filemap.c 87.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
12
#include <linux/export.h>
L
Linus Torvalds 已提交
13
#include <linux/compiler.h>
14
#include <linux/dax.h>
L
Linus Torvalds 已提交
15
#include <linux/fs.h>
16
#include <linux/sched/signal.h>
17
#include <linux/uaccess.h>
18
#include <linux/capability.h>
L
Linus Torvalds 已提交
19
#include <linux/kernel_stat.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
29
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
30 31 32
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
33
#include <linux/cpuset.h>
N
Nick Piggin 已提交
34
#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35
#include <linux/hugetlb.h>
36
#include <linux/memcontrol.h>
37
#include <linux/cleancache.h>
38
#include <linux/rmap.h>
39 40
#include "internal.h"

R
Robert Jarzmik 已提交
41 42 43
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
44 45 46
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
47
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
66
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
67
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68 69
 *      ->swap_lock		(exclusive_swap_page, others)
 *        ->mapping->tree_lock
L
Linus Torvalds 已提交
70
 *
71
 *  ->i_mutex
72
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
73 74
 *
 *  ->mmap_sem
75
 *    ->i_mmap_rwsem
76
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
L
Linus Torvalds 已提交
77 78 79 80 81
 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
82
 *  ->i_mutex			(generic_perform_write)
83
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
84
 *
85
 *  bdi->wb.list_lock
86
 *    sb_lock			(fs/fs-writeback.c)
L
Linus Torvalds 已提交
87 88
 *    ->mapping->tree_lock	(__sync_single_inode)
 *
89
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
90 91 92
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
93
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
94
 *
95
 *  ->page_table_lock or pte_lock
96
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
97 98
 *    ->private_lock		(try_to_unmap_one)
 *    ->tree_lock		(try_to_unmap_one)
99 100
 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
101 102
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
108 109
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
110
 * ->i_mmap_rwsem
111
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
112 113
 */

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
static int page_cache_tree_insert(struct address_space *mapping,
				  struct page *page, void **shadowp)
{
	struct radix_tree_node *node;
	void **slot;
	int error;

	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
				    &node, &slot);
	if (error)
		return error;
	if (*slot) {
		void *p;

		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
		if (!radix_tree_exceptional_entry(p))
			return -EEXIST;

		mapping->nrexceptional--;
133 134
		if (shadowp)
			*shadowp = p;
135
	}
136 137
	__radix_tree_replace(&mapping->page_tree, node, slot, page,
			     workingset_update_node, mapping);
138 139 140 141
	mapping->nrpages++;
	return 0;
}

142 143 144
static void page_cache_tree_delete(struct address_space *mapping,
				   struct page *page, void *shadow)
{
145 146 147 148
	int i, nr;

	/* hugetlb pages are represented by one entry in the radix tree */
	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149

150 151 152
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153

154
	for (i = 0; i < nr; i++) {
155 156 157 158 159 160
		struct radix_tree_node *node;
		void **slot;

		__radix_tree_lookup(&mapping->page_tree, page->index + i,
				    &node, &slot);

161
		VM_BUG_ON_PAGE(!node && nr != 1, page);
162

163 164 165
		radix_tree_clear_tags(&mapping->page_tree, node, slot);
		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
				     workingset_update_node, mapping);
166
	}
167

168 169 170
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

171 172 173 174 175 176 177 178 179 180 181
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
182 183
}

184 185
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
186
{
187
	int nr;
L
Linus Torvalds 已提交
188

189 190 191 192 193 194 195 196
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
197
		cleancache_invalidate_page(mapping, page);
198

199
	VM_BUG_ON_PAGE(PageTail(page), page);
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
220
			page_ref_sub(page, mapcount);
221 222 223
		}
	}

224
	/* hugetlb pages do not participate in page cache accounting. */
225 226
	if (PageHuge(page))
		return;
227

228 229 230 231 232 233 234 235 236
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
	} else {
		VM_BUG_ON_PAGE(PageTransHuge(page), page);
237
	}
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
 * is safe.  The caller must hold the mapping's tree_lock.
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
265
	page_cache_tree_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
266 267
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

285 286 287 288 289 290 291 292 293
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
294
{
295
	struct address_space *mapping = page_mapping(page);
296
	unsigned long flags;
L
Linus Torvalds 已提交
297

M
Matt Mackall 已提交
298
	BUG_ON(!PageLocked(page));
299
	spin_lock_irqsave(&mapping->tree_lock, flags);
J
Johannes Weiner 已提交
300
	__delete_from_page_cache(page, NULL);
301
	spin_unlock_irqrestore(&mapping->tree_lock, flags);
302

303
	page_cache_free_page(mapping, page);
304 305 306
}
EXPORT_SYMBOL(delete_from_page_cache);

307
int filemap_check_errors(struct address_space *mapping)
308 309 310
{
	int ret = 0;
	/* Check for outstanding write errors */
311 312
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
313
		ret = -ENOSPC;
314 315
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
316 317 318
		ret = -EIO;
	return ret;
}
319
EXPORT_SYMBOL(filemap_check_errors);
320

321 322 323 324 325 326 327 328 329 330
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
331
/**
332
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
333 334
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
335
 * @end:	offset in bytes where the range ends (inclusive)
336
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
337
 *
338 339 340
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
341
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
342
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
343 344 345
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
 */
346 347
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
348 349 350 351
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
352
		.nr_to_write = LONG_MAX,
353 354
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
355 356 357 358 359
	};

	if (!mapping_cap_writeback_dirty(mapping))
		return 0;

360
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
361
	ret = do_writepages(mapping, &wbc);
362
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
363 364 365 366 367 368
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
369
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
370 371 372 373 374 375 376 377
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

378
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
379
				loff_t end)
L
Linus Torvalds 已提交
380 381 382
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
383
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
384

385 386 387 388
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

398 399 400 401 402 403 404 405 406 407 408 409 410 411
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
412
	struct page *page;
413 414 415 416 417 418 419

	if (end_byte < start_byte)
		return false;

	if (mapping->nrpages == 0)
		return false;

420
	if (!find_get_pages_range(mapping, &index, end, 1, &page))
421
		return false;
422 423
	put_page(page);
	return true;
424 425 426
}
EXPORT_SYMBOL(filemap_range_has_page);

427
static void __filemap_fdatawait_range(struct address_space *mapping,
428
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
429
{
430 431
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
432 433 434
	struct pagevec pvec;
	int nr_pages;

435
	if (end_byte < start_byte)
436
		return;
L
Linus Torvalds 已提交
437 438

	pagevec_init(&pvec, 0);
439
	while (index <= end) {
L
Linus Torvalds 已提交
440 441
		unsigned i;

442
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
443
				end, PAGECACHE_TAG_WRITEBACK);
444 445 446
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
447 448 449 450
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
451
			ClearPageError(page);
L
Linus Torvalds 已提交
452 453 454 455
		}
		pagevec_release(&pvec);
		cond_resched();
	}
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
475 476
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
477
}
478 479
EXPORT_SYMBOL(filemap_fdatawait_range);

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
502

503 504 505 506 507 508 509 510 511 512 513 514
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
 */
515
int filemap_fdatawait_keep_errors(struct address_space *mapping)
516
{
517
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
518
	return filemap_check_and_keep_errors(mapping);
519
}
520
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
521

522
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
523
{
524 525
	return (!dax_mapping(mapping) && mapping->nrpages) ||
	    (dax_mapping(mapping) && mapping->nrexceptional);
L
Linus Torvalds 已提交
526 527 528 529
}

int filemap_write_and_wait(struct address_space *mapping)
{
530
	int err = 0;
L
Linus Torvalds 已提交
531

532
	if (mapping_needs_writeback(mapping)) {
533 534 535 536 537 538 539 540 541 542 543
		err = filemap_fdatawrite(mapping);
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
		if (err != -EIO) {
			int err2 = filemap_fdatawait(mapping);
			if (!err)
				err = err2;
544 545 546
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
547
		}
548 549
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
550
	}
551
	return err;
L
Linus Torvalds 已提交
552
}
553
EXPORT_SYMBOL(filemap_write_and_wait);
L
Linus Torvalds 已提交
554

555 556 557 558 559 560
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
561 562
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
563
 * Note that @lend is inclusive (describes the last byte to be written) so
564 565
 * that this function can be used to write to the very end-of-file (end = -1).
 */
L
Linus Torvalds 已提交
566 567 568
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
569
	int err = 0;
L
Linus Torvalds 已提交
570

571
	if (mapping_needs_writeback(mapping)) {
572 573 574 575
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO) {
576 577
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
578 579
			if (!err)
				err = err2;
580 581 582
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
583
		}
584 585
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
586
	}
587
	return err;
L
Linus Torvalds 已提交
588
}
589
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
590

591 592
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
593
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
637 638 639 640 641 642 643 644

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

668
	if (mapping_needs_writeback(mapping)) {
669 670 671 672 673 674 675 676 677 678 679 680 681
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
 * The remove + add is atomic.  The only way this function can fail is
 * memory allocation failure.
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
	int error;

701 702 703
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
704 705 706 707 708

	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
	if (!error) {
		struct address_space *mapping = old->mapping;
		void (*freepage)(struct page *);
709
		unsigned long flags;
710 711 712 713

		pgoff_t offset = old->index;
		freepage = mapping->a_ops->freepage;

714
		get_page(new);
715 716 717
		new->mapping = mapping;
		new->index = offset;

718
		spin_lock_irqsave(&mapping->tree_lock, flags);
J
Johannes Weiner 已提交
719
		__delete_from_page_cache(old, NULL);
720
		error = page_cache_tree_insert(mapping, new, NULL);
721
		BUG_ON(error);
722 723 724 725 726

		/*
		 * hugetlb pages do not participate in page cache accounting.
		 */
		if (!PageHuge(new))
727
			__inc_node_page_state(new, NR_FILE_PAGES);
728
		if (PageSwapBacked(new))
729
			__inc_node_page_state(new, NR_SHMEM);
730
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
731
		mem_cgroup_migrate(old, new);
732 733 734
		radix_tree_preload_end();
		if (freepage)
			freepage(old);
735
		put_page(old);
736 737 738 739 740 741
	}

	return error;
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

742 743 744 745
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
746
{
747 748
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
749 750
	int error;

751 752
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
N
Nick Piggin 已提交
753

754 755
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
756
					      gfp_mask, &memcg, false);
757 758 759
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
760

761
	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
762
	if (error) {
763
		if (!huge)
764
			mem_cgroup_cancel_charge(page, memcg, false);
765 766 767
		return error;
	}

768
	get_page(page);
769 770 771 772
	page->mapping = mapping;
	page->index = offset;

	spin_lock_irq(&mapping->tree_lock);
773
	error = page_cache_tree_insert(mapping, page, shadowp);
774 775 776
	radix_tree_preload_end();
	if (unlikely(error))
		goto err_insert;
777 778 779

	/* hugetlb pages do not participate in page cache accounting. */
	if (!huge)
780
		__inc_node_page_state(page, NR_FILE_PAGES);
781
	spin_unlock_irq(&mapping->tree_lock);
782
	if (!huge)
783
		mem_cgroup_commit_charge(page, memcg, false, false);
784 785 786 787 788 789
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
err_insert:
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
	spin_unlock_irq(&mapping->tree_lock);
790
	if (!huge)
791
		mem_cgroup_cancel_charge(page, memcg, false);
792
	put_page(page);
L
Linus Torvalds 已提交
793 794
	return error;
}
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
812
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
813 814

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
815
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
816
{
817
	void *shadow = NULL;
818 819
	int ret;

820
	__SetPageLocked(page);
821 822 823
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
824
		__ClearPageLocked(page);
825 826 827 828 829
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
830 831 832
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
833
		 */
834 835
		if (!(gfp_mask & __GFP_WRITE) &&
		    shadow && workingset_refault(shadow)) {
836 837 838 839 840 841
			SetPageActive(page);
			workingset_activation(page);
		} else
			ClearPageActive(page);
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
842 843
	return ret;
}
844
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
845

846
#ifdef CONFIG_NUMA
847
struct page *__page_cache_alloc(gfp_t gfp)
848
{
849 850 851
	int n;
	struct page *page;

852
	if (cpuset_do_page_mem_spread()) {
853 854
		unsigned int cpuset_mems_cookie;
		do {
855
			cpuset_mems_cookie = read_mems_allowed_begin();
856
			n = cpuset_mem_spread_node();
857
			page = __alloc_pages_node(n, gfp, 0);
858
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
859

860
		return page;
861
	}
862
	return alloc_pages(gfp, 0);
863
}
864
EXPORT_SYMBOL(__page_cache_alloc);
865 866
#endif

L
Linus Torvalds 已提交
867 868 869 870 871 872 873 874 875 876
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
877 878 879 880 881
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
882
{
883
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
884 885
}

886
void __init pagecache_init(void)
L
Linus Torvalds 已提交
887
{
888
	int i;
L
Linus Torvalds 已提交
889

890 891 892 893
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
894 895
}

L
Linus Torvalds 已提交
896
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
897 898 899 900 901 902 903 904 905
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
906
	wait_queue_entry_t wait;
907 908
};

909
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
910
{
911 912 913 914 915 916 917
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
918

919 920
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
921 922

	/* Stop walking if it's locked */
923
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
924
		return -1;
925

926
	return autoremove_wake_function(wait, mode, sync, key);
927 928
}

929
static void wake_up_page_bit(struct page *page, int bit_nr)
930
{
931 932 933
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
934
	wait_queue_entry_t bookmark;
935

936 937 938 939
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

940 941 942 943 944
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

945
	spin_lock_irqsave(&q->lock, flags);
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
982 983 984 985 986 987 988

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
989 990 991 992 993

static inline int wait_on_page_bit_common(wait_queue_head_t *q,
		struct page *page, int bit_nr, int state, bool lock)
{
	struct wait_page_queue wait_page;
994
	wait_queue_entry_t *wait = &wait_page.wait;
995 996 997
	int ret = 0;

	init_wait(wait);
L
Linus Torvalds 已提交
998
	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
999 1000 1001 1002 1003 1004 1005
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1006
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1007
			__add_wait_queue_entry_tail(q, wait);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

		if (likely(test_bit(bit_nr, &page->flags))) {
			io_schedule();
		}

		if (lock) {
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
		} else {
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1026 1027 1028 1029 1030

		if (unlikely(signal_pending_state(state, current))) {
			ret = -EINTR;
			break;
		}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	}

	finish_wait(q, wait);

	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1057 1058
}

1059 1060
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1061 1062
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1063 1064 1065
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1066
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1067 1068 1069 1070 1071
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1072
	__add_wait_queue_entry_tail(q, waiter);
1073
	SetPageWaiters(page);
1074 1075 1076 1077
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1096
	return test_bit(PG_waiters, mem);
1097 1098 1099 1100
}

#endif

L
Linus Torvalds 已提交
1101
/**
1102
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1103 1104 1105 1106
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1107
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1108 1109
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1110 1111 1112 1113 1114
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1115
 */
H
Harvey Harrison 已提交
1116
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1117
{
1118
	BUILD_BUG_ON(PG_waiters != 7);
1119
	page = compound_head(page);
1120
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1121 1122
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1123 1124 1125
}
EXPORT_SYMBOL(unlock_page);

1126 1127 1128
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1129 1130 1131
 */
void end_page_writeback(struct page *page)
{
1132 1133 1134 1135 1136 1137 1138 1139 1140
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1141
		rotate_reclaimable_page(page);
1142
	}
1143 1144 1145 1146

	if (!test_clear_page_writeback(page))
		BUG();

1147
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1148 1149 1150 1151
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1152 1153 1154 1155
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1156
void page_endio(struct page *page, bool is_write, int err)
1157
{
1158
	if (!is_write) {
1159 1160 1161 1162 1163 1164 1165
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1166
	} else {
1167
		if (err) {
1168 1169
			struct address_space *mapping;

1170
			SetPageError(page);
1171 1172 1173
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1174 1175 1176 1177 1178 1179
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1180 1181
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1182
 * @__page: the page to lock
L
Linus Torvalds 已提交
1183
 */
1184
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1185
{
1186 1187 1188
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
L
Linus Torvalds 已提交
1189 1190 1191
}
EXPORT_SYMBOL(__lock_page);

1192
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1193
{
1194 1195 1196
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
M
Matthew Wilcox 已提交
1197
}
1198
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1211 1212 1213
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1226
			wait_on_page_locked(page);
1227
		return 0;
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1240 1241 1242
	}
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
/**
 * page_cache_next_hole - find the next hole (not-present entry)
 * @mapping: mapping
 * @index: index
 * @max_scan: maximum range to search
 *
 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 * lowest indexed hole.
 *
 * Returns: the index of the hole if found, otherwise returns an index
 * outside of the set specified (in which case 'return - index >=
 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 * be returned.
 *
 * page_cache_next_hole may be called under rcu_read_lock. However,
 * like radix_tree_gang_lookup, this will not atomically search a
 * snapshot of the tree at a single point in time. For example, if a
 * hole is created at index 5, then subsequently a hole is created at
 * index 10, page_cache_next_hole covering both indexes may return 10
 * if called under rcu_read_lock.
 */
pgoff_t page_cache_next_hole(struct address_space *mapping,
			     pgoff_t index, unsigned long max_scan)
{
	unsigned long i;

	for (i = 0; i < max_scan; i++) {
1270 1271 1272 1273
		struct page *page;

		page = radix_tree_lookup(&mapping->page_tree, index);
		if (!page || radix_tree_exceptional_entry(page))
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
			break;
		index++;
		if (index == 0)
			break;
	}

	return index;
}
EXPORT_SYMBOL(page_cache_next_hole);

/**
 * page_cache_prev_hole - find the prev hole (not-present entry)
 * @mapping: mapping
 * @index: index
 * @max_scan: maximum range to search
 *
 * Search backwards in the range [max(index-max_scan+1, 0), index] for
 * the first hole.
 *
 * Returns: the index of the hole if found, otherwise returns an index
 * outside of the set specified (in which case 'index - return >=
 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
 * will be returned.
 *
 * page_cache_prev_hole may be called under rcu_read_lock. However,
 * like radix_tree_gang_lookup, this will not atomically search a
 * snapshot of the tree at a single point in time. For example, if a
 * hole is created at index 10, then subsequently a hole is created at
 * index 5, page_cache_prev_hole covering both indexes may return 5 if
 * called under rcu_read_lock.
 */
pgoff_t page_cache_prev_hole(struct address_space *mapping,
			     pgoff_t index, unsigned long max_scan)
{
	unsigned long i;

	for (i = 0; i < max_scan; i++) {
1311 1312 1313 1314
		struct page *page;

		page = radix_tree_lookup(&mapping->page_tree, index);
		if (!page || radix_tree_exceptional_entry(page))
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
			break;
		index--;
		if (index == ULONG_MAX)
			break;
	}

	return index;
}
EXPORT_SYMBOL(page_cache_prev_hole);

1325
/**
1326
 * find_get_entry - find and get a page cache entry
1327
 * @mapping: the address_space to search
1328 1329 1330 1331
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1332
 *
1333 1334
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1335 1336
 *
 * Otherwise, %NULL is returned.
L
Linus Torvalds 已提交
1337
 */
1338
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1339
{
N
Nick Piggin 已提交
1340
	void **pagep;
1341
	struct page *head, *page;
L
Linus Torvalds 已提交
1342

N
Nick Piggin 已提交
1343 1344 1345 1346 1347 1348
	rcu_read_lock();
repeat:
	page = NULL;
	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
	if (pagep) {
		page = radix_tree_deref_slot(pagep);
N
Nick Piggin 已提交
1349 1350
		if (unlikely(!page))
			goto out;
1351
		if (radix_tree_exception(page)) {
1352 1353 1354
			if (radix_tree_deref_retry(page))
				goto repeat;
			/*
1355 1356 1357
			 * A shadow entry of a recently evicted page,
			 * or a swap entry from shmem/tmpfs.  Return
			 * it without attempting to raise page count.
1358 1359
			 */
			goto out;
1360
		}
1361 1362 1363 1364 1365 1366 1367 1368

		head = compound_head(page);
		if (!page_cache_get_speculative(head))
			goto repeat;

		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
N
Nick Piggin 已提交
1369
			goto repeat;
1370
		}
N
Nick Piggin 已提交
1371 1372 1373 1374 1375 1376 1377

		/*
		 * Has the page moved?
		 * This is part of the lockless pagecache protocol. See
		 * include/linux/pagemap.h for details.
		 */
		if (unlikely(page != *pagep)) {
1378
			put_page(head);
N
Nick Piggin 已提交
1379 1380 1381
			goto repeat;
		}
	}
N
Nick Piggin 已提交
1382
out:
N
Nick Piggin 已提交
1383 1384
	rcu_read_unlock();

L
Linus Torvalds 已提交
1385 1386
	return page;
}
1387
EXPORT_SYMBOL(find_get_entry);
L
Linus Torvalds 已提交
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1398 1399
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1400 1401 1402 1403 1404 1405
 *
 * Otherwise, %NULL is returned.
 *
 * find_lock_entry() may sleep.
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1406 1407 1408 1409
{
	struct page *page;

repeat:
1410
	page = find_get_entry(mapping, offset);
1411
	if (page && !radix_tree_exception(page)) {
N
Nick Piggin 已提交
1412 1413
		lock_page(page);
		/* Has the page been truncated? */
1414
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1415
			unlock_page(page);
1416
			put_page(page);
N
Nick Piggin 已提交
1417
			goto repeat;
L
Linus Torvalds 已提交
1418
		}
1419
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1420 1421 1422
	}
	return page;
}
1423 1424 1425
EXPORT_SYMBOL(find_lock_entry);

/**
1426
 * pagecache_get_page - find and get a page reference
1427 1428
 * @mapping: the address_space to search
 * @offset: the page index
1429
 * @fgp_flags: PCG flags
1430
 * @gfp_mask: gfp mask to use for the page cache data page allocation
1431
 *
1432
 * Looks up the page cache slot at @mapping & @offset.
L
Linus Torvalds 已提交
1433
 *
1434
 * PCG flags modify how the page is returned.
1435
 *
1436 1437 1438 1439 1440 1441 1442 1443
 * @fgp_flags can be:
 *
 * - FGP_ACCESSED: the page will be marked accessed
 * - FGP_LOCK: Page is return locked
 * - FGP_CREAT: If page is not present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU
 *   list. The page is returned locked and with an increased
 *   refcount. Otherwise, NULL is returned.
L
Linus Torvalds 已提交
1444
 *
1445 1446
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 * if the GFP flags specified for FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1447
 *
1448
 * If there is a page cache page, it is returned with an increased refcount.
L
Linus Torvalds 已提交
1449
 */
1450
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1451
	int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1452
{
N
Nick Piggin 已提交
1453
	struct page *page;
1454

L
Linus Torvalds 已提交
1455
repeat:
1456 1457 1458 1459 1460 1461 1462 1463 1464
	page = find_get_entry(mapping, offset);
	if (radix_tree_exceptional_entry(page))
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1465
				put_page(page);
1466 1467 1468 1469 1470 1471 1472 1473 1474
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
1475
			put_page(page);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
			goto repeat;
		}
		VM_BUG_ON_PAGE(page->index != offset, page);
	}

	if (page && (fgp_flags & FGP_ACCESSED))
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1488 1489 1490
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1491

1492
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1493 1494
		if (!page)
			return NULL;
1495 1496 1497 1498

		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
			fgp_flags |= FGP_LOCK;

1499
		/* Init accessed so avoid atomic mark_page_accessed later */
1500
		if (fgp_flags & FGP_ACCESSED)
1501
			__SetPageReferenced(page);
1502

1503 1504
		err = add_to_page_cache_lru(page, mapping, offset,
				gfp_mask & GFP_RECLAIM_MASK);
N
Nick Piggin 已提交
1505
		if (unlikely(err)) {
1506
			put_page(page);
N
Nick Piggin 已提交
1507 1508 1509
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1510 1511
		}
	}
1512

L
Linus Torvalds 已提交
1513 1514
	return page;
}
1515
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1534 1535
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
 *
 * find_get_entries() returns the number of pages and shadow entries
 * which were found.
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
	void **slot;
	unsigned int ret = 0;
	struct radix_tree_iter iter;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1553
		struct page *head, *page;
1554 1555 1556 1557 1558
repeat:
		page = radix_tree_deref_slot(slot);
		if (unlikely(!page))
			continue;
		if (radix_tree_exception(page)) {
M
Matthew Wilcox 已提交
1559 1560 1561 1562
			if (radix_tree_deref_retry(page)) {
				slot = radix_tree_iter_retry(&iter);
				continue;
			}
1563
			/*
1564 1565 1566
			 * A shadow entry of a recently evicted page, a swap
			 * entry from shmem/tmpfs or a DAX entry.  Return it
			 * without attempting to raise page count.
1567 1568 1569
			 */
			goto export;
		}
1570 1571 1572 1573 1574 1575 1576 1577

		head = compound_head(page);
		if (!page_cache_get_speculative(head))
			goto repeat;

		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
1578
			goto repeat;
1579
		}
1580 1581 1582

		/* Has the page moved? */
		if (unlikely(page != *slot)) {
1583
			put_page(head);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
			goto repeat;
		}
export:
		indices[ret] = iter.index;
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1596
/**
J
Jan Kara 已提交
1597
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1598 1599
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1600
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1601 1602 1603
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1604 1605 1606 1607
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1608 1609 1610
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1611
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1612
 *
J
Jan Kara 已提交
1613 1614 1615
 * find_get_pages_range() returns the number of pages which were found. If this
 * number is smaller than @nr_pages, the end of specified range has been
 * reached.
L
Linus Torvalds 已提交
1616
 */
J
Jan Kara 已提交
1617 1618 1619
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1620
{
1621 1622 1623 1624 1625 1626
	struct radix_tree_iter iter;
	void **slot;
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1627 1628

	rcu_read_lock();
1629
	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1630
		struct page *head, *page;
J
Jan Kara 已提交
1631 1632 1633

		if (iter.index > end)
			break;
N
Nick Piggin 已提交
1634
repeat:
1635
		page = radix_tree_deref_slot(slot);
N
Nick Piggin 已提交
1636 1637
		if (unlikely(!page))
			continue;
1638

1639
		if (radix_tree_exception(page)) {
1640
			if (radix_tree_deref_retry(page)) {
M
Matthew Wilcox 已提交
1641 1642
				slot = radix_tree_iter_retry(&iter);
				continue;
1643
			}
1644
			/*
1645 1646 1647
			 * A shadow entry of a recently evicted page,
			 * or a swap entry from shmem/tmpfs.  Skip
			 * over it.
1648
			 */
1649
			continue;
N
Nick Piggin 已提交
1650
		}
N
Nick Piggin 已提交
1651

1652 1653 1654 1655 1656 1657 1658
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
			goto repeat;

		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
N
Nick Piggin 已提交
1659
			goto repeat;
1660
		}
N
Nick Piggin 已提交
1661 1662

		/* Has the page moved? */
1663
		if (unlikely(page != *slot)) {
1664
			put_page(head);
N
Nick Piggin 已提交
1665 1666
			goto repeat;
		}
L
Linus Torvalds 已提交
1667

N
Nick Piggin 已提交
1668
		pages[ret] = page;
J
Jan Kara 已提交
1669 1670 1671 1672
		if (++ret == nr_pages) {
			*start = pages[ret - 1]->index + 1;
			goto out;
		}
N
Nick Piggin 已提交
1673
	}
1674

J
Jan Kara 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
	 * breaks the iteration when there is page at index -1 but that is
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1686
	rcu_read_unlock();
1687

L
Linus Torvalds 已提交
1688 1689 1690
	return ret;
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
 * find_get_pages_contig() returns the number of pages which were found.
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1706 1707 1708 1709 1710 1711
	struct radix_tree_iter iter;
	void **slot;
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1712 1713

	rcu_read_lock();
1714
	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1715
		struct page *head, *page;
N
Nick Piggin 已提交
1716
repeat:
1717 1718
		page = radix_tree_deref_slot(slot);
		/* The hole, there no reason to continue */
N
Nick Piggin 已提交
1719
		if (unlikely(!page))
1720
			break;
1721

1722
		if (radix_tree_exception(page)) {
1723
			if (radix_tree_deref_retry(page)) {
M
Matthew Wilcox 已提交
1724 1725
				slot = radix_tree_iter_retry(&iter);
				continue;
1726
			}
1727
			/*
1728 1729 1730
			 * A shadow entry of a recently evicted page,
			 * or a swap entry from shmem/tmpfs.  Stop
			 * looking for contiguous pages.
1731
			 */
1732
			break;
1733
		}
1734

1735 1736 1737 1738 1739 1740 1741
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
			goto repeat;

		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
N
Nick Piggin 已提交
1742
			goto repeat;
1743
		}
N
Nick Piggin 已提交
1744 1745

		/* Has the page moved? */
1746
		if (unlikely(page != *slot)) {
1747
			put_page(head);
N
Nick Piggin 已提交
1748 1749 1750
			goto repeat;
		}

N
Nick Piggin 已提交
1751 1752 1753 1754 1755
		/*
		 * must check mapping and index after taking the ref.
		 * otherwise we can get both false positives and false
		 * negatives, which is just confusing to the caller.
		 */
1756
		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1757
			put_page(page);
N
Nick Piggin 已提交
1758 1759 1760
			break;
		}

N
Nick Piggin 已提交
1761
		pages[ret] = page;
1762 1763
		if (++ret == nr_pages)
			break;
1764
	}
N
Nick Piggin 已提交
1765 1766
	rcu_read_unlock();
	return ret;
1767
}
1768
EXPORT_SYMBOL(find_get_pages_contig);
1769

1770
/**
1771
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1772 1773
 * @mapping:	the address_space to search
 * @index:	the starting page index
1774
 * @end:	The final page index (inclusive)
1775 1776 1777 1778
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1779
 * Like find_get_pages, except we only return pages which are tagged with
1780
 * @tag.   We update @index to index the next page for the traversal.
L
Linus Torvalds 已提交
1781
 */
1782 1783 1784
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
			pgoff_t end, int tag, unsigned int nr_pages,
			struct page **pages)
L
Linus Torvalds 已提交
1785
{
1786 1787 1788 1789 1790 1791
	struct radix_tree_iter iter;
	void **slot;
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1792 1793

	rcu_read_lock();
1794 1795
	radix_tree_for_each_tagged(slot, &mapping->page_tree,
				   &iter, *index, tag) {
1796
		struct page *head, *page;
1797 1798 1799

		if (iter.index > end)
			break;
N
Nick Piggin 已提交
1800
repeat:
1801
		page = radix_tree_deref_slot(slot);
N
Nick Piggin 已提交
1802 1803
		if (unlikely(!page))
			continue;
1804

1805
		if (radix_tree_exception(page)) {
1806
			if (radix_tree_deref_retry(page)) {
M
Matthew Wilcox 已提交
1807 1808
				slot = radix_tree_iter_retry(&iter);
				continue;
1809
			}
1810
			/*
1811 1812 1813 1814 1815 1816 1817 1818 1819
			 * A shadow entry of a recently evicted page.
			 *
			 * Those entries should never be tagged, but
			 * this tree walk is lockless and the tags are
			 * looked up in bulk, one radix tree node at a
			 * time, so there is a sizable window for page
			 * reclaim to evict a page we saw tagged.
			 *
			 * Skip over it.
1820
			 */
1821
			continue;
1822
		}
N
Nick Piggin 已提交
1823

1824 1825
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
N
Nick Piggin 已提交
1826 1827
			goto repeat;

1828 1829 1830 1831 1832 1833
		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
			goto repeat;
		}

N
Nick Piggin 已提交
1834
		/* Has the page moved? */
1835
		if (unlikely(page != *slot)) {
1836
			put_page(head);
N
Nick Piggin 已提交
1837 1838 1839 1840
			goto repeat;
		}

		pages[ret] = page;
1841 1842 1843 1844
		if (++ret == nr_pages) {
			*index = pages[ret - 1]->index + 1;
			goto out;
		}
N
Nick Piggin 已提交
1845
	}
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * We come here when we got at @end. We take care to not overflow the
	 * index @index as it confuses some of the callers. This breaks the
	 * iteration when there is page at index -1 but that is already broken
	 * anyway.
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1858
	rcu_read_unlock();
L
Linus Torvalds 已提交
1859 1860 1861

	return ret;
}
1862
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1863

R
Ross Zwisler 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
/**
 * find_get_entries_tag - find and return entries that match @tag
 * @mapping:	the address_space to search
 * @start:	the starting page cache index
 * @tag:	the tag index
 * @nr_entries:	the maximum number of entries
 * @entries:	where the resulting entries are placed
 * @indices:	the cache indices corresponding to the entries in @entries
 *
 * Like find_get_entries, except we only return entries which are tagged with
 * @tag.
 */
unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
			int tag, unsigned int nr_entries,
			struct page **entries, pgoff_t *indices)
{
	void **slot;
	unsigned int ret = 0;
	struct radix_tree_iter iter;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
	radix_tree_for_each_tagged(slot, &mapping->page_tree,
				   &iter, start, tag) {
1890
		struct page *head, *page;
R
Ross Zwisler 已提交
1891 1892 1893 1894 1895 1896
repeat:
		page = radix_tree_deref_slot(slot);
		if (unlikely(!page))
			continue;
		if (radix_tree_exception(page)) {
			if (radix_tree_deref_retry(page)) {
M
Matthew Wilcox 已提交
1897 1898
				slot = radix_tree_iter_retry(&iter);
				continue;
R
Ross Zwisler 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907
			}

			/*
			 * A shadow entry of a recently evicted page, a swap
			 * entry from shmem/tmpfs or a DAX entry.  Return it
			 * without attempting to raise page count.
			 */
			goto export;
		}
1908 1909 1910

		head = compound_head(page);
		if (!page_cache_get_speculative(head))
R
Ross Zwisler 已提交
1911 1912
			goto repeat;

1913 1914 1915 1916 1917 1918
		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
			goto repeat;
		}

R
Ross Zwisler 已提交
1919 1920
		/* Has the page moved? */
		if (unlikely(page != *slot)) {
1921
			put_page(head);
R
Ross Zwisler 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
			goto repeat;
		}
export:
		indices[ret] = iter.index;
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
	}
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL(find_get_entries_tag);

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
					struct file_ra_state *ra)
{
	ra->ra_pages /= 4;
}

1956
/**
1957 1958
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
1959 1960
 * @iter:	data destination
 * @written:	already copied
1961
 *
L
Linus Torvalds 已提交
1962
 * This is a generic file read routine, and uses the
1963
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
1964 1965 1966 1967
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 */
1968
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1969
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
1970
{
1971
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
1972
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
1973
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
1974
	struct file_ra_state *ra = &filp->f_ra;
1975
	loff_t *ppos = &iocb->ki_pos;
1976 1977 1978 1979
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
1980
	unsigned int prev_offset;
1981
	int error = 0;
L
Linus Torvalds 已提交
1982

1983
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1984
		return 0;
1985 1986
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

1987 1988 1989 1990 1991
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
1992 1993 1994

	for (;;) {
		struct page *page;
1995
		pgoff_t end_index;
N
NeilBrown 已提交
1996
		loff_t isize;
L
Linus Torvalds 已提交
1997 1998 1999 2000
		unsigned long nr, ret;

		cond_resched();
find_page:
2001 2002 2003 2004 2005
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2006
		page = find_get_page(mapping, index);
2007
		if (!page) {
2008 2009
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2010
			page_cache_sync_readahead(mapping,
2011
					ra, filp,
2012 2013 2014 2015 2016 2017
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2018
			page_cache_async_readahead(mapping,
2019
					ra, filp, page,
2020
					index, last_index - index);
L
Linus Torvalds 已提交
2021
		}
2022
		if (!PageUptodate(page)) {
2023 2024 2025 2026 2027
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2028 2029 2030 2031 2032
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2033 2034 2035
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2036 2037 2038
			if (PageUptodate(page))
				goto page_ok;

2039
			if (inode->i_blkbits == PAGE_SHIFT ||
2040 2041
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2042 2043 2044
			/* pipes can't handle partially uptodate pages */
			if (unlikely(iter->type & ITER_PIPE))
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2045
			if (!trylock_page(page))
2046
				goto page_not_up_to_date;
2047 2048 2049
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2050
			if (!mapping->a_ops->is_partially_uptodate(page,
2051
							offset, iter->count))
2052 2053 2054
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2055
page_ok:
N
NeilBrown 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2066
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2067
		if (unlikely(!isize || index > end_index)) {
2068
			put_page(page);
N
NeilBrown 已提交
2069 2070 2071 2072
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2073
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2074
		if (index == end_index) {
2075
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2076
			if (nr <= offset) {
2077
				put_page(page);
N
NeilBrown 已提交
2078 2079 2080 2081
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2091 2092
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2093
		 */
2094
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100 2101
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2102 2103

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2104
		offset += ret;
2105 2106
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2107
		prev_offset = offset;
L
Linus Torvalds 已提交
2108

2109
		put_page(page);
2110 2111 2112 2113 2114 2115 2116 2117
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2118 2119 2120

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2121 2122 2123
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2124

2125
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2126
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2127 2128
		if (!page->mapping) {
			unlock_page(page);
2129
			put_page(page);
L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2140 2141 2142 2143 2144 2145
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2146 2147 2148
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2149 2150
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2151
				put_page(page);
2152
				error = 0;
2153 2154
				goto find_page;
			}
L
Linus Torvalds 已提交
2155
			goto readpage_error;
2156
		}
L
Linus Torvalds 已提交
2157 2158

		if (!PageUptodate(page)) {
2159 2160 2161
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2162 2163 2164
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2165
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2166 2167
					 */
					unlock_page(page);
2168
					put_page(page);
L
Linus Torvalds 已提交
2169 2170 2171
					goto find_page;
				}
				unlock_page(page);
2172
				shrink_readahead_size_eio(filp, ra);
2173 2174
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2175 2176 2177 2178 2179 2180 2181 2182
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2183
		put_page(page);
L
Linus Torvalds 已提交
2184 2185 2186 2187 2188 2189 2190
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
N
Nick Piggin 已提交
2191 2192
		page = page_cache_alloc_cold(mapping);
		if (!page) {
2193
			error = -ENOMEM;
N
Nick Piggin 已提交
2194
			goto out;
L
Linus Torvalds 已提交
2195
		}
2196
		error = add_to_page_cache_lru(page, mapping, index,
2197
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2198
		if (error) {
2199
			put_page(page);
2200 2201
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2202
				goto find_page;
2203
			}
L
Linus Torvalds 已提交
2204 2205 2206 2207 2208
			goto out;
		}
		goto readpage;
	}

2209 2210
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2211
out:
2212
	ra->prev_pos = prev_index;
2213
	ra->prev_pos <<= PAGE_SHIFT;
2214
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2215

2216
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2217
	file_accessed(filp);
2218
	return written ? written : error;
L
Linus Torvalds 已提交
2219 2220
}

2221
/**
A
Al Viro 已提交
2222
 * generic_file_read_iter - generic filesystem read routine
2223
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2224
 * @iter:	destination for the data read
2225
 *
A
Al Viro 已提交
2226
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2227 2228 2229
 * that can use the page cache directly.
 */
ssize_t
A
Al Viro 已提交
2230
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2231
{
2232
	size_t count = iov_iter_count(iter);
2233
	ssize_t retval = 0;
2234 2235 2236

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2237

2238
	if (iocb->ki_flags & IOCB_DIRECT) {
2239
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2240 2241
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2242
		loff_t size;
L
Linus Torvalds 已提交
2243 2244

		size = i_size_read(inode);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2256

2257 2258
		file_accessed(file);

2259
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2260
		if (retval >= 0) {
2261
			iocb->ki_pos += retval;
2262
			count -= retval;
2263
		}
A
Al Viro 已提交
2264
		iov_iter_revert(iter, count - iov_iter_count(iter));
2265

2266 2267 2268 2269 2270 2271
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2272 2273
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2274
		 */
2275
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2276
		    IS_DAX(inode))
2277
			goto out;
L
Linus Torvalds 已提交
2278 2279
	}

2280
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2281 2282 2283
out:
	return retval;
}
A
Al Viro 已提交
2284
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2285 2286

#ifdef CONFIG_MMU
2287 2288 2289 2290
/**
 * page_cache_read - adds requested page to the page cache if not already there
 * @file:	file to read
 * @offset:	page index
2291
 * @gfp_mask:	memory allocation flags
2292
 *
L
Linus Torvalds 已提交
2293 2294 2295
 * This adds the requested page to the page cache if it isn't already there,
 * and schedules an I/O to read in its contents from disk.
 */
2296
static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2297 2298
{
	struct address_space *mapping = file->f_mapping;
2299
	struct page *page;
2300
	int ret;
L
Linus Torvalds 已提交
2301

2302
	do {
2303
		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2304 2305 2306
		if (!page)
			return -ENOMEM;

2307
		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2308 2309 2310 2311
		if (ret == 0)
			ret = mapping->a_ops->readpage(file, page);
		else if (ret == -EEXIST)
			ret = 0; /* losing race to add is OK */
L
Linus Torvalds 已提交
2312

2313
		put_page(page);
L
Linus Torvalds 已提交
2314

2315
	} while (ret == AOP_TRUNCATED_PAGE);
2316

2317
	return ret;
L
Linus Torvalds 已提交
2318 2319 2320 2321
}

#define MMAP_LOTSAMISS  (100)

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
/*
 * Synchronous readahead happens when we don't even find
 * a page in the page cache at all.
 */
static void do_sync_mmap_readahead(struct vm_area_struct *vma,
				   struct file_ra_state *ra,
				   struct file *file,
				   pgoff_t offset)
{
	struct address_space *mapping = file->f_mapping;

	/* If we don't want any read-ahead, don't bother */
2334
	if (vma->vm_flags & VM_RAND_READ)
2335
		return;
2336 2337
	if (!ra->ra_pages)
		return;
2338

2339
	if (vma->vm_flags & VM_SEQ_READ) {
2340 2341
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2342 2343 2344
		return;
	}

2345 2346
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2347 2348 2349 2350 2351 2352 2353 2354 2355
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
		return;

2356 2357 2358
	/*
	 * mmap read-around
	 */
2359 2360 2361
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2362
	ra_submit(ra, mapping, file);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
 * so we want to possibly extend the readahead further..
 */
static void do_async_mmap_readahead(struct vm_area_struct *vma,
				    struct file_ra_state *ra,
				    struct file *file,
				    struct page *page,
				    pgoff_t offset)
{
	struct address_space *mapping = file->f_mapping;

	/* If we don't want any read-ahead, don't bother */
2378
	if (vma->vm_flags & VM_RAND_READ)
2379 2380 2381 2382
		return;
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
	if (PageReadahead(page))
2383 2384
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2385 2386
}

2387
/**
2388
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2389
 * @vmf:	struct vm_fault containing details of the fault
2390
 *
2391
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
 * If our return value has VM_FAULT_RETRY set, it's because
 * lock_page_or_retry() returned 0.
 * The mmap_sem has usually been released in this case.
 * See __lock_page_or_retry() for the exception.
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
L
Linus Torvalds 已提交
2409
 */
2410
int filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2411 2412
{
	int error;
2413
	struct file *file = vmf->vma->vm_file;
L
Linus Torvalds 已提交
2414 2415 2416
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2417
	pgoff_t offset = vmf->pgoff;
2418
	pgoff_t max_off;
L
Linus Torvalds 已提交
2419
	struct page *page;
N
Nick Piggin 已提交
2420
	int ret = 0;
L
Linus Torvalds 已提交
2421

2422 2423
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2424
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2425 2426

	/*
2427
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2428
	 */
2429
	page = find_get_page(mapping, offset);
2430
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2431
		/*
2432 2433
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2434
		 */
2435
		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2436
	} else if (!page) {
2437
		/* No page in the page cache at all */
2438
		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2439
		count_vm_event(PGMAJFAULT);
2440
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2441 2442
		ret = VM_FAULT_MAJOR;
retry_find:
2443
		page = find_get_page(mapping, offset);
L
Linus Torvalds 已提交
2444 2445 2446 2447
		if (!page)
			goto no_cached_page;
	}

2448
	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2449
		put_page(page);
2450
		return ret | VM_FAULT_RETRY;
2451
	}
2452 2453 2454 2455 2456 2457 2458

	/* Did it get truncated? */
	if (unlikely(page->mapping != mapping)) {
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2459
	VM_BUG_ON_PAGE(page->index != offset, page);
2460

L
Linus Torvalds 已提交
2461
	/*
2462 2463
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2464
	 */
2465
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2466 2467
		goto page_not_uptodate;

2468 2469 2470 2471
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2472 2473
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2474
		unlock_page(page);
2475
		put_page(page);
2476
		return VM_FAULT_SIGBUS;
2477 2478
	}

N
Nick Piggin 已提交
2479
	vmf->page = page;
N
Nick Piggin 已提交
2480
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2481 2482 2483 2484 2485 2486

no_cached_page:
	/*
	 * We're only likely to ever get here if MADV_RANDOM is in
	 * effect.
	 */
2487
	error = page_cache_read(file, offset, vmf->gfp_mask);
L
Linus Torvalds 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	/*
	 * The page we want has now been added to the page cache.
	 * In the unlikely event that someone removed it in the
	 * meantime, we'll just come back here and read it again.
	 */
	if (error >= 0)
		goto retry_find;

	/*
	 * An error return from page_cache_read can result if the
	 * system is low on memory, or a problem occurs while trying
	 * to schedule I/O.
	 */
	if (error == -ENOMEM)
N
Nick Piggin 已提交
2503 2504
		return VM_FAULT_OOM;
	return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2514
	error = mapping->a_ops->readpage(file, page);
2515 2516 2517 2518 2519
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2520
	put_page(page);
2521 2522

	if (!error || error == AOP_TRUNCATED_PAGE)
2523
		goto retry_find;
L
Linus Torvalds 已提交
2524

2525
	/* Things didn't work out. Return zero to tell the mm layer so. */
2526
	shrink_readahead_size_eio(file, ra);
N
Nick Piggin 已提交
2527
	return VM_FAULT_SIGBUS;
2528 2529 2530
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2531
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2532
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2533 2534 2535
{
	struct radix_tree_iter iter;
	void **slot;
J
Jan Kara 已提交
2536
	struct file *file = vmf->vma->vm_file;
2537
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2538
	pgoff_t last_pgoff = start_pgoff;
2539
	unsigned long max_idx;
2540
	struct page *head, *page;
2541 2542

	rcu_read_lock();
K
Kirill A. Shutemov 已提交
2543 2544 2545
	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
			start_pgoff) {
		if (iter.index > end_pgoff)
2546 2547 2548 2549 2550 2551
			break;
repeat:
		page = radix_tree_deref_slot(slot);
		if (unlikely(!page))
			goto next;
		if (radix_tree_exception(page)) {
M
Matthew Wilcox 已提交
2552 2553 2554 2555 2556
			if (radix_tree_deref_retry(page)) {
				slot = radix_tree_iter_retry(&iter);
				continue;
			}
			goto next;
2557 2558
		}

2559 2560
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
2561 2562
			goto repeat;

2563 2564 2565 2566 2567 2568
		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
			goto repeat;
		}

2569 2570
		/* Has the page moved? */
		if (unlikely(page != *slot)) {
2571
			put_page(head);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
			goto repeat;
		}

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2585 2586
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2587 2588 2589 2590
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2591

J
Jan Kara 已提交
2592 2593 2594
		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
		if (vmf->pte)
			vmf->pte += iter.index - last_pgoff;
2595
		last_pgoff = iter.index;
J
Jan Kara 已提交
2596
		if (alloc_set_pte(vmf, NULL, page))
2597
			goto unlock;
2598 2599 2600 2601 2602
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2603
		put_page(page);
2604
next:
2605
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2606
		if (pmd_trans_huge(*vmf->pmd))
2607
			break;
K
Kirill A. Shutemov 已提交
2608
		if (iter.index == end_pgoff)
2609 2610 2611 2612 2613 2614
			break;
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2615
int filemap_page_mkwrite(struct vm_fault *vmf)
2616 2617
{
	struct page *page = vmf->page;
2618
	struct inode *inode = file_inode(vmf->vma->vm_file);
2619 2620
	int ret = VM_FAULT_LOCKED;

2621
	sb_start_pagefault(inode->i_sb);
2622
	file_update_time(vmf->vma->vm_file);
2623 2624 2625 2626 2627 2628
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2629 2630 2631 2632 2633 2634
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2635
	wait_for_stable_page(page);
2636
out:
2637
	sb_end_pagefault(inode->i_sb);
2638 2639 2640 2641
	return ret;
}
EXPORT_SYMBOL(filemap_page_mkwrite);

2642
const struct vm_operations_struct generic_file_vm_ops = {
2643
	.fault		= filemap_fault,
2644
	.map_pages	= filemap_map_pages,
2645
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2684 2685 2686 2687 2688
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2689
			put_page(page);
S
Sasha Levin 已提交
2690 2691 2692 2693 2694 2695
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2696
static struct page *do_read_cache_page(struct address_space *mapping,
2697
				pgoff_t index,
2698
				int (*filler)(void *, struct page *),
2699 2700
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2701
{
N
Nick Piggin 已提交
2702
	struct page *page;
L
Linus Torvalds 已提交
2703 2704 2705 2706
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
2707
		page = __page_cache_alloc(gfp | __GFP_COLD);
N
Nick Piggin 已提交
2708 2709
		if (!page)
			return ERR_PTR(-ENOMEM);
2710
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2711
		if (unlikely(err)) {
2712
			put_page(page);
N
Nick Piggin 已提交
2713 2714
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
2715 2716 2717
			/* Presumably ENOMEM for radix tree node */
			return ERR_PTR(err);
		}
2718 2719

filler:
L
Linus Torvalds 已提交
2720 2721
		err = filler(data, page);
		if (err < 0) {
2722
			put_page(page);
2723
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2724 2725
		}

2726 2727 2728 2729 2730
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2731 2732 2733
	if (PageUptodate(page))
		goto out;

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2770
	lock_page(page);
2771 2772

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2773 2774
	if (!page->mapping) {
		unlock_page(page);
2775
		put_page(page);
2776
		goto repeat;
L
Linus Torvalds 已提交
2777
	}
2778 2779

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2780 2781 2782 2783
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2784 2785
	goto filler;

2786
out:
2787 2788 2789
	mark_page_accessed(page);
	return page;
}
2790 2791

/**
S
Sasha Levin 已提交
2792
 * read_cache_page - read into page cache, fill it if needed
2793 2794 2795
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2796
 * @data:	first arg to filler(data, page) function, often left as NULL
2797 2798
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2799
 * not set, try to fill the page and wait for it to become unlocked.
2800 2801 2802
 *
 * If the page does not get brought uptodate, return -EIO.
 */
S
Sasha Levin 已提交
2803
struct page *read_cache_page(struct address_space *mapping,
2804
				pgoff_t index,
2805
				int (*filler)(void *, struct page *),
2806 2807 2808 2809
				void *data)
{
	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
}
S
Sasha Levin 已提交
2810
EXPORT_SYMBOL(read_cache_page);
2811 2812 2813 2814 2815 2816 2817 2818

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2819
 * any new page allocations done using the specified allocation flags.
2820 2821 2822 2823 2824 2825 2826 2827 2828
 *
 * If the page does not get brought uptodate, return -EIO.
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
	filler_t *filler = (filler_t *)mapping->a_ops->readpage;

S
Sasha Levin 已提交
2829
	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2830 2831 2832
}
EXPORT_SYMBOL(read_cache_page_gfp);

L
Linus Torvalds 已提交
2833 2834 2835
/*
 * Performs necessary checks before doing a write
 *
2836
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2837 2838 2839
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2840
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2841
{
2842
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2843
	struct inode *inode = file->f_mapping->host;
J
Jiri Slaby 已提交
2844
	unsigned long limit = rlimit(RLIMIT_FSIZE);
2845
	loff_t pos;
L
Linus Torvalds 已提交
2846

2847 2848
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
2849

2850
	/* FIXME: this is for backwards compatibility with 2.4 */
2851
	if (iocb->ki_flags & IOCB_APPEND)
2852
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
2853

2854
	pos = iocb->ki_pos;
L
Linus Torvalds 已提交
2855

2856 2857 2858
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

2859
	if (limit != RLIM_INFINITY) {
2860
		if (iocb->ki_pos >= limit) {
2861 2862
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
L
Linus Torvalds 已提交
2863
		}
2864
		iov_iter_truncate(from, limit - (unsigned long)pos);
L
Linus Torvalds 已提交
2865 2866 2867 2868 2869
	}

	/*
	 * LFS rule
	 */
2870
	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
L
Linus Torvalds 已提交
2871
				!(file->f_flags & O_LARGEFILE))) {
2872
		if (pos >= MAX_NON_LFS)
L
Linus Torvalds 已提交
2873
			return -EFBIG;
2874
		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883
	}

	/*
	 * Are we about to exceed the fs block limit ?
	 *
	 * If we have written data it becomes a short write.  If we have
	 * exceeded without writing data we send a signal and return EFBIG.
	 * Linus frestrict idea will clean these up nicely..
	 */
2884 2885
	if (unlikely(pos >= inode->i_sb->s_maxbytes))
		return -EFBIG;
L
Linus Torvalds 已提交
2886

2887 2888
	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
	return iov_iter_count(from);
L
Linus Torvalds 已提交
2889 2890 2891
}
EXPORT_SYMBOL(generic_write_checks);

2892 2893 2894 2895 2896 2897
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

2898
	return aops->write_begin(file, mapping, pos, len, flags,
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

2909
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2910 2911 2912
}
EXPORT_SYMBOL(pagecache_write_end);

L
Linus Torvalds 已提交
2913
ssize_t
2914
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2915 2916 2917 2918
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
2919
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
2920
	ssize_t		written;
2921 2922
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
2923

A
Al Viro 已提交
2924
	write_len = iov_iter_count(from);
2925
	end = (pos + write_len - 1) >> PAGE_SHIFT;
2926

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
					   pos + iov_iter_count(from)))
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
2938 2939 2940 2941 2942

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
2943
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2944
	 */
2945
	written = invalidate_inode_pages2_range(mapping,
2946
					pos >> PAGE_SHIFT, end);
2947 2948 2949 2950 2951 2952 2953 2954
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
2955 2956
	}

2957
	written = mapping->a_ops->direct_IO(iocb, from);
2958 2959 2960 2961 2962 2963 2964 2965

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
2966 2967 2968 2969 2970
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
	 * them by removing it completely
2971
	 */
2972 2973 2974
	if (mapping->nrpages)
		invalidate_inode_pages2_range(mapping,
					pos >> PAGE_SHIFT, end);
2975

L
Linus Torvalds 已提交
2976
	if (written > 0) {
2977
		pos += written;
2978
		write_len -= written;
2979 2980
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
2981 2982
			mark_inode_dirty(inode);
		}
2983
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
2984
	}
2985
	iov_iter_revert(from, write_len - iov_iter_count(from));
2986
out:
L
Linus Torvalds 已提交
2987 2988 2989 2990
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
2991 2992 2993 2994
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
2995 2996
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
2997 2998
{
	struct page *page;
2999
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3000

3001
	if (flags & AOP_FLAG_NOFS)
3002 3003 3004
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3005
			mapping_gfp_mask(mapping));
3006
	if (page)
3007
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3008 3009 3010

	return page;
}
3011
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3012

3013
ssize_t generic_perform_write(struct file *file,
3014 3015 3016 3017 3018 3019
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3020 3021
	unsigned int flags = 0;

3022 3023 3024 3025 3026 3027 3028
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3029 3030
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3031 3032 3033
						iov_iter_count(i));

again:
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3049 3050 3051 3052 3053
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3054
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3055
						&page, &fsdata);
3056
		if (unlikely(status < 0))
3057 3058
			break;

3059 3060
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3061

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3073
		iov_iter_advance(i, copied);
3074 3075 3076 3077 3078 3079 3080 3081 3082
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3083
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3095
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3096

3097
/**
3098
 * __generic_file_write_iter - write data to a file
3099
 * @iocb:	IO state structure (file, offset, etc.)
3100
 * @from:	iov_iter with data to write
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
 */
3114
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3115 3116
{
	struct file *file = iocb->ki_filp;
3117
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3118
	struct inode 	*inode = mapping->host;
3119
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3120
	ssize_t		err;
3121
	ssize_t		status;
L
Linus Torvalds 已提交
3122 3123

	/* We can write back this queue in page reclaim */
3124
	current->backing_dev_info = inode_to_bdi(inode);
3125
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3126 3127 3128
	if (err)
		goto out;

3129 3130 3131
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3132

3133
	if (iocb->ki_flags & IOCB_DIRECT) {
3134
		loff_t pos, endbyte;
3135

3136
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3137
		/*
3138 3139 3140 3141 3142
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3143
		 */
3144
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3145 3146
			goto out;

3147
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3148
		/*
3149
		 * If generic_perform_write() returned a synchronous error
3150 3151 3152 3153 3154
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3155
		if (unlikely(status < 0)) {
3156
			err = status;
3157 3158 3159 3160 3161 3162 3163
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3164
		endbyte = pos + status - 1;
3165
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3166
		if (err == 0) {
3167
			iocb->ki_pos = endbyte + 1;
3168
			written += status;
3169
			invalidate_mapping_pages(mapping,
3170 3171
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3172 3173 3174 3175 3176 3177 3178
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3179 3180 3181
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3182
	}
L
Linus Torvalds 已提交
3183 3184 3185 3186
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3187
EXPORT_SYMBOL(__generic_file_write_iter);
3188 3189

/**
3190
 * generic_file_write_iter - write data to a file
3191
 * @iocb:	IO state structure
3192
 * @from:	iov_iter with data to write
3193
 *
3194
 * This is a wrapper around __generic_file_write_iter() to be used by most
3195 3196 3197
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
 */
3198
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3199 3200
{
	struct file *file = iocb->ki_filp;
3201
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3202 3203
	ssize_t ret;

A
Al Viro 已提交
3204
	inode_lock(inode);
3205 3206
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3207
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3208
	inode_unlock(inode);
L
Linus Torvalds 已提交
3209

3210 3211
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3212 3213
	return ret;
}
3214
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3215

3216 3217 3218 3219 3220 3221 3222
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3223
 * (presumably at page->private).  If the release was successful, return '1'.
3224 3225
 * Otherwise return zero.
 *
3226 3227 3228
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3229
 * The @gfp_mask argument specifies whether I/O may be performed to release
3230
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
 *
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);