filemap.c 96.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
13
#include <linux/export.h>
L
Linus Torvalds 已提交
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
L
Linus Torvalds 已提交
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
L
Linus Torvalds 已提交
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
L
Linus Torvalds 已提交
22 23 24 25 26 27
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
28
#include <linux/error-injection.h>
L
Linus Torvalds 已提交
29 30
#include <linux/hash.h>
#include <linux/writeback.h>
31
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
32 33 34
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
35
#include <linux/cpuset.h>
36
#include <linux/hugetlb.h>
37
#include <linux/memcontrol.h>
38
#include <linux/cleancache.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43
#include <linux/ramfs.h>
44 45
#include "internal.h"

R
Robert Jarzmik 已提交
46 47 48
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
49 50 51
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
52
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
71
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
72
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
73
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
74
 *        ->i_pages lock
L
Linus Torvalds 已提交
75
 *
76
 *  ->i_mutex
77
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
78 79
 *
 *  ->mmap_sem
80
 *    ->i_mmap_rwsem
81
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
82
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
83 84 85 86
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
87
 *  ->i_mutex			(generic_perform_write)
88
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
89
 *
90
 *  bdi->wb.list_lock
91
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
92
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
93
 *
94
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
95 96 97
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
98
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
99
 *
100
 *  ->page_table_lock or pte_lock
101
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
102
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
103
 *    ->i_pages lock		(try_to_unmap_one)
104 105
 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
106
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
107
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
108
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
109
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
110
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
111
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
112
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
113 114
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
115
 * ->i_mmap_rwsem
116
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
117 118
 */

119
static void page_cache_delete(struct address_space *mapping,
120 121
				   struct page *page, void *shadow)
{
122 123
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
124

125
	mapping_set_update(&xas, mapping);
126

127 128 129
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
130
		nr = compound_nr(page);
131
	}
132

133 134 135
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136

137 138
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
139

140 141 142
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

143 144 145 146 147 148 149 150 151 152 153
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
154 155
}

156 157
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
158
{
159
	int nr;
L
Linus Torvalds 已提交
160

161 162 163 164 165 166 167 168
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
169
		cleancache_invalidate_page(mapping, page);
170

171
	VM_BUG_ON_PAGE(PageTail(page), page);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
192
			page_ref_sub(page, mapcount);
193 194 195
		}
	}

196
	/* hugetlb pages do not participate in page cache accounting. */
197 198
	if (PageHuge(page))
		return;
199

200 201 202 203 204 205 206
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
207 208
	} else if (PageTransHuge(page)) {
		__dec_node_page_state(page, NR_FILE_THPS);
209
		filemap_nr_thps_dec(mapping);
210
	}
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
229
 * is safe.  The caller must hold the i_pages lock.
230 231 232 233 234 235 236 237
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
238
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

258 259 260 261 262 263 264 265 266
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
267
{
268
	struct address_space *mapping = page_mapping(page);
269
	unsigned long flags;
L
Linus Torvalds 已提交
270

M
Matt Mackall 已提交
271
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
272
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
273
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
274
	xa_unlock_irqrestore(&mapping->i_pages, flags);
275

276
	page_cache_free_page(mapping, page);
277 278 279
}
EXPORT_SYMBOL(delete_from_page_cache);

280
/*
281
 * page_cache_delete_batch - delete several pages from page cache
282 283 284
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
285
 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 287
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
288
 * It tolerates holes in @pvec (mapping entries at those indices are not
289
 * modified). The function expects only THP head pages to be present in the
290
 * @pvec.
291
 *
M
Matthew Wilcox 已提交
292
 * The function expects the i_pages lock to be held.
293
 */
294
static void page_cache_delete_batch(struct address_space *mapping,
295 296
			     struct pagevec *pvec)
{
297
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298
	int total_pages = 0;
299
	int i = 0;
300 301
	struct page *page;

302 303
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
304
		if (i >= pagevec_count(pvec))
305
			break;
306 307

		/* A swap/dax/shadow entry got inserted? Skip it. */
308
		if (xa_is_value(page))
309
			continue;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
326
			page->mapping = NULL;
327 328 329 330 331 332 333 334
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + compound_nr(page) - 1 == xas.xa_index)
335
			i++;
336
		xas_store(&xas, NULL);
337 338 339 340 341 342 343 344 345 346 347 348 349 350
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
351
	xa_lock_irqsave(&mapping->i_pages, flags);
352 353 354 355 356
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
357
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
358
	xa_unlock_irqrestore(&mapping->i_pages, flags);
359 360 361 362 363

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

364
int filemap_check_errors(struct address_space *mapping)
365 366 367
{
	int ret = 0;
	/* Check for outstanding write errors */
368 369
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370
		ret = -ENOSPC;
371 372
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
373 374 375
		ret = -EIO;
	return ret;
}
376
EXPORT_SYMBOL(filemap_check_errors);
377

378 379 380 381 382 383 384 385 386 387
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
388
/**
389
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 391
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
392
 * @end:	offset in bytes where the range ends (inclusive)
393
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
394
 *
395 396 397
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
398
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
400 401
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
402 403
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
404
 */
405 406
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
407 408 409 410
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
411
		.nr_to_write = LONG_MAX,
412 413
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
414 415
	};

416 417
	if (!mapping_cap_writeback_dirty(mapping) ||
	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
L
Linus Torvalds 已提交
418 419
		return 0;

420
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
421
	ret = do_writepages(mapping, &wbc);
422
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
423 424 425 426 427 428
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
429
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
430 431 432 433 434 435 436 437
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

438
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439
				loff_t end)
L
Linus Torvalds 已提交
440 441 442
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
443
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
444

445 446 447 448
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
449 450
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
451 452
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
453 454 455 456 457 458 459
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

460 461 462 463 464 465 466 467
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
468 469 470
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
471 472 473 474
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
475
	struct page *page;
476 477
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
478 479 480 481

	if (end_byte < start_byte)
		return false;

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
498

499
	return page != NULL;
500 501 502
}
EXPORT_SYMBOL(filemap_range_has_page);

503
static void __filemap_fdatawait_range(struct address_space *mapping,
504
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
505
{
506 507
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
508 509 510
	struct pagevec pvec;
	int nr_pages;

511
	if (end_byte < start_byte)
512
		return;
L
Linus Torvalds 已提交
513

514
	pagevec_init(&pvec);
515
	while (index <= end) {
L
Linus Torvalds 已提交
516 517
		unsigned i;

518
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519
				end, PAGECACHE_TAG_WRITEBACK);
520 521 522
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
523 524 525 526
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
527
			ClearPageError(page);
L
Linus Torvalds 已提交
528 529 530 531
		}
		pagevec_release(&pvec);
		cond_resched();
	}
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
547 548
 *
 * Return: error status of the address space.
549 550 551 552
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
553 554
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
555
}
556 557
EXPORT_SYMBOL(filemap_fdatawait_range);

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/**
 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space in the
 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 * this function does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
 */
int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
		loff_t start_byte, loff_t end_byte)
{
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_and_keep_errors(mapping);
}
EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);

580 581 582 583 584 585 586 587 588 589 590 591 592
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
593 594
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 596 597 598 599 600 601 602 603
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
604

605 606 607 608 609 610 611 612 613 614 615
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
616 617
 *
 * Return: error status of the address space.
618
 */
619
int filemap_fdatawait_keep_errors(struct address_space *mapping)
620
{
621
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622
	return filemap_check_and_keep_errors(mapping);
623
}
624
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625

626
/* Returns true if writeback might be needed or already in progress. */
627
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
628
{
629 630 631 632
	if (dax_mapping(mapping))
		return mapping->nrexceptional;

	return mapping->nrpages;
L
Linus Torvalds 已提交
633 634
}

635 636 637 638 639 640
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
641 642
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
643
 * Note that @lend is inclusive (describes the last byte to be written) so
644
 * that this function can be used to write to the very end-of-file (end = -1).
645 646
 *
 * Return: error status of the address space.
647
 */
L
Linus Torvalds 已提交
648 649 650
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
651
	int err = 0;
L
Linus Torvalds 已提交
652

653
	if (mapping_needs_writeback(mapping)) {
654 655
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
656 657 658 659 660 661
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
662
		if (err != -EIO) {
663 664
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
665 666
			if (!err)
				err = err2;
667 668 669
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
670
		}
671 672
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
673
	}
674
	return err;
L
Linus Torvalds 已提交
675
}
676
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
677

678 679
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
680
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
707 708
 *
 * Return: %0 on success, negative error code otherwise.
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
726 727 728 729 730 731 732 733

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
751 752
 *
 * Return: %0 on success, negative error code otherwise.
753 754 755 756 757 758
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

759
	if (mapping_needs_writeback(mapping)) {
760 761 762 763 764 765 766 767 768 769 770 771 772
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

773 774 775 776 777 778 779 780 781 782 783 784
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
785
 * The remove + add is atomic.  This function cannot fail.
786 787
 *
 * Return: %0
788 789 790
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
791 792 793 794 795
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
796

797 798 799
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
800

801 802 803
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
804

805 806
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
		__dec_node_page_state(new, NR_FILE_PAGES);
	if (!PageHuge(new))
		__inc_node_page_state(new, NR_FILE_PAGES);
	if (PageSwapBacked(old))
		__dec_node_page_state(new, NR_SHMEM);
	if (PageSwapBacked(new))
		__inc_node_page_state(new, NR_SHMEM);
	xas_unlock_irqrestore(&xas, flags);
	mem_cgroup_migrate(old, new);
	if (freepage)
		freepage(old);
	put_page(old);
823

824
	return 0;
825 826 827
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

828 829 830 831
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
832
{
833
	XA_STATE(xas, &mapping->i_pages, offset);
834 835
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
836
	int error;
837
	void *old;
N
Nick Piggin 已提交
838

839 840
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
842

843 844
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
845
					      gfp_mask, &memcg, false);
846 847 848
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
849

850
	get_page(page);
851 852 853
	page->mapping = mapping;
	page->index = offset;

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
			__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

	if (xas_error(&xas))
		goto error;
879

880
	if (!huge)
881
		mem_cgroup_commit_charge(page, memcg, false, false);
882 883
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
884
error:
885 886
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
887
	if (!huge)
888
		mem_cgroup_cancel_charge(page, memcg, false);
889
	put_page(page);
890
	return xas_error(&xas);
L
Linus Torvalds 已提交
891
}
892
ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
893 894 895 896 897 898 899 900 901 902

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
903 904
 *
 * Return: %0 on success, negative error code otherwise.
905 906 907 908 909 910 911
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
912
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
913 914

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
915
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
916
{
917
	void *shadow = NULL;
918 919
	int ret;

920
	__SetPageLocked(page);
921 922 923
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
924
		__ClearPageLocked(page);
925 926 927 928 929
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
930 931 932
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
933
		 */
934 935 936
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
937 938
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
939 940
	return ret;
}
941
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
942

943
#ifdef CONFIG_NUMA
944
struct page *__page_cache_alloc(gfp_t gfp)
945
{
946 947 948
	int n;
	struct page *page;

949
	if (cpuset_do_page_mem_spread()) {
950 951
		unsigned int cpuset_mems_cookie;
		do {
952
			cpuset_mems_cookie = read_mems_allowed_begin();
953
			n = cpuset_mem_spread_node();
954
			page = __alloc_pages_node(n, gfp, 0);
955
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
956

957
		return page;
958
	}
959
	return alloc_pages(gfp, 0);
960
}
961
EXPORT_SYMBOL(__page_cache_alloc);
962 963
#endif

L
Linus Torvalds 已提交
964 965 966 967 968 969 970 971 972 973
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
974 975 976 977 978
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
979
{
980
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
981 982
}

983
void __init pagecache_init(void)
L
Linus Torvalds 已提交
984
{
985
	int i;
L
Linus Torvalds 已提交
986

987 988 989 990
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
991 992
}

L
Linus Torvalds 已提交
993
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
994 995 996 997 998 999 1000 1001 1002
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
1003
	wait_queue_entry_t wait;
1004 1005
};

1006
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1007
{
1008 1009 1010 1011 1012 1013 1014
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
1015

1016 1017
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
1018

1019 1020 1021 1022 1023 1024 1025 1026
	/*
	 * Stop walking if it's locked.
	 * Is this safe if put_and_wait_on_page_locked() is in use?
	 * Yes: the waker must hold a reference to this page, and if PG_locked
	 * has now already been set by another task, that task must also hold
	 * a reference to the *same usage* of this page; so there is no need
	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
	 */
1027
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
1028
		return -1;
1029

1030
	return autoremove_wake_function(wait, mode, sync, key);
1031 1032
}

1033
static void wake_up_page_bit(struct page *page, int bit_nr)
1034
{
1035 1036 1037
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1038
	wait_queue_entry_t bookmark;
1039

1040 1041 1042 1043
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1044 1045 1046 1047 1048
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1049
	spin_lock_irqsave(&q->lock, flags);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1086 1087 1088 1089 1090 1091 1092

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1109
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1110
	struct page *page, int bit_nr, int state, enum behavior behavior)
1111 1112
{
	struct wait_page_queue wait_page;
1113
	wait_queue_entry_t *wait = &wait_page.wait;
1114
	bool bit_is_set;
1115
	bool thrashing = false;
1116
	bool delayacct = false;
1117
	unsigned long pflags;
1118 1119
	int ret = 0;

1120
	if (bit_nr == PG_locked &&
1121
	    !PageUptodate(page) && PageWorkingset(page)) {
1122
		if (!PageSwapBacked(page)) {
1123
			delayacct_thrashing_start();
1124 1125
			delayacct = true;
		}
1126
		psi_memstall_enter(&pflags);
1127 1128 1129
		thrashing = true;
	}

1130
	init_wait(wait);
1131
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1132 1133 1134 1135 1136 1137 1138
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1139
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1140
			__add_wait_queue_entry_tail(q, wait);
1141 1142 1143 1144 1145 1146 1147
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

1148 1149 1150 1151 1152
		bit_is_set = test_bit(bit_nr, &page->flags);
		if (behavior == DROP)
			put_page(page);

		if (likely(bit_is_set))
1153 1154
			io_schedule();

1155
		if (behavior == EXCLUSIVE) {
1156 1157
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
1158
		} else if (behavior == SHARED) {
1159 1160 1161
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1162

1163
		if (signal_pending_state(state, current)) {
1164 1165 1166
			ret = -EINTR;
			break;
		}
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

		if (behavior == DROP) {
			/*
			 * We can no longer safely access page->flags:
			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
			 * there is a risk of waiting forever on a page reused
			 * for something that keeps it locked indefinitely.
			 * But best check for -EINTR above before breaking.
			 */
			break;
		}
1178 1179 1180 1181
	}

	finish_wait(q, wait);

1182
	if (thrashing) {
1183
		if (delayacct)
1184 1185 1186
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1202
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1203 1204 1205 1206 1207 1208
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1209
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1210
}
1211
EXPORT_SYMBOL(wait_on_page_bit_killable);
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1232 1233
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1234 1235
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1236 1237 1238
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1239
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1240 1241 1242 1243 1244
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1245
	__add_wait_queue_entry_tail(q, waiter);
1246
	SetPageWaiters(page);
1247 1248 1249 1250
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1269
	return test_bit(PG_waiters, mem);
1270 1271 1272 1273
}

#endif

L
Linus Torvalds 已提交
1274
/**
1275
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1276 1277 1278 1279
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1280
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1281 1282
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1283 1284 1285 1286 1287
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1288
 */
H
Harvey Harrison 已提交
1289
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1290
{
1291
	BUILD_BUG_ON(PG_waiters != 7);
1292
	page = compound_head(page);
1293
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1294 1295
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1296 1297 1298
}
EXPORT_SYMBOL(unlock_page);

1299 1300 1301
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1302 1303 1304
 */
void end_page_writeback(struct page *page)
{
1305 1306 1307 1308 1309 1310 1311 1312 1313
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1314
		rotate_reclaimable_page(page);
1315
	}
1316 1317 1318 1319

	if (!test_clear_page_writeback(page))
		BUG();

1320
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1321 1322 1323 1324
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1325 1326 1327 1328
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1329
void page_endio(struct page *page, bool is_write, int err)
1330
{
1331
	if (!is_write) {
1332 1333 1334 1335 1336 1337 1338
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1339
	} else {
1340
		if (err) {
1341 1342
			struct address_space *mapping;

1343
			SetPageError(page);
1344 1345 1346
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1347 1348 1349 1350 1351 1352
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1353 1354
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1355
 * @__page: the page to lock
L
Linus Torvalds 已提交
1356
 */
1357
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1358
{
1359 1360
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1361 1362
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1363 1364 1365
}
EXPORT_SYMBOL(__lock_page);

1366
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1367
{
1368 1369
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1370 1371
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1372
}
1373
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1386 1387 1388
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1401
			wait_on_page_locked(page);
1402
		return 0;
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1415 1416 1417
	}
}

1418
/**
1419 1420 1421 1422
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1423
 *
1424 1425
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1426
 *
1427 1428 1429 1430 1431
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1432
 *
1433 1434 1435
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1436
 */
1437
pgoff_t page_cache_next_miss(struct address_space *mapping,
1438 1439
			     pgoff_t index, unsigned long max_scan)
{
1440
	XA_STATE(xas, &mapping->i_pages, index);
1441

1442 1443 1444
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1445
			break;
1446
		if (xas.xa_index == 0)
1447 1448 1449
			break;
	}

1450
	return xas.xa_index;
1451
}
1452
EXPORT_SYMBOL(page_cache_next_miss);
1453 1454

/**
L
Laurent Dufour 已提交
1455
 * page_cache_prev_miss() - Find the previous gap in the page cache.
1456 1457 1458
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1459
 *
1460 1461
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1462
 *
1463 1464 1465 1466 1467
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1468
 *
1469 1470 1471
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1472
 */
1473
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1474 1475
			     pgoff_t index, unsigned long max_scan)
{
1476
	XA_STATE(xas, &mapping->i_pages, index);
1477

1478 1479 1480
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1481
			break;
1482
		if (xas.xa_index == ULONG_MAX)
1483 1484 1485
			break;
	}

1486
	return xas.xa_index;
1487
}
1488
EXPORT_SYMBOL(page_cache_prev_miss);
1489

1490
/**
1491
 * find_get_entry - find and get a page cache entry
1492
 * @mapping: the address_space to search
1493 1494 1495 1496
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1497
 *
1498 1499
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1500
 *
1501
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1502
 */
1503
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1504
{
1505
	XA_STATE(xas, &mapping->i_pages, offset);
1506
	struct page *page;
L
Linus Torvalds 已提交
1507

N
Nick Piggin 已提交
1508 1509
	rcu_read_lock();
repeat:
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1520

1521
	if (!page_cache_get_speculative(page))
1522
		goto repeat;
1523

1524
	/*
1525
	 * Has the page moved or been split?
1526 1527 1528 1529
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1530
		put_page(page);
1531
		goto repeat;
N
Nick Piggin 已提交
1532
	}
1533
	page = find_subpage(page, offset);
N
Nick Piggin 已提交
1534
out:
N
Nick Piggin 已提交
1535 1536
	rcu_read_unlock();

L
Linus Torvalds 已提交
1537 1538 1539
	return page;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1549 1550
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1551 1552
 *
 * find_lock_entry() may sleep.
1553 1554
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1555 1556
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1557 1558 1559 1560
{
	struct page *page;

repeat:
1561
	page = find_get_entry(mapping, offset);
1562
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1563 1564
		lock_page(page);
		/* Has the page been truncated? */
1565
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1566
			unlock_page(page);
1567
			put_page(page);
N
Nick Piggin 已提交
1568
			goto repeat;
L
Linus Torvalds 已提交
1569
		}
1570
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1571 1572 1573
	}
	return page;
}
1574 1575 1576
EXPORT_SYMBOL(find_lock_entry);

/**
1577
 * pagecache_get_page - find and get a page reference
1578 1579
 * @mapping: the address_space to search
 * @offset: the page index
1580
 * @fgp_flags: PCG flags
1581
 * @gfp_mask: gfp mask to use for the page cache data page allocation
1582
 *
1583
 * Looks up the page cache slot at @mapping & @offset.
L
Linus Torvalds 已提交
1584
 *
1585
 * PCG flags modify how the page is returned.
1586
 *
1587 1588 1589 1590 1591 1592 1593
 * @fgp_flags can be:
 *
 * - FGP_ACCESSED: the page will be marked accessed
 * - FGP_LOCK: Page is return locked
 * - FGP_CREAT: If page is not present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU
 *   list. The page is returned locked and with an increased
1594
 *   refcount.
1595 1596 1597
 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
 *   its own locking dance if the page is already in cache, or unlock the page
 *   before returning if we had to add the page to pagecache.
L
Linus Torvalds 已提交
1598
 *
1599 1600
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 * if the GFP flags specified for FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1601
 *
1602
 * If there is a page cache page, it is returned with an increased refcount.
1603 1604
 *
 * Return: the found page or %NULL otherwise.
L
Linus Torvalds 已提交
1605
 */
1606
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1607
	int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1608
{
N
Nick Piggin 已提交
1609
	struct page *page;
1610

L
Linus Torvalds 已提交
1611
repeat:
1612
	page = find_get_entry(mapping, offset);
1613
	if (xa_is_value(page))
1614 1615 1616 1617 1618 1619 1620
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1621
				put_page(page);
1622 1623 1624 1625 1626 1627 1628
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
1629
		if (unlikely(compound_head(page)->mapping != mapping)) {
1630
			unlock_page(page);
1631
			put_page(page);
1632 1633 1634 1635 1636
			goto repeat;
		}
		VM_BUG_ON_PAGE(page->index != offset, page);
	}

1637
	if (fgp_flags & FGP_ACCESSED)
1638 1639 1640 1641 1642 1643
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1644 1645 1646
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1647

1648
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1649 1650
		if (!page)
			return NULL;
1651

1652
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1653 1654
			fgp_flags |= FGP_LOCK;

1655
		/* Init accessed so avoid atomic mark_page_accessed later */
1656
		if (fgp_flags & FGP_ACCESSED)
1657
			__SetPageReferenced(page);
1658

1659
		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
N
Nick Piggin 已提交
1660
		if (unlikely(err)) {
1661
			put_page(page);
N
Nick Piggin 已提交
1662 1663 1664
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1665
		}
1666 1667 1668 1669 1670 1671 1672

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1673
	}
1674

L
Linus Torvalds 已提交
1675 1676
	return page;
}
1677
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1696 1697
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1698
 *
1699
 * Return: the number of pages and shadow entries which were found.
1700 1701 1702 1703 1704
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1705 1706
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1707 1708 1709 1710 1711 1712
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1713 1714
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1715
			continue;
1716 1717 1718 1719 1720 1721
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1722
			goto export;
1723

1724
		if (!page_cache_get_speculative(page))
1725
			goto retry;
1726

1727
		/* Has the page moved or been split? */
1728 1729
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
1730
		page = find_subpage(page, xas.xa_index);
1731

1732
export:
1733
		indices[ret] = xas.xa_index;
1734 1735 1736
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1737 1738
		continue;
put_page:
1739
		put_page(page);
1740 1741
retry:
		xas_reset(&xas);
1742 1743 1744 1745 1746
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1747
/**
J
Jan Kara 已提交
1748
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1749 1750
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1751
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1752 1753 1754
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1755 1756 1757 1758
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1759 1760 1761
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1762
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1763
 *
1764 1765
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1766
 * reached.
L
Linus Torvalds 已提交
1767
 */
J
Jan Kara 已提交
1768 1769 1770
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1771
{
1772 1773
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1774 1775 1776 1777
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1778 1779

	rcu_read_lock();
1780 1781
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1782
			continue;
1783 1784
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1785
			continue;
N
Nick Piggin 已提交
1786

1787
		if (!page_cache_get_speculative(page))
1788
			goto retry;
1789

1790
		/* Has the page moved or been split? */
1791 1792
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1793

1794
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1795
		if (++ret == nr_pages) {
1796
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1797 1798
			goto out;
		}
1799 1800
		continue;
put_page:
1801
		put_page(page);
1802 1803
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1804
	}
1805

J
Jan Kara 已提交
1806 1807 1808
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1809
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1810 1811 1812 1813 1814 1815 1816
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1817
	rcu_read_unlock();
1818

L
Linus Torvalds 已提交
1819 1820 1821
	return ret;
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1832
 * Return: the number of pages which were found.
1833 1834 1835 1836
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1837 1838
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1839 1840 1841 1842
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1843 1844

	rcu_read_lock();
1845 1846 1847 1848 1849 1850 1851 1852
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1853
			break;
1854

1855
		if (!page_cache_get_speculative(page))
1856
			goto retry;
1857

1858
		/* Has the page moved or been split? */
1859 1860
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1861

1862
		pages[ret] = find_subpage(page, xas.xa_index);
1863 1864
		if (++ret == nr_pages)
			break;
1865 1866
		continue;
put_page:
1867
		put_page(page);
1868 1869
retry:
		xas_reset(&xas);
1870
	}
N
Nick Piggin 已提交
1871 1872
	rcu_read_unlock();
	return ret;
1873
}
1874
EXPORT_SYMBOL(find_get_pages_contig);
1875

1876
/**
1877
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1878 1879
 * @mapping:	the address_space to search
 * @index:	the starting page index
1880
 * @end:	The final page index (inclusive)
1881 1882 1883 1884
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1885
 * Like find_get_pages, except we only return pages which are tagged with
1886
 * @tag.   We update @index to index the next page for the traversal.
1887 1888
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1889
 */
1890
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1891
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1892
			struct page **pages)
L
Linus Torvalds 已提交
1893
{
1894 1895
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1896 1897 1898 1899
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1900 1901

	rcu_read_lock();
1902 1903
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1904
			continue;
1905 1906 1907 1908 1909 1910
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1911
			continue;
N
Nick Piggin 已提交
1912

1913
		if (!page_cache_get_speculative(page))
1914
			goto retry;
N
Nick Piggin 已提交
1915

1916
		/* Has the page moved or been split? */
1917 1918
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1919

1920
		pages[ret] = find_subpage(page, xas.xa_index);
1921
		if (++ret == nr_pages) {
1922
			*index = xas.xa_index + 1;
1923 1924
			goto out;
		}
1925 1926
		continue;
put_page:
1927
		put_page(page);
1928 1929
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1930
	}
1931

1932
	/*
1933
	 * We come here when we got to @end. We take care to not overflow the
1934
	 * index @index as it confuses some of the callers. This breaks the
1935 1936
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
1937 1938 1939 1940 1941 1942
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1943
	rcu_read_unlock();
L
Linus Torvalds 已提交
1944 1945 1946

	return ret;
}
1947
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1948

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
1964
static void shrink_readahead_size_eio(struct file_ra_state *ra)
1965 1966 1967 1968
{
	ra->ra_pages /= 4;
}

1969
/**
1970 1971
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
1972 1973
 * @iter:	data destination
 * @written:	already copied
1974
 *
L
Linus Torvalds 已提交
1975
 * This is a generic file read routine, and uses the
1976
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
1977 1978 1979
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
1980 1981 1982 1983
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
1984
 */
1985
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1986
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
1987
{
1988
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
1989
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
1990
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
1991
	struct file_ra_state *ra = &filp->f_ra;
1992
	loff_t *ppos = &iocb->ki_pos;
1993 1994 1995 1996
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
1997
	unsigned int prev_offset;
1998
	int error = 0;
L
Linus Torvalds 已提交
1999

2000
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2001
		return 0;
2002 2003
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2004 2005 2006 2007 2008
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2009 2010 2011

	for (;;) {
		struct page *page;
2012
		pgoff_t end_index;
N
NeilBrown 已提交
2013
		loff_t isize;
L
Linus Torvalds 已提交
2014 2015 2016 2017
		unsigned long nr, ret;

		cond_resched();
find_page:
2018 2019 2020 2021 2022
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2023
		page = find_get_page(mapping, index);
2024
		if (!page) {
2025 2026
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2027
			page_cache_sync_readahead(mapping,
2028
					ra, filp,
2029 2030 2031 2032 2033 2034
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2035
			page_cache_async_readahead(mapping,
2036
					ra, filp, page,
2037
					index, last_index - index);
L
Linus Torvalds 已提交
2038
		}
2039
		if (!PageUptodate(page)) {
2040 2041 2042 2043 2044
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2045 2046 2047 2048 2049
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2050 2051 2052
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2053 2054 2055
			if (PageUptodate(page))
				goto page_ok;

2056
			if (inode->i_blkbits == PAGE_SHIFT ||
2057 2058
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2059
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2060
			if (unlikely(iov_iter_is_pipe(iter)))
2061
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2062
			if (!trylock_page(page))
2063
				goto page_not_up_to_date;
2064 2065 2066
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2067
			if (!mapping->a_ops->is_partially_uptodate(page,
2068
							offset, iter->count))
2069 2070 2071
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2072
page_ok:
N
NeilBrown 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2083
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2084
		if (unlikely(!isize || index > end_index)) {
2085
			put_page(page);
N
NeilBrown 已提交
2086 2087 2088 2089
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2090
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2091
		if (index == end_index) {
2092
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2093
			if (nr <= offset) {
2094
				put_page(page);
N
NeilBrown 已提交
2095 2096 2097 2098
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2108 2109
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2110
		 */
2111
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2119 2120

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2121
		offset += ret;
2122 2123
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2124
		prev_offset = offset;
L
Linus Torvalds 已提交
2125

2126
		put_page(page);
2127 2128 2129 2130 2131 2132 2133 2134
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2135 2136 2137

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2138 2139 2140
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2141

2142
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2143
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2144 2145
		if (!page->mapping) {
			unlock_page(page);
2146
			put_page(page);
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2157 2158 2159 2160 2161 2162
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2163 2164 2165
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2166 2167
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2168
				put_page(page);
2169
				error = 0;
2170 2171
				goto find_page;
			}
L
Linus Torvalds 已提交
2172
			goto readpage_error;
2173
		}
L
Linus Torvalds 已提交
2174 2175

		if (!PageUptodate(page)) {
2176 2177 2178
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2179 2180 2181
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2182
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2183 2184
					 */
					unlock_page(page);
2185
					put_page(page);
L
Linus Torvalds 已提交
2186 2187 2188
					goto find_page;
				}
				unlock_page(page);
2189
				shrink_readahead_size_eio(ra);
2190 2191
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2192 2193 2194 2195 2196 2197 2198 2199
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2200
		put_page(page);
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205 2206 2207
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2208
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2209
		if (!page) {
2210
			error = -ENOMEM;
N
Nick Piggin 已提交
2211
			goto out;
L
Linus Torvalds 已提交
2212
		}
2213
		error = add_to_page_cache_lru(page, mapping, index,
2214
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2215
		if (error) {
2216
			put_page(page);
2217 2218
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2219
				goto find_page;
2220
			}
L
Linus Torvalds 已提交
2221 2222 2223 2224 2225
			goto out;
		}
		goto readpage;
	}

2226 2227
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2228
out:
2229
	ra->prev_pos = prev_index;
2230
	ra->prev_pos <<= PAGE_SHIFT;
2231
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2232

2233
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2234
	file_accessed(filp);
2235
	return written ? written : error;
L
Linus Torvalds 已提交
2236 2237
}

2238
/**
A
Al Viro 已提交
2239
 * generic_file_read_iter - generic filesystem read routine
2240
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2241
 * @iter:	destination for the data read
2242
 *
A
Al Viro 已提交
2243
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2244
 * that can use the page cache directly.
2245 2246 2247
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code if nothing was read
L
Linus Torvalds 已提交
2248 2249
 */
ssize_t
A
Al Viro 已提交
2250
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2251
{
2252
	size_t count = iov_iter_count(iter);
2253
	ssize_t retval = 0;
2254 2255 2256

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2257

2258
	if (iocb->ki_flags & IOCB_DIRECT) {
2259
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2260 2261
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2262
		loff_t size;
L
Linus Torvalds 已提交
2263 2264

		size = i_size_read(inode);
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2276

2277 2278
		file_accessed(file);

2279
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2280
		if (retval >= 0) {
2281
			iocb->ki_pos += retval;
2282
			count -= retval;
2283
		}
A
Al Viro 已提交
2284
		iov_iter_revert(iter, count - iov_iter_count(iter));
2285

2286 2287 2288 2289 2290 2291
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2292 2293
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2294
		 */
2295
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2296
		    IS_DAX(inode))
2297
			goto out;
L
Linus Torvalds 已提交
2298 2299
	}

2300
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2301 2302 2303
out:
	return retval;
}
A
Al Viro 已提交
2304
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2305 2306 2307

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/*
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
 * It differs in that it actually returns the page locked if it returns 1 and 0
 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2325 2326 2327 2328 2329
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
	 * is supposed to work. We have way too many special cases..
	 */
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
			 * We didn't have the right flags to drop the mmap_sem,
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
			 * mmap_sem here and return 0 if we don't have a fpin.
			 */
			if (*fpin == NULL)
				up_read(&vmf->vma->vm_mm->mmap_sem);
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2351

2352
/*
2353 2354 2355 2356 2357
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2358
 */
2359
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2360
{
2361 2362
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2363
	struct address_space *mapping = file->f_mapping;
2364
	struct file *fpin = NULL;
2365
	pgoff_t offset = vmf->pgoff;
2366 2367

	/* If we don't want any read-ahead, don't bother */
2368
	if (vmf->vma->vm_flags & VM_RAND_READ)
2369
		return fpin;
2370
	if (!ra->ra_pages)
2371
		return fpin;
2372

2373
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2374
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2375 2376
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2377
		return fpin;
2378 2379
	}

2380 2381
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2382 2383 2384 2385 2386 2387 2388
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
2389
		return fpin;
2390

2391 2392 2393
	/*
	 * mmap read-around
	 */
2394
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2395 2396 2397
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2398
	ra_submit(ra, mapping, file);
2399
	return fpin;
2400 2401 2402 2403
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2404 2405
 * so we want to possibly extend the readahead further.  We return the file that
 * was pinned if we have to drop the mmap_sem in order to do IO.
2406
 */
2407 2408
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2409
{
2410 2411
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2412
	struct address_space *mapping = file->f_mapping;
2413
	struct file *fpin = NULL;
2414
	pgoff_t offset = vmf->pgoff;
2415 2416

	/* If we don't want any read-ahead, don't bother */
2417
	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2418
		return fpin;
2419 2420
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
2421 2422
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2423 2424
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2425 2426
	}
	return fpin;
2427 2428
}

2429
/**
2430
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2431
 * @vmf:	struct vm_fault containing details of the fault
2432
 *
2433
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2439 2440 2441
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
2442 2443
 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2444 2445 2446 2447 2448
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2449 2450
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2451
 */
2452
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2453 2454
{
	int error;
2455
	struct file *file = vmf->vma->vm_file;
2456
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2457 2458 2459
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2460
	pgoff_t offset = vmf->pgoff;
2461
	pgoff_t max_off;
L
Linus Torvalds 已提交
2462
	struct page *page;
2463
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2464

2465 2466
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2467
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2468 2469

	/*
2470
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2471
	 */
2472
	page = find_get_page(mapping, offset);
2473
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2474
		/*
2475 2476
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2477
		 */
2478
		fpin = do_async_mmap_readahead(vmf, page);
2479
	} else if (!page) {
2480 2481
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2482
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2483
		ret = VM_FAULT_MAJOR;
2484
		fpin = do_sync_mmap_readahead(vmf);
2485
retry_find:
2486 2487 2488
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2489 2490 2491
		if (!page) {
			if (fpin)
				goto out_retry;
2492
			return VM_FAULT_OOM;
2493
		}
L
Linus Torvalds 已提交
2494 2495
	}

2496 2497
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2498 2499

	/* Did it get truncated? */
2500
	if (unlikely(compound_head(page)->mapping != mapping)) {
2501 2502 2503 2504
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2505
	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2506

L
Linus Torvalds 已提交
2507
	/*
2508 2509
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2510
	 */
2511
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2512 2513
		goto page_not_uptodate;

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	/*
	 * We've made it this far and we had to drop our mmap_sem, now is the
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2524 2525 2526 2527
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2528 2529
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2530
		unlock_page(page);
2531
		put_page(page);
2532
		return VM_FAULT_SIGBUS;
2533 2534
	}

N
Nick Piggin 已提交
2535
	vmf->page = page;
N
Nick Piggin 已提交
2536
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2546
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2547
	error = mapping->a_ops->readpage(file, page);
2548 2549 2550 2551 2552
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2553 2554
	if (fpin)
		goto out_retry;
2555
	put_page(page);
2556 2557

	if (!error || error == AOP_TRUNCATED_PAGE)
2558
		goto retry_find;
L
Linus Torvalds 已提交
2559

2560
	/* Things didn't work out. Return zero to tell the mm layer so. */
2561
	shrink_readahead_size_eio(ra);
N
Nick Piggin 已提交
2562
	return VM_FAULT_SIGBUS;
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

out_retry:
	/*
	 * We dropped the mmap_sem, we need to return to the fault handler to
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2575 2576 2577
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2578
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2579
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2580
{
J
Jan Kara 已提交
2581
	struct file *file = vmf->vma->vm_file;
2582
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2583
	pgoff_t last_pgoff = start_pgoff;
2584
	unsigned long max_idx;
2585
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2586
	struct page *page;
2587 2588

	rcu_read_lock();
2589 2590 2591 2592
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2593
			goto next;
2594

2595 2596 2597 2598
		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
2599
		if (PageLocked(page))
2600
			goto next;
2601
		if (!page_cache_get_speculative(page))
2602
			goto next;
2603

2604
		/* Has the page moved or been split? */
2605 2606
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2607
		page = find_subpage(page, xas.xa_index);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2619 2620
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2621 2622 2623 2624
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2625

2626
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2627
		if (vmf->pte)
2628 2629
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
J
Jan Kara 已提交
2630
		if (alloc_set_pte(vmf, NULL, page))
2631
			goto unlock;
2632 2633 2634 2635 2636
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2637
		put_page(page);
2638
next:
2639
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2640
		if (pmd_trans_huge(*vmf->pmd))
2641
			break;
2642 2643 2644 2645 2646
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2647
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2648 2649
{
	struct page *page = vmf->page;
2650
	struct inode *inode = file_inode(vmf->vma->vm_file);
2651
	vm_fault_t ret = VM_FAULT_LOCKED;
2652

2653
	sb_start_pagefault(inode->i_sb);
2654
	file_update_time(vmf->vma->vm_file);
2655 2656 2657 2658 2659 2660
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2661 2662 2663 2664 2665 2666
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2667
	wait_for_stable_page(page);
2668
out:
2669
	sb_end_pagefault(inode->i_sb);
2670 2671 2672
	return ret;
}

2673
const struct vm_operations_struct generic_file_vm_ops = {
2674
	.fault		= filemap_fault,
2675
	.map_pages	= filemap_map_pages,
2676
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2702
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2703
{
S
Souptick Joarder 已提交
2704
	return VM_FAULT_SIGBUS;
2705
}
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2716
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2717 2718 2719
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2720 2721 2722 2723 2724
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2725
			put_page(page);
S
Sasha Levin 已提交
2726 2727 2728 2729 2730 2731
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2732
static struct page *do_read_cache_page(struct address_space *mapping,
2733
				pgoff_t index,
2734
				int (*filler)(void *, struct page *),
2735 2736
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2737
{
N
Nick Piggin 已提交
2738
	struct page *page;
L
Linus Torvalds 已提交
2739 2740 2741 2742
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2743
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2744 2745
		if (!page)
			return ERR_PTR(-ENOMEM);
2746
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2747
		if (unlikely(err)) {
2748
			put_page(page);
N
Nick Piggin 已提交
2749 2750
			if (err == -EEXIST)
				goto repeat;
2751
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2752 2753
			return ERR_PTR(err);
		}
2754 2755

filler:
2756 2757 2758 2759 2760
		if (filler)
			err = filler(data, page);
		else
			err = mapping->a_ops->readpage(data, page);

L
Linus Torvalds 已提交
2761
		if (err < 0) {
2762
			put_page(page);
2763
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2764 2765
		}

2766 2767 2768 2769 2770
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2771 2772 2773
	if (PageUptodate(page))
		goto out;

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2810
	lock_page(page);
2811 2812

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2813 2814
	if (!page->mapping) {
		unlock_page(page);
2815
		put_page(page);
2816
		goto repeat;
L
Linus Torvalds 已提交
2817
	}
2818 2819

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2820 2821 2822 2823
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2824 2825 2826 2827 2828 2829 2830 2831

	/*
	 * A previous I/O error may have been due to temporary
	 * failures.
	 * Clear page error before actual read, PG_error will be
	 * set again if read page fails.
	 */
	ClearPageError(page);
2832 2833
	goto filler;

2834
out:
2835 2836 2837
	mark_page_accessed(page);
	return page;
}
2838 2839

/**
S
Sasha Levin 已提交
2840
 * read_cache_page - read into page cache, fill it if needed
2841 2842 2843
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2844
 * @data:	first arg to filler(data, page) function, often left as NULL
2845 2846
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2847
 * not set, try to fill the page and wait for it to become unlocked.
2848 2849
 *
 * If the page does not get brought uptodate, return -EIO.
2850 2851
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2852
 */
S
Sasha Levin 已提交
2853
struct page *read_cache_page(struct address_space *mapping,
2854
				pgoff_t index,
2855
				int (*filler)(void *, struct page *),
2856 2857
				void *data)
{
2858 2859
	return do_read_cache_page(mapping, index, filler, data,
			mapping_gfp_mask(mapping));
2860
}
S
Sasha Levin 已提交
2861
EXPORT_SYMBOL(read_cache_page);
2862 2863 2864 2865 2866 2867 2868 2869

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2870
 * any new page allocations done using the specified allocation flags.
2871 2872
 *
 * If the page does not get brought uptodate, return -EIO.
2873 2874
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2875 2876 2877 2878 2879
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
2880
	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2881 2882 2883
}
EXPORT_SYMBOL(read_cache_page_gfp);

2884 2885 2886 2887 2888 2889 2890 2891
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
2892 2893
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

2904 2905 2906 2907 2908 2909 2910 2911 2912
	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;

	*count = min(*count, max_size - pos);

	return 0;
2913 2914
}

L
Linus Torvalds 已提交
2915 2916 2917
/*
 * Performs necessary checks before doing a write
 *
2918
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2919 2920 2921
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2922
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2923
{
2924
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2925
	struct inode *inode = file->f_mapping->host;
2926 2927
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
2928

2929 2930 2931
	if (IS_SWAPFILE(inode))
		return -ETXTBSY;

2932 2933
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
2934

2935
	/* FIXME: this is for backwards compatibility with 2.4 */
2936
	if (iocb->ki_flags & IOCB_APPEND)
2937
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
2938

2939 2940 2941
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

2942 2943 2944 2945
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
2946

2947
	iov_iter_truncate(from, count);
2948
	return iov_iter_count(from);
L
Linus Torvalds 已提交
2949 2950 2951
}
EXPORT_SYMBOL(generic_write_checks);

2952 2953 2954
/*
 * Performs necessary checks before doing a clone.
 *
2955
 * Can adjust amount of bytes to clone via @req_count argument.
2956 2957 2958 2959 2960
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
2961
			 loff_t *req_count, unsigned int remap_flags)
2962 2963 2964 2965 2966 2967 2968
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
2969
	int ret;
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
2983
	if ((remap_flags & REMAP_FILE_DEDUP) &&
2984 2985 2986 2987 2988 2989 2990 2991 2992
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

2993 2994 2995
	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
2996 2997

	/*
2998 2999 3000 3001 3002
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3003
	 */
3004 3005 3006 3007
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3008
			count = ALIGN_DOWN(count, bs);
3009
		bcount = count;
L
Linus Torvalds 已提交
3010 3011
	}

3012 3013 3014 3015 3016 3017
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3018
	/*
3019 3020
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3021
	 */
3022
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3023
		return -EINVAL;
L
Linus Torvalds 已提交
3024

3025
	*req_count = count;
3026
	return 0;
L
Linus Torvalds 已提交
3027 3028
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052

/*
 * Performs common checks before doing a file copy/clone
 * from @file_in to @file_out.
 */
int generic_file_rw_checks(struct file *file_in, struct file *file_out)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);

	/* Don't copy dirs, pipes, sockets... */
	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
		return -EISDIR;
	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
		return -EINVAL;

	if (!(file_in->f_mode & FMODE_READ) ||
	    !(file_out->f_mode & FMODE_WRITE) ||
	    (file_out->f_flags & O_APPEND))
		return -EBADF;

	return 0;
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
/*
 * Performs necessary checks before doing a file copy
 *
 * Can adjust amount of bytes to copy via @req_count argument.
 * Returns appropriate error code that caller should return or
 * zero in case the copy should be allowed.
 */
int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
			     struct file *file_out, loff_t pos_out,
			     size_t *req_count, unsigned int flags)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);
	uint64_t count = *req_count;
	loff_t size_in;
	int ret;

	ret = generic_file_rw_checks(file_in, file_out);
	if (ret)
		return ret;

	/* Don't touch certain kinds of inodes */
	if (IS_IMMUTABLE(inode_out))
		return -EPERM;

	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
		return -ETXTBSY;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EOVERFLOW;

	/* Shorten the copy to EOF */
	size_in = i_size_read(inode_in);
	if (pos_in >= size_in)
		count = 0;
	else
		count = min(count, size_in - (uint64_t)pos_in);

	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;

	/* Don't allow overlapped copying within the same file. */
	if (inode_in == inode_out &&
	    pos_out + count > pos_in &&
	    pos_out < pos_in + count)
		return -EINVAL;

	*req_count = count;
	return 0;
}

3106 3107 3108 3109 3110 3111
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3112
	return aops->write_begin(file, mapping, pos, len, flags,
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3123
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3124 3125 3126
}
EXPORT_SYMBOL(pagecache_write_end);

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
/*
 * Warn about a page cache invalidation failure during a direct I/O write.
 */
void dio_warn_stale_pagecache(struct file *filp)
{
	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
	char pathname[128];
	struct inode *inode = file_inode(filp);
	char *path;

	errseq_set(&inode->i_mapping->wb_err, -EIO);
	if (__ratelimit(&_rs)) {
		path = file_path(filp, pathname, sizeof(pathname));
		if (IS_ERR(path))
			path = "(unknown)";
		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
			current->comm);
	}
}

L
Linus Torvalds 已提交
3148
ssize_t
3149
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3150 3151 3152 3153
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3154
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3155
	ssize_t		written;
3156 3157
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3158

A
Al Viro 已提交
3159
	write_len = iov_iter_count(from);
3160
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3161

3162 3163 3164
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3165
					   pos + write_len - 1))
3166 3167 3168 3169 3170 3171 3172
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3173 3174 3175 3176 3177

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3178
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3179
	 */
3180
	written = invalidate_inode_pages2_range(mapping,
3181
					pos >> PAGE_SHIFT, end);
3182 3183 3184 3185 3186 3187 3188 3189
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3190 3191
	}

3192
	written = mapping->a_ops->direct_IO(iocb, from);
3193 3194 3195 3196 3197 3198 3199 3200

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3201 3202 3203 3204
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
3205 3206
	 * them by removing it completely.
	 *
3207 3208
	 * Noticeable example is a blkdev_direct_IO().
	 *
3209
	 * Skip invalidation for async writes or if mapping has no pages.
3210
	 */
3211 3212 3213
	if (written > 0 && mapping->nrpages &&
	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
		dio_warn_stale_pagecache(file);
3214

L
Linus Torvalds 已提交
3215
	if (written > 0) {
3216
		pos += written;
3217
		write_len -= written;
3218 3219
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3220 3221
			mark_inode_dirty(inode);
		}
3222
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3223
	}
3224
	iov_iter_revert(from, write_len - iov_iter_count(from));
3225
out:
L
Linus Torvalds 已提交
3226 3227 3228 3229
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3230 3231 3232 3233
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3234 3235
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3236 3237
{
	struct page *page;
3238
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3239

3240
	if (flags & AOP_FLAG_NOFS)
3241 3242 3243
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3244
			mapping_gfp_mask(mapping));
3245
	if (page)
3246
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3247 3248 3249

	return page;
}
3250
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3251

3252
ssize_t generic_perform_write(struct file *file,
3253 3254 3255 3256 3257 3258
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3259 3260
	unsigned int flags = 0;

3261 3262 3263 3264 3265 3266 3267
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3268 3269
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3270 3271 3272
						iov_iter_count(i));

again:
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3288 3289 3290 3291 3292
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3293
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3294
						&page, &fsdata);
3295
		if (unlikely(status < 0))
3296 3297
			break;

3298 3299
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3300

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3312
		iov_iter_advance(i, copied);
3313 3314 3315 3316 3317 3318 3319 3320 3321
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3322
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3334
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3335

3336
/**
3337
 * __generic_file_write_iter - write data to a file
3338
 * @iocb:	IO state structure (file, offset, etc.)
3339
 * @from:	iov_iter with data to write
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3352 3353 3354 3355
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3356
 */
3357
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3358 3359
{
	struct file *file = iocb->ki_filp;
3360
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3361
	struct inode 	*inode = mapping->host;
3362
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3363
	ssize_t		err;
3364
	ssize_t		status;
L
Linus Torvalds 已提交
3365 3366

	/* We can write back this queue in page reclaim */
3367
	current->backing_dev_info = inode_to_bdi(inode);
3368
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3369 3370 3371
	if (err)
		goto out;

3372 3373 3374
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3375

3376
	if (iocb->ki_flags & IOCB_DIRECT) {
3377
		loff_t pos, endbyte;
3378

3379
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3380
		/*
3381 3382 3383 3384 3385
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3386
		 */
3387
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3388 3389
			goto out;

3390
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3391
		/*
3392
		 * If generic_perform_write() returned a synchronous error
3393 3394 3395 3396 3397
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3398
		if (unlikely(status < 0)) {
3399
			err = status;
3400 3401 3402 3403 3404 3405 3406
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3407
		endbyte = pos + status - 1;
3408
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3409
		if (err == 0) {
3410
			iocb->ki_pos = endbyte + 1;
3411
			written += status;
3412
			invalidate_mapping_pages(mapping,
3413 3414
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3415 3416 3417 3418 3419 3420 3421
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3422 3423 3424
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3425
	}
L
Linus Torvalds 已提交
3426 3427 3428 3429
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3430
EXPORT_SYMBOL(__generic_file_write_iter);
3431 3432

/**
3433
 * generic_file_write_iter - write data to a file
3434
 * @iocb:	IO state structure
3435
 * @from:	iov_iter with data to write
3436
 *
3437
 * This is a wrapper around __generic_file_write_iter() to be used by most
3438 3439
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3440 3441 3442 3443
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3444
 */
3445
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3446 3447
{
	struct file *file = iocb->ki_filp;
3448
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3449 3450
	ssize_t ret;

A
Al Viro 已提交
3451
	inode_lock(inode);
3452 3453
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3454
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3455
	inode_unlock(inode);
L
Linus Torvalds 已提交
3456

3457 3458
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3459 3460
	return ret;
}
3461
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3462

3463 3464 3465 3466 3467 3468 3469
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3470
 * (presumably at page->private).
3471
 *
3472 3473 3474
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3475
 * The @gfp_mask argument specifies whether I/O may be performed to release
3476
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3477
 *
3478
 * Return: %1 if the release was successful, otherwise return zero.
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);