filemap.c 96.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
13
#include <linux/export.h>
L
Linus Torvalds 已提交
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
L
Linus Torvalds 已提交
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
L
Linus Torvalds 已提交
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
L
Linus Torvalds 已提交
22 23 24 25 26 27
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
28
#include <linux/error-injection.h>
L
Linus Torvalds 已提交
29 30
#include <linux/hash.h>
#include <linux/writeback.h>
31
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
32 33 34
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
35
#include <linux/cpuset.h>
36
#include <linux/hugetlb.h>
37
#include <linux/memcontrol.h>
38
#include <linux/cleancache.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43
#include <linux/ramfs.h>
44 45
#include "internal.h"

R
Robert Jarzmik 已提交
46 47 48
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
49 50 51
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
52
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
71
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
72
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
73
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
74
 *        ->i_pages lock
L
Linus Torvalds 已提交
75
 *
76
 *  ->i_mutex
77
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
78 79
 *
 *  ->mmap_sem
80
 *    ->i_mmap_rwsem
81
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
82
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
83 84 85 86
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
87
 *  ->i_mutex			(generic_perform_write)
88
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
89
 *
90
 *  bdi->wb.list_lock
91
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
92
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
93
 *
94
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
95 96 97
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
98
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
99
 *
100
 *  ->page_table_lock or pte_lock
101
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
102
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
103
 *    ->i_pages lock		(try_to_unmap_one)
104 105
 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
106
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
107
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
108
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
109
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
110
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
111
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
112
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
113 114
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
115
 * ->i_mmap_rwsem
116
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
117 118
 */

119
static void page_cache_delete(struct address_space *mapping,
120 121
				   struct page *page, void *shadow)
{
122 123
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
124

125
	mapping_set_update(&xas, mapping);
126

127 128 129
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
130
		nr = compound_nr(page);
131
	}
132

133 134 135
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136

137 138
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
139

140 141 142
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

143 144 145 146 147 148 149 150 151 152 153
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
154 155
}

156 157
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
158
{
159
	int nr;
L
Linus Torvalds 已提交
160

161 162 163 164 165 166 167 168
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
169
		cleancache_invalidate_page(mapping, page);
170

171
	VM_BUG_ON_PAGE(PageTail(page), page);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
192
			page_ref_sub(page, mapcount);
193 194 195
		}
	}

196
	/* hugetlb pages do not participate in page cache accounting. */
197 198
	if (PageHuge(page))
		return;
199

200 201 202 203 204 205 206
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
207 208
	} else if (PageTransHuge(page)) {
		__dec_node_page_state(page, NR_FILE_THPS);
209
		filemap_nr_thps_dec(mapping);
210
	}
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
229
 * is safe.  The caller must hold the i_pages lock.
230 231 232 233 234 235 236 237
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
238
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
239 240
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

258 259 260 261 262 263 264 265 266
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
267
{
268
	struct address_space *mapping = page_mapping(page);
269
	unsigned long flags;
L
Linus Torvalds 已提交
270

M
Matt Mackall 已提交
271
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
272
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
273
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
274
	xa_unlock_irqrestore(&mapping->i_pages, flags);
275

276
	page_cache_free_page(mapping, page);
277 278 279
}
EXPORT_SYMBOL(delete_from_page_cache);

280
/*
281
 * page_cache_delete_batch - delete several pages from page cache
282 283 284
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
285
 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 287
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
288
 * It tolerates holes in @pvec (mapping entries at those indices are not
289
 * modified). The function expects only THP head pages to be present in the
290
 * @pvec.
291
 *
M
Matthew Wilcox 已提交
292
 * The function expects the i_pages lock to be held.
293
 */
294
static void page_cache_delete_batch(struct address_space *mapping,
295 296
			     struct pagevec *pvec)
{
297
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298
	int total_pages = 0;
299
	int i = 0;
300 301
	struct page *page;

302 303
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
304
		if (i >= pagevec_count(pvec))
305
			break;
306 307

		/* A swap/dax/shadow entry got inserted? Skip it. */
308
		if (xa_is_value(page))
309
			continue;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
326
			page->mapping = NULL;
327 328 329 330 331 332 333 334
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + compound_nr(page) - 1 == xas.xa_index)
335
			i++;
336
		xas_store(&xas, NULL);
337 338 339 340 341 342 343 344 345 346 347 348 349 350
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
351
	xa_lock_irqsave(&mapping->i_pages, flags);
352 353 354 355 356
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
357
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
358
	xa_unlock_irqrestore(&mapping->i_pages, flags);
359 360 361 362 363

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

364
int filemap_check_errors(struct address_space *mapping)
365 366 367
{
	int ret = 0;
	/* Check for outstanding write errors */
368 369
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370
		ret = -ENOSPC;
371 372
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
373 374 375
		ret = -EIO;
	return ret;
}
376
EXPORT_SYMBOL(filemap_check_errors);
377

378 379 380 381 382 383 384 385 386 387
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
388
/**
389
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 391
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
392
 * @end:	offset in bytes where the range ends (inclusive)
393
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
394
 *
395 396 397
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
398
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
400 401
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
402 403
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
404
 */
405 406
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
407 408 409 410
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
411
		.nr_to_write = LONG_MAX,
412 413
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
414 415
	};

416 417
	if (!mapping_cap_writeback_dirty(mapping) ||
	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
L
Linus Torvalds 已提交
418 419
		return 0;

420
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
421
	ret = do_writepages(mapping, &wbc);
422
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
423 424 425 426 427 428
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
429
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
430 431 432 433 434 435 436 437
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

438
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439
				loff_t end)
L
Linus Torvalds 已提交
440 441 442
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
443
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
444

445 446 447 448
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
449 450
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
451 452
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
453 454 455 456 457 458 459
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

460 461 462 463 464 465 466 467
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
468 469 470
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
471 472 473 474
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
475
	struct page *page;
476 477
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
478 479 480 481

	if (end_byte < start_byte)
		return false;

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
498

499
	return page != NULL;
500 501 502
}
EXPORT_SYMBOL(filemap_range_has_page);

503
static void __filemap_fdatawait_range(struct address_space *mapping,
504
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
505
{
506 507
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
508 509 510
	struct pagevec pvec;
	int nr_pages;

511
	if (end_byte < start_byte)
512
		return;
L
Linus Torvalds 已提交
513

514
	pagevec_init(&pvec);
515
	while (index <= end) {
L
Linus Torvalds 已提交
516 517
		unsigned i;

518
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519
				end, PAGECACHE_TAG_WRITEBACK);
520 521 522
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
523 524 525 526
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
527
			ClearPageError(page);
L
Linus Torvalds 已提交
528 529 530 531
		}
		pagevec_release(&pvec);
		cond_resched();
	}
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
547 548
 *
 * Return: error status of the address space.
549 550 551 552
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
553 554
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
555
}
556 557
EXPORT_SYMBOL(filemap_fdatawait_range);

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
/**
 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space in the
 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 * this function does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
 */
int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
		loff_t start_byte, loff_t end_byte)
{
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_and_keep_errors(mapping);
}
EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);

580 581 582 583 584 585 586 587 588 589 590 591 592
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
593 594
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 596 597 598 599 600 601 602 603
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
604

605 606 607 608 609 610 611 612 613 614 615
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
616 617
 *
 * Return: error status of the address space.
618
 */
619
int filemap_fdatawait_keep_errors(struct address_space *mapping)
620
{
621
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622
	return filemap_check_and_keep_errors(mapping);
623
}
624
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625

626
/* Returns true if writeback might be needed or already in progress. */
627
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
628
{
629 630 631 632
	if (dax_mapping(mapping))
		return mapping->nrexceptional;

	return mapping->nrpages;
L
Linus Torvalds 已提交
633 634
}

635 636 637 638 639 640
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
641 642
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
643
 * Note that @lend is inclusive (describes the last byte to be written) so
644
 * that this function can be used to write to the very end-of-file (end = -1).
645 646
 *
 * Return: error status of the address space.
647
 */
L
Linus Torvalds 已提交
648 649 650
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
651
	int err = 0;
L
Linus Torvalds 已提交
652

653
	if (mapping_needs_writeback(mapping)) {
654 655
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
656 657 658 659 660 661
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
662
		if (err != -EIO) {
663 664
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
665 666
			if (!err)
				err = err2;
667 668 669
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
670
		}
671 672
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
673
	}
674
	return err;
L
Linus Torvalds 已提交
675
}
676
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
677

678 679
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
680
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
707 708
 *
 * Return: %0 on success, negative error code otherwise.
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
726 727 728 729 730 731 732 733

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
751 752
 *
 * Return: %0 on success, negative error code otherwise.
753 754 755 756 757 758
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

759
	if (mapping_needs_writeback(mapping)) {
760 761 762 763 764 765 766 767 768 769 770 771 772
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

773 774 775 776 777 778 779 780 781 782 783 784
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
785
 * The remove + add is atomic.  This function cannot fail.
786 787
 *
 * Return: %0
788 789 790
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
791 792 793 794 795
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
796

797 798 799
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
800

801 802 803
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
804

805 806
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
807

808 809 810
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
811
		__dec_node_page_state(old, NR_FILE_PAGES);
812 813 814
	if (!PageHuge(new))
		__inc_node_page_state(new, NR_FILE_PAGES);
	if (PageSwapBacked(old))
815
		__dec_node_page_state(old, NR_SHMEM);
816 817 818 819 820 821 822
	if (PageSwapBacked(new))
		__inc_node_page_state(new, NR_SHMEM);
	xas_unlock_irqrestore(&xas, flags);
	mem_cgroup_migrate(old, new);
	if (freepage)
		freepage(old);
	put_page(old);
823

824
	return 0;
825 826 827
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

828 829 830 831
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
832
{
833
	XA_STATE(xas, &mapping->i_pages, offset);
834 835
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
836
	int error;
837
	void *old;
N
Nick Piggin 已提交
838

839 840
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
842

843 844
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
845
					      gfp_mask, &memcg);
846 847 848
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
849

850
	get_page(page);
851 852 853
	page->mapping = mapping;
	page->index = offset;

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
			__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

	if (xas_error(&xas))
		goto error;
879

880
	if (!huge)
881
		mem_cgroup_commit_charge(page, memcg, false);
882 883
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
884
error:
885 886
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
887
	if (!huge)
888
		mem_cgroup_cancel_charge(page, memcg);
889
	put_page(page);
890
	return xas_error(&xas);
L
Linus Torvalds 已提交
891
}
892
ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
893 894 895 896 897 898 899 900 901 902

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
903 904
 *
 * Return: %0 on success, negative error code otherwise.
905 906 907 908 909 910 911
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
912
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
913 914

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
915
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
916
{
917
	void *shadow = NULL;
918 919
	int ret;

920
	__SetPageLocked(page);
921 922 923
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
924
		__ClearPageLocked(page);
925 926 927 928 929
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
930 931 932
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
933
		 */
934 935 936
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
937 938
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
939 940
	return ret;
}
941
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
942

943
#ifdef CONFIG_NUMA
944
struct page *__page_cache_alloc(gfp_t gfp)
945
{
946 947 948
	int n;
	struct page *page;

949
	if (cpuset_do_page_mem_spread()) {
950 951
		unsigned int cpuset_mems_cookie;
		do {
952
			cpuset_mems_cookie = read_mems_allowed_begin();
953
			n = cpuset_mem_spread_node();
954
			page = __alloc_pages_node(n, gfp, 0);
955
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
956

957
		return page;
958
	}
959
	return alloc_pages(gfp, 0);
960
}
961
EXPORT_SYMBOL(__page_cache_alloc);
962 963
#endif

L
Linus Torvalds 已提交
964 965 966 967 968 969 970 971 972 973
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
974 975 976 977 978
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
979
{
980
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
981 982
}

983
void __init pagecache_init(void)
L
Linus Torvalds 已提交
984
{
985
	int i;
L
Linus Torvalds 已提交
986

987 988 989 990
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
991 992
}

L
Linus Torvalds 已提交
993
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
994 995 996 997 998 999 1000 1001 1002
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
1003
	wait_queue_entry_t wait;
1004 1005
};

1006
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1007
{
1008 1009 1010 1011 1012 1013 1014
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
1015

1016 1017
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
1018

1019 1020 1021 1022 1023 1024 1025 1026
	/*
	 * Stop walking if it's locked.
	 * Is this safe if put_and_wait_on_page_locked() is in use?
	 * Yes: the waker must hold a reference to this page, and if PG_locked
	 * has now already been set by another task, that task must also hold
	 * a reference to the *same usage* of this page; so there is no need
	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
	 */
1027
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
1028
		return -1;
1029

1030
	return autoremove_wake_function(wait, mode, sync, key);
1031 1032
}

1033
static void wake_up_page_bit(struct page *page, int bit_nr)
1034
{
1035 1036 1037
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1038
	wait_queue_entry_t bookmark;
1039

1040 1041 1042 1043
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1044 1045 1046 1047 1048
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1049
	spin_lock_irqsave(&q->lock, flags);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1086 1087 1088 1089 1090 1091 1092

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1109
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1110
	struct page *page, int bit_nr, int state, enum behavior behavior)
1111 1112
{
	struct wait_page_queue wait_page;
1113
	wait_queue_entry_t *wait = &wait_page.wait;
1114
	bool bit_is_set;
1115
	bool thrashing = false;
1116
	bool delayacct = false;
1117
	unsigned long pflags;
1118 1119
	int ret = 0;

1120
	if (bit_nr == PG_locked &&
1121
	    !PageUptodate(page) && PageWorkingset(page)) {
1122
		if (!PageSwapBacked(page)) {
1123
			delayacct_thrashing_start();
1124 1125
			delayacct = true;
		}
1126
		psi_memstall_enter(&pflags);
1127 1128 1129
		thrashing = true;
	}

1130
	init_wait(wait);
1131
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1132 1133 1134 1135 1136 1137 1138
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1139
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1140
			__add_wait_queue_entry_tail(q, wait);
1141 1142 1143 1144 1145 1146 1147
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

1148 1149 1150 1151 1152
		bit_is_set = test_bit(bit_nr, &page->flags);
		if (behavior == DROP)
			put_page(page);

		if (likely(bit_is_set))
1153 1154
			io_schedule();

1155
		if (behavior == EXCLUSIVE) {
1156 1157
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
1158
		} else if (behavior == SHARED) {
1159 1160 1161
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1162

1163
		if (signal_pending_state(state, current)) {
1164 1165 1166
			ret = -EINTR;
			break;
		}
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177

		if (behavior == DROP) {
			/*
			 * We can no longer safely access page->flags:
			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
			 * there is a risk of waiting forever on a page reused
			 * for something that keeps it locked indefinitely.
			 * But best check for -EINTR above before breaking.
			 */
			break;
		}
1178 1179 1180 1181
	}

	finish_wait(q, wait);

1182
	if (thrashing) {
1183
		if (delayacct)
1184 1185 1186
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1202
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1203 1204 1205 1206 1207 1208
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1209
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1210
}
1211
EXPORT_SYMBOL(wait_on_page_bit_killable);
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1232 1233
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1234 1235
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1236 1237 1238
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1239
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1240 1241 1242 1243 1244
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1245
	__add_wait_queue_entry_tail(q, waiter);
1246
	SetPageWaiters(page);
1247 1248 1249 1250
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1269
	return test_bit(PG_waiters, mem);
1270 1271 1272 1273
}

#endif

L
Linus Torvalds 已提交
1274
/**
1275
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1276 1277 1278 1279
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1280
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1281 1282
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1283 1284 1285 1286 1287
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1288
 */
H
Harvey Harrison 已提交
1289
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1290
{
1291
	BUILD_BUG_ON(PG_waiters != 7);
1292
	page = compound_head(page);
1293
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1294 1295
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1296 1297 1298
}
EXPORT_SYMBOL(unlock_page);

1299 1300 1301
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1302 1303 1304
 */
void end_page_writeback(struct page *page)
{
1305 1306 1307 1308 1309 1310 1311 1312 1313
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1314
		rotate_reclaimable_page(page);
1315
	}
1316 1317 1318 1319

	if (!test_clear_page_writeback(page))
		BUG();

1320
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1321 1322 1323 1324
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1325 1326 1327 1328
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1329
void page_endio(struct page *page, bool is_write, int err)
1330
{
1331
	if (!is_write) {
1332 1333 1334 1335 1336 1337 1338
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1339
	} else {
1340
		if (err) {
1341 1342
			struct address_space *mapping;

1343
			SetPageError(page);
1344 1345 1346
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1347 1348 1349 1350 1351 1352
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1353 1354
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1355
 * @__page: the page to lock
L
Linus Torvalds 已提交
1356
 */
1357
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1358
{
1359 1360
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1361 1362
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1363 1364 1365
}
EXPORT_SYMBOL(__lock_page);

1366
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1367
{
1368 1369
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1370 1371
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1372
}
1373
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1386 1387 1388
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1389
	if (fault_flag_allow_retry_first(flags)) {
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1401
			wait_on_page_locked(page);
1402
		return 0;
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1415 1416 1417
	}
}

1418
/**
1419 1420 1421 1422
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1423
 *
1424 1425
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1426
 *
1427 1428 1429 1430 1431
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1432
 *
1433 1434 1435
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1436
 */
1437
pgoff_t page_cache_next_miss(struct address_space *mapping,
1438 1439
			     pgoff_t index, unsigned long max_scan)
{
1440
	XA_STATE(xas, &mapping->i_pages, index);
1441

1442 1443 1444
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1445
			break;
1446
		if (xas.xa_index == 0)
1447 1448 1449
			break;
	}

1450
	return xas.xa_index;
1451
}
1452
EXPORT_SYMBOL(page_cache_next_miss);
1453 1454

/**
L
Laurent Dufour 已提交
1455
 * page_cache_prev_miss() - Find the previous gap in the page cache.
1456 1457 1458
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1459
 *
1460 1461
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1462
 *
1463 1464 1465 1466 1467
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1468
 *
1469 1470 1471
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1472
 */
1473
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1474 1475
			     pgoff_t index, unsigned long max_scan)
{
1476
	XA_STATE(xas, &mapping->i_pages, index);
1477

1478 1479 1480
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1481
			break;
1482
		if (xas.xa_index == ULONG_MAX)
1483 1484 1485
			break;
	}

1486
	return xas.xa_index;
1487
}
1488
EXPORT_SYMBOL(page_cache_prev_miss);
1489

1490
/**
1491
 * find_get_entry - find and get a page cache entry
1492
 * @mapping: the address_space to search
1493 1494 1495 1496
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1497
 *
1498 1499
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1500
 *
1501
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1502
 */
1503
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1504
{
1505
	XA_STATE(xas, &mapping->i_pages, offset);
1506
	struct page *page;
L
Linus Torvalds 已提交
1507

N
Nick Piggin 已提交
1508 1509
	rcu_read_lock();
repeat:
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1520

1521
	if (!page_cache_get_speculative(page))
1522
		goto repeat;
1523

1524
	/*
1525
	 * Has the page moved or been split?
1526 1527 1528 1529
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1530
		put_page(page);
1531
		goto repeat;
N
Nick Piggin 已提交
1532
	}
1533
	page = find_subpage(page, offset);
N
Nick Piggin 已提交
1534
out:
N
Nick Piggin 已提交
1535 1536
	rcu_read_unlock();

L
Linus Torvalds 已提交
1537 1538 1539
	return page;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1549 1550
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1551 1552
 *
 * find_lock_entry() may sleep.
1553 1554
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1555 1556
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1557 1558 1559 1560
{
	struct page *page;

repeat:
1561
	page = find_get_entry(mapping, offset);
1562
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1563 1564
		lock_page(page);
		/* Has the page been truncated? */
1565
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1566
			unlock_page(page);
1567
			put_page(page);
N
Nick Piggin 已提交
1568
			goto repeat;
L
Linus Torvalds 已提交
1569
		}
1570
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1571 1572 1573
	}
	return page;
}
1574 1575 1576
EXPORT_SYMBOL(find_lock_entry);

/**
1577 1578 1579 1580 1581
 * pagecache_get_page - Find and get a reference to a page.
 * @mapping: The address_space to search.
 * @index: The page index.
 * @fgp_flags: %FGP flags modify how the page is returned.
 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
L
Linus Torvalds 已提交
1582
 *
1583
 * Looks up the page cache entry at @mapping & @index.
1584
 *
1585
 * @fgp_flags can be zero or more of these flags:
1586
 *
1587 1588 1589 1590 1591 1592 1593 1594
 * * %FGP_ACCESSED - The page will be marked accessed.
 * * %FGP_LOCK - The page is returned locked.
 * * %FGP_CREAT - If no page is present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU list.
 *   The page is returned locked and with an increased refcount.
 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
 *   page is already in cache.  If the page was allocated, unlock it before
 *   returning so the caller can do the same dance.
L
Linus Torvalds 已提交
1595
 *
1596 1597
 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
 * if the %GFP flags specified for %FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1598
 *
1599
 * If there is a page cache page, it is returned with an increased refcount.
1600
 *
1601
 * Return: The found page or %NULL otherwise.
L
Linus Torvalds 已提交
1602
 */
1603 1604
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
		int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1605
{
N
Nick Piggin 已提交
1606
	struct page *page;
1607

L
Linus Torvalds 已提交
1608
repeat:
1609
	page = find_get_entry(mapping, index);
1610
	if (xa_is_value(page))
1611 1612 1613 1614 1615 1616 1617
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1618
				put_page(page);
1619 1620 1621 1622 1623 1624 1625
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
1626
		if (unlikely(compound_head(page)->mapping != mapping)) {
1627
			unlock_page(page);
1628
			put_page(page);
1629 1630
			goto repeat;
		}
1631
		VM_BUG_ON_PAGE(page->index != index, page);
1632 1633
	}

1634
	if (fgp_flags & FGP_ACCESSED)
1635 1636 1637 1638 1639 1640
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1641 1642 1643
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1644

1645
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1646 1647
		if (!page)
			return NULL;
1648

1649
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1650 1651
			fgp_flags |= FGP_LOCK;

1652
		/* Init accessed so avoid atomic mark_page_accessed later */
1653
		if (fgp_flags & FGP_ACCESSED)
1654
			__SetPageReferenced(page);
1655

1656
		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
N
Nick Piggin 已提交
1657
		if (unlikely(err)) {
1658
			put_page(page);
N
Nick Piggin 已提交
1659 1660 1661
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1662
		}
1663 1664 1665 1666 1667 1668 1669

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1670
	}
1671

L
Linus Torvalds 已提交
1672 1673
	return page;
}
1674
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1693 1694
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1695
 *
1696 1697 1698 1699 1700
 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
 * stops at that page: the caller is likely to have a better way to handle
 * the compound page as a whole, and then skip its extent, than repeatedly
 * calling find_get_entries() to return all its tails.
 *
1701
 * Return: the number of pages and shadow entries which were found.
1702 1703 1704 1705 1706
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1707 1708
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1709 1710 1711 1712 1713 1714
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1715 1716
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1717
			continue;
1718 1719 1720 1721 1722 1723
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1724
			goto export;
1725

1726
		if (!page_cache_get_speculative(page))
1727
			goto retry;
1728

1729
		/* Has the page moved or been split? */
1730 1731 1732
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;

1733 1734 1735 1736 1737 1738 1739 1740
		/*
		 * Terminate early on finding a THP, to allow the caller to
		 * handle it all at once; but continue if this is hugetlbfs.
		 */
		if (PageTransHuge(page) && !PageHuge(page)) {
			page = find_subpage(page, xas.xa_index);
			nr_entries = ret + 1;
		}
1741
export:
1742
		indices[ret] = xas.xa_index;
1743 1744 1745
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1746 1747
		continue;
put_page:
1748
		put_page(page);
1749 1750
retry:
		xas_reset(&xas);
1751 1752 1753 1754 1755
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1756
/**
J
Jan Kara 已提交
1757
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1758 1759
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1760
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1761 1762 1763
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1764 1765 1766 1767
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1768 1769 1770
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1771
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1772
 *
1773 1774
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1775
 * reached.
L
Linus Torvalds 已提交
1776
 */
J
Jan Kara 已提交
1777 1778 1779
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1780
{
1781 1782
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1783 1784 1785 1786
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1787 1788

	rcu_read_lock();
1789 1790
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1791
			continue;
1792 1793
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1794
			continue;
N
Nick Piggin 已提交
1795

1796
		if (!page_cache_get_speculative(page))
1797
			goto retry;
1798

1799
		/* Has the page moved or been split? */
1800 1801
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1802

1803
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1804
		if (++ret == nr_pages) {
1805
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1806 1807
			goto out;
		}
1808 1809
		continue;
put_page:
1810
		put_page(page);
1811 1812
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1813
	}
1814

J
Jan Kara 已提交
1815 1816 1817
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1818
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1819 1820 1821 1822 1823 1824 1825
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1826
	rcu_read_unlock();
1827

L
Linus Torvalds 已提交
1828 1829 1830
	return ret;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1841
 * Return: the number of pages which were found.
1842 1843 1844 1845
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1846 1847
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1848 1849 1850 1851
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1852 1853

	rcu_read_lock();
1854 1855 1856 1857 1858 1859 1860 1861
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1862
			break;
1863

1864
		if (!page_cache_get_speculative(page))
1865
			goto retry;
1866

1867
		/* Has the page moved or been split? */
1868 1869
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1870

1871
		pages[ret] = find_subpage(page, xas.xa_index);
1872 1873
		if (++ret == nr_pages)
			break;
1874 1875
		continue;
put_page:
1876
		put_page(page);
1877 1878
retry:
		xas_reset(&xas);
1879
	}
N
Nick Piggin 已提交
1880 1881
	rcu_read_unlock();
	return ret;
1882
}
1883
EXPORT_SYMBOL(find_get_pages_contig);
1884

1885
/**
1886
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1887 1888
 * @mapping:	the address_space to search
 * @index:	the starting page index
1889
 * @end:	The final page index (inclusive)
1890 1891 1892 1893
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1894
 * Like find_get_pages, except we only return pages which are tagged with
1895
 * @tag.   We update @index to index the next page for the traversal.
1896 1897
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1898
 */
1899
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1900
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1901
			struct page **pages)
L
Linus Torvalds 已提交
1902
{
1903 1904
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1905 1906 1907 1908
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1909 1910

	rcu_read_lock();
1911 1912
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1913
			continue;
1914 1915 1916 1917 1918 1919
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1920
			continue;
N
Nick Piggin 已提交
1921

1922
		if (!page_cache_get_speculative(page))
1923
			goto retry;
N
Nick Piggin 已提交
1924

1925
		/* Has the page moved or been split? */
1926 1927
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1928

1929
		pages[ret] = find_subpage(page, xas.xa_index);
1930
		if (++ret == nr_pages) {
1931
			*index = xas.xa_index + 1;
1932 1933
			goto out;
		}
1934 1935
		continue;
put_page:
1936
		put_page(page);
1937 1938
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1939
	}
1940

1941
	/*
1942
	 * We come here when we got to @end. We take care to not overflow the
1943
	 * index @index as it confuses some of the callers. This breaks the
1944 1945
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
1946 1947 1948 1949 1950 1951
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1952
	rcu_read_unlock();
L
Linus Torvalds 已提交
1953 1954 1955

	return ret;
}
1956
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1957

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
1973
static void shrink_readahead_size_eio(struct file_ra_state *ra)
1974 1975 1976 1977
{
	ra->ra_pages /= 4;
}

1978
/**
1979 1980
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
1981 1982
 * @iter:	data destination
 * @written:	already copied
1983
 *
L
Linus Torvalds 已提交
1984
 * This is a generic file read routine, and uses the
1985
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
1986 1987 1988
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
1989 1990 1991 1992
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
1993
 */
1994
ssize_t generic_file_buffered_read(struct kiocb *iocb,
1995
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
1996
{
1997
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
1998
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
1999
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
2000
	struct file_ra_state *ra = &filp->f_ra;
2001
	loff_t *ppos = &iocb->ki_pos;
2002 2003 2004 2005
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
2006
	unsigned int prev_offset;
2007
	int error = 0;
L
Linus Torvalds 已提交
2008

2009
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2010
		return 0;
2011 2012
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2013 2014 2015 2016 2017
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2018 2019 2020

	for (;;) {
		struct page *page;
2021
		pgoff_t end_index;
N
NeilBrown 已提交
2022
		loff_t isize;
L
Linus Torvalds 已提交
2023 2024 2025 2026
		unsigned long nr, ret;

		cond_resched();
find_page:
2027 2028 2029 2030 2031
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2032
		page = find_get_page(mapping, index);
2033
		if (!page) {
2034 2035
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2036
			page_cache_sync_readahead(mapping,
2037
					ra, filp,
2038 2039 2040 2041 2042 2043
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2044
			page_cache_async_readahead(mapping,
2045
					ra, filp, page,
2046
					index, last_index - index);
L
Linus Torvalds 已提交
2047
		}
2048
		if (!PageUptodate(page)) {
2049 2050 2051 2052 2053
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2054 2055 2056 2057 2058
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2059 2060 2061
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2062 2063 2064
			if (PageUptodate(page))
				goto page_ok;

2065
			if (inode->i_blkbits == PAGE_SHIFT ||
2066 2067
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2068
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2069
			if (unlikely(iov_iter_is_pipe(iter)))
2070
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2071
			if (!trylock_page(page))
2072
				goto page_not_up_to_date;
2073 2074 2075
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2076
			if (!mapping->a_ops->is_partially_uptodate(page,
2077
							offset, iter->count))
2078 2079 2080
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2081
page_ok:
N
NeilBrown 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2092
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2093
		if (unlikely(!isize || index > end_index)) {
2094
			put_page(page);
N
NeilBrown 已提交
2095 2096 2097 2098
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2099
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2100
		if (index == end_index) {
2101
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2102
			if (nr <= offset) {
2103
				put_page(page);
N
NeilBrown 已提交
2104 2105 2106 2107
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2117 2118
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2119
		 */
2120
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2121 2122 2123 2124 2125 2126 2127
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2128 2129

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2130
		offset += ret;
2131 2132
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2133
		prev_offset = offset;
L
Linus Torvalds 已提交
2134

2135
		put_page(page);
2136 2137 2138 2139 2140 2141 2142 2143
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2144 2145 2146

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2147 2148 2149
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2150

2151
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2152
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2153 2154
		if (!page->mapping) {
			unlock_page(page);
2155
			put_page(page);
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2166 2167 2168 2169 2170 2171
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2172 2173 2174
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2175 2176
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2177
				put_page(page);
2178
				error = 0;
2179 2180
				goto find_page;
			}
L
Linus Torvalds 已提交
2181
			goto readpage_error;
2182
		}
L
Linus Torvalds 已提交
2183 2184

		if (!PageUptodate(page)) {
2185 2186 2187
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2188 2189 2190
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2191
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2192 2193
					 */
					unlock_page(page);
2194
					put_page(page);
L
Linus Torvalds 已提交
2195 2196 2197
					goto find_page;
				}
				unlock_page(page);
2198
				shrink_readahead_size_eio(ra);
2199 2200
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2201 2202 2203 2204 2205 2206 2207 2208
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2209
		put_page(page);
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215 2216
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2217
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2218
		if (!page) {
2219
			error = -ENOMEM;
N
Nick Piggin 已提交
2220
			goto out;
L
Linus Torvalds 已提交
2221
		}
2222
		error = add_to_page_cache_lru(page, mapping, index,
2223
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2224
		if (error) {
2225
			put_page(page);
2226 2227
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2228
				goto find_page;
2229
			}
L
Linus Torvalds 已提交
2230 2231 2232 2233 2234
			goto out;
		}
		goto readpage;
	}

2235 2236
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2237
out:
2238
	ra->prev_pos = prev_index;
2239
	ra->prev_pos <<= PAGE_SHIFT;
2240
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2241

2242
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2243
	file_accessed(filp);
2244
	return written ? written : error;
L
Linus Torvalds 已提交
2245
}
2246
EXPORT_SYMBOL_GPL(generic_file_buffered_read);
L
Linus Torvalds 已提交
2247

2248
/**
A
Al Viro 已提交
2249
 * generic_file_read_iter - generic filesystem read routine
2250
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2251
 * @iter:	destination for the data read
2252
 *
A
Al Viro 已提交
2253
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2254
 * that can use the page cache directly.
2255 2256 2257
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code if nothing was read
L
Linus Torvalds 已提交
2258 2259
 */
ssize_t
A
Al Viro 已提交
2260
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2261
{
2262
	size_t count = iov_iter_count(iter);
2263
	ssize_t retval = 0;
2264 2265 2266

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2267

2268
	if (iocb->ki_flags & IOCB_DIRECT) {
2269
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2270 2271
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2272
		loff_t size;
L
Linus Torvalds 已提交
2273 2274

		size = i_size_read(inode);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2286

2287 2288
		file_accessed(file);

2289
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2290
		if (retval >= 0) {
2291
			iocb->ki_pos += retval;
2292
			count -= retval;
2293
		}
A
Al Viro 已提交
2294
		iov_iter_revert(iter, count - iov_iter_count(iter));
2295

2296 2297 2298 2299 2300 2301
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2302 2303
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2304
		 */
2305
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2306
		    IS_DAX(inode))
2307
			goto out;
L
Linus Torvalds 已提交
2308 2309
	}

2310
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2311 2312 2313
out:
	return retval;
}
A
Al Viro 已提交
2314
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2315 2316 2317

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
/*
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
 * It differs in that it actually returns the page locked if it returns 1 and 0
 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2335 2336 2337 2338 2339
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
	 * is supposed to work. We have way too many special cases..
	 */
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
			 * We didn't have the right flags to drop the mmap_sem,
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
			 * mmap_sem here and return 0 if we don't have a fpin.
			 */
			if (*fpin == NULL)
				up_read(&vmf->vma->vm_mm->mmap_sem);
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2361

2362
/*
2363 2364 2365 2366 2367
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2368
 */
2369
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2370
{
2371 2372
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2373
	struct address_space *mapping = file->f_mapping;
2374
	struct file *fpin = NULL;
2375
	pgoff_t offset = vmf->pgoff;
2376 2377

	/* If we don't want any read-ahead, don't bother */
2378
	if (vmf->vma->vm_flags & VM_RAND_READ)
2379
		return fpin;
2380
	if (!ra->ra_pages)
2381
		return fpin;
2382

2383
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2384
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2385 2386
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2387
		return fpin;
2388 2389
	}

2390 2391
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2392 2393 2394 2395 2396 2397 2398
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
2399
		return fpin;
2400

2401 2402 2403
	/*
	 * mmap read-around
	 */
2404
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2405 2406 2407
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2408
	ra_submit(ra, mapping, file);
2409
	return fpin;
2410 2411 2412 2413
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2414 2415
 * so we want to possibly extend the readahead further.  We return the file that
 * was pinned if we have to drop the mmap_sem in order to do IO.
2416
 */
2417 2418
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2419
{
2420 2421
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2422
	struct address_space *mapping = file->f_mapping;
2423
	struct file *fpin = NULL;
2424
	pgoff_t offset = vmf->pgoff;
2425 2426

	/* If we don't want any read-ahead, don't bother */
2427
	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2428
		return fpin;
2429 2430
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
2431 2432
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2433 2434
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2435 2436
	}
	return fpin;
2437 2438
}

2439
/**
2440
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2441
 * @vmf:	struct vm_fault containing details of the fault
2442
 *
2443
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2444 2445 2446 2447 2448
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2449 2450 2451
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
2452 2453
 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2454 2455 2456 2457 2458
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2459 2460
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2461
 */
2462
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2463 2464
{
	int error;
2465
	struct file *file = vmf->vma->vm_file;
2466
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2467 2468 2469
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2470
	pgoff_t offset = vmf->pgoff;
2471
	pgoff_t max_off;
L
Linus Torvalds 已提交
2472
	struct page *page;
2473
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2474

2475 2476
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2477
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2478 2479

	/*
2480
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2481
	 */
2482
	page = find_get_page(mapping, offset);
2483
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2484
		/*
2485 2486
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2487
		 */
2488
		fpin = do_async_mmap_readahead(vmf, page);
2489
	} else if (!page) {
2490 2491
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2492
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2493
		ret = VM_FAULT_MAJOR;
2494
		fpin = do_sync_mmap_readahead(vmf);
2495
retry_find:
2496 2497 2498
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2499 2500 2501
		if (!page) {
			if (fpin)
				goto out_retry;
2502
			return VM_FAULT_OOM;
2503
		}
L
Linus Torvalds 已提交
2504 2505
	}

2506 2507
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2508 2509

	/* Did it get truncated? */
2510
	if (unlikely(compound_head(page)->mapping != mapping)) {
2511 2512 2513 2514
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2515
	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2516

L
Linus Torvalds 已提交
2517
	/*
2518 2519
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2520
	 */
2521
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2522 2523
		goto page_not_uptodate;

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * We've made it this far and we had to drop our mmap_sem, now is the
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2534 2535 2536 2537
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2538 2539
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2540
		unlock_page(page);
2541
		put_page(page);
2542
		return VM_FAULT_SIGBUS;
2543 2544
	}

N
Nick Piggin 已提交
2545
	vmf->page = page;
N
Nick Piggin 已提交
2546
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2556
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2557
	error = mapping->a_ops->readpage(file, page);
2558 2559 2560 2561 2562
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2563 2564
	if (fpin)
		goto out_retry;
2565
	put_page(page);
2566 2567

	if (!error || error == AOP_TRUNCATED_PAGE)
2568
		goto retry_find;
L
Linus Torvalds 已提交
2569

2570
	shrink_readahead_size_eio(ra);
N
Nick Piggin 已提交
2571
	return VM_FAULT_SIGBUS;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

out_retry:
	/*
	 * We dropped the mmap_sem, we need to return to the fault handler to
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2584 2585 2586
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2587
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2588
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2589
{
J
Jan Kara 已提交
2590
	struct file *file = vmf->vma->vm_file;
2591
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2592
	pgoff_t last_pgoff = start_pgoff;
2593
	unsigned long max_idx;
2594
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2595
	struct page *page;
2596 2597

	rcu_read_lock();
2598 2599 2600 2601
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2602
			goto next;
2603

2604 2605 2606 2607
		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
2608
		if (PageLocked(page))
2609
			goto next;
2610
		if (!page_cache_get_speculative(page))
2611
			goto next;
2612

2613
		/* Has the page moved or been split? */
2614 2615
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2616
		page = find_subpage(page, xas.xa_index);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2628 2629
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2630 2631 2632 2633
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2634

2635
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2636
		if (vmf->pte)
2637 2638
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
J
Jan Kara 已提交
2639
		if (alloc_set_pte(vmf, NULL, page))
2640
			goto unlock;
2641 2642 2643 2644 2645
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2646
		put_page(page);
2647
next:
2648
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2649
		if (pmd_trans_huge(*vmf->pmd))
2650
			break;
2651 2652 2653 2654 2655
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2656
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2657 2658
{
	struct page *page = vmf->page;
2659
	struct inode *inode = file_inode(vmf->vma->vm_file);
2660
	vm_fault_t ret = VM_FAULT_LOCKED;
2661

2662
	sb_start_pagefault(inode->i_sb);
2663
	file_update_time(vmf->vma->vm_file);
2664 2665 2666 2667 2668 2669
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2670 2671 2672 2673 2674 2675
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2676
	wait_for_stable_page(page);
2677
out:
2678
	sb_end_pagefault(inode->i_sb);
2679 2680 2681
	return ret;
}

2682
const struct vm_operations_struct generic_file_vm_ops = {
2683
	.fault		= filemap_fault,
2684
	.map_pages	= filemap_map_pages,
2685
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2711
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2712
{
S
Souptick Joarder 已提交
2713
	return VM_FAULT_SIGBUS;
2714
}
L
Linus Torvalds 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2725
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2726 2727 2728
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2729 2730 2731 2732 2733
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2734
			put_page(page);
S
Sasha Levin 已提交
2735 2736 2737 2738 2739 2740
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2741
static struct page *do_read_cache_page(struct address_space *mapping,
2742
				pgoff_t index,
2743
				int (*filler)(void *, struct page *),
2744 2745
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2746
{
N
Nick Piggin 已提交
2747
	struct page *page;
L
Linus Torvalds 已提交
2748 2749 2750 2751
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2752
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2753 2754
		if (!page)
			return ERR_PTR(-ENOMEM);
2755
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2756
		if (unlikely(err)) {
2757
			put_page(page);
N
Nick Piggin 已提交
2758 2759
			if (err == -EEXIST)
				goto repeat;
2760
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2761 2762
			return ERR_PTR(err);
		}
2763 2764

filler:
2765 2766 2767 2768 2769
		if (filler)
			err = filler(data, page);
		else
			err = mapping->a_ops->readpage(data, page);

L
Linus Torvalds 已提交
2770
		if (err < 0) {
2771
			put_page(page);
2772
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2773 2774
		}

2775 2776 2777 2778 2779
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2780 2781 2782
	if (PageUptodate(page))
		goto out;

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2819
	lock_page(page);
2820 2821

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2822 2823
	if (!page->mapping) {
		unlock_page(page);
2824
		put_page(page);
2825
		goto repeat;
L
Linus Torvalds 已提交
2826
	}
2827 2828

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2829 2830 2831 2832
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2833 2834 2835 2836 2837 2838 2839 2840

	/*
	 * A previous I/O error may have been due to temporary
	 * failures.
	 * Clear page error before actual read, PG_error will be
	 * set again if read page fails.
	 */
	ClearPageError(page);
2841 2842
	goto filler;

2843
out:
2844 2845 2846
	mark_page_accessed(page);
	return page;
}
2847 2848

/**
S
Sasha Levin 已提交
2849
 * read_cache_page - read into page cache, fill it if needed
2850 2851 2852
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2853
 * @data:	first arg to filler(data, page) function, often left as NULL
2854 2855
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2856
 * not set, try to fill the page and wait for it to become unlocked.
2857 2858
 *
 * If the page does not get brought uptodate, return -EIO.
2859 2860
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2861
 */
S
Sasha Levin 已提交
2862
struct page *read_cache_page(struct address_space *mapping,
2863
				pgoff_t index,
2864
				int (*filler)(void *, struct page *),
2865 2866
				void *data)
{
2867 2868
	return do_read_cache_page(mapping, index, filler, data,
			mapping_gfp_mask(mapping));
2869
}
S
Sasha Levin 已提交
2870
EXPORT_SYMBOL(read_cache_page);
2871 2872 2873 2874 2875 2876 2877 2878

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2879
 * any new page allocations done using the specified allocation flags.
2880 2881
 *
 * If the page does not get brought uptodate, return -EIO.
2882 2883
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2884 2885 2886 2887 2888
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
2889
	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2890 2891 2892
}
EXPORT_SYMBOL(read_cache_page_gfp);

2893 2894 2895 2896 2897 2898 2899 2900
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
2901 2902
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

2913 2914 2915 2916 2917 2918 2919 2920 2921
	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;

	*count = min(*count, max_size - pos);

	return 0;
2922 2923
}

L
Linus Torvalds 已提交
2924 2925 2926
/*
 * Performs necessary checks before doing a write
 *
2927
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2928 2929 2930
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2931
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2932
{
2933
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2934
	struct inode *inode = file->f_mapping->host;
2935 2936
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
2937

2938 2939 2940
	if (IS_SWAPFILE(inode))
		return -ETXTBSY;

2941 2942
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
2943

2944
	/* FIXME: this is for backwards compatibility with 2.4 */
2945
	if (iocb->ki_flags & IOCB_APPEND)
2946
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
2947

2948 2949 2950
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

2951 2952 2953 2954
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
2955

2956
	iov_iter_truncate(from, count);
2957
	return iov_iter_count(from);
L
Linus Torvalds 已提交
2958 2959 2960
}
EXPORT_SYMBOL(generic_write_checks);

2961 2962 2963
/*
 * Performs necessary checks before doing a clone.
 *
2964
 * Can adjust amount of bytes to clone via @req_count argument.
2965 2966 2967 2968 2969
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
2970
			 loff_t *req_count, unsigned int remap_flags)
2971 2972 2973 2974 2975 2976 2977
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
2978
	int ret;
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
2992
	if ((remap_flags & REMAP_FILE_DEDUP) &&
2993 2994 2995 2996 2997 2998 2999 3000 3001
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

3002 3003 3004
	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3005 3006

	/*
3007 3008 3009 3010 3011
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3012
	 */
3013 3014 3015 3016
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3017
			count = ALIGN_DOWN(count, bs);
3018
		bcount = count;
L
Linus Torvalds 已提交
3019 3020
	}

3021 3022 3023 3024 3025 3026
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3027
	/*
3028 3029
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3030
	 */
3031
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3032
		return -EINVAL;
L
Linus Torvalds 已提交
3033

3034
	*req_count = count;
3035
	return 0;
L
Linus Torvalds 已提交
3036 3037
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061

/*
 * Performs common checks before doing a file copy/clone
 * from @file_in to @file_out.
 */
int generic_file_rw_checks(struct file *file_in, struct file *file_out)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);

	/* Don't copy dirs, pipes, sockets... */
	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
		return -EISDIR;
	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
		return -EINVAL;

	if (!(file_in->f_mode & FMODE_READ) ||
	    !(file_out->f_mode & FMODE_WRITE) ||
	    (file_out->f_flags & O_APPEND))
		return -EBADF;

	return 0;
}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
/*
 * Performs necessary checks before doing a file copy
 *
 * Can adjust amount of bytes to copy via @req_count argument.
 * Returns appropriate error code that caller should return or
 * zero in case the copy should be allowed.
 */
int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
			     struct file *file_out, loff_t pos_out,
			     size_t *req_count, unsigned int flags)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);
	uint64_t count = *req_count;
	loff_t size_in;
	int ret;

	ret = generic_file_rw_checks(file_in, file_out);
	if (ret)
		return ret;

	/* Don't touch certain kinds of inodes */
	if (IS_IMMUTABLE(inode_out))
		return -EPERM;

	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
		return -ETXTBSY;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EOVERFLOW;

	/* Shorten the copy to EOF */
	size_in = i_size_read(inode_in);
	if (pos_in >= size_in)
		count = 0;
	else
		count = min(count, size_in - (uint64_t)pos_in);

	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;

	/* Don't allow overlapped copying within the same file. */
	if (inode_in == inode_out &&
	    pos_out + count > pos_in &&
	    pos_out < pos_in + count)
		return -EINVAL;

	*req_count = count;
	return 0;
}

3115 3116 3117 3118 3119 3120
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3121
	return aops->write_begin(file, mapping, pos, len, flags,
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3132
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3133 3134 3135
}
EXPORT_SYMBOL(pagecache_write_end);

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
/*
 * Warn about a page cache invalidation failure during a direct I/O write.
 */
void dio_warn_stale_pagecache(struct file *filp)
{
	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
	char pathname[128];
	struct inode *inode = file_inode(filp);
	char *path;

	errseq_set(&inode->i_mapping->wb_err, -EIO);
	if (__ratelimit(&_rs)) {
		path = file_path(filp, pathname, sizeof(pathname));
		if (IS_ERR(path))
			path = "(unknown)";
		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
			current->comm);
	}
}

L
Linus Torvalds 已提交
3157
ssize_t
3158
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3159 3160 3161 3162
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3163
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3164
	ssize_t		written;
3165 3166
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3167

A
Al Viro 已提交
3168
	write_len = iov_iter_count(from);
3169
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3170

3171 3172 3173
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3174
					   pos + write_len - 1))
3175 3176 3177 3178 3179 3180 3181
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3182 3183 3184 3185 3186

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3187
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3188
	 */
3189
	written = invalidate_inode_pages2_range(mapping,
3190
					pos >> PAGE_SHIFT, end);
3191 3192 3193 3194 3195 3196 3197 3198
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3199 3200
	}

3201
	written = mapping->a_ops->direct_IO(iocb, from);
3202 3203 3204 3205 3206 3207 3208 3209

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3210 3211 3212 3213
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
3214 3215
	 * them by removing it completely.
	 *
3216 3217
	 * Noticeable example is a blkdev_direct_IO().
	 *
3218
	 * Skip invalidation for async writes or if mapping has no pages.
3219
	 */
3220 3221 3222
	if (written > 0 && mapping->nrpages &&
	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
		dio_warn_stale_pagecache(file);
3223

L
Linus Torvalds 已提交
3224
	if (written > 0) {
3225
		pos += written;
3226
		write_len -= written;
3227 3228
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3229 3230
			mark_inode_dirty(inode);
		}
3231
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3232
	}
3233
	iov_iter_revert(from, write_len - iov_iter_count(from));
3234
out:
L
Linus Torvalds 已提交
3235 3236 3237 3238
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3239 3240 3241 3242
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3243 3244
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3245 3246
{
	struct page *page;
3247
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3248

3249
	if (flags & AOP_FLAG_NOFS)
3250 3251 3252
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3253
			mapping_gfp_mask(mapping));
3254
	if (page)
3255
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3256 3257 3258

	return page;
}
3259
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3260

3261
ssize_t generic_perform_write(struct file *file,
3262 3263 3264 3265 3266 3267
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3268 3269
	unsigned int flags = 0;

3270 3271 3272 3273 3274 3275 3276
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3277 3278
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3279 3280 3281
						iov_iter_count(i));

again:
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3297 3298 3299 3300 3301
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3302
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3303
						&page, &fsdata);
3304
		if (unlikely(status < 0))
3305 3306
			break;

3307 3308
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3309

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3321
		iov_iter_advance(i, copied);
3322 3323 3324 3325 3326 3327 3328 3329 3330
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3331
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3343
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3344

3345
/**
3346
 * __generic_file_write_iter - write data to a file
3347
 * @iocb:	IO state structure (file, offset, etc.)
3348
 * @from:	iov_iter with data to write
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3361 3362 3363 3364
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3365
 */
3366
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3367 3368
{
	struct file *file = iocb->ki_filp;
3369
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3370
	struct inode 	*inode = mapping->host;
3371
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3372
	ssize_t		err;
3373
	ssize_t		status;
L
Linus Torvalds 已提交
3374 3375

	/* We can write back this queue in page reclaim */
3376
	current->backing_dev_info = inode_to_bdi(inode);
3377
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3378 3379 3380
	if (err)
		goto out;

3381 3382 3383
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3384

3385
	if (iocb->ki_flags & IOCB_DIRECT) {
3386
		loff_t pos, endbyte;
3387

3388
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3389
		/*
3390 3391 3392 3393 3394
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3395
		 */
3396
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3397 3398
			goto out;

3399
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3400
		/*
3401
		 * If generic_perform_write() returned a synchronous error
3402 3403 3404 3405 3406
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3407
		if (unlikely(status < 0)) {
3408
			err = status;
3409 3410 3411 3412 3413 3414 3415
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3416
		endbyte = pos + status - 1;
3417
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3418
		if (err == 0) {
3419
			iocb->ki_pos = endbyte + 1;
3420
			written += status;
3421
			invalidate_mapping_pages(mapping,
3422 3423
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3424 3425 3426 3427 3428 3429 3430
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3431 3432 3433
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3434
	}
L
Linus Torvalds 已提交
3435 3436 3437 3438
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3439
EXPORT_SYMBOL(__generic_file_write_iter);
3440 3441

/**
3442
 * generic_file_write_iter - write data to a file
3443
 * @iocb:	IO state structure
3444
 * @from:	iov_iter with data to write
3445
 *
3446
 * This is a wrapper around __generic_file_write_iter() to be used by most
3447 3448
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3449 3450 3451 3452
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3453
 */
3454
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3455 3456
{
	struct file *file = iocb->ki_filp;
3457
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3458 3459
	ssize_t ret;

A
Al Viro 已提交
3460
	inode_lock(inode);
3461 3462
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3463
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3464
	inode_unlock(inode);
L
Linus Torvalds 已提交
3465

3466 3467
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3468 3469
	return ret;
}
3470
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3471

3472 3473 3474 3475 3476 3477 3478
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3479
 * (presumably at page->private).
3480
 *
3481 3482 3483
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3484
 * The @gfp_mask argument specifies whether I/O may be performed to release
3485
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3486
 *
3487
 * Return: %1 if the release was successful, otherwise return zero.
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);