1900
 * @mapping:	the address_space to search
 * @index:	the starting page index
1901
 * @end:	The final page index (inclusive)
1902 1903 1904 1905
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1906
 * Like find_get_pages, except we only return pages which are tagged with
1907
 * @tag.   We update @index to index the next page for the traversal.
1908 1909
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1910
 */
1911
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1912
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1913
			struct page **pages)
L
Linus Torvalds 已提交
1914
{
1915 1916
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1917 1918 1919 1920
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1921 1922

	rcu_read_lock();
1923 1924
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1925
			continue;
1926 1927 1928 1929 1930 1931
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1932
			continue;
N
Nick Piggin 已提交
1933

1934
		if (!page_cache_get_speculative(page))
1935
			goto retry;
N
Nick Piggin 已提交
1936

1937
		/* Has the page moved or been split? */
1938 1939
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1940

1941
		pages[ret] = find_subpage(page, xas.xa_index);
1942
		if (++ret == nr_pages) {
1943
			*index = xas.xa_index + 1;
1944 1945
			goto out;
		}
1946 1947
		continue;
put_page:
1948
		put_page(page);
1949 1950
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1951
	}
1952

1953
	/*
1954
	 * We come here when we got to @end. We take care to not overflow the
1955
	 * index @index as it confuses some of the callers. This breaks the
1956 1957
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
1958 1959 1960 1961 1962 1963
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1964
	rcu_read_unlock();
L
Linus Torvalds 已提交
1965 1966 1967

	return ret;
}
1968
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
					struct file_ra_state *ra)
{
	ra->ra_pages /= 4;
}

1991
/**
1992 1993
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
1994 1995
 * @iter:	data destination
 * @written:	already copied
1996
 *
L
Linus Torvalds 已提交
1997
 * This is a generic file read routine, and uses the
1998
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
1999 2000 2001
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
2002 2003 2004 2005
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
2006
 */
2007
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2008
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
2009
{
2010
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
2011
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
2012
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
2013
	struct file_ra_state *ra = &filp->f_ra;
2014
	loff_t *ppos = &iocb->ki_pos;
2015 2016 2017 2018
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
2019
	unsigned int prev_offset;
2020
	int error = 0;
L
Linus Torvalds 已提交
2021

2022
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2023
		return 0;
2024 2025
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2026 2027 2028 2029 2030
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2031 2032 2033

	for (;;) {
		struct page *page;
2034
		pgoff_t end_index;
N
NeilBrown 已提交
2035
		loff_t isize;
L
Linus Torvalds 已提交
2036 2037 2038 2039
		unsigned long nr, ret;

		cond_resched();
find_page:
2040 2041 2042 2043 2044
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2045
		page = find_get_page(mapping, index);
2046
		if (!page) {
2047 2048
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2049
			page_cache_sync_readahead(mapping,
2050
					ra, filp,
2051 2052 2053 2054 2055 2056
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2057
			page_cache_async_readahead(mapping,
2058
					ra, filp, page,
2059
					index, last_index - index);
L
Linus Torvalds 已提交
2060
		}
2061
		if (!PageUptodate(page)) {
2062 2063 2064 2065 2066
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2067 2068 2069 2070 2071
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2072 2073 2074
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2075 2076 2077
			if (PageUptodate(page))
				goto page_ok;

2078
			if (inode->i_blkbits == PAGE_SHIFT ||
2079 2080
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2081
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2082
			if (unlikely(iov_iter_is_pipe(iter)))
2083
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2084
			if (!trylock_page(page))
2085
				goto page_not_up_to_date;
2086 2087 2088
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2089
			if (!mapping->a_ops->is_partially_uptodate(page,
2090
							offset, iter->count))
2091 2092 2093
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2094
page_ok:
N
NeilBrown 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2105
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2106
		if (unlikely(!isize || index > end_index)) {
2107
			put_page(page);
N
NeilBrown 已提交
2108 2109 2110 2111
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2112
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2113
		if (index == end_index) {
2114
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2115
			if (nr <= offset) {
2116
				put_page(page);
N
NeilBrown 已提交
2117 2118 2119 2120
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2130 2131
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2132
		 */
2133
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139 2140
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2141 2142

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2143
		offset += ret;
2144 2145
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2146
		prev_offset = offset;
L
Linus Torvalds 已提交
2147

2148
		put_page(page);
2149 2150 2151 2152 2153 2154 2155 2156
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2157 2158 2159

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2160 2161 2162
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2163

2164
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2165
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2166 2167
		if (!page->mapping) {
			unlock_page(page);
2168
			put_page(page);
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2179 2180 2181 2182 2183 2184
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2185 2186 2187
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2188 2189
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2190
				put_page(page);
2191
				error = 0;
2192 2193
				goto find_page;
			}
L
Linus Torvalds 已提交
2194
			goto readpage_error;
2195
		}
L
Linus Torvalds 已提交
2196 2197

		if (!PageUptodate(page)) {
2198 2199 2200
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2201 2202 2203
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2204
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2205 2206
					 */
					unlock_page(page);
2207
					put_page(page);
L
Linus Torvalds 已提交
2208 2209 2210
					goto find_page;
				}
				unlock_page(page);
2211
				shrink_readahead_size_eio(filp, ra);
2212 2213
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2214 2215 2216 2217 2218 2219 2220 2221
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2222
		put_page(page);
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228 2229
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2230
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2231
		if (!page) {
2232
			error = -ENOMEM;
N
Nick Piggin 已提交
2233
			goto out;
L
Linus Torvalds 已提交
2234
		}
2235
		error = add_to_page_cache_lru(page, mapping, index,
2236
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2237
		if (error) {
2238
			put_page(page);
2239 2240
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2241
				goto find_page;
2242
			}
L
Linus Torvalds 已提交
2243 2244 2245 2246 2247
			goto out;
		}
		goto readpage;
	}

2248 2249
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2250
out:
2251
	ra->prev_pos = prev_index;
2252
	ra->prev_pos <<= PAGE_SHIFT;
2253
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2254

2255
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2256
	file_accessed(filp);
2257
	return written ? written : error;
L
Linus Torvalds 已提交
2258 2259
}

2260
/**
A
Al Viro 已提交
2261
 * generic_file_read_iter - generic filesystem read routine
2262
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2263
 * @iter:	destination for the data read
2264
 *
A
Al Viro 已提交
2265
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2266
 * that can use the page cache directly.
2267 2268 2269
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code if nothing was read
L
Linus Torvalds 已提交
2270 2271
 */
ssize_t
A
Al Viro 已提交
2272
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2273
{
2274
	size_t count = iov_iter_count(iter);
2275
	ssize_t retval = 0;
2276 2277 2278

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2279

2280
	if (iocb->ki_flags & IOCB_DIRECT) {
2281
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2282 2283
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2284
		loff_t size;
L
Linus Torvalds 已提交
2285 2286

		size = i_size_read(inode);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2298

2299 2300
		file_accessed(file);

2301
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2302
		if (retval >= 0) {
2303
			iocb->ki_pos += retval;
2304
			count -= retval;
2305
		}
A
Al Viro 已提交
2306
		iov_iter_revert(iter, count - iov_iter_count(iter));
2307

2308 2309 2310 2311 2312 2313
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2314 2315
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2316
		 */
2317
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2318
		    IS_DAX(inode))
2319
			goto out;
L
Linus Torvalds 已提交
2320 2321
	}

2322
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2323 2324 2325
out:
	return retval;
}
A
Al Viro 已提交
2326
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2327 2328 2329

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
					     struct file *fpin)
{
	int flags = vmf->flags;

	if (fpin)
		return fpin;

	/*
	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
	 * anything, so we only pin the file and drop the mmap_sem if only
	 * FAULT_FLAG_ALLOW_RETRY is set.
	 */
	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
	    FAULT_FLAG_ALLOW_RETRY) {
		fpin = get_file(vmf->vma->vm_file);
		up_read(&vmf->vma->vm_mm->mmap_sem);
	}
	return fpin;
}

/*
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
 * It differs in that it actually returns the page locked if it returns 1 and 0
 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2368 2369 2370 2371 2372
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
	 * is supposed to work. We have way too many special cases..
	 */
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
			 * We didn't have the right flags to drop the mmap_sem,
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
			 * mmap_sem here and return 0 if we don't have a fpin.
			 */
			if (*fpin == NULL)
				up_read(&vmf->vma->vm_mm->mmap_sem);
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2394

2395
/*
2396 2397 2398 2399 2400
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2401
 */
2402
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2403
{
2404 2405
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2406
	struct address_space *mapping = file->f_mapping;
2407
	struct file *fpin = NULL;
2408
	pgoff_t offset = vmf->pgoff;
2409 2410

	/* If we don't want any read-ahead, don't bother */
2411
	if (vmf->vma->vm_flags & VM_RAND_READ)
2412
		return fpin;
2413
	if (!ra->ra_pages)
2414
		return fpin;
2415

2416
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2417
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2418 2419
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2420
		return fpin;
2421 2422
	}

2423 2424
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2425 2426 2427 2428 2429 2430 2431
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
2432
		return fpin;
2433

2434 2435 2436
	/*
	 * mmap read-around
	 */
2437
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2438 2439 2440
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2441
	ra_submit(ra, mapping, file);
2442
	return fpin;
2443 2444 2445 2446
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2447 2448
 * so we want to possibly extend the readahead further.  We return the file that
 * was pinned if we have to drop the mmap_sem in order to do IO.
2449
 */
2450 2451
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2452
{
2453 2454
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2455
	struct address_space *mapping = file->f_mapping;
2456
	struct file *fpin = NULL;
2457
	pgoff_t offset = vmf->pgoff;
2458 2459

	/* If we don't want any read-ahead, don't bother */
2460
	if (vmf->vma->vm_flags & VM_RAND_READ)
2461
		return fpin;
2462 2463
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
2464 2465
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2466 2467
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2468 2469
	}
	return fpin;
2470 2471
}

2472
/**
2473
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2474
 * @vmf:	struct vm_fault containing details of the fault
2475
 *
2476
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2477 2478 2479 2480 2481
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2482 2483 2484
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
2485 2486
 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2487 2488 2489 2490 2491
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2492 2493
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2494
 */
2495
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2496 2497
{
	int error;
2498
	struct file *file = vmf->vma->vm_file;
2499
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2500 2501 2502
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2503
	pgoff_t offset = vmf->pgoff;
2504
	pgoff_t max_off;
L
Linus Torvalds 已提交
2505
	struct page *page;
2506
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2507

2508 2509
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2510
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2511 2512

	/*
2513
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2514
	 */
2515
	page = find_get_page(mapping, offset);
2516
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2517
		/*
2518 2519
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2520
		 */
2521
		fpin = do_async_mmap_readahead(vmf, page);
2522
	} else if (!page) {
2523 2524
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2525
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2526
		ret = VM_FAULT_MAJOR;
2527
		fpin = do_sync_mmap_readahead(vmf);
2528
retry_find:
2529 2530 2531
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2532 2533 2534
		if (!page) {
			if (fpin)
				goto out_retry;
2535
			return vmf_error(-ENOMEM);
2536
		}
L
Linus Torvalds 已提交
2537 2538
	}

2539 2540
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2541 2542

	/* Did it get truncated? */
2543
	if (unlikely(compound_head(page)->mapping != mapping)) {
2544 2545 2546 2547
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2548
	VM_BUG_ON_PAGE(page->index != offset, page);
2549

L
Linus Torvalds 已提交
2550
	/*
2551 2552
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2553
	 */
2554
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2555 2556
		goto page_not_uptodate;

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	/*
	 * We've made it this far and we had to drop our mmap_sem, now is the
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2567 2568 2569 2570
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2571 2572
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2573
		unlock_page(page);
2574
		put_page(page);
2575
		return VM_FAULT_SIGBUS;
2576 2577
	}

N
Nick Piggin 已提交
2578
	vmf->page = page;
N
Nick Piggin 已提交
2579
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2589
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2590
	error = mapping->a_ops->readpage(file, page);
2591 2592 2593 2594 2595
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2596 2597
	if (fpin)
		goto out_retry;
2598
	put_page(page);
2599 2600

	if (!error || error == AOP_TRUNCATED_PAGE)
2601
		goto retry_find;
L
Linus Torvalds 已提交
2602

2603
	/* Things didn't work out. Return zero to tell the mm layer so. */
2604
	shrink_readahead_size_eio(file, ra);
N
Nick Piggin 已提交
2605
	return VM_FAULT_SIGBUS;
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617

out_retry:
	/*
	 * We dropped the mmap_sem, we need to return to the fault handler to
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2618 2619 2620
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2621
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2622
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2623
{
J
Jan Kara 已提交
2624
	struct file *file = vmf->vma->vm_file;
2625
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2626
	pgoff_t last_pgoff = start_pgoff;
2627
	unsigned long max_idx;
2628
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2629
	struct page *page;
2630 2631

	rcu_read_lock();
2632 2633 2634 2635
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2636
			goto next;
2637

2638 2639 2640 2641
		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
2642
		if (PageLocked(page))
2643
			goto next;
2644
		if (!page_cache_get_speculative(page))
2645
			goto next;
2646

2647
		/* Has the page moved or been split? */
2648 2649
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2650
		page = find_subpage(page, xas.xa_index);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2662 2663
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2664 2665 2666 2667
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2668

2669
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2670
		if (vmf->pte)
2671 2672
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
J
Jan Kara 已提交
2673
		if (alloc_set_pte(vmf, NULL, page))
2674
			goto unlock;
2675 2676 2677 2678 2679
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2680
		put_page(page);
2681
next:
2682
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2683
		if (pmd_trans_huge(*vmf->pmd))
2684
			break;
2685 2686 2687 2688 2689
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2690
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2691 2692
{
	struct page *page = vmf->page;
2693
	struct inode *inode = file_inode(vmf->vma->vm_file);
2694
	vm_fault_t ret = VM_FAULT_LOCKED;
2695

2696
	sb_start_pagefault(inode->i_sb);
2697
	file_update_time(vmf->vma->vm_file);
2698 2699 2700 2701 2702 2703
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2704 2705 2706 2707 2708 2709
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2710
	wait_for_stable_page(page);
2711
out:
2712
	sb_end_pagefault(inode->i_sb);
2713 2714 2715
	return ret;
}

2716
const struct vm_operations_struct generic_file_vm_ops = {
2717
	.fault		= filemap_fault,
2718
	.map_pages	= filemap_map_pages,
2719
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2745
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2746
{
S
Souptick Joarder 已提交
2747
	return VM_FAULT_SIGBUS;
2748
}
L
Linus Torvalds 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2759
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2760 2761 2762
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2763 2764 2765 2766 2767
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2768
			put_page(page);
S
Sasha Levin 已提交
2769 2770 2771 2772 2773 2774
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2775
static struct page *do_read_cache_page(struct address_space *mapping,
2776
				pgoff_t index,
2777
				int (*filler)(void *, struct page *),
2778 2779
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2780
{
N
Nick Piggin 已提交
2781
	struct page *page;
L
Linus Torvalds 已提交
2782 2783 2784 2785
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2786
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2787 2788
		if (!page)
			return ERR_PTR(-ENOMEM);
2789
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2790
		if (unlikely(err)) {
2791
			put_page(page);
N
Nick Piggin 已提交
2792 2793
			if (err == -EEXIST)
				goto repeat;
2794
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2795 2796
			return ERR_PTR(err);
		}
2797 2798

filler:
2799 2800 2801 2802 2803
		if (filler)
			err = filler(data, page);
		else
			err = mapping->a_ops->readpage(data, page);

L
Linus Torvalds 已提交
2804
		if (err < 0) {
2805
			put_page(page);
2806
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2807 2808
		}

2809 2810 2811 2812 2813
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2814 2815 2816
	if (PageUptodate(page))
		goto out;

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2853
	lock_page(page);
2854 2855

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2856 2857
	if (!page->mapping) {
		unlock_page(page);
2858
		put_page(page);
2859
		goto repeat;
L
Linus Torvalds 已提交
2860
	}
2861 2862

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2863 2864 2865 2866
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2867 2868
	goto filler;

2869
out:
2870 2871 2872
	mark_page_accessed(page);
	return page;
}
2873 2874

/**
S
Sasha Levin 已提交
2875
 * read_cache_page - read into page cache, fill it if needed
2876 2877 2878
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2879
 * @data:	first arg to filler(data, page) function, often left as NULL
2880 2881
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2882
 * not set, try to fill the page and wait for it to become unlocked.
2883 2884
 *
 * If the page does not get brought uptodate, return -EIO.
2885 2886
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2887
 */
S
Sasha Levin 已提交
2888
struct page *read_cache_page(struct address_space *mapping,
2889
				pgoff_t index,
2890
				int (*filler)(void *, struct page *),
2891 2892
				void *data)
{
2893 2894
	return do_read_cache_page(mapping, index, filler, data,
			mapping_gfp_mask(mapping));
2895
}
S
Sasha Levin 已提交
2896
EXPORT_SYMBOL(read_cache_page);
2897 2898 2899 2900 2901 2902 2903 2904

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2905
 * any new page allocations done using the specified allocation flags.
2906 2907
 *
 * If the page does not get brought uptodate, return -EIO.
2908 2909
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2910 2911 2912 2913 2914
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
2915
	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2916 2917 2918
}
EXPORT_SYMBOL(read_cache_page_gfp);

2919 2920 2921 2922 2923 2924 2925 2926
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
2927 2928
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

2939 2940 2941 2942 2943 2944 2945 2946 2947
	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;

	*count = min(*count, max_size - pos);

	return 0;
2948 2949
}

L
Linus Torvalds 已提交
2950 2951 2952
/*
 * Performs necessary checks before doing a write
 *
2953
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2954 2955 2956
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2957
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2958
{
2959
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2960
	struct inode *inode = file->f_mapping->host;
2961 2962
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
2963

2964 2965 2966
	if (IS_SWAPFILE(inode))
		return -ETXTBSY;

2967 2968
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
2969

2970
	/* FIXME: this is for backwards compatibility with 2.4 */
2971
	if (iocb->ki_flags & IOCB_APPEND)
2972
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
2973

2974 2975 2976
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

2977 2978 2979 2980
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
2981

2982
	iov_iter_truncate(from, count);
2983
	return iov_iter_count(from);
L
Linus Torvalds 已提交
2984 2985 2986
}
EXPORT_SYMBOL(generic_write_checks);

2987 2988 2989
/*
 * Performs necessary checks before doing a clone.
 *
2990
 * Can adjust amount of bytes to clone via @req_count argument.
2991 2992 2993 2994 2995
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
2996
			 loff_t *req_count, unsigned int remap_flags)
2997 2998 2999 3000 3001 3002 3003
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
3004
	int ret;
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
3018
	if ((remap_flags & REMAP_FILE_DEDUP) &&
3019 3020 3021 3022 3023 3024 3025 3026 3027
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

3028 3029 3030
	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3031 3032

	/*
3033 3034 3035 3036 3037
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3038
	 */
3039 3040 3041 3042
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3043
			count = ALIGN_DOWN(count, bs);
3044
		bcount = count;
L
Linus Torvalds 已提交
3045 3046
	}

3047 3048 3049 3050 3051 3052
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3053
	/*
3054 3055
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3056
	 */
3057
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3058
		return -EINVAL;
L
Linus Torvalds 已提交
3059

3060
	*req_count = count;
3061
	return 0;
L
Linus Torvalds 已提交
3062 3063
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

/*
 * Performs common checks before doing a file copy/clone
 * from @file_in to @file_out.
 */
int generic_file_rw_checks(struct file *file_in, struct file *file_out)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);

	/* Don't copy dirs, pipes, sockets... */
	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
		return -EISDIR;
	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
		return -EINVAL;

	if (!(file_in->f_mode & FMODE_READ) ||
	    !(file_out->f_mode & FMODE_WRITE) ||
	    (file_out->f_flags & O_APPEND))
		return -EBADF;

	return 0;
}

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
/*
 * Performs necessary checks before doing a file copy
 *
 * Can adjust amount of bytes to copy via @req_count argument.
 * Returns appropriate error code that caller should return or
 * zero in case the copy should be allowed.
 */
int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
			     struct file *file_out, loff_t pos_out,
			     size_t *req_count, unsigned int flags)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);
	uint64_t count = *req_count;
	loff_t size_in;
	int ret;

	ret = generic_file_rw_checks(file_in, file_out);
	if (ret)
		return ret;

	/* Don't touch certain kinds of inodes */
	if (IS_IMMUTABLE(inode_out))
		return -EPERM;

	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
		return -ETXTBSY;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EOVERFLOW;

	/* Shorten the copy to EOF */
	size_in = i_size_read(inode_in);
	if (pos_in >= size_in)
		count = 0;
	else
		count = min(count, size_in - (uint64_t)pos_in);

	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;

	/* Don't allow overlapped copying within the same file. */
	if (inode_in == inode_out &&
	    pos_out + count > pos_in &&
	    pos_out < pos_in + count)
		return -EINVAL;

	*req_count = count;
	return 0;
}

3141 3142 3143 3144 3145 3146
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3147
	return aops->write_begin(file, mapping, pos, len, flags,
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3158
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3159 3160 3161
}
EXPORT_SYMBOL(pagecache_write_end);

L
Linus Torvalds 已提交
3162
ssize_t
3163
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3164 3165 3166 3167
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3168
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3169
	ssize_t		written;
3170 3171
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3172

A
Al Viro 已提交
3173
	write_len = iov_iter_count(from);
3174
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3175

3176 3177 3178
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3179
					   pos + write_len - 1))
3180 3181 3182 3183 3184 3185 3186
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3187 3188 3189 3190 3191

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3192
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3193
	 */
3194
	written = invalidate_inode_pages2_range(mapping,
3195
					pos >> PAGE_SHIFT, end);
3196 3197 3198 3199 3200 3201 3202 3203
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3204 3205
	}

3206
	written = mapping->a_ops->direct_IO(iocb, from);
3207 3208 3209 3210 3211 3212 3213 3214

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3215 3216 3217 3218 3219
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
	 * them by removing it completely
3220
	 */
3221 3222 3223
	if (mapping->nrpages)
		invalidate_inode_pages2_range(mapping,
					pos >> PAGE_SHIFT, end);
3224

L
Linus Torvalds 已提交
3225
	if (written > 0) {
3226
		pos += written;
3227
		write_len -= written;
3228 3229
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3230 3231
			mark_inode_dirty(inode);
		}
3232
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3233
	}
3234
	iov_iter_revert(from, write_len - iov_iter_count(from));
3235
out:
L
Linus Torvalds 已提交
3236 3237 3238 3239
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3240 3241 3242 3243
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3244 3245
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3246 3247
{
	struct page *page;
3248
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3249

3250
	if (flags & AOP_FLAG_NOFS)
3251 3252 3253
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3254
			mapping_gfp_mask(mapping));
3255
	if (page)
3256
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3257 3258 3259

	return page;
}
3260
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3261

3262
ssize_t generic_perform_write(struct file *file,
3263 3264 3265 3266 3267 3268
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3269 3270
	unsigned int flags = 0;

3271 3272 3273 3274 3275 3276 3277
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3278 3279
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3280 3281 3282
						iov_iter_count(i));

again:
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3298 3299 3300 3301 3302
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3303
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3304
						&page, &fsdata);
3305
		if (unlikely(status < 0))
3306 3307
			break;

3308 3309
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3310

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3322
		iov_iter_advance(i, copied);
3323 3324 3325 3326 3327 3328 3329 3330 3331
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3332
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3344
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3345

3346
/**
3347
 * __generic_file_write_iter - write data to a file
3348
 * @iocb:	IO state structure (file, offset, etc.)
3349
 * @from:	iov_iter with data to write
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3362 3363 3364 3365
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3366
 */
3367
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3368 3369
{
	struct file *file = iocb->ki_filp;
3370
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3371
	struct inode 	*inode = mapping->host;
3372
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3373
	ssize_t		err;
3374
	ssize_t		status;
L
Linus Torvalds 已提交
3375 3376

	/* We can write back this queue in page reclaim */
3377
	current->backing_dev_info = inode_to_bdi(inode);
3378
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3379 3380 3381
	if (err)
		goto out;

3382 3383 3384
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3385

3386
	if (iocb->ki_flags & IOCB_DIRECT) {
3387
		loff_t pos, endbyte;
3388

3389
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3390
		/*
3391 3392 3393 3394 3395
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3396
		 */
3397
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3398 3399
			goto out;

3400
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3401
		/*
3402
		 * If generic_perform_write() returned a synchronous error
3403 3404 3405 3406 3407
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3408
		if (unlikely(status < 0)) {
3409
			err = status;
3410 3411 3412 3413 3414 3415 3416
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3417
		endbyte = pos + status - 1;
3418
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3419
		if (err == 0) {
3420
			iocb->ki_pos = endbyte + 1;
3421
			written += status;
3422
			invalidate_mapping_pages(mapping,
3423 3424
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3425 3426 3427 3428 3429 3430 3431
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3432 3433 3434
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3435
	}
L
Linus Torvalds 已提交
3436 3437 3438 3439
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3440
EXPORT_SYMBOL(__generic_file_write_iter);
3441 3442

/**
3443
 * generic_file_write_iter - write data to a file
3444
 * @iocb:	IO state structure
3445
 * @from:	iov_iter with data to write
3446
 *
3447
 * This is a wrapper around __generic_file_write_iter() to be used by most
3448 3449
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3450 3451 3452 3453
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3454
 */
3455
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3456 3457
{
	struct file *file = iocb->ki_filp;
3458
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3459 3460
	ssize_t ret;

A
Al Viro 已提交
3461
	inode_lock(inode);
3462 3463
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3464
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3465
	inode_unlock(inode);
L
Linus Torvalds 已提交
3466

3467 3468
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3469 3470
	return ret;
}
3471
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3472

3473 3474 3475 3476 3477 3478 3479
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3480
 * (presumably at page->private).
3481
 *
3482 3483 3484
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3485
 * The @gfp_mask argument specifies whether I/O may be performed to release
3486
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3487
 *
3488
 * Return: %1 if the release was successful, otherwise return zero.
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);