filemap.c 94.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
12
#include <linux/export.h>
L
Linus Torvalds 已提交
13
#include <linux/compiler.h>
14
#include <linux/dax.h>
L
Linus Torvalds 已提交
15
#include <linux/fs.h>
16
#include <linux/sched/signal.h>
17
#include <linux/uaccess.h>
18
#include <linux/capability.h>
L
Linus Torvalds 已提交
19
#include <linux/kernel_stat.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
29
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
30 31 32
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
33
#include <linux/cpuset.h>
34
#include <linux/hugetlb.h>
35
#include <linux/memcontrol.h>
36
#include <linux/cleancache.h>
37
#include <linux/shmem_fs.h>
38
#include <linux/rmap.h>
39
#include <linux/delayacct.h>
40
#include <linux/psi.h>
41 42
#include "internal.h"

R
Robert Jarzmik 已提交
43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
46 47 48
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
49
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
68
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
69
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
70
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
71
 *        ->i_pages lock
L
Linus Torvalds 已提交
72
 *
73
 *  ->i_mutex
74
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
75 76
 *
 *  ->mmap_sem
77
 *    ->i_mmap_rwsem
78
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
79
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
80 81 82 83
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
84
 *  ->i_mutex			(generic_perform_write)
85
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
86
 *
87
 *  bdi->wb.list_lock
88
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
89
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
90
 *
91
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
92 93 94
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
95
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
96
 *
97
 *  ->page_table_lock or pte_lock
98
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
99
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
100
 *    ->i_pages lock		(try_to_unmap_one)
101 102
 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
103
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
104
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
105
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
106
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
107
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
108
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
109
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
110 111
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
112
 * ->i_mmap_rwsem
113
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
114 115
 */

116
static void page_cache_delete(struct address_space *mapping,
117 118
				   struct page *page, void *shadow)
{
119 120
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
121

122
	mapping_set_update(&xas, mapping);
123

124 125 126 127 128
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
		nr = 1U << compound_order(page);
	}
129

130 131 132
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
133

134 135
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
136

137 138 139
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

140 141 142 143 144 145 146 147 148 149 150
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
151 152
}

153 154
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
155
{
156
	int nr;
L
Linus Torvalds 已提交
157

158 159 160 161 162 163 164 165
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
166
		cleancache_invalidate_page(mapping, page);
167

168
	VM_BUG_ON_PAGE(PageTail(page), page);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
189
			page_ref_sub(page, mapcount);
190 191 192
		}
	}

193
	/* hugetlb pages do not participate in page cache accounting. */
194 195
	if (PageHuge(page))
		return;
196

197 198 199 200 201 202 203 204 205
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
	} else {
		VM_BUG_ON_PAGE(PageTransHuge(page), page);
206
	}
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
225
 * is safe.  The caller must hold the i_pages lock.
226 227 228 229 230 231 232 233
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
234
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
235 236
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

254 255 256 257 258 259 260 261 262
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
263
{
264
	struct address_space *mapping = page_mapping(page);
265
	unsigned long flags;
L
Linus Torvalds 已提交
266

M
Matt Mackall 已提交
267
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
268
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
269
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
270
	xa_unlock_irqrestore(&mapping->i_pages, flags);
271

272
	page_cache_free_page(mapping, page);
273 274 275
}
EXPORT_SYMBOL(delete_from_page_cache);

276
/*
277
 * page_cache_delete_batch - delete several pages from page cache
278 279 280
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
281
 * The function walks over mapping->i_pages and removes pages passed in @pvec
282 283
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
284
 * It tolerates holes in @pvec (mapping entries at those indices are not
285
 * modified). The function expects only THP head pages to be present in the
286
 * @pvec.
287
 *
M
Matthew Wilcox 已提交
288
 * The function expects the i_pages lock to be held.
289
 */
290
static void page_cache_delete_batch(struct address_space *mapping,
291 292
			     struct pagevec *pvec)
{
293
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
294
	int total_pages = 0;
295
	int i = 0;
296 297
	struct page *page;

298 299
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
300
		if (i >= pagevec_count(pvec))
301
			break;
302 303

		/* A swap/dax/shadow entry got inserted? Skip it. */
304
		if (xa_is_value(page))
305
			continue;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
322
			page->mapping = NULL;
323 324 325 326 327 328 329 330 331
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + (1UL << compound_order(page)) - 1 ==
				xas.xa_index)
332
			i++;
333
		xas_store(&xas, NULL);
334 335 336 337 338 339 340 341 342 343 344 345 346 347
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
348
	xa_lock_irqsave(&mapping->i_pages, flags);
349 350 351 352 353
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
354
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
355
	xa_unlock_irqrestore(&mapping->i_pages, flags);
356 357 358 359 360

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

361
int filemap_check_errors(struct address_space *mapping)
362 363 364
{
	int ret = 0;
	/* Check for outstanding write errors */
365 366
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
367
		ret = -ENOSPC;
368 369
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
370 371 372
		ret = -EIO;
	return ret;
}
373
EXPORT_SYMBOL(filemap_check_errors);
374

375 376 377 378 379 380 381 382 383 384
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
385
/**
386
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
387 388
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
389
 * @end:	offset in bytes where the range ends (inclusive)
390
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
391
 *
392 393 394
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
395
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
396
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
397 398
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
399 400
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
401
 */
402 403
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
404 405 406 407
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
408
		.nr_to_write = LONG_MAX,
409 410
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
411 412 413 414 415
	};

	if (!mapping_cap_writeback_dirty(mapping))
		return 0;

416
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
417
	ret = do_writepages(mapping, &wbc);
418
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
419 420 421 422 423 424
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
425
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

434
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
435
				loff_t end)
L
Linus Torvalds 已提交
436 437 438
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
439
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
440

441 442 443 444
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
445 446
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
447 448
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
449 450 451 452 453 454 455
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

456 457 458 459 460 461 462 463
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
464 465 466
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
467 468 469 470
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
471
	struct page *page;
472 473
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
474 475 476 477

	if (end_byte < start_byte)
		return false;

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
494

495
	return page != NULL;
496 497 498
}
EXPORT_SYMBOL(filemap_range_has_page);

499
static void __filemap_fdatawait_range(struct address_space *mapping,
500
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
501
{
502 503
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
504 505 506
	struct pagevec pvec;
	int nr_pages;

507
	if (end_byte < start_byte)
508
		return;
L
Linus Torvalds 已提交
509

510
	pagevec_init(&pvec);
511
	while (index <= end) {
L
Linus Torvalds 已提交
512 513
		unsigned i;

514
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
515
				end, PAGECACHE_TAG_WRITEBACK);
516 517 518
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
519 520 521 522
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
523
			ClearPageError(page);
L
Linus Torvalds 已提交
524 525 526 527
		}
		pagevec_release(&pvec);
		cond_resched();
	}
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
543 544
 *
 * Return: error status of the address space.
545 546 547 548
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
549 550
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
551
}
552 553
EXPORT_SYMBOL(filemap_fdatawait_range);

554 555 556 557 558 559 560 561 562 563 564 565 566
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
567 568
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
569 570 571 572 573 574 575 576 577
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
578

579 580 581 582 583 584 585 586 587 588 589
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
590 591
 *
 * Return: error status of the address space.
592
 */
593
int filemap_fdatawait_keep_errors(struct address_space *mapping)
594
{
595
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
596
	return filemap_check_and_keep_errors(mapping);
597
}
598
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
599

600
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
601
{
602 603
	return (!dax_mapping(mapping) && mapping->nrpages) ||
	    (dax_mapping(mapping) && mapping->nrexceptional);
L
Linus Torvalds 已提交
604 605 606 607
}

int filemap_write_and_wait(struct address_space *mapping)
{
608
	int err = 0;
L
Linus Torvalds 已提交
609

610
	if (mapping_needs_writeback(mapping)) {
611 612 613 614 615 616 617 618 619 620 621
		err = filemap_fdatawrite(mapping);
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
		if (err != -EIO) {
			int err2 = filemap_fdatawait(mapping);
			if (!err)
				err = err2;
622 623 624
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
625
		}
626 627
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
628
	}
629
	return err;
L
Linus Torvalds 已提交
630
}
631
EXPORT_SYMBOL(filemap_write_and_wait);
L
Linus Torvalds 已提交
632

633 634 635 636 637 638
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
639 640
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
641
 * Note that @lend is inclusive (describes the last byte to be written) so
642
 * that this function can be used to write to the very end-of-file (end = -1).
643 644
 *
 * Return: error status of the address space.
645
 */
L
Linus Torvalds 已提交
646 647 648
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
649
	int err = 0;
L
Linus Torvalds 已提交
650

651
	if (mapping_needs_writeback(mapping)) {
652 653 654 655
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO) {
656 657
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
658 659
			if (!err)
				err = err2;
660 661 662
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
663
		}
664 665
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
666
	}
667
	return err;
L
Linus Torvalds 已提交
668
}
669
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
670

671 672
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
673
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
700 701
 *
 * Return: %0 on success, negative error code otherwise.
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
719 720 721 722 723 724 725 726

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
744 745
 *
 * Return: %0 on success, negative error code otherwise.
746 747 748 749 750 751
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

752
	if (mapping_needs_writeback(mapping)) {
753 754 755 756 757 758 759 760 761 762 763 764 765
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

766 767 768 769 770 771 772 773 774 775 776 777
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
778
 * The remove + add is atomic.  This function cannot fail.
779 780
 *
 * Return: %0
781 782 783
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
784 785 786 787 788
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
789

790 791 792
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
793

794 795 796
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
797

798 799
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
800

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
		__dec_node_page_state(new, NR_FILE_PAGES);
	if (!PageHuge(new))
		__inc_node_page_state(new, NR_FILE_PAGES);
	if (PageSwapBacked(old))
		__dec_node_page_state(new, NR_SHMEM);
	if (PageSwapBacked(new))
		__inc_node_page_state(new, NR_SHMEM);
	xas_unlock_irqrestore(&xas, flags);
	mem_cgroup_migrate(old, new);
	if (freepage)
		freepage(old);
	put_page(old);
816

817
	return 0;
818 819 820
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

821 822 823 824
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
825
{
826
	XA_STATE(xas, &mapping->i_pages, offset);
827 828
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
829
	int error;
830
	void *old;
N
Nick Piggin 已提交
831

832 833
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
834
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
835

836 837
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
838
					      gfp_mask, &memcg, false);
839 840 841
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
842

843
	get_page(page);
844 845 846
	page->mapping = mapping;
	page->index = offset;

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
			__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

	if (xas_error(&xas))
		goto error;
872

873
	if (!huge)
874
		mem_cgroup_commit_charge(page, memcg, false, false);
875 876
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
877
error:
878 879
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
880
	if (!huge)
881
		mem_cgroup_cancel_charge(page, memcg, false);
882
	put_page(page);
883
	return xas_error(&xas);
L
Linus Torvalds 已提交
884
}
885 886 887 888 889 890 891 892 893 894

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
895 896
 *
 * Return: %0 on success, negative error code otherwise.
897 898 899 900 901 902 903
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
904
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
905 906

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
907
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
908
{
909
	void *shadow = NULL;
910 911
	int ret;

912
	__SetPageLocked(page);
913 914 915
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
916
		__ClearPageLocked(page);
917 918 919 920 921
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
922 923 924
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
925
		 */
926 927 928
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
929 930
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
931 932
	return ret;
}
933
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
934

935
#ifdef CONFIG_NUMA
936
struct page *__page_cache_alloc(gfp_t gfp)
937
{
938 939 940
	int n;
	struct page *page;

941
	if (cpuset_do_page_mem_spread()) {
942 943
		unsigned int cpuset_mems_cookie;
		do {
944
			cpuset_mems_cookie = read_mems_allowed_begin();
945
			n = cpuset_mem_spread_node();
946
			page = __alloc_pages_node(n, gfp, 0);
947
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
948

949
		return page;
950
	}
951
	return alloc_pages(gfp, 0);
952
}
953
EXPORT_SYMBOL(__page_cache_alloc);
954 955
#endif

L
Linus Torvalds 已提交
956 957 958 959 960 961 962 963 964 965
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
966 967 968 969 970
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
971
{
972
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
973 974
}

975
void __init pagecache_init(void)
L
Linus Torvalds 已提交
976
{
977
	int i;
L
Linus Torvalds 已提交
978

979 980 981 982
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
983 984
}

L
Linus Torvalds 已提交
985
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
986 987 988 989 990 991 992 993 994
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
995
	wait_queue_entry_t wait;
996 997
};

998
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
999
{
1000 1001 1002 1003 1004 1005 1006
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
1007

1008 1009
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
1010

1011 1012 1013 1014 1015 1016 1017 1018
	/*
	 * Stop walking if it's locked.
	 * Is this safe if put_and_wait_on_page_locked() is in use?
	 * Yes: the waker must hold a reference to this page, and if PG_locked
	 * has now already been set by another task, that task must also hold
	 * a reference to the *same usage* of this page; so there is no need
	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
	 */
1019
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
1020
		return -1;
1021

1022
	return autoremove_wake_function(wait, mode, sync, key);
1023 1024
}

1025
static void wake_up_page_bit(struct page *page, int bit_nr)
1026
{
1027 1028 1029
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1030
	wait_queue_entry_t bookmark;
1031

1032 1033 1034 1035
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1036 1037 1038 1039 1040
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1041
	spin_lock_irqsave(&q->lock, flags);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1078 1079 1080 1081 1082 1083 1084

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1101
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1102
	struct page *page, int bit_nr, int state, enum behavior behavior)
1103 1104
{
	struct wait_page_queue wait_page;
1105
	wait_queue_entry_t *wait = &wait_page.wait;
1106
	bool bit_is_set;
1107
	bool thrashing = false;
1108
	bool delayacct = false;
1109
	unsigned long pflags;
1110 1111
	int ret = 0;

1112
	if (bit_nr == PG_locked &&
1113
	    !PageUptodate(page) && PageWorkingset(page)) {
1114
		if (!PageSwapBacked(page)) {
1115
			delayacct_thrashing_start();
1116 1117
			delayacct = true;
		}
1118
		psi_memstall_enter(&pflags);
1119 1120 1121
		thrashing = true;
	}

1122
	init_wait(wait);
1123
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1124 1125 1126 1127 1128 1129 1130
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1131
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1132
			__add_wait_queue_entry_tail(q, wait);
1133 1134 1135 1136 1137 1138 1139
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

1140 1141 1142 1143 1144
		bit_is_set = test_bit(bit_nr, &page->flags);
		if (behavior == DROP)
			put_page(page);

		if (likely(bit_is_set))
1145 1146
			io_schedule();

1147
		if (behavior == EXCLUSIVE) {
1148 1149
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
1150
		} else if (behavior == SHARED) {
1151 1152 1153
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1154

1155
		if (signal_pending_state(state, current)) {
1156 1157 1158
			ret = -EINTR;
			break;
		}
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

		if (behavior == DROP) {
			/*
			 * We can no longer safely access page->flags:
			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
			 * there is a risk of waiting forever on a page reused
			 * for something that keeps it locked indefinitely.
			 * But best check for -EINTR above before breaking.
			 */
			break;
		}
1170 1171 1172 1173
	}

	finish_wait(q, wait);

1174
	if (thrashing) {
1175
		if (delayacct)
1176 1177 1178
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1194
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1195 1196 1197 1198 1199 1200
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1201
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1202
}
1203
EXPORT_SYMBOL(wait_on_page_bit_killable);
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1224 1225
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1226 1227
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1228 1229 1230
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1231
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1232 1233 1234 1235 1236
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1237
	__add_wait_queue_entry_tail(q, waiter);
1238
	SetPageWaiters(page);
1239 1240 1241 1242
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1261
	return test_bit(PG_waiters, mem);
1262 1263 1264 1265
}

#endif

L
Linus Torvalds 已提交
1266
/**
1267
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1268 1269 1270 1271
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1272
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1273 1274
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1275 1276 1277 1278 1279
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1280
 */
H
Harvey Harrison 已提交
1281
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1282
{
1283
	BUILD_BUG_ON(PG_waiters != 7);
1284
	page = compound_head(page);
1285
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1286 1287
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1288 1289 1290
}
EXPORT_SYMBOL(unlock_page);

1291 1292 1293
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1294 1295 1296
 */
void end_page_writeback(struct page *page)
{
1297 1298 1299 1300 1301 1302 1303 1304 1305
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1306
		rotate_reclaimable_page(page);
1307
	}
1308 1309 1310 1311

	if (!test_clear_page_writeback(page))
		BUG();

1312
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1313 1314 1315 1316
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1317 1318 1319 1320
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1321
void page_endio(struct page *page, bool is_write, int err)
1322
{
1323
	if (!is_write) {
1324 1325 1326 1327 1328 1329 1330
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1331
	} else {
1332
		if (err) {
1333 1334
			struct address_space *mapping;

1335
			SetPageError(page);
1336 1337 1338
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1339 1340 1341 1342 1343 1344
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1345 1346
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1347
 * @__page: the page to lock
L
Linus Torvalds 已提交
1348
 */
1349
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1350
{
1351 1352
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1353 1354
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1355 1356 1357
}
EXPORT_SYMBOL(__lock_page);

1358
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1359
{
1360 1361
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1362 1363
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1364
}
1365
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1378 1379 1380
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1393
			wait_on_page_locked(page);
1394
		return 0;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1407 1408 1409
	}
}

1410
/**
1411 1412 1413 1414
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1415
 *
1416 1417
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1418
 *
1419 1420 1421 1422 1423
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1424
 *
1425 1426 1427
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1428
 */
1429
pgoff_t page_cache_next_miss(struct address_space *mapping,
1430 1431
			     pgoff_t index, unsigned long max_scan)
{
1432
	XA_STATE(xas, &mapping->i_pages, index);
1433

1434 1435 1436
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1437
			break;
1438
		if (xas.xa_index == 0)
1439 1440 1441
			break;
	}

1442
	return xas.xa_index;
1443
}
1444
EXPORT_SYMBOL(page_cache_next_miss);
1445 1446

/**
1447 1448 1449 1450
 * page_cache_prev_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1451
 *
1452 1453
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1454
 *
1455 1456 1457 1458 1459
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1460
 *
1461 1462 1463
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1464
 */
1465
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1466 1467
			     pgoff_t index, unsigned long max_scan)
{
1468
	XA_STATE(xas, &mapping->i_pages, index);
1469

1470 1471 1472
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1473
			break;
1474
		if (xas.xa_index == ULONG_MAX)
1475 1476 1477
			break;
	}

1478
	return xas.xa_index;
1479
}
1480
EXPORT_SYMBOL(page_cache_prev_miss);
1481

1482
/**
1483
 * find_get_entry - find and get a page cache entry
1484
 * @mapping: the address_space to search
1485 1486 1487 1488
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1489
 *
1490 1491
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1492
 *
1493
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1494
 */
1495
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1496
{
1497
	XA_STATE(xas, &mapping->i_pages, offset);
1498
	struct page *page;
L
Linus Torvalds 已提交
1499

N
Nick Piggin 已提交
1500 1501
	rcu_read_lock();
repeat:
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1512

1513
	if (!page_cache_get_speculative(page))
1514
		goto repeat;
1515

1516
	/*
1517
	 * Has the page moved or been split?
1518 1519 1520 1521
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1522
		put_page(page);
1523
		goto repeat;
N
Nick Piggin 已提交
1524
	}
1525
	page = find_subpage(page, offset);
N
Nick Piggin 已提交
1526
out:
N
Nick Piggin 已提交
1527 1528
	rcu_read_unlock();

L
Linus Torvalds 已提交
1529 1530
	return page;
}
1531
EXPORT_SYMBOL(find_get_entry);
L
Linus Torvalds 已提交
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1542 1543
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1544 1545
 *
 * find_lock_entry() may sleep.
1546 1547
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1548 1549
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1550 1551 1552 1553
{
	struct page *page;

repeat:
1554
	page = find_get_entry(mapping, offset);
1555
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1556 1557
		lock_page(page);
		/* Has the page been truncated? */
1558
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1559
			unlock_page(page);
1560
			put_page(page);
N
Nick Piggin 已提交
1561
			goto repeat;
L
Linus Torvalds 已提交
1562
		}
1563
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1564 1565 1566
	}
	return page;
}
1567 1568 1569
EXPORT_SYMBOL(find_lock_entry);

/**
1570
 * pagecache_get_page - find and get a page reference
1571 1572
 * @mapping: the address_space to search
 * @offset: the page index
1573
 * @fgp_flags: PCG flags
1574
 * @gfp_mask: gfp mask to use for the page cache data page allocation
1575
 *
1576
 * Looks up the page cache slot at @mapping & @offset.
L
Linus Torvalds 已提交
1577
 *
1578
 * PCG flags modify how the page is returned.
1579
 *
1580 1581 1582 1583 1584 1585 1586
 * @fgp_flags can be:
 *
 * - FGP_ACCESSED: the page will be marked accessed
 * - FGP_LOCK: Page is return locked
 * - FGP_CREAT: If page is not present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU
 *   list. The page is returned locked and with an increased
1587
 *   refcount.
1588 1589 1590
 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
 *   its own locking dance if the page is already in cache, or unlock the page
 *   before returning if we had to add the page to pagecache.
L
Linus Torvalds 已提交
1591
 *
1592 1593
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 * if the GFP flags specified for FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1594
 *
1595
 * If there is a page cache page, it is returned with an increased refcount.
1596 1597
 *
 * Return: the found page or %NULL otherwise.
L
Linus Torvalds 已提交
1598
 */
1599
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1600
	int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1601
{
N
Nick Piggin 已提交
1602
	struct page *page;
1603

L
Linus Torvalds 已提交
1604
repeat:
1605
	page = find_get_entry(mapping, offset);
1606
	if (xa_is_value(page))
1607 1608 1609 1610 1611 1612 1613
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1614
				put_page(page);
1615 1616 1617 1618 1619 1620 1621 1622 1623
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
1624
			put_page(page);
1625 1626 1627 1628 1629
			goto repeat;
		}
		VM_BUG_ON_PAGE(page->index != offset, page);
	}

1630
	if (fgp_flags & FGP_ACCESSED)
1631 1632 1633 1634 1635 1636
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1637 1638 1639
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1640

1641
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1642 1643
		if (!page)
			return NULL;
1644

1645
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1646 1647
			fgp_flags |= FGP_LOCK;

1648
		/* Init accessed so avoid atomic mark_page_accessed later */
1649
		if (fgp_flags & FGP_ACCESSED)
1650
			__SetPageReferenced(page);
1651

1652
		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
N
Nick Piggin 已提交
1653
		if (unlikely(err)) {
1654
			put_page(page);
N
Nick Piggin 已提交
1655 1656 1657
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1658
		}
1659 1660 1661 1662 1663 1664 1665

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1666
	}
1667

L
Linus Torvalds 已提交
1668 1669
	return page;
}
1670
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1689 1690
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1691
 *
1692
 * Return: the number of pages and shadow entries which were found.
1693 1694 1695 1696 1697
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1698 1699
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1700 1701 1702 1703 1704 1705
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1706 1707
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1708
			continue;
1709 1710 1711 1712 1713 1714
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1715
			goto export;
1716

1717
		if (!page_cache_get_speculative(page))
1718
			goto retry;
1719

1720
		/* Has the page moved or been split? */
1721 1722
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
1723
		page = find_subpage(page, xas.xa_index);
1724

1725
export:
1726
		indices[ret] = xas.xa_index;
1727 1728 1729
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1730 1731
		continue;
put_page:
1732
		put_page(page);
1733 1734
retry:
		xas_reset(&xas);
1735 1736 1737 1738 1739
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1740
/**
J
Jan Kara 已提交
1741
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1742 1743
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1744
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1745 1746 1747
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1748 1749 1750 1751
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1752 1753 1754
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1755
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1756
 *
1757 1758
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1759
 * reached.
L
Linus Torvalds 已提交
1760
 */
J
Jan Kara 已提交
1761 1762 1763
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1764
{
1765 1766
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1767 1768 1769 1770
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1771 1772

	rcu_read_lock();
1773 1774
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1775
			continue;
1776 1777
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1778
			continue;
N
Nick Piggin 已提交
1779

1780
		if (!page_cache_get_speculative(page))
1781
			goto retry;
1782

1783
		/* Has the page moved or been split? */
1784 1785
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1786

1787
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1788
		if (++ret == nr_pages) {
1789
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1790 1791
			goto out;
		}
1792 1793
		continue;
put_page:
1794
		put_page(page);
1795 1796
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1797
	}
1798

J
Jan Kara 已提交
1799 1800 1801
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1802
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1803 1804 1805 1806 1807 1808 1809
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1810
	rcu_read_unlock();
1811

L
Linus Torvalds 已提交
1812 1813 1814
	return ret;
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1825
 * Return: the number of pages which were found.
1826 1827 1828 1829
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1830 1831
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1832 1833 1834 1835
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1836 1837

	rcu_read_lock();
1838 1839 1840 1841 1842 1843 1844 1845
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1846
			break;
1847

1848
		if (!page_cache_get_speculative(page))
1849
			goto retry;
1850

1851
		/* Has the page moved or been split? */
1852 1853
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1854

1855
		pages[ret] = find_subpage(page, xas.xa_index);
1856 1857
		if (++ret == nr_pages)
			break;
1858 1859
		continue;
put_page:
1860
		put_page(page);
1861 1862
retry:
		xas_reset(&xas);
1863
	}
N
Nick Piggin 已提交
1864 1865
	rcu_read_unlock();
	return ret;
1866
}
1867
EXPORT_SYMBOL(find_get_pages_contig);
1868

1869
/**
1870
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1871 1872
 * @mapping:	the address_space to search
 * @index:	the starting page index
1873
 * @end:	The final page index (inclusive)
1874 1875 1876 1877
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1878
 * Like find_get_pages, except we only return pages which are tagged with
1879
 * @tag.   We update @index to index the next page for the traversal.
1880 1881
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1882
 */
1883
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1884
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1885
			struct page **pages)
L
Linus Torvalds 已提交
1886
{
1887 1888
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1889 1890 1891 1892
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1893 1894

	rcu_read_lock();
1895 1896
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1897
			continue;
1898 1899 1900 1901 1902 1903
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1904
			continue;
N
Nick Piggin 已提交
1905

1906
		if (!page_cache_get_speculative(page))
1907
			goto retry;
N
Nick Piggin 已提交
1908

1909
		/* Has the page moved or been split? */
1910 1911
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1912

1913
		pages[ret] = find_subpage(page, xas.xa_index);
1914
		if (++ret == nr_pages) {
1915
			*index = xas.xa_index + 1;
1916 1917
			goto out;
		}
1918 1919
		continue;
put_page:
1920
		put_page(page);
1921 1922
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1923
	}
1924

1925
	/*
1926
	 * We come here when we got to @end. We take care to not overflow the
1927
	 * index @index as it confuses some of the callers. This breaks the
1928 1929
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
1930 1931 1932 1933 1934 1935
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1936
	rcu_read_unlock();
L
Linus Torvalds 已提交
1937 1938 1939

	return ret;
}
1940
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1941

R
Ross Zwisler 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/**
 * find_get_entries_tag - find and return entries that match @tag
 * @mapping:	the address_space to search
 * @start:	the starting page cache index
 * @tag:	the tag index
 * @nr_entries:	the maximum number of entries
 * @entries:	where the resulting entries are placed
 * @indices:	the cache indices corresponding to the entries in @entries
 *
 * Like find_get_entries, except we only return entries which are tagged with
 * @tag.
1953 1954
 *
 * Return: the number of entries which were found.
R
Ross Zwisler 已提交
1955 1956
 */
unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1957
			xa_mark_t tag, unsigned int nr_entries,
R
Ross Zwisler 已提交
1958 1959
			struct page **entries, pgoff_t *indices)
{
1960 1961
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
R
Ross Zwisler 已提交
1962 1963 1964 1965 1966 1967
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1968 1969
	xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
		if (xas_retry(&xas, page))
R
Ross Zwisler 已提交
1970
			continue;
1971 1972 1973 1974 1975 1976
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
R
Ross Zwisler 已提交
1977
			goto export;
1978

1979
		if (!page_cache_get_speculative(page))
1980
			goto retry;
R
Ross Zwisler 已提交
1981

1982
		/* Has the page moved or been split? */
1983 1984
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
1985
		page = find_subpage(page, xas.xa_index);
1986

R
Ross Zwisler 已提交
1987
export:
1988
		indices[ret] = xas.xa_index;
R
Ross Zwisler 已提交
1989 1990 1991
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1992 1993
		continue;
put_page:
1994
		put_page(page);
1995 1996
retry:
		xas_reset(&xas);
R
Ross Zwisler 已提交
1997 1998 1999 2000 2001 2002
	}
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL(find_get_entries_tag);

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
					struct file_ra_state *ra)
{
	ra->ra_pages /= 4;
}

2024
/**
2025 2026
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
2027 2028
 * @iter:	data destination
 * @written:	already copied
2029
 *
L
Linus Torvalds 已提交
2030
 * This is a generic file read routine, and uses the
2031
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
2032 2033 2034
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
2035 2036 2037 2038
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
2039
 */
2040
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2041
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
2042
{
2043
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
2044
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
2045
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
2046
	struct file_ra_state *ra = &filp->f_ra;
2047
	loff_t *ppos = &iocb->ki_pos;
2048 2049 2050 2051
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
2052
	unsigned int prev_offset;
2053
	int error = 0;
L
Linus Torvalds 已提交
2054

2055
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2056
		return 0;
2057 2058
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2059 2060 2061 2062 2063
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2064 2065 2066

	for (;;) {
		struct page *page;
2067
		pgoff_t end_index;
N
NeilBrown 已提交
2068
		loff_t isize;
L
Linus Torvalds 已提交
2069 2070 2071 2072
		unsigned long nr, ret;

		cond_resched();
find_page:
2073 2074 2075 2076 2077
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2078
		page = find_get_page(mapping, index);
2079
		if (!page) {
2080 2081
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2082
			page_cache_sync_readahead(mapping,
2083
					ra, filp,
2084 2085 2086 2087 2088 2089
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2090
			page_cache_async_readahead(mapping,
2091
					ra, filp, page,
2092
					index, last_index - index);
L
Linus Torvalds 已提交
2093
		}
2094
		if (!PageUptodate(page)) {
2095 2096 2097 2098 2099
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2100 2101 2102 2103 2104
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2105 2106 2107
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2108 2109 2110
			if (PageUptodate(page))
				goto page_ok;

2111
			if (inode->i_blkbits == PAGE_SHIFT ||
2112 2113
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2114
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2115
			if (unlikely(iov_iter_is_pipe(iter)))
2116
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2117
			if (!trylock_page(page))
2118
				goto page_not_up_to_date;
2119 2120 2121
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2122
			if (!mapping->a_ops->is_partially_uptodate(page,
2123
							offset, iter->count))
2124 2125 2126
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2127
page_ok:
N
NeilBrown 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2138
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2139
		if (unlikely(!isize || index > end_index)) {
2140
			put_page(page);
N
NeilBrown 已提交
2141 2142 2143 2144
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2145
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2146
		if (index == end_index) {
2147
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2148
			if (nr <= offset) {
2149
				put_page(page);
N
NeilBrown 已提交
2150 2151 2152 2153
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2163 2164
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2165
		 */
2166
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171 2172 2173
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2174 2175

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2176
		offset += ret;
2177 2178
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2179
		prev_offset = offset;
L
Linus Torvalds 已提交
2180

2181
		put_page(page);
2182 2183 2184 2185 2186 2187 2188 2189
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2190 2191 2192

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2193 2194 2195
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2196

2197
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2198
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2199 2200
		if (!page->mapping) {
			unlock_page(page);
2201
			put_page(page);
L
Linus Torvalds 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2212 2213 2214 2215 2216 2217
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2218 2219 2220
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2221 2222
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2223
				put_page(page);
2224
				error = 0;
2225 2226
				goto find_page;
			}
L
Linus Torvalds 已提交
2227
			goto readpage_error;
2228
		}
L
Linus Torvalds 已提交
2229 2230

		if (!PageUptodate(page)) {
2231 2232 2233
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2234 2235 2236
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2237
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2238 2239
					 */
					unlock_page(page);
2240
					put_page(page);
L
Linus Torvalds 已提交
2241 2242 2243
					goto find_page;
				}
				unlock_page(page);
2244
				shrink_readahead_size_eio(filp, ra);
2245 2246
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2247 2248 2249 2250 2251 2252 2253 2254
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2255
		put_page(page);
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261 2262
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2263
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2264
		if (!page) {
2265
			error = -ENOMEM;
N
Nick Piggin 已提交
2266
			goto out;
L
Linus Torvalds 已提交
2267
		}
2268
		error = add_to_page_cache_lru(page, mapping, index,
2269
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2270
		if (error) {
2271
			put_page(page);
2272 2273
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2274
				goto find_page;
2275
			}
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280
			goto out;
		}
		goto readpage;
	}

2281 2282
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2283
out:
2284
	ra->prev_pos = prev_index;
2285
	ra->prev_pos <<= PAGE_SHIFT;
2286
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2287

2288
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2289
	file_accessed(filp);
2290
	return written ? written : error;
L
Linus Torvalds 已提交
2291 2292
}

2293
/**
A
Al Viro 已提交
2294
 * generic_file_read_iter - generic filesystem read routine
2295
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2296
 * @iter:	destination for the data read
2297
 *
A
Al Viro 已提交
2298
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2299
 * that can use the page cache directly.
2300 2301 2302
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code if nothing was read
L
Linus Torvalds 已提交
2303 2304
 */
ssize_t
A
Al Viro 已提交
2305
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2306
{
2307
	size_t count = iov_iter_count(iter);
2308
	ssize_t retval = 0;
2309 2310 2311

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2312

2313
	if (iocb->ki_flags & IOCB_DIRECT) {
2314
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2315 2316
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2317
		loff_t size;
L
Linus Torvalds 已提交
2318 2319

		size = i_size_read(inode);
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2331

2332 2333
		file_accessed(file);

2334
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2335
		if (retval >= 0) {
2336
			iocb->ki_pos += retval;
2337
			count -= retval;
2338
		}
A
Al Viro 已提交
2339
		iov_iter_revert(iter, count - iov_iter_count(iter));
2340

2341 2342 2343 2344 2345 2346
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2347 2348
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2349
		 */
2350
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2351
		    IS_DAX(inode))
2352
			goto out;
L
Linus Torvalds 已提交
2353 2354
	}

2355
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2356 2357 2358
out:
	return retval;
}
A
Al Viro 已提交
2359
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2360 2361 2362

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
					     struct file *fpin)
{
	int flags = vmf->flags;

	if (fpin)
		return fpin;

	/*
	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
	 * anything, so we only pin the file and drop the mmap_sem if only
	 * FAULT_FLAG_ALLOW_RETRY is set.
	 */
	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
	    FAULT_FLAG_ALLOW_RETRY) {
		fpin = get_file(vmf->vma->vm_file);
		up_read(&vmf->vma->vm_mm->mmap_sem);
	}
	return fpin;
}

/*
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
 * It differs in that it actually returns the page locked if it returns 1 and 0
 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2401 2402 2403 2404 2405
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
	 * is supposed to work. We have way too many special cases..
	 */
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
			 * We didn't have the right flags to drop the mmap_sem,
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
			 * mmap_sem here and return 0 if we don't have a fpin.
			 */
			if (*fpin == NULL)
				up_read(&vmf->vma->vm_mm->mmap_sem);
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2427

2428
/*
2429 2430 2431 2432 2433
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2434
 */
2435
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2436
{
2437 2438
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2439
	struct address_space *mapping = file->f_mapping;
2440
	struct file *fpin = NULL;
2441
	pgoff_t offset = vmf->pgoff;
2442 2443

	/* If we don't want any read-ahead, don't bother */
2444
	if (vmf->vma->vm_flags & VM_RAND_READ)
2445
		return fpin;
2446
	if (!ra->ra_pages)
2447
		return fpin;
2448

2449
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2450
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2451 2452
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2453
		return fpin;
2454 2455
	}

2456 2457
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2458 2459 2460 2461 2462 2463 2464
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
2465
		return fpin;
2466

2467 2468 2469
	/*
	 * mmap read-around
	 */
2470
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2471 2472 2473
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2474
	ra_submit(ra, mapping, file);
2475
	return fpin;
2476 2477 2478 2479
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2480 2481
 * so we want to possibly extend the readahead further.  We return the file that
 * was pinned if we have to drop the mmap_sem in order to do IO.
2482
 */
2483 2484
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2485
{
2486 2487
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2488
	struct address_space *mapping = file->f_mapping;
2489
	struct file *fpin = NULL;
2490
	pgoff_t offset = vmf->pgoff;
2491 2492

	/* If we don't want any read-ahead, don't bother */
2493
	if (vmf->vma->vm_flags & VM_RAND_READ)
2494
		return fpin;
2495 2496
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
2497 2498
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2499 2500
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2501 2502
	}
	return fpin;
2503 2504
}

2505
/**
2506
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2507
 * @vmf:	struct vm_fault containing details of the fault
2508
 *
2509
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2510 2511 2512 2513 2514
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
 * If our return value has VM_FAULT_RETRY set, it's because
 * lock_page_or_retry() returned 0.
 * The mmap_sem has usually been released in this case.
 * See __lock_page_or_retry() for the exception.
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2527 2528
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2529
 */
2530
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2531 2532
{
	int error;
2533
	struct file *file = vmf->vma->vm_file;
2534
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2535 2536 2537
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2538
	pgoff_t offset = vmf->pgoff;
2539
	pgoff_t max_off;
L
Linus Torvalds 已提交
2540
	struct page *page;
2541
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2542

2543 2544
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2545
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2546 2547

	/*
2548
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2549
	 */
2550
	page = find_get_page(mapping, offset);
2551
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2552
		/*
2553 2554
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2555
		 */
2556
		fpin = do_async_mmap_readahead(vmf, page);
2557
	} else if (!page) {
2558 2559
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2560
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2561
		ret = VM_FAULT_MAJOR;
2562
		fpin = do_sync_mmap_readahead(vmf);
2563
retry_find:
2564 2565 2566
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2567 2568 2569
		if (!page) {
			if (fpin)
				goto out_retry;
2570
			return vmf_error(-ENOMEM);
2571
		}
L
Linus Torvalds 已提交
2572 2573
	}

2574 2575
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2576 2577 2578 2579 2580 2581 2582

	/* Did it get truncated? */
	if (unlikely(page->mapping != mapping)) {
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2583
	VM_BUG_ON_PAGE(page->index != offset, page);
2584

L
Linus Torvalds 已提交
2585
	/*
2586 2587
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2588
	 */
2589
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2590 2591
		goto page_not_uptodate;

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * We've made it this far and we had to drop our mmap_sem, now is the
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2602 2603 2604 2605
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2606 2607
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2608
		unlock_page(page);
2609
		put_page(page);
2610
		return VM_FAULT_SIGBUS;
2611 2612
	}

N
Nick Piggin 已提交
2613
	vmf->page = page;
N
Nick Piggin 已提交
2614
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2624
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2625
	error = mapping->a_ops->readpage(file, page);
2626 2627 2628 2629 2630
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2631 2632
	if (fpin)
		goto out_retry;
2633
	put_page(page);
2634 2635

	if (!error || error == AOP_TRUNCATED_PAGE)
2636
		goto retry_find;
L
Linus Torvalds 已提交
2637

2638
	/* Things didn't work out. Return zero to tell the mm layer so. */
2639
	shrink_readahead_size_eio(file, ra);
N
Nick Piggin 已提交
2640
	return VM_FAULT_SIGBUS;
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

out_retry:
	/*
	 * We dropped the mmap_sem, we need to return to the fault handler to
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2653 2654 2655
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2656
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2657
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2658
{
J
Jan Kara 已提交
2659
	struct file *file = vmf->vma->vm_file;
2660
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2661
	pgoff_t last_pgoff = start_pgoff;
2662
	unsigned long max_idx;
2663
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2664
	struct page *page;
2665 2666

	rcu_read_lock();
2667 2668 2669 2670
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2671
			goto next;
2672

2673 2674 2675 2676
		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
2677
		if (PageLocked(page))
2678
			goto next;
2679
		if (!page_cache_get_speculative(page))
2680
			goto next;
2681

2682
		/* Has the page moved or been split? */
2683 2684
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2685
		page = find_subpage(page, xas.xa_index);
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2697 2698
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2699 2700 2701 2702
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2703

2704
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2705
		if (vmf->pte)
2706 2707
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
J
Jan Kara 已提交
2708
		if (alloc_set_pte(vmf, NULL, page))
2709
			goto unlock;
2710 2711 2712 2713 2714
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2715
		put_page(page);
2716
next:
2717
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2718
		if (pmd_trans_huge(*vmf->pmd))
2719
			break;
2720 2721 2722 2723 2724
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2725
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2726 2727
{
	struct page *page = vmf->page;
2728
	struct inode *inode = file_inode(vmf->vma->vm_file);
2729
	vm_fault_t ret = VM_FAULT_LOCKED;
2730

2731
	sb_start_pagefault(inode->i_sb);
2732
	file_update_time(vmf->vma->vm_file);
2733 2734 2735 2736 2737 2738
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2739 2740 2741 2742 2743 2744
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2745
	wait_for_stable_page(page);
2746
out:
2747
	sb_end_pagefault(inode->i_sb);
2748 2749 2750
	return ret;
}

2751
const struct vm_operations_struct generic_file_vm_ops = {
2752
	.fault		= filemap_fault,
2753
	.map_pages	= filemap_map_pages,
2754
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2780
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2781
{
S
Souptick Joarder 已提交
2782
	return VM_FAULT_SIGBUS;
2783
}
L
Linus Torvalds 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2794
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2795 2796 2797
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2798 2799 2800 2801 2802
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2803
			put_page(page);
S
Sasha Levin 已提交
2804 2805 2806 2807 2808 2809
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2810
static struct page *do_read_cache_page(struct address_space *mapping,
2811
				pgoff_t index,
2812
				int (*filler)(void *, struct page *),
2813 2814
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2815
{
N
Nick Piggin 已提交
2816
	struct page *page;
L
Linus Torvalds 已提交
2817 2818 2819 2820
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2821
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2822 2823
		if (!page)
			return ERR_PTR(-ENOMEM);
2824
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2825
		if (unlikely(err)) {
2826
			put_page(page);
N
Nick Piggin 已提交
2827 2828
			if (err == -EEXIST)
				goto repeat;
2829
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2830 2831
			return ERR_PTR(err);
		}
2832 2833

filler:
L
Linus Torvalds 已提交
2834 2835
		err = filler(data, page);
		if (err < 0) {
2836
			put_page(page);
2837
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2838 2839
		}

2840 2841 2842 2843 2844
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2845 2846 2847
	if (PageUptodate(page))
		goto out;

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2884
	lock_page(page);
2885 2886

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2887 2888
	if (!page->mapping) {
		unlock_page(page);
2889
		put_page(page);
2890
		goto repeat;
L
Linus Torvalds 已提交
2891
	}
2892 2893

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2894 2895 2896 2897
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2898 2899
	goto filler;

2900
out:
2901 2902 2903
	mark_page_accessed(page);
	return page;
}
2904 2905

/**
S
Sasha Levin 已提交
2906
 * read_cache_page - read into page cache, fill it if needed
2907 2908 2909
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2910
 * @data:	first arg to filler(data, page) function, often left as NULL
2911 2912
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2913
 * not set, try to fill the page and wait for it to become unlocked.
2914 2915
 *
 * If the page does not get brought uptodate, return -EIO.
2916 2917
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2918
 */
S
Sasha Levin 已提交
2919
struct page *read_cache_page(struct address_space *mapping,
2920
				pgoff_t index,
2921
				int (*filler)(void *, struct page *),
2922 2923 2924 2925
				void *data)
{
	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
}
S
Sasha Levin 已提交
2926
EXPORT_SYMBOL(read_cache_page);
2927 2928 2929 2930 2931 2932 2933 2934

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2935
 * any new page allocations done using the specified allocation flags.
2936 2937
 *
 * If the page does not get brought uptodate, return -EIO.
2938 2939
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2940 2941 2942 2943 2944 2945 2946
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
	filler_t *filler = (filler_t *)mapping->a_ops->readpage;

S
Sasha Levin 已提交
2947
	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2948 2949 2950
}
EXPORT_SYMBOL(read_cache_page_gfp);

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_access_check_limits(struct file *file, loff_t pos,
				       loff_t *count)
{
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;

	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;
	*count = min(*count, max_size - pos);
	return 0;
}

static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

	return generic_access_check_limits(file, pos, count);
}

L
Linus Torvalds 已提交
2987 2988 2989
/*
 * Performs necessary checks before doing a write
 *
2990
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2991 2992 2993
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2994
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2995
{
2996
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2997
	struct inode *inode = file->f_mapping->host;
2998 2999
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
3000

3001 3002
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
3003

3004
	/* FIXME: this is for backwards compatibility with 2.4 */
3005
	if (iocb->ki_flags & IOCB_APPEND)
3006
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
3007

3008 3009 3010
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

3011 3012 3013 3014
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3015

3016
	iov_iter_truncate(from, count);
3017
	return iov_iter_count(from);
L
Linus Torvalds 已提交
3018 3019 3020
}
EXPORT_SYMBOL(generic_write_checks);

3021 3022 3023 3024 3025 3026 3027 3028 3029
/*
 * Performs necessary checks before doing a clone.
 *
 * Can adjust amount of bytes to clone.
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
3030
			 loff_t *req_count, unsigned int remap_flags)
3031 3032 3033 3034 3035 3036 3037
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
3038
	int ret;
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
3052
	if ((remap_flags & REMAP_FILE_DEDUP) &&
3053 3054 3055 3056 3057 3058 3059 3060 3061
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

3062 3063 3064 3065 3066 3067 3068
	ret = generic_access_check_limits(file_in, pos_in, &count);
	if (ret)
		return ret;

	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3069 3070

	/*
3071 3072 3073 3074 3075
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3076
	 */
3077 3078 3079 3080
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3081
			count = ALIGN_DOWN(count, bs);
3082
		bcount = count;
L
Linus Torvalds 已提交
3083 3084
	}

3085 3086 3087 3088 3089 3090
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3091
	/*
3092 3093
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3094
	 */
3095
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3096
		return -EINVAL;
L
Linus Torvalds 已提交
3097

3098
	*req_count = count;
3099
	return 0;
L
Linus Torvalds 已提交
3100 3101
}

3102 3103 3104 3105 3106 3107
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3108
	return aops->write_begin(file, mapping, pos, len, flags,
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3119
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3120 3121 3122
}
EXPORT_SYMBOL(pagecache_write_end);

L
Linus Torvalds 已提交
3123
ssize_t
3124
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3125 3126 3127 3128
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3129
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3130
	ssize_t		written;
3131 3132
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3133

A
Al Viro 已提交
3134
	write_len = iov_iter_count(from);
3135
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3136

3137 3138 3139
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3140
					   pos + write_len - 1))
3141 3142 3143 3144 3145 3146 3147
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3148 3149 3150 3151 3152

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3153
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3154
	 */
3155
	written = invalidate_inode_pages2_range(mapping,
3156
					pos >> PAGE_SHIFT, end);
3157 3158 3159 3160 3161 3162 3163 3164
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3165 3166
	}

3167
	written = mapping->a_ops->direct_IO(iocb, from);
3168 3169 3170 3171 3172 3173 3174 3175

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3176 3177 3178 3179 3180
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
	 * them by removing it completely
3181
	 */
3182 3183 3184
	if (mapping->nrpages)
		invalidate_inode_pages2_range(mapping,
					pos >> PAGE_SHIFT, end);
3185

L
Linus Torvalds 已提交
3186
	if (written > 0) {
3187
		pos += written;
3188
		write_len -= written;
3189 3190
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3191 3192
			mark_inode_dirty(inode);
		}
3193
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3194
	}
3195
	iov_iter_revert(from, write_len - iov_iter_count(from));
3196
out:
L
Linus Torvalds 已提交
3197 3198 3199 3200
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3201 3202 3203 3204
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3205 3206
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3207 3208
{
	struct page *page;
3209
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3210

3211
	if (flags & AOP_FLAG_NOFS)
3212 3213 3214
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3215
			mapping_gfp_mask(mapping));
3216
	if (page)
3217
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3218 3219 3220

	return page;
}
3221
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3222

3223
ssize_t generic_perform_write(struct file *file,
3224 3225 3226 3227 3228 3229
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3230 3231
	unsigned int flags = 0;

3232 3233 3234 3235 3236 3237 3238
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3239 3240
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3241 3242 3243
						iov_iter_count(i));

again:
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3259 3260 3261 3262 3263
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3264
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3265
						&page, &fsdata);
3266
		if (unlikely(status < 0))
3267 3268
			break;

3269 3270
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3271

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3283
		iov_iter_advance(i, copied);
3284 3285 3286 3287 3288 3289 3290 3291 3292
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3293
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3305
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3306

3307
/**
3308
 * __generic_file_write_iter - write data to a file
3309
 * @iocb:	IO state structure (file, offset, etc.)
3310
 * @from:	iov_iter with data to write
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3323 3324 3325 3326
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3327
 */
3328
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3329 3330
{
	struct file *file = iocb->ki_filp;
3331
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3332
	struct inode 	*inode = mapping->host;
3333
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3334
	ssize_t		err;
3335
	ssize_t		status;
L
Linus Torvalds 已提交
3336 3337

	/* We can write back this queue in page reclaim */
3338
	current->backing_dev_info = inode_to_bdi(inode);
3339
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3340 3341 3342
	if (err)
		goto out;

3343 3344 3345
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3346

3347
	if (iocb->ki_flags & IOCB_DIRECT) {
3348
		loff_t pos, endbyte;
3349

3350
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3351
		/*
3352 3353 3354 3355 3356
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3357
		 */
3358
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3359 3360
			goto out;

3361
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3362
		/*
3363
		 * If generic_perform_write() returned a synchronous error
3364 3365 3366 3367 3368
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3369
		if (unlikely(status < 0)) {
3370
			err = status;
3371 3372 3373 3374 3375 3376 3377
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3378
		endbyte = pos + status - 1;
3379
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3380
		if (err == 0) {
3381
			iocb->ki_pos = endbyte + 1;
3382
			written += status;
3383
			invalidate_mapping_pages(mapping,
3384 3385
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3386 3387 3388 3389 3390 3391 3392
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3393 3394 3395
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3396
	}
L
Linus Torvalds 已提交
3397 3398 3399 3400
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3401
EXPORT_SYMBOL(__generic_file_write_iter);
3402 3403

/**
3404
 * generic_file_write_iter - write data to a file
3405
 * @iocb:	IO state structure
3406
 * @from:	iov_iter with data to write
3407
 *
3408
 * This is a wrapper around __generic_file_write_iter() to be used by most
3409 3410
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3411 3412 3413 3414
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3415
 */
3416
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3417 3418
{
	struct file *file = iocb->ki_filp;
3419
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3420 3421
	ssize_t ret;

A
Al Viro 已提交
3422
	inode_lock(inode);
3423 3424
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3425
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3426
	inode_unlock(inode);
L
Linus Torvalds 已提交
3427

3428 3429
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3430 3431
	return ret;
}
3432
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3433

3434 3435 3436 3437 3438 3439 3440
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3441
 * (presumably at page->private).
3442
 *
3443 3444 3445
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3446
 * The @gfp_mask argument specifies whether I/O may be performed to release
3447
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3448
 *
3449
 * Return: %1 if the release was successful, otherwise return zero.
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);