filemap.c 93.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
12
#include <linux/export.h>
L
Linus Torvalds 已提交
13
#include <linux/compiler.h>
14
#include <linux/dax.h>
L
Linus Torvalds 已提交
15
#include <linux/fs.h>
16
#include <linux/sched/signal.h>
17
#include <linux/uaccess.h>
18
#include <linux/capability.h>
L
Linus Torvalds 已提交
19
#include <linux/kernel_stat.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
27
#include <linux/error-injection.h>
L
Linus Torvalds 已提交
28 29
#include <linux/hash.h>
#include <linux/writeback.h>
30
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
31 32 33
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
34
#include <linux/cpuset.h>
35
#include <linux/hugetlb.h>
36
#include <linux/memcontrol.h>
37
#include <linux/cleancache.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/rmap.h>
40
#include <linux/delayacct.h>
41
#include <linux/psi.h>
42 43
#include "internal.h"

R
Robert Jarzmik 已提交
44 45 46
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
47 48 49
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
50
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
69
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
70
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
71
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
72
 *        ->i_pages lock
L
Linus Torvalds 已提交
73
 *
74
 *  ->i_mutex
75
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
76 77
 *
 *  ->mmap_sem
78
 *    ->i_mmap_rwsem
79
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
80
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
81 82 83 84
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
85
 *  ->i_mutex			(generic_perform_write)
86
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
87
 *
88
 *  bdi->wb.list_lock
89
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
90
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
91
 *
92
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
93 94 95
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
96
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
97
 *
98
 *  ->page_table_lock or pte_lock
99
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
100
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
101
 *    ->i_pages lock		(try_to_unmap_one)
102 103
 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
104
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
105
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
106
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
107
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
108
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
109
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
110
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
111 112
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
113
 * ->i_mmap_rwsem
114
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
115 116
 */

117
static void page_cache_delete(struct address_space *mapping,
118 119
				   struct page *page, void *shadow)
{
120 121
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
122

123
	mapping_set_update(&xas, mapping);
124

125 126 127 128 129
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
		nr = 1U << compound_order(page);
	}
130

131 132 133
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
134

135 136
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
137

138 139 140
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

141 142 143 144 145 146 147 148 149 150 151
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
152 153
}

154 155
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
156
{
157
	int nr;
L
Linus Torvalds 已提交
158

159 160 161 162 163 164 165 166
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
167
		cleancache_invalidate_page(mapping, page);
168

169
	VM_BUG_ON_PAGE(PageTail(page), page);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
190
			page_ref_sub(page, mapcount);
191 192 193
		}
	}

194
	/* hugetlb pages do not participate in page cache accounting. */
195 196
	if (PageHuge(page))
		return;
197

198 199 200 201 202 203 204 205 206
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
	} else {
		VM_BUG_ON_PAGE(PageTransHuge(page), page);
207
	}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
226
 * is safe.  The caller must hold the i_pages lock.
227 228 229 230 231 232 233 234
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
235
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

255 256 257 258 259 260 261 262 263
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
264
{
265
	struct address_space *mapping = page_mapping(page);
266
	unsigned long flags;
L
Linus Torvalds 已提交
267

M
Matt Mackall 已提交
268
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
269
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
270
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
271
	xa_unlock_irqrestore(&mapping->i_pages, flags);
272

273
	page_cache_free_page(mapping, page);
274 275 276
}
EXPORT_SYMBOL(delete_from_page_cache);

277
/*
278
 * page_cache_delete_batch - delete several pages from page cache
279 280 281
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
282
 * The function walks over mapping->i_pages and removes pages passed in @pvec
283 284
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
285
 * It tolerates holes in @pvec (mapping entries at those indices are not
286
 * modified). The function expects only THP head pages to be present in the
287
 * @pvec.
288
 *
M
Matthew Wilcox 已提交
289
 * The function expects the i_pages lock to be held.
290
 */
291
static void page_cache_delete_batch(struct address_space *mapping,
292 293
			     struct pagevec *pvec)
{
294
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
295
	int total_pages = 0;
296
	int i = 0;
297 298
	struct page *page;

299 300
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
301
		if (i >= pagevec_count(pvec))
302
			break;
303 304

		/* A swap/dax/shadow entry got inserted? Skip it. */
305
		if (xa_is_value(page))
306
			continue;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
323
			page->mapping = NULL;
324 325 326 327 328 329 330 331 332
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + (1UL << compound_order(page)) - 1 ==
				xas.xa_index)
333
			i++;
334
		xas_store(&xas, NULL);
335 336 337 338 339 340 341 342 343 344 345 346 347 348
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
349
	xa_lock_irqsave(&mapping->i_pages, flags);
350 351 352 353 354
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
355
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
356
	xa_unlock_irqrestore(&mapping->i_pages, flags);
357 358 359 360 361

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

362
int filemap_check_errors(struct address_space *mapping)
363 364 365
{
	int ret = 0;
	/* Check for outstanding write errors */
366 367
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
368
		ret = -ENOSPC;
369 370
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
371 372 373
		ret = -EIO;
	return ret;
}
374
EXPORT_SYMBOL(filemap_check_errors);
375

376 377 378 379 380 381 382 383 384 385
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
386
/**
387
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
388 389
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
390
 * @end:	offset in bytes where the range ends (inclusive)
391
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
392
 *
393 394 395
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
396
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
397
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
398 399
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
400 401
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
402
 */
403 404
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
405 406 407 408
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
409
		.nr_to_write = LONG_MAX,
410 411
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
412 413 414 415 416
	};

	if (!mapping_cap_writeback_dirty(mapping))
		return 0;

417
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
418
	ret = do_writepages(mapping, &wbc);
419
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
420 421 422 423 424 425
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
426
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
427 428 429 430 431 432 433 434
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

435
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
436
				loff_t end)
L
Linus Torvalds 已提交
437 438 439
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
440
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
441

442 443 444 445
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
446 447
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
448 449
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
450 451 452 453 454 455 456
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

457 458 459 460 461 462 463 464
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
465 466 467
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
468 469 470 471
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
472
	struct page *page;
473 474
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
475 476 477 478

	if (end_byte < start_byte)
		return false;

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
495

496
	return page != NULL;
497 498 499
}
EXPORT_SYMBOL(filemap_range_has_page);

500
static void __filemap_fdatawait_range(struct address_space *mapping,
501
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
502
{
503 504
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
505 506 507
	struct pagevec pvec;
	int nr_pages;

508
	if (end_byte < start_byte)
509
		return;
L
Linus Torvalds 已提交
510

511
	pagevec_init(&pvec);
512
	while (index <= end) {
L
Linus Torvalds 已提交
513 514
		unsigned i;

515
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
516
				end, PAGECACHE_TAG_WRITEBACK);
517 518 519
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
520 521 522 523
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
524
			ClearPageError(page);
L
Linus Torvalds 已提交
525 526 527 528
		}
		pagevec_release(&pvec);
		cond_resched();
	}
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
544 545
 *
 * Return: error status of the address space.
546 547 548 549
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
550 551
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
552
}
553 554
EXPORT_SYMBOL(filemap_fdatawait_range);

555 556 557 558 559 560 561 562 563 564 565 566 567
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
568 569
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
570 571 572 573 574 575 576 577 578
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
579

580 581 582 583 584 585 586 587 588 589 590
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
591 592
 *
 * Return: error status of the address space.
593
 */
594
int filemap_fdatawait_keep_errors(struct address_space *mapping)
595
{
596
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
597
	return filemap_check_and_keep_errors(mapping);
598
}
599
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
600

601
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
602
{
603 604
	return (!dax_mapping(mapping) && mapping->nrpages) ||
	    (dax_mapping(mapping) && mapping->nrexceptional);
L
Linus Torvalds 已提交
605 606 607 608
}

int filemap_write_and_wait(struct address_space *mapping)
{
609
	int err = 0;
L
Linus Torvalds 已提交
610

611
	if (mapping_needs_writeback(mapping)) {
612 613 614 615 616 617 618 619 620 621 622
		err = filemap_fdatawrite(mapping);
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
		if (err != -EIO) {
			int err2 = filemap_fdatawait(mapping);
			if (!err)
				err = err2;
623 624 625
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
626
		}
627 628
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
629
	}
630
	return err;
L
Linus Torvalds 已提交
631
}
632
EXPORT_SYMBOL(filemap_write_and_wait);
L
Linus Torvalds 已提交
633

634 635 636 637 638 639
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
640 641
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
642
 * Note that @lend is inclusive (describes the last byte to be written) so
643
 * that this function can be used to write to the very end-of-file (end = -1).
644 645
 *
 * Return: error status of the address space.
646
 */
L
Linus Torvalds 已提交
647 648 649
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
650
	int err = 0;
L
Linus Torvalds 已提交
651

652
	if (mapping_needs_writeback(mapping)) {
653 654 655 656
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO) {
657 658
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
659 660
			if (!err)
				err = err2;
661 662 663
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
664
		}
665 666
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
667
	}
668
	return err;
L
Linus Torvalds 已提交
669
}
670
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
671

672 673
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
674
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
701 702
 *
 * Return: %0 on success, negative error code otherwise.
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
720 721 722 723 724 725 726 727

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
745 746
 *
 * Return: %0 on success, negative error code otherwise.
747 748 749 750 751 752
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

753
	if (mapping_needs_writeback(mapping)) {
754 755 756 757 758 759 760 761 762 763 764 765 766
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

767 768 769 770 771 772 773 774 775 776 777 778
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
779
 * The remove + add is atomic.  This function cannot fail.
780 781
 *
 * Return: %0
782 783 784
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
785 786 787 788 789
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
790

791 792 793
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
794

795 796 797
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
798

799 800
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
801

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
		__dec_node_page_state(new, NR_FILE_PAGES);
	if (!PageHuge(new))
		__inc_node_page_state(new, NR_FILE_PAGES);
	if (PageSwapBacked(old))
		__dec_node_page_state(new, NR_SHMEM);
	if (PageSwapBacked(new))
		__inc_node_page_state(new, NR_SHMEM);
	xas_unlock_irqrestore(&xas, flags);
	mem_cgroup_migrate(old, new);
	if (freepage)
		freepage(old);
	put_page(old);
817

818
	return 0;
819 820 821
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

822 823 824 825
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
826
{
827
	XA_STATE(xas, &mapping->i_pages, offset);
828 829
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
830
	int error;
831
	void *old;
N
Nick Piggin 已提交
832

833 834
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
835
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
836

837 838
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
839
					      gfp_mask, &memcg, false);
840 841 842
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
843

844
	get_page(page);
845 846 847
	page->mapping = mapping;
	page->index = offset;

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
			__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

	if (xas_error(&xas))
		goto error;
873

874
	if (!huge)
875
		mem_cgroup_commit_charge(page, memcg, false, false);
876 877
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
878
error:
879 880
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
881
	if (!huge)
882
		mem_cgroup_cancel_charge(page, memcg, false);
883
	put_page(page);
884
	return xas_error(&xas);
L
Linus Torvalds 已提交
885
}
886
ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
887 888 889 890 891 892 893 894 895 896

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
897 898
 *
 * Return: %0 on success, negative error code otherwise.
899 900 901 902 903 904 905
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
906
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
907 908

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
909
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
910
{
911
	void *shadow = NULL;
912 913
	int ret;

914
	__SetPageLocked(page);
915 916 917
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
918
		__ClearPageLocked(page);
919 920 921 922 923
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
924 925 926
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
927
		 */
928 929 930
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
931 932
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
933 934
	return ret;
}
935
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
936

937
#ifdef CONFIG_NUMA
938
struct page *__page_cache_alloc(gfp_t gfp)
939
{
940 941 942
	int n;
	struct page *page;

943
	if (cpuset_do_page_mem_spread()) {
944 945
		unsigned int cpuset_mems_cookie;
		do {
946
			cpuset_mems_cookie = read_mems_allowed_begin();
947
			n = cpuset_mem_spread_node();
948
			page = __alloc_pages_node(n, gfp, 0);
949
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
950

951
		return page;
952
	}
953
	return alloc_pages(gfp, 0);
954
}
955
EXPORT_SYMBOL(__page_cache_alloc);
956 957
#endif

L
Linus Torvalds 已提交
958 959 960 961 962 963 964 965 966 967
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
968 969 970 971 972
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
973
{
974
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
975 976
}

977
void __init pagecache_init(void)
L
Linus Torvalds 已提交
978
{
979
	int i;
L
Linus Torvalds 已提交
980

981 982 983 984
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
985 986
}

L
Linus Torvalds 已提交
987
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
988 989 990 991 992 993 994 995 996
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
997
	wait_queue_entry_t wait;
998 999
};

1000
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1001
{
1002 1003 1004 1005 1006 1007 1008
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
1009

1010 1011
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
1012

1013 1014 1015 1016 1017 1018 1019 1020
	/*
	 * Stop walking if it's locked.
	 * Is this safe if put_and_wait_on_page_locked() is in use?
	 * Yes: the waker must hold a reference to this page, and if PG_locked
	 * has now already been set by another task, that task must also hold
	 * a reference to the *same usage* of this page; so there is no need
	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
	 */
1021
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
1022
		return -1;
1023

1024
	return autoremove_wake_function(wait, mode, sync, key);
1025 1026
}

1027
static void wake_up_page_bit(struct page *page, int bit_nr)
1028
{
1029 1030 1031
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1032
	wait_queue_entry_t bookmark;
1033

1034 1035 1036 1037
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1038 1039 1040 1041 1042
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1043
	spin_lock_irqsave(&q->lock, flags);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1080 1081 1082 1083 1084 1085 1086

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1103
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1104
	struct page *page, int bit_nr, int state, enum behavior behavior)
1105 1106
{
	struct wait_page_queue wait_page;
1107
	wait_queue_entry_t *wait = &wait_page.wait;
1108
	bool bit_is_set;
1109
	bool thrashing = false;
1110
	bool delayacct = false;
1111
	unsigned long pflags;
1112 1113
	int ret = 0;

1114
	if (bit_nr == PG_locked &&
1115
	    !PageUptodate(page) && PageWorkingset(page)) {
1116
		if (!PageSwapBacked(page)) {
1117
			delayacct_thrashing_start();
1118 1119
			delayacct = true;
		}
1120
		psi_memstall_enter(&pflags);
1121 1122 1123
		thrashing = true;
	}

1124
	init_wait(wait);
1125
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1126 1127 1128 1129 1130 1131 1132
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1133
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1134
			__add_wait_queue_entry_tail(q, wait);
1135 1136 1137 1138 1139 1140 1141
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

1142 1143 1144 1145 1146
		bit_is_set = test_bit(bit_nr, &page->flags);
		if (behavior == DROP)
			put_page(page);

		if (likely(bit_is_set))
1147 1148
			io_schedule();

1149
		if (behavior == EXCLUSIVE) {
1150 1151
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
1152
		} else if (behavior == SHARED) {
1153 1154 1155
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1156

1157
		if (signal_pending_state(state, current)) {
1158 1159 1160
			ret = -EINTR;
			break;
		}
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

		if (behavior == DROP) {
			/*
			 * We can no longer safely access page->flags:
			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
			 * there is a risk of waiting forever on a page reused
			 * for something that keeps it locked indefinitely.
			 * But best check for -EINTR above before breaking.
			 */
			break;
		}
1172 1173 1174 1175
	}

	finish_wait(q, wait);

1176
	if (thrashing) {
1177
		if (delayacct)
1178 1179 1180
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1196
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1197 1198 1199 1200 1201 1202
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1203
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1204
}
1205
EXPORT_SYMBOL(wait_on_page_bit_killable);
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1226 1227
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1228 1229
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1230 1231 1232
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1233
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1234 1235 1236 1237 1238
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1239
	__add_wait_queue_entry_tail(q, waiter);
1240
	SetPageWaiters(page);
1241 1242 1243 1244
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1263
	return test_bit(PG_waiters, mem);
1264 1265 1266 1267
}

#endif

L
Linus Torvalds 已提交
1268
/**
1269
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1270 1271 1272 1273
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1274
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1275 1276
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1277 1278 1279 1280 1281
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1282
 */
H
Harvey Harrison 已提交
1283
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1284
{
1285
	BUILD_BUG_ON(PG_waiters != 7);
1286
	page = compound_head(page);
1287
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1288 1289
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1290 1291 1292
}
EXPORT_SYMBOL(unlock_page);

1293 1294 1295
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1296 1297 1298
 */
void end_page_writeback(struct page *page)
{
1299 1300 1301 1302 1303 1304 1305 1306 1307
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1308
		rotate_reclaimable_page(page);
1309
	}
1310 1311 1312 1313

	if (!test_clear_page_writeback(page))
		BUG();

1314
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1315 1316 1317 1318
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1319 1320 1321 1322
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1323
void page_endio(struct page *page, bool is_write, int err)
1324
{
1325
	if (!is_write) {
1326 1327 1328 1329 1330 1331 1332
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1333
	} else {
1334
		if (err) {
1335 1336
			struct address_space *mapping;

1337
			SetPageError(page);
1338 1339 1340
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1341 1342 1343 1344 1345 1346
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1347 1348
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1349
 * @__page: the page to lock
L
Linus Torvalds 已提交
1350
 */
1351
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1352
{
1353 1354
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1355 1356
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1357 1358 1359
}
EXPORT_SYMBOL(__lock_page);

1360
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1361
{
1362 1363
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1364 1365
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1366
}
1367
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1380 1381 1382
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1395
			wait_on_page_locked(page);
1396
		return 0;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1409 1410 1411
	}
}

1412
/**
1413 1414 1415 1416
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1417
 *
1418 1419
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1420
 *
1421 1422 1423 1424 1425
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1426
 *
1427 1428 1429
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1430
 */
1431
pgoff_t page_cache_next_miss(struct address_space *mapping,
1432 1433
			     pgoff_t index, unsigned long max_scan)
{
1434
	XA_STATE(xas, &mapping->i_pages, index);
1435

1436 1437 1438
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1439
			break;
1440
		if (xas.xa_index == 0)
1441 1442 1443
			break;
	}

1444
	return xas.xa_index;
1445
}
1446
EXPORT_SYMBOL(page_cache_next_miss);
1447 1448

/**
L
Laurent Dufour 已提交
1449
 * page_cache_prev_miss() - Find the previous gap in the page cache.
1450 1451 1452
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1453
 *
1454 1455
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1456
 *
1457 1458 1459 1460 1461
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1462
 *
1463 1464 1465
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1466
 */
1467
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1468 1469
			     pgoff_t index, unsigned long max_scan)
{
1470
	XA_STATE(xas, &mapping->i_pages, index);
1471

1472 1473 1474
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1475
			break;
1476
		if (xas.xa_index == ULONG_MAX)
1477 1478 1479
			break;
	}

1480
	return xas.xa_index;
1481
}
1482
EXPORT_SYMBOL(page_cache_prev_miss);
1483

1484
/**
1485
 * find_get_entry - find and get a page cache entry
1486
 * @mapping: the address_space to search
1487 1488 1489 1490
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1491
 *
1492 1493
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1494
 *
1495
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1496
 */
1497
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1498
{
1499
	XA_STATE(xas, &mapping->i_pages, offset);
1500
	struct page *page;
L
Linus Torvalds 已提交
1501

N
Nick Piggin 已提交
1502 1503
	rcu_read_lock();
repeat:
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1514

1515
	if (!page_cache_get_speculative(page))
1516
		goto repeat;
1517

1518
	/*
1519
	 * Has the page moved or been split?
1520 1521 1522 1523
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1524
		put_page(page);
1525
		goto repeat;
N
Nick Piggin 已提交
1526
	}
1527
	page = find_subpage(page, offset);
N
Nick Piggin 已提交
1528
out:
N
Nick Piggin 已提交
1529 1530
	rcu_read_unlock();

L
Linus Torvalds 已提交
1531 1532
	return page;
}
1533
EXPORT_SYMBOL(find_get_entry);
L
Linus Torvalds 已提交
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1544 1545
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1546 1547
 *
 * find_lock_entry() may sleep.
1548 1549
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1550 1551
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1552 1553 1554 1555
{
	struct page *page;

repeat:
1556
	page = find_get_entry(mapping, offset);
1557
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1558 1559
		lock_page(page);
		/* Has the page been truncated? */
1560
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1561
			unlock_page(page);
1562
			put_page(page);
N
Nick Piggin 已提交
1563
			goto repeat;
L
Linus Torvalds 已提交
1564
		}
1565
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1566 1567 1568
	}
	return page;
}
1569 1570 1571
EXPORT_SYMBOL(find_lock_entry);

/**
1572
 * pagecache_get_page - find and get a page reference
1573 1574
 * @mapping: the address_space to search
 * @offset: the page index
1575
 * @fgp_flags: PCG flags
1576
 * @gfp_mask: gfp mask to use for the page cache data page allocation
1577
 *
1578
 * Looks up the page cache slot at @mapping & @offset.
L
Linus Torvalds 已提交
1579
 *
1580
 * PCG flags modify how the page is returned.
1581
 *
1582 1583 1584 1585 1586 1587 1588
 * @fgp_flags can be:
 *
 * - FGP_ACCESSED: the page will be marked accessed
 * - FGP_LOCK: Page is return locked
 * - FGP_CREAT: If page is not present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU
 *   list. The page is returned locked and with an increased
1589
 *   refcount.
1590 1591 1592
 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
 *   its own locking dance if the page is already in cache, or unlock the page
 *   before returning if we had to add the page to pagecache.
L
Linus Torvalds 已提交
1593
 *
1594 1595
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 * if the GFP flags specified for FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1596
 *
1597
 * If there is a page cache page, it is returned with an increased refcount.
1598 1599
 *
 * Return: the found page or %NULL otherwise.
L
Linus Torvalds 已提交
1600
 */
1601
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1602
	int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1603
{
N
Nick Piggin 已提交
1604
	struct page *page;
1605

L
Linus Torvalds 已提交
1606
repeat:
1607
	page = find_get_entry(mapping, offset);
1608
	if (xa_is_value(page))
1609 1610 1611 1612 1613 1614 1615
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1616
				put_page(page);
1617 1618 1619 1620 1621 1622 1623 1624 1625
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
1626
			put_page(page);
1627 1628 1629 1630 1631
			goto repeat;
		}
		VM_BUG_ON_PAGE(page->index != offset, page);
	}

1632
	if (fgp_flags & FGP_ACCESSED)
1633 1634 1635 1636 1637 1638
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1639 1640 1641
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1642

1643
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1644 1645
		if (!page)
			return NULL;
1646

1647
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1648 1649
			fgp_flags |= FGP_LOCK;

1650
		/* Init accessed so avoid atomic mark_page_accessed later */
1651
		if (fgp_flags & FGP_ACCESSED)
1652
			__SetPageReferenced(page);
1653

1654
		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
N
Nick Piggin 已提交
1655
		if (unlikely(err)) {
1656
			put_page(page);
N
Nick Piggin 已提交
1657 1658 1659
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1660
		}
1661 1662 1663 1664 1665 1666 1667

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1668
	}
1669

L
Linus Torvalds 已提交
1670 1671
	return page;
}
1672
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1673

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1691 1692
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1693
 *
1694
 * Return: the number of pages and shadow entries which were found.
1695 1696 1697 1698 1699
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1700 1701
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1702 1703 1704 1705 1706 1707
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1708 1709
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1710
			continue;
1711 1712 1713 1714 1715 1716
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1717
			goto export;
1718

1719
		if (!page_cache_get_speculative(page))
1720
			goto retry;
1721

1722
		/* Has the page moved or been split? */
1723 1724
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
1725
		page = find_subpage(page, xas.xa_index);
1726

1727
export:
1728
		indices[ret] = xas.xa_index;
1729 1730 1731
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1732 1733
		continue;
put_page:
1734
		put_page(page);
1735 1736
retry:
		xas_reset(&xas);
1737 1738 1739 1740 1741
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1742
/**
J
Jan Kara 已提交
1743
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1744 1745
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1746
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1747 1748 1749
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1750 1751 1752 1753
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1754 1755 1756
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1757
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1758
 *
1759 1760
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1761
 * reached.
L
Linus Torvalds 已提交
1762
 */
J
Jan Kara 已提交
1763 1764 1765
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1766
{
1767 1768
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1769 1770 1771 1772
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1773 1774

	rcu_read_lock();
1775 1776
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1777
			continue;
1778 1779
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1780
			continue;
N
Nick Piggin 已提交
1781

1782
		if (!page_cache_get_speculative(page))
1783
			goto retry;
1784

1785
		/* Has the page moved or been split? */
1786 1787
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1788

1789
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1790
		if (++ret == nr_pages) {
1791
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1792 1793
			goto out;
		}
1794 1795
		continue;
put_page:
1796
		put_page(page);
1797 1798
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1799
	}
1800

J
Jan Kara 已提交
1801 1802 1803
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1804
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1805 1806 1807 1808 1809 1810 1811
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1812
	rcu_read_unlock();
1813

L
Linus Torvalds 已提交
1814 1815 1816
	return ret;
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1827
 * Return: the number of pages which were found.
1828 1829 1830 1831
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1832 1833
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1834 1835 1836 1837
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1838 1839

	rcu_read_lock();
1840 1841 1842 1843 1844 1845 1846 1847
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1848
			break;
1849

1850
		if (!page_cache_get_speculative(page))
1851
			goto retry;
1852

1853
		/* Has the page moved or been split? */
1854 1855
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1856

1857
		pages[ret] = find_subpage(page, xas.xa_index);
1858 1859
		if (++ret == nr_pages)
			break;
1860 1861
		continue;
put_page:
1862
		put_page(page);
1863 1864
retry:
		xas_reset(&xas);
1865
	}
N
Nick Piggin 已提交
1866 1867
	rcu_read_unlock();
	return ret;
1868
}
1869
EXPORT_SYMBOL(find_get_pages_contig);
1870

1871
/**
1872
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1873 1874
 * @mapping:	the address_space to search
 * @index:	the starting page index
1875
 * @end:	The final page index (inclusive)
1876 1877 1878 1879
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1880
 * Like find_get_pages, except we only return pages which are tagged with
1881
 * @tag.   We update @index to index the next page for the traversal.
1882 1883
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1884
 */
1885
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1886
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1887
			struct page **pages)
L
Linus Torvalds 已提交
1888
{
1889 1890
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1891 1892 1893 1894
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1895 1896

	rcu_read_lock();
1897 1898
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1899
			continue;
1900 1901 1902 1903 1904 1905
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1906
			continue;
N
Nick Piggin 已提交
1907

1908
		if (!page_cache_get_speculative(page))
1909
			goto retry;
N
Nick Piggin 已提交
1910

1911
		/* Has the page moved or been split? */
1912 1913
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1914

1915
		pages[ret] = find_subpage(page, xas.xa_index);
1916
		if (++ret == nr_pages) {
1917
			*index = xas.xa_index + 1;
1918 1919
			goto out;
		}
1920 1921
		continue;
put_page:
1922
		put_page(page);
1923 1924
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1925
	}
1926

1927
	/*
1928
	 * We come here when we got to @end. We take care to not overflow the
1929
	 * index @index as it confuses some of the callers. This breaks the
1930 1931
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
1932 1933 1934 1935 1936 1937
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1938
	rcu_read_unlock();
L
Linus Torvalds 已提交
1939 1940 1941

	return ret;
}
1942
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
					struct file_ra_state *ra)
{
	ra->ra_pages /= 4;
}

1965
/**
1966 1967
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
1968 1969
 * @iter:	data destination
 * @written:	already copied
1970
 *
L
Linus Torvalds 已提交
1971
 * This is a generic file read routine, and uses the
1972
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
1973 1974 1975
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
1976 1977 1978 1979
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
1980
 */
1981
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1982
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
1983
{
1984
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
1985
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
1986
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
1987
	struct file_ra_state *ra = &filp->f_ra;
1988
	loff_t *ppos = &iocb->ki_pos;
1989 1990 1991 1992
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
1993
	unsigned int prev_offset;
1994
	int error = 0;
L
Linus Torvalds 已提交
1995

1996
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1997
		return 0;
1998 1999
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2000 2001 2002 2003 2004
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2005 2006 2007

	for (;;) {
		struct page *page;
2008
		pgoff_t end_index;
N
NeilBrown 已提交
2009
		loff_t isize;
L
Linus Torvalds 已提交
2010 2011 2012 2013
		unsigned long nr, ret;

		cond_resched();
find_page:
2014 2015 2016 2017 2018
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2019
		page = find_get_page(mapping, index);
2020
		if (!page) {
2021 2022
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2023
			page_cache_sync_readahead(mapping,
2024
					ra, filp,
2025 2026 2027 2028 2029 2030
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2031
			page_cache_async_readahead(mapping,
2032
					ra, filp, page,
2033
					index, last_index - index);
L
Linus Torvalds 已提交
2034
		}
2035
		if (!PageUptodate(page)) {
2036 2037 2038 2039 2040
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2041 2042 2043 2044 2045
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2046 2047 2048
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2049 2050 2051
			if (PageUptodate(page))
				goto page_ok;

2052
			if (inode->i_blkbits == PAGE_SHIFT ||
2053 2054
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2055
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2056
			if (unlikely(iov_iter_is_pipe(iter)))
2057
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2058
			if (!trylock_page(page))
2059
				goto page_not_up_to_date;
2060 2061 2062
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2063
			if (!mapping->a_ops->is_partially_uptodate(page,
2064
							offset, iter->count))
2065 2066 2067
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2068
page_ok:
N
NeilBrown 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2079
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2080
		if (unlikely(!isize || index > end_index)) {
2081
			put_page(page);
N
NeilBrown 已提交
2082 2083 2084 2085
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2086
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2087
		if (index == end_index) {
2088
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2089
			if (nr <= offset) {
2090
				put_page(page);
N
NeilBrown 已提交
2091 2092 2093 2094
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2104 2105
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2106
		 */
2107
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2115 2116

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2117
		offset += ret;
2118 2119
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2120
		prev_offset = offset;
L
Linus Torvalds 已提交
2121

2122
		put_page(page);
2123 2124 2125 2126 2127 2128 2129 2130
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2131 2132 2133

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2134 2135 2136
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2137

2138
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2139
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2140 2141
		if (!page->mapping) {
			unlock_page(page);
2142
			put_page(page);
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2153 2154 2155 2156 2157 2158
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2159 2160 2161
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2162 2163
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2164
				put_page(page);
2165
				error = 0;
2166 2167
				goto find_page;
			}
L
Linus Torvalds 已提交
2168
			goto readpage_error;
2169
		}
L
Linus Torvalds 已提交
2170 2171

		if (!PageUptodate(page)) {
2172 2173 2174
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2175 2176 2177
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2178
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2179 2180
					 */
					unlock_page(page);
2181
					put_page(page);
L
Linus Torvalds 已提交
2182 2183 2184
					goto find_page;
				}
				unlock_page(page);
2185
				shrink_readahead_size_eio(filp, ra);
2186 2187
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2188 2189 2190 2191 2192 2193 2194 2195
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2196
		put_page(page);
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2204
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2205
		if (!page) {
2206
			error = -ENOMEM;
N
Nick Piggin 已提交
2207
			goto out;
L
Linus Torvalds 已提交
2208
		}
2209
		error = add_to_page_cache_lru(page, mapping, index,
2210
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2211
		if (error) {
2212
			put_page(page);
2213 2214
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2215
				goto find_page;
2216
			}
L
Linus Torvalds 已提交
2217 2218 2219 2220 2221
			goto out;
		}
		goto readpage;
	}

2222 2223
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2224
out:
2225
	ra->prev_pos = prev_index;
2226
	ra->prev_pos <<= PAGE_SHIFT;
2227
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2228

2229
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2230
	file_accessed(filp);
2231
	return written ? written : error;
L
Linus Torvalds 已提交
2232 2233
}

2234
/**
A
Al Viro 已提交
2235
 * generic_file_read_iter - generic filesystem read routine
2236
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2237
 * @iter:	destination for the data read
2238
 *
A
Al Viro 已提交
2239
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2240
 * that can use the page cache directly.
2241 2242 2243
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code if nothing was read
L
Linus Torvalds 已提交
2244 2245
 */
ssize_t
A
Al Viro 已提交
2246
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2247
{
2248
	size_t count = iov_iter_count(iter);
2249
	ssize_t retval = 0;
2250 2251 2252

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2253

2254
	if (iocb->ki_flags & IOCB_DIRECT) {
2255
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2256 2257
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2258
		loff_t size;
L
Linus Torvalds 已提交
2259 2260

		size = i_size_read(inode);
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2272

2273 2274
		file_accessed(file);

2275
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2276
		if (retval >= 0) {
2277
			iocb->ki_pos += retval;
2278
			count -= retval;
2279
		}
A
Al Viro 已提交
2280
		iov_iter_revert(iter, count - iov_iter_count(iter));
2281

2282 2283 2284 2285 2286 2287
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2288 2289
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2290
		 */
2291
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2292
		    IS_DAX(inode))
2293
			goto out;
L
Linus Torvalds 已提交
2294 2295
	}

2296
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2297 2298 2299
out:
	return retval;
}
A
Al Viro 已提交
2300
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2301 2302 2303

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
					     struct file *fpin)
{
	int flags = vmf->flags;

	if (fpin)
		return fpin;

	/*
	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
	 * anything, so we only pin the file and drop the mmap_sem if only
	 * FAULT_FLAG_ALLOW_RETRY is set.
	 */
	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
	    FAULT_FLAG_ALLOW_RETRY) {
		fpin = get_file(vmf->vma->vm_file);
		up_read(&vmf->vma->vm_mm->mmap_sem);
	}
	return fpin;
}

/*
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
 * It differs in that it actually returns the page locked if it returns 1 and 0
 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2342 2343 2344 2345 2346
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
	 * is supposed to work. We have way too many special cases..
	 */
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
			 * We didn't have the right flags to drop the mmap_sem,
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
			 * mmap_sem here and return 0 if we don't have a fpin.
			 */
			if (*fpin == NULL)
				up_read(&vmf->vma->vm_mm->mmap_sem);
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2368

2369
/*
2370 2371 2372 2373 2374
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2375
 */
2376
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2377
{
2378 2379
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2380
	struct address_space *mapping = file->f_mapping;
2381
	struct file *fpin = NULL;
2382
	pgoff_t offset = vmf->pgoff;
2383 2384

	/* If we don't want any read-ahead, don't bother */
2385
	if (vmf->vma->vm_flags & VM_RAND_READ)
2386
		return fpin;
2387
	if (!ra->ra_pages)
2388
		return fpin;
2389

2390
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2391
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2392 2393
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2394
		return fpin;
2395 2396
	}

2397 2398
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2399 2400 2401 2402 2403 2404 2405
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
2406
		return fpin;
2407

2408 2409 2410
	/*
	 * mmap read-around
	 */
2411
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2412 2413 2414
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2415
	ra_submit(ra, mapping, file);
2416
	return fpin;
2417 2418 2419 2420
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2421 2422
 * so we want to possibly extend the readahead further.  We return the file that
 * was pinned if we have to drop the mmap_sem in order to do IO.
2423
 */
2424 2425
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2426
{
2427 2428
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2429
	struct address_space *mapping = file->f_mapping;
2430
	struct file *fpin = NULL;
2431
	pgoff_t offset = vmf->pgoff;
2432 2433

	/* If we don't want any read-ahead, don't bother */
2434
	if (vmf->vma->vm_flags & VM_RAND_READ)
2435
		return fpin;
2436 2437
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
2438 2439
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2440 2441
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2442 2443
	}
	return fpin;
2444 2445
}

2446
/**
2447
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2448
 * @vmf:	struct vm_fault containing details of the fault
2449
 *
2450
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2451 2452 2453 2454 2455
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
 * If our return value has VM_FAULT_RETRY set, it's because
 * lock_page_or_retry() returned 0.
 * The mmap_sem has usually been released in this case.
 * See __lock_page_or_retry() for the exception.
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2468 2469
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2470
 */
2471
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2472 2473
{
	int error;
2474
	struct file *file = vmf->vma->vm_file;
2475
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2476 2477 2478
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2479
	pgoff_t offset = vmf->pgoff;
2480
	pgoff_t max_off;
L
Linus Torvalds 已提交
2481
	struct page *page;
2482
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2483

2484 2485
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2486
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2487 2488

	/*
2489
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2490
	 */
2491
	page = find_get_page(mapping, offset);
2492
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2493
		/*
2494 2495
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2496
		 */
2497
		fpin = do_async_mmap_readahead(vmf, page);
2498
	} else if (!page) {
2499 2500
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2501
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2502
		ret = VM_FAULT_MAJOR;
2503
		fpin = do_sync_mmap_readahead(vmf);
2504
retry_find:
2505 2506 2507
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2508 2509 2510
		if (!page) {
			if (fpin)
				goto out_retry;
2511
			return vmf_error(-ENOMEM);
2512
		}
L
Linus Torvalds 已提交
2513 2514
	}

2515 2516
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2517 2518 2519 2520 2521 2522 2523

	/* Did it get truncated? */
	if (unlikely(page->mapping != mapping)) {
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2524
	VM_BUG_ON_PAGE(page->index != offset, page);
2525

L
Linus Torvalds 已提交
2526
	/*
2527 2528
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2529
	 */
2530
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2531 2532
		goto page_not_uptodate;

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	/*
	 * We've made it this far and we had to drop our mmap_sem, now is the
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2543 2544 2545 2546
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2547 2548
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2549
		unlock_page(page);
2550
		put_page(page);
2551
		return VM_FAULT_SIGBUS;
2552 2553
	}

N
Nick Piggin 已提交
2554
	vmf->page = page;
N
Nick Piggin 已提交
2555
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2556 2557 2558 2559 2560 2561 2562 2563 2564

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2565
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2566
	error = mapping->a_ops->readpage(file, page);
2567 2568 2569 2570 2571
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2572 2573
	if (fpin)
		goto out_retry;
2574
	put_page(page);
2575 2576

	if (!error || error == AOP_TRUNCATED_PAGE)
2577
		goto retry_find;
L
Linus Torvalds 已提交
2578

2579
	/* Things didn't work out. Return zero to tell the mm layer so. */
2580
	shrink_readahead_size_eio(file, ra);
N
Nick Piggin 已提交
2581
	return VM_FAULT_SIGBUS;
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

out_retry:
	/*
	 * We dropped the mmap_sem, we need to return to the fault handler to
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2594 2595 2596
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2597
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2598
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2599
{
J
Jan Kara 已提交
2600
	struct file *file = vmf->vma->vm_file;
2601
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2602
	pgoff_t last_pgoff = start_pgoff;
2603
	unsigned long max_idx;
2604
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2605
	struct page *page;
2606 2607

	rcu_read_lock();
2608 2609 2610 2611
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2612
			goto next;
2613

2614 2615 2616 2617
		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
2618
		if (PageLocked(page))
2619
			goto next;
2620
		if (!page_cache_get_speculative(page))
2621
			goto next;
2622

2623
		/* Has the page moved or been split? */
2624 2625
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2626
		page = find_subpage(page, xas.xa_index);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2638 2639
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2640 2641 2642 2643
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2644

2645
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2646
		if (vmf->pte)
2647 2648
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
J
Jan Kara 已提交
2649
		if (alloc_set_pte(vmf, NULL, page))
2650
			goto unlock;
2651 2652 2653 2654 2655
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2656
		put_page(page);
2657
next:
2658
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2659
		if (pmd_trans_huge(*vmf->pmd))
2660
			break;
2661 2662 2663 2664 2665
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2666
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2667 2668
{
	struct page *page = vmf->page;
2669
	struct inode *inode = file_inode(vmf->vma->vm_file);
2670
	vm_fault_t ret = VM_FAULT_LOCKED;
2671

2672
	sb_start_pagefault(inode->i_sb);
2673
	file_update_time(vmf->vma->vm_file);
2674 2675 2676 2677 2678 2679
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2680 2681 2682 2683 2684 2685
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2686
	wait_for_stable_page(page);
2687
out:
2688
	sb_end_pagefault(inode->i_sb);
2689 2690 2691
	return ret;
}

2692
const struct vm_operations_struct generic_file_vm_ops = {
2693
	.fault		= filemap_fault,
2694
	.map_pages	= filemap_map_pages,
2695
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2721
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2722
{
S
Souptick Joarder 已提交
2723
	return VM_FAULT_SIGBUS;
2724
}
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2735
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2736 2737 2738
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2739 2740 2741 2742 2743
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2744
			put_page(page);
S
Sasha Levin 已提交
2745 2746 2747 2748 2749 2750
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2751
static struct page *do_read_cache_page(struct address_space *mapping,
2752
				pgoff_t index,
2753
				int (*filler)(void *, struct page *),
2754 2755
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2756
{
N
Nick Piggin 已提交
2757
	struct page *page;
L
Linus Torvalds 已提交
2758 2759 2760 2761
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2762
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2763 2764
		if (!page)
			return ERR_PTR(-ENOMEM);
2765
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2766
		if (unlikely(err)) {
2767
			put_page(page);
N
Nick Piggin 已提交
2768 2769
			if (err == -EEXIST)
				goto repeat;
2770
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2771 2772
			return ERR_PTR(err);
		}
2773 2774

filler:
L
Linus Torvalds 已提交
2775 2776
		err = filler(data, page);
		if (err < 0) {
2777
			put_page(page);
2778
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2779 2780
		}

2781 2782 2783 2784 2785
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2786 2787 2788
	if (PageUptodate(page))
		goto out;

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2825
	lock_page(page);
2826 2827

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2828 2829
	if (!page->mapping) {
		unlock_page(page);
2830
		put_page(page);
2831
		goto repeat;
L
Linus Torvalds 已提交
2832
	}
2833 2834

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2835 2836 2837 2838
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2839 2840
	goto filler;

2841
out:
2842 2843 2844
	mark_page_accessed(page);
	return page;
}
2845 2846

/**
S
Sasha Levin 已提交
2847
 * read_cache_page - read into page cache, fill it if needed
2848 2849 2850
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2851
 * @data:	first arg to filler(data, page) function, often left as NULL
2852 2853
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2854
 * not set, try to fill the page and wait for it to become unlocked.
2855 2856
 *
 * If the page does not get brought uptodate, return -EIO.
2857 2858
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2859
 */
S
Sasha Levin 已提交
2860
struct page *read_cache_page(struct address_space *mapping,
2861
				pgoff_t index,
2862
				int (*filler)(void *, struct page *),
2863 2864 2865 2866
				void *data)
{
	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
}
S
Sasha Levin 已提交
2867
EXPORT_SYMBOL(read_cache_page);
2868 2869 2870 2871 2872 2873 2874 2875

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2876
 * any new page allocations done using the specified allocation flags.
2877 2878
 *
 * If the page does not get brought uptodate, return -EIO.
2879 2880
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2881 2882 2883 2884 2885 2886 2887
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
	filler_t *filler = (filler_t *)mapping->a_ops->readpage;

S
Sasha Levin 已提交
2888
	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2889 2890 2891
}
EXPORT_SYMBOL(read_cache_page_gfp);

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_access_check_limits(struct file *file, loff_t pos,
				       loff_t *count)
{
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;

	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;
	*count = min(*count, max_size - pos);
	return 0;
}

static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

	return generic_access_check_limits(file, pos, count);
}

L
Linus Torvalds 已提交
2928 2929 2930
/*
 * Performs necessary checks before doing a write
 *
2931
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2932 2933 2934
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2935
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2936
{
2937
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2938
	struct inode *inode = file->f_mapping->host;
2939 2940
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
2941

2942 2943
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
2944

2945
	/* FIXME: this is for backwards compatibility with 2.4 */
2946
	if (iocb->ki_flags & IOCB_APPEND)
2947
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
2948

2949 2950 2951
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

2952 2953 2954 2955
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
2956

2957
	iov_iter_truncate(from, count);
2958
	return iov_iter_count(from);
L
Linus Torvalds 已提交
2959 2960 2961
}
EXPORT_SYMBOL(generic_write_checks);

2962 2963 2964 2965 2966 2967 2968 2969 2970
/*
 * Performs necessary checks before doing a clone.
 *
 * Can adjust amount of bytes to clone.
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
2971
			 loff_t *req_count, unsigned int remap_flags)
2972 2973 2974 2975 2976 2977 2978
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
2979
	int ret;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
2993
	if ((remap_flags & REMAP_FILE_DEDUP) &&
2994 2995 2996 2997 2998 2999 3000 3001 3002
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

3003 3004 3005 3006 3007 3008 3009
	ret = generic_access_check_limits(file_in, pos_in, &count);
	if (ret)
		return ret;

	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3010 3011

	/*
3012 3013 3014 3015 3016
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3017
	 */
3018 3019 3020 3021
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3022
			count = ALIGN_DOWN(count, bs);
3023
		bcount = count;
L
Linus Torvalds 已提交
3024 3025
	}

3026 3027 3028 3029 3030 3031
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3032
	/*
3033 3034
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3035
	 */
3036
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3037
		return -EINVAL;
L
Linus Torvalds 已提交
3038

3039
	*req_count = count;
3040
	return 0;
L
Linus Torvalds 已提交
3041 3042
}

3043 3044 3045 3046 3047 3048
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3049
	return aops->write_begin(file, mapping, pos, len, flags,
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3060
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3061 3062 3063
}
EXPORT_SYMBOL(pagecache_write_end);

L
Linus Torvalds 已提交
3064
ssize_t
3065
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3066 3067 3068 3069
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3070
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3071
	ssize_t		written;
3072 3073
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3074

A
Al Viro 已提交
3075
	write_len = iov_iter_count(from);
3076
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3077

3078 3079 3080
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3081
					   pos + write_len - 1))
3082 3083 3084 3085 3086 3087 3088
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3089 3090 3091 3092 3093

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3094
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3095
	 */
3096
	written = invalidate_inode_pages2_range(mapping,
3097
					pos >> PAGE_SHIFT, end);
3098 3099 3100 3101 3102 3103 3104 3105
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3106 3107
	}

3108
	written = mapping->a_ops->direct_IO(iocb, from);
3109 3110 3111 3112 3113 3114 3115 3116

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3117 3118 3119 3120 3121
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
	 * them by removing it completely
3122
	 */
3123 3124 3125
	if (mapping->nrpages)
		invalidate_inode_pages2_range(mapping,
					pos >> PAGE_SHIFT, end);
3126

L
Linus Torvalds 已提交
3127
	if (written > 0) {
3128
		pos += written;
3129
		write_len -= written;
3130 3131
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3132 3133
			mark_inode_dirty(inode);
		}
3134
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3135
	}
3136
	iov_iter_revert(from, write_len - iov_iter_count(from));
3137
out:
L
Linus Torvalds 已提交
3138 3139 3140 3141
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3142 3143 3144 3145
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3146 3147
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3148 3149
{
	struct page *page;
3150
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3151

3152
	if (flags & AOP_FLAG_NOFS)
3153 3154 3155
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3156
			mapping_gfp_mask(mapping));
3157
	if (page)
3158
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3159 3160 3161

	return page;
}
3162
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3163

3164
ssize_t generic_perform_write(struct file *file,
3165 3166 3167 3168 3169 3170
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3171 3172
	unsigned int flags = 0;

3173 3174 3175 3176 3177 3178 3179
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3180 3181
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3182 3183 3184
						iov_iter_count(i));

again:
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3200 3201 3202 3203 3204
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3205
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3206
						&page, &fsdata);
3207
		if (unlikely(status < 0))
3208 3209
			break;

3210 3211
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3212

3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3224
		iov_iter_advance(i, copied);
3225 3226 3227 3228 3229 3230 3231 3232 3233
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3234
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3246
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3247

3248
/**
3249
 * __generic_file_write_iter - write data to a file
3250
 * @iocb:	IO state structure (file, offset, etc.)
3251
 * @from:	iov_iter with data to write
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3264 3265 3266 3267
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3268
 */
3269
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3270 3271
{
	struct file *file = iocb->ki_filp;
3272
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3273
	struct inode 	*inode = mapping->host;
3274
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3275
	ssize_t		err;
3276
	ssize_t		status;
L
Linus Torvalds 已提交
3277 3278

	/* We can write back this queue in page reclaim */
3279
	current->backing_dev_info = inode_to_bdi(inode);
3280
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3281 3282 3283
	if (err)
		goto out;

3284 3285 3286
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3287

3288
	if (iocb->ki_flags & IOCB_DIRECT) {
3289
		loff_t pos, endbyte;
3290

3291
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3292
		/*
3293 3294 3295 3296 3297
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3298
		 */
3299
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3300 3301
			goto out;

3302
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3303
		/*
3304
		 * If generic_perform_write() returned a synchronous error
3305 3306 3307 3308 3309
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3310
		if (unlikely(status < 0)) {
3311
			err = status;
3312 3313 3314 3315 3316 3317 3318
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3319
		endbyte = pos + status - 1;
3320
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3321
		if (err == 0) {
3322
			iocb->ki_pos = endbyte + 1;
3323
			written += status;
3324
			invalidate_mapping_pages(mapping,
3325 3326
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3327 3328 3329 3330 3331 3332 3333
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3334 3335 3336
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3337
	}
L
Linus Torvalds 已提交
3338 3339 3340 3341
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3342
EXPORT_SYMBOL(__generic_file_write_iter);
3343 3344

/**
3345
 * generic_file_write_iter - write data to a file
3346
 * @iocb:	IO state structure
3347
 * @from:	iov_iter with data to write
3348
 *
3349
 * This is a wrapper around __generic_file_write_iter() to be used by most
3350 3351
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3352 3353 3354 3355
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3356
 */
3357
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3358 3359
{
	struct file *file = iocb->ki_filp;
3360
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3361 3362
	ssize_t ret;

A
Al Viro 已提交
3363
	inode_lock(inode);
3364 3365
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3366
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3367
	inode_unlock(inode);
L
Linus Torvalds 已提交
3368

3369 3370
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3371 3372
	return ret;
}
3373
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3374

3375 3376 3377 3378 3379 3380 3381
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3382
 * (presumably at page->private).
3383
 *
3384 3385 3386
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3387
 * The @gfp_mask argument specifies whether I/O may be performed to release
3388
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3389
 *
3390
 * Return: %1 if the release was successful, otherwise return zero.
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);