filemap.c 88.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
12
#include <linux/export.h>
L
Linus Torvalds 已提交
13
#include <linux/compiler.h>
14
#include <linux/dax.h>
L
Linus Torvalds 已提交
15
#include <linux/fs.h>
16
#include <linux/sched/signal.h>
17
#include <linux/uaccess.h>
18
#include <linux/capability.h>
L
Linus Torvalds 已提交
19
#include <linux/kernel_stat.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
29
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
30 31 32
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
33
#include <linux/cpuset.h>
34
#include <linux/hugetlb.h>
35
#include <linux/memcontrol.h>
36
#include <linux/cleancache.h>
37
#include <linux/shmem_fs.h>
38
#include <linux/rmap.h>
39 40
#include "internal.h"

R
Robert Jarzmik 已提交
41 42 43
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
44 45 46
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
47
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
66
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
67
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
69
 *        ->i_pages lock
L
Linus Torvalds 已提交
70
 *
71
 *  ->i_mutex
72
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
73 74
 *
 *  ->mmap_sem
75
 *    ->i_mmap_rwsem
76
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
77
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
78 79 80 81
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
82
 *  ->i_mutex			(generic_perform_write)
83
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
84
 *
85
 *  bdi->wb.list_lock
86
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
87
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
88
 *
89
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
90 91 92
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
93
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
94
 *
95
 *  ->page_table_lock or pte_lock
96
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
97
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
98
 *    ->i_pages lock		(try_to_unmap_one)
99 100
 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
101
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
102
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
103
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
108 109
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
110
 * ->i_mmap_rwsem
111
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
112 113
 */

114
static void page_cache_delete(struct address_space *mapping,
115 116
				   struct page *page, void *shadow)
{
117 118
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
119

120 121 122 123 124 125 126
	mapping_set_update(&xas, mapping);

	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
		nr = 1U << compound_order(page);
	}
127

128 129 130
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
131

132 133
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
134

135 136 137
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

138 139 140 141 142 143 144 145 146 147 148
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
149 150
}

151 152
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
153
{
154
	int nr;
L
Linus Torvalds 已提交
155

156 157 158 159 160 161 162 163
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
164
		cleancache_invalidate_page(mapping, page);
165

166
	VM_BUG_ON_PAGE(PageTail(page), page);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
187
			page_ref_sub(page, mapcount);
188 189 190
		}
	}

191
	/* hugetlb pages do not participate in page cache accounting. */
192 193
	if (PageHuge(page))
		return;
194

195 196 197 198 199 200 201 202 203
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
	} else {
		VM_BUG_ON_PAGE(PageTransHuge(page), page);
204
	}
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
223
 * is safe.  The caller must hold the i_pages lock.
224 225 226 227 228 229 230 231
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
232
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
233 234
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

252 253 254 255 256 257 258 259 260
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
261
{
262
	struct address_space *mapping = page_mapping(page);
263
	unsigned long flags;
L
Linus Torvalds 已提交
264

M
Matt Mackall 已提交
265
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
266
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
267
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
268
	xa_unlock_irqrestore(&mapping->i_pages, flags);
269

270
	page_cache_free_page(mapping, page);
271 272 273
}
EXPORT_SYMBOL(delete_from_page_cache);

274 275 276 277 278
/*
 * page_cache_tree_delete_batch - delete several pages from page cache
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
279 280 281
 * The function walks over mapping->i_pages and removes pages passed in @pvec
 * from the mapping. The function expects @pvec to be sorted by page index.
 * It tolerates holes in @pvec (mapping entries at those indices are not
282
 * modified). The function expects only THP head pages to be present in the
M
Matthew Wilcox 已提交
283 284
 * @pvec and takes care to delete all corresponding tail pages from the
 * mapping as well.
285
 *
M
Matthew Wilcox 已提交
286
 * The function expects the i_pages lock to be held.
287 288 289 290 291 292 293 294 295 296 297 298 299
 */
static void
page_cache_tree_delete_batch(struct address_space *mapping,
			     struct pagevec *pvec)
{
	struct radix_tree_iter iter;
	void **slot;
	int total_pages = 0;
	int i = 0, tail_pages = 0;
	struct page *page;
	pgoff_t start;

	start = pvec->pages[0]->index;
M
Matthew Wilcox 已提交
300
	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
301 302 303
		if (i >= pagevec_count(pvec) && !tail_pages)
			break;
		page = radix_tree_deref_slot_protected(slot,
M
Matthew Wilcox 已提交
304
						       &mapping->i_pages.xa_lock);
305
		if (xa_is_value(page))
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
			continue;
		if (!tail_pages) {
			/*
			 * Some page got inserted in our range? Skip it. We
			 * have our pages locked so they are protected from
			 * being removed.
			 */
			if (page != pvec->pages[i])
				continue;
			WARN_ON_ONCE(!PageLocked(page));
			if (PageTransHuge(page) && !PageHuge(page))
				tail_pages = HPAGE_PMD_NR - 1;
			page->mapping = NULL;
			/*
			 * Leave page->index set: truncation lookup relies
			 * upon it
			 */
			i++;
		} else {
			tail_pages--;
		}
M
Matthew Wilcox 已提交
327 328
		radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
		__radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
329
				workingset_lookup_update(mapping));
330 331 332 333 334 335 336 337 338 339 340 341 342 343
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
344
	xa_lock_irqsave(&mapping->i_pages, flags);
345 346 347 348 349 350
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
	page_cache_tree_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
351
	xa_unlock_irqrestore(&mapping->i_pages, flags);
352 353 354 355 356

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

357
int filemap_check_errors(struct address_space *mapping)
358 359 360
{
	int ret = 0;
	/* Check for outstanding write errors */
361 362
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
363
		ret = -ENOSPC;
364 365
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
366 367 368
		ret = -EIO;
	return ret;
}
369
EXPORT_SYMBOL(filemap_check_errors);
370

371 372 373 374 375 376 377 378 379 380
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
381
/**
382
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
383 384
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
385
 * @end:	offset in bytes where the range ends (inclusive)
386
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
387
 *
388 389 390
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
391
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
392
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
393 394 395
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
 */
396 397
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
398 399 400 401
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
402
		.nr_to_write = LONG_MAX,
403 404
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
405 406 407 408 409
	};

	if (!mapping_cap_writeback_dirty(mapping))
		return 0;

410
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
411
	ret = do_writepages(mapping, &wbc);
412
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
413 414 415 416 417 418
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
419
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
420 421 422 423 424 425 426 427
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

428
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
429
				loff_t end)
L
Linus Torvalds 已提交
430 431 432
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
433
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
434

435 436 437 438
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
439 440 441 442 443 444 445 446 447
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

448 449 450 451 452 453 454 455 456 457 458 459 460 461
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
462
	struct page *page;
463 464 465 466 467 468 469

	if (end_byte < start_byte)
		return false;

	if (mapping->nrpages == 0)
		return false;

470
	if (!find_get_pages_range(mapping, &index, end, 1, &page))
471
		return false;
472 473
	put_page(page);
	return true;
474 475 476
}
EXPORT_SYMBOL(filemap_range_has_page);

477
static void __filemap_fdatawait_range(struct address_space *mapping,
478
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
479
{
480 481
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
482 483 484
	struct pagevec pvec;
	int nr_pages;

485
	if (end_byte < start_byte)
486
		return;
L
Linus Torvalds 已提交
487

488
	pagevec_init(&pvec);
489
	while (index <= end) {
L
Linus Torvalds 已提交
490 491
		unsigned i;

492
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
493
				end, PAGECACHE_TAG_WRITEBACK);
494 495 496
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
497 498 499 500
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
501
			ClearPageError(page);
L
Linus Torvalds 已提交
502 503 504 505
		}
		pagevec_release(&pvec);
		cond_resched();
	}
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
525 526
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
527
}
528 529
EXPORT_SYMBOL(filemap_fdatawait_range);

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
552

553 554 555 556 557 558 559 560 561 562 563 564
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
 */
565
int filemap_fdatawait_keep_errors(struct address_space *mapping)
566
{
567
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
568
	return filemap_check_and_keep_errors(mapping);
569
}
570
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
571

572
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
573
{
574 575
	return (!dax_mapping(mapping) && mapping->nrpages) ||
	    (dax_mapping(mapping) && mapping->nrexceptional);
L
Linus Torvalds 已提交
576 577 578 579
}

int filemap_write_and_wait(struct address_space *mapping)
{
580
	int err = 0;
L
Linus Torvalds 已提交
581

582
	if (mapping_needs_writeback(mapping)) {
583 584 585 586 587 588 589 590 591 592 593
		err = filemap_fdatawrite(mapping);
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
		if (err != -EIO) {
			int err2 = filemap_fdatawait(mapping);
			if (!err)
				err = err2;
594 595 596
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
597
		}
598 599
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
600
	}
601
	return err;
L
Linus Torvalds 已提交
602
}
603
EXPORT_SYMBOL(filemap_write_and_wait);
L
Linus Torvalds 已提交
604

605 606 607 608 609 610
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
611 612
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
613
 * Note that @lend is inclusive (describes the last byte to be written) so
614 615
 * that this function can be used to write to the very end-of-file (end = -1).
 */
L
Linus Torvalds 已提交
616 617 618
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
619
	int err = 0;
L
Linus Torvalds 已提交
620

621
	if (mapping_needs_writeback(mapping)) {
622 623 624 625
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO) {
626 627
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
628 629
			if (!err)
				err = err2;
630 631 632
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
633
		}
634 635
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
636
	}
637
	return err;
L
Linus Torvalds 已提交
638
}
639
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
640

641 642
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
643
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
687 688 689 690 691 692 693 694

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

718
	if (mapping_needs_writeback(mapping)) {
719 720 721 722 723 724 725 726 727 728 729 730 731
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

732 733 734 735 736 737 738 739 740 741 742 743
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
744
 * The remove + add is atomic.  This function cannot fail.
745 746 747
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
748 749 750 751 752
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
753

754 755 756
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
757

758 759 760
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
761

762 763
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
764

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
		__dec_node_page_state(new, NR_FILE_PAGES);
	if (!PageHuge(new))
		__inc_node_page_state(new, NR_FILE_PAGES);
	if (PageSwapBacked(old))
		__dec_node_page_state(new, NR_SHMEM);
	if (PageSwapBacked(new))
		__inc_node_page_state(new, NR_SHMEM);
	xas_unlock_irqrestore(&xas, flags);
	mem_cgroup_migrate(old, new);
	if (freepage)
		freepage(old);
	put_page(old);
780

781
	return 0;
782 783 784
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

785 786 787 788
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
789
{
790
	XA_STATE(xas, &mapping->i_pages, offset);
791 792
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
793
	int error;
794
	void *old;
N
Nick Piggin 已提交
795

796 797
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
798
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
799

800 801
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
802
					      gfp_mask, &memcg, false);
803 804 805
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
806

807
	get_page(page);
808 809 810
	page->mapping = mapping;
	page->index = offset;

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
			__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

	if (xas_error(&xas))
		goto error;
836

837
	if (!huge)
838
		mem_cgroup_commit_charge(page, memcg, false, false);
839 840
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
841
error:
842 843
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
844
	if (!huge)
845
		mem_cgroup_cancel_charge(page, memcg, false);
846
	put_page(page);
847
	return xas_error(&xas);
L
Linus Torvalds 已提交
848
}
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
866
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
867 868

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
869
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
870
{
871
	void *shadow = NULL;
872 873
	int ret;

874
	__SetPageLocked(page);
875 876 877
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
878
		__ClearPageLocked(page);
879 880 881 882 883
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
884 885 886
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
887
		 */
888 889
		if (!(gfp_mask & __GFP_WRITE) &&
		    shadow && workingset_refault(shadow)) {
890 891 892 893 894 895
			SetPageActive(page);
			workingset_activation(page);
		} else
			ClearPageActive(page);
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
896 897
	return ret;
}
898
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
899

900
#ifdef CONFIG_NUMA
901
struct page *__page_cache_alloc(gfp_t gfp)
902
{
903 904 905
	int n;
	struct page *page;

906
	if (cpuset_do_page_mem_spread()) {
907 908
		unsigned int cpuset_mems_cookie;
		do {
909
			cpuset_mems_cookie = read_mems_allowed_begin();
910
			n = cpuset_mem_spread_node();
911
			page = __alloc_pages_node(n, gfp, 0);
912
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
913

914
		return page;
915
	}
916
	return alloc_pages(gfp, 0);
917
}
918
EXPORT_SYMBOL(__page_cache_alloc);
919 920
#endif

L
Linus Torvalds 已提交
921 922 923 924 925 926 927 928 929 930
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
931 932 933 934 935
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
936
{
937
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
938 939
}

940
void __init pagecache_init(void)
L
Linus Torvalds 已提交
941
{
942
	int i;
L
Linus Torvalds 已提交
943

944 945 946 947
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
948 949
}

L
Linus Torvalds 已提交
950
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
951 952 953 954 955 956 957 958 959
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
960
	wait_queue_entry_t wait;
961 962
};

963
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
964
{
965 966 967 968 969 970 971
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
972

973 974
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
975 976

	/* Stop walking if it's locked */
977
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
978
		return -1;
979

980
	return autoremove_wake_function(wait, mode, sync, key);
981 982
}

983
static void wake_up_page_bit(struct page *page, int bit_nr)
984
{
985 986 987
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
988
	wait_queue_entry_t bookmark;
989

990 991 992 993
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

994 995 996 997 998
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

999
	spin_lock_irqsave(&q->lock, flags);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1036 1037 1038 1039 1040 1041 1042

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1043 1044 1045 1046 1047

static inline int wait_on_page_bit_common(wait_queue_head_t *q,
		struct page *page, int bit_nr, int state, bool lock)
{
	struct wait_page_queue wait_page;
1048
	wait_queue_entry_t *wait = &wait_page.wait;
1049 1050 1051
	int ret = 0;

	init_wait(wait);
L
Linus Torvalds 已提交
1052
	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1053 1054 1055 1056 1057 1058 1059
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1060
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1061
			__add_wait_queue_entry_tail(q, wait);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

		if (likely(test_bit(bit_nr, &page->flags))) {
			io_schedule();
		}

		if (lock) {
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
		} else {
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1080 1081 1082 1083 1084

		if (unlikely(signal_pending_state(state, current))) {
			ret = -EINTR;
			break;
		}
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	}

	finish_wait(q, wait);

	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1111
}
1112
EXPORT_SYMBOL(wait_on_page_bit_killable);
1113

1114 1115
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1116 1117
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1118 1119 1120
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1121
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1122 1123 1124 1125 1126
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1127
	__add_wait_queue_entry_tail(q, waiter);
1128
	SetPageWaiters(page);
1129 1130 1131 1132
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1151
	return test_bit(PG_waiters, mem);
1152 1153 1154 1155
}

#endif

L
Linus Torvalds 已提交
1156
/**
1157
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1158 1159 1160 1161
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1162
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1163 1164
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1165 1166 1167 1168 1169
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1170
 */
H
Harvey Harrison 已提交
1171
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1172
{
1173
	BUILD_BUG_ON(PG_waiters != 7);
1174
	page = compound_head(page);
1175
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1176 1177
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1178 1179 1180
}
EXPORT_SYMBOL(unlock_page);

1181 1182 1183
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1184 1185 1186
 */
void end_page_writeback(struct page *page)
{
1187 1188 1189 1190 1191 1192 1193 1194 1195
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1196
		rotate_reclaimable_page(page);
1197
	}
1198 1199 1200 1201

	if (!test_clear_page_writeback(page))
		BUG();

1202
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1203 1204 1205 1206
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1207 1208 1209 1210
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1211
void page_endio(struct page *page, bool is_write, int err)
1212
{
1213
	if (!is_write) {
1214 1215 1216 1217 1218 1219 1220
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1221
	} else {
1222
		if (err) {
1223 1224
			struct address_space *mapping;

1225
			SetPageError(page);
1226 1227 1228
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1229 1230 1231 1232 1233 1234
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1235 1236
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1237
 * @__page: the page to lock
L
Linus Torvalds 已提交
1238
 */
1239
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1240
{
1241 1242 1243
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
L
Linus Torvalds 已提交
1244 1245 1246
}
EXPORT_SYMBOL(__lock_page);

1247
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1248
{
1249 1250 1251
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
M
Matthew Wilcox 已提交
1252
}
1253
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1266 1267 1268
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1281
			wait_on_page_locked(page);
1282
		return 0;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1295 1296 1297
	}
}

1298
/**
1299 1300 1301 1302
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1303
 *
1304 1305
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1306
 *
1307 1308 1309 1310 1311
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1312
 *
1313 1314 1315
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1316
 */
1317
pgoff_t page_cache_next_miss(struct address_space *mapping,
1318 1319
			     pgoff_t index, unsigned long max_scan)
{
1320
	XA_STATE(xas, &mapping->i_pages, index);
1321

1322 1323 1324
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1325
			break;
1326
		if (xas.xa_index == 0)
1327 1328 1329
			break;
	}

1330
	return xas.xa_index;
1331
}
1332
EXPORT_SYMBOL(page_cache_next_miss);
1333 1334

/**
1335 1336 1337 1338
 * page_cache_prev_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1339
 *
1340 1341
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1342
 *
1343 1344 1345 1346 1347
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1348
 *
1349 1350 1351
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1352
 */
1353
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1354 1355
			     pgoff_t index, unsigned long max_scan)
{
1356
	XA_STATE(xas, &mapping->i_pages, index);
1357

1358 1359 1360
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1361
			break;
1362
		if (xas.xa_index == ULONG_MAX)
1363 1364 1365
			break;
	}

1366
	return xas.xa_index;
1367
}
1368
EXPORT_SYMBOL(page_cache_prev_miss);
1369

1370
/**
1371
 * find_get_entry - find and get a page cache entry
1372
 * @mapping: the address_space to search
1373 1374 1375 1376
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1377
 *
1378 1379
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1380 1381
 *
 * Otherwise, %NULL is returned.
L
Linus Torvalds 已提交
1382
 */
1383
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1384
{
1385
	XA_STATE(xas, &mapping->i_pages, offset);
1386
	struct page *head, *page;
L
Linus Torvalds 已提交
1387

N
Nick Piggin 已提交
1388 1389
	rcu_read_lock();
repeat:
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1400

1401 1402 1403
	head = compound_head(page);
	if (!page_cache_get_speculative(head))
		goto repeat;
1404

1405 1406 1407 1408 1409
	/* The page was split under us? */
	if (compound_head(page) != head) {
		put_page(head);
		goto repeat;
	}
N
Nick Piggin 已提交
1410

1411 1412 1413 1414 1415 1416 1417 1418
	/*
	 * Has the page moved?
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
		put_page(head);
		goto repeat;
N
Nick Piggin 已提交
1419
	}
N
Nick Piggin 已提交
1420
out:
N
Nick Piggin 已提交
1421 1422
	rcu_read_unlock();

L
Linus Torvalds 已提交
1423 1424
	return page;
}
1425
EXPORT_SYMBOL(find_get_entry);
L
Linus Torvalds 已提交
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1436 1437
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1438 1439 1440 1441 1442 1443
 *
 * Otherwise, %NULL is returned.
 *
 * find_lock_entry() may sleep.
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1444 1445 1446 1447
{
	struct page *page;

repeat:
1448
	page = find_get_entry(mapping, offset);
1449
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1450 1451
		lock_page(page);
		/* Has the page been truncated? */
1452
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1453
			unlock_page(page);
1454
			put_page(page);
N
Nick Piggin 已提交
1455
			goto repeat;
L
Linus Torvalds 已提交
1456
		}
1457
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1458 1459 1460
	}
	return page;
}
1461 1462 1463
EXPORT_SYMBOL(find_lock_entry);

/**
1464
 * pagecache_get_page - find and get a page reference
1465 1466
 * @mapping: the address_space to search
 * @offset: the page index
1467
 * @fgp_flags: PCG flags
1468
 * @gfp_mask: gfp mask to use for the page cache data page allocation
1469
 *
1470
 * Looks up the page cache slot at @mapping & @offset.
L
Linus Torvalds 已提交
1471
 *
1472
 * PCG flags modify how the page is returned.
1473
 *
1474 1475 1476 1477 1478 1479 1480 1481
 * @fgp_flags can be:
 *
 * - FGP_ACCESSED: the page will be marked accessed
 * - FGP_LOCK: Page is return locked
 * - FGP_CREAT: If page is not present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU
 *   list. The page is returned locked and with an increased
 *   refcount. Otherwise, NULL is returned.
L
Linus Torvalds 已提交
1482
 *
1483 1484
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 * if the GFP flags specified for FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1485
 *
1486
 * If there is a page cache page, it is returned with an increased refcount.
L
Linus Torvalds 已提交
1487
 */
1488
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1489
	int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1490
{
N
Nick Piggin 已提交
1491
	struct page *page;
1492

L
Linus Torvalds 已提交
1493
repeat:
1494
	page = find_get_entry(mapping, offset);
1495
	if (xa_is_value(page))
1496 1497 1498 1499 1500 1501 1502
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1503
				put_page(page);
1504 1505 1506 1507 1508 1509 1510 1511 1512
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
1513
			put_page(page);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
			goto repeat;
		}
		VM_BUG_ON_PAGE(page->index != offset, page);
	}

	if (page && (fgp_flags & FGP_ACCESSED))
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1526 1527 1528
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1529

1530
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1531 1532
		if (!page)
			return NULL;
1533 1534 1535 1536

		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
			fgp_flags |= FGP_LOCK;

1537
		/* Init accessed so avoid atomic mark_page_accessed later */
1538
		if (fgp_flags & FGP_ACCESSED)
1539
			__SetPageReferenced(page);
1540

1541
		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
N
Nick Piggin 已提交
1542
		if (unlikely(err)) {
1543
			put_page(page);
N
Nick Piggin 已提交
1544 1545 1546
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1547 1548
		}
	}
1549

L
Linus Torvalds 已提交
1550 1551
	return page;
}
1552
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1571 1572
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
 *
 * find_get_entries() returns the number of pages and shadow entries
 * which were found.
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
	void **slot;
	unsigned int ret = 0;
	struct radix_tree_iter iter;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
M
Matthew Wilcox 已提交
1589
	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1590
		struct page *head, *page;
1591 1592 1593 1594 1595
repeat:
		page = radix_tree_deref_slot(slot);
		if (unlikely(!page))
			continue;
		if (radix_tree_exception(page)) {
M
Matthew Wilcox 已提交
1596 1597 1598 1599
			if (radix_tree_deref_retry(page)) {
				slot = radix_tree_iter_retry(&iter);
				continue;
			}
1600
			/*
1601 1602 1603
			 * A shadow entry of a recently evicted page, a swap
			 * entry from shmem/tmpfs or a DAX entry.  Return it
			 * without attempting to raise page count.
1604 1605 1606
			 */
			goto export;
		}
1607 1608 1609 1610 1611 1612 1613 1614

		head = compound_head(page);
		if (!page_cache_get_speculative(head))
			goto repeat;

		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
1615
			goto repeat;
1616
		}
1617 1618 1619

		/* Has the page moved? */
		if (unlikely(page != *slot)) {
1620
			put_page(head);
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
			goto repeat;
		}
export:
		indices[ret] = iter.index;
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1633
/**
J
Jan Kara 已提交
1634
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1635 1636
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1637
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1638 1639 1640
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1641 1642 1643 1644
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1645 1646 1647
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1648
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1649
 *
J
Jan Kara 已提交
1650 1651 1652
 * find_get_pages_range() returns the number of pages which were found. If this
 * number is smaller than @nr_pages, the end of specified range has been
 * reached.
L
Linus Torvalds 已提交
1653
 */
J
Jan Kara 已提交
1654 1655 1656
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1657
{
1658 1659 1660 1661 1662 1663
	struct radix_tree_iter iter;
	void **slot;
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1664 1665

	rcu_read_lock();
M
Matthew Wilcox 已提交
1666
	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1667
		struct page *head, *page;
J
Jan Kara 已提交
1668 1669 1670

		if (iter.index > end)
			break;
N
Nick Piggin 已提交
1671
repeat:
1672
		page = radix_tree_deref_slot(slot);
N
Nick Piggin 已提交
1673 1674
		if (unlikely(!page))
			continue;
1675

1676
		if (radix_tree_exception(page)) {
1677
			if (radix_tree_deref_retry(page)) {
M
Matthew Wilcox 已提交
1678 1679
				slot = radix_tree_iter_retry(&iter);
				continue;
1680
			}
1681
			/*
1682 1683 1684
			 * A shadow entry of a recently evicted page,
			 * or a swap entry from shmem/tmpfs.  Skip
			 * over it.
1685
			 */
1686
			continue;
N
Nick Piggin 已提交
1687
		}
N
Nick Piggin 已提交
1688

1689 1690 1691 1692 1693 1694 1695
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
			goto repeat;

		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
N
Nick Piggin 已提交
1696
			goto repeat;
1697
		}
N
Nick Piggin 已提交
1698 1699

		/* Has the page moved? */
1700
		if (unlikely(page != *slot)) {
1701
			put_page(head);
N
Nick Piggin 已提交
1702 1703
			goto repeat;
		}
L
Linus Torvalds 已提交
1704

N
Nick Piggin 已提交
1705
		pages[ret] = page;
J
Jan Kara 已提交
1706 1707 1708 1709
		if (++ret == nr_pages) {
			*start = pages[ret - 1]->index + 1;
			goto out;
		}
N
Nick Piggin 已提交
1710
	}
1711

J
Jan Kara 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
	 * breaks the iteration when there is page at index -1 but that is
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1723
	rcu_read_unlock();
1724

L
Linus Torvalds 已提交
1725 1726 1727
	return ret;
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
 * find_get_pages_contig() returns the number of pages which were found.
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1743 1744 1745 1746 1747 1748
	struct radix_tree_iter iter;
	void **slot;
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1749 1750

	rcu_read_lock();
M
Matthew Wilcox 已提交
1751
	radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1752
		struct page *head, *page;
N
Nick Piggin 已提交
1753
repeat:
1754 1755
		page = radix_tree_deref_slot(slot);
		/* The hole, there no reason to continue */
N
Nick Piggin 已提交
1756
		if (unlikely(!page))
1757
			break;
1758

1759
		if (radix_tree_exception(page)) {
1760
			if (radix_tree_deref_retry(page)) {
M
Matthew Wilcox 已提交
1761 1762
				slot = radix_tree_iter_retry(&iter);
				continue;
1763
			}
1764
			/*
1765 1766 1767
			 * A shadow entry of a recently evicted page,
			 * or a swap entry from shmem/tmpfs.  Stop
			 * looking for contiguous pages.
1768
			 */
1769
			break;
1770
		}
1771

1772 1773 1774 1775 1776 1777 1778
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
			goto repeat;

		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
N
Nick Piggin 已提交
1779
			goto repeat;
1780
		}
N
Nick Piggin 已提交
1781 1782

		/* Has the page moved? */
1783
		if (unlikely(page != *slot)) {
1784
			put_page(head);
N
Nick Piggin 已提交
1785 1786 1787
			goto repeat;
		}

N
Nick Piggin 已提交
1788 1789 1790 1791 1792
		/*
		 * must check mapping and index after taking the ref.
		 * otherwise we can get both false positives and false
		 * negatives, which is just confusing to the caller.
		 */
1793
		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1794
			put_page(page);
N
Nick Piggin 已提交
1795 1796 1797
			break;
		}

N
Nick Piggin 已提交
1798
		pages[ret] = page;
1799 1800
		if (++ret == nr_pages)
			break;
1801
	}
N
Nick Piggin 已提交
1802 1803
	rcu_read_unlock();
	return ret;
1804
}
1805
EXPORT_SYMBOL(find_get_pages_contig);
1806

1807
/**
1808
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1809 1810
 * @mapping:	the address_space to search
 * @index:	the starting page index
1811
 * @end:	The final page index (inclusive)
1812 1813 1814 1815
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1816
 * Like find_get_pages, except we only return pages which are tagged with
1817
 * @tag.   We update @index to index the next page for the traversal.
L
Linus Torvalds 已提交
1818
 */
1819 1820 1821
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
			pgoff_t end, int tag, unsigned int nr_pages,
			struct page **pages)
L
Linus Torvalds 已提交
1822
{
1823 1824 1825 1826 1827 1828
	struct radix_tree_iter iter;
	void **slot;
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1829 1830

	rcu_read_lock();
M
Matthew Wilcox 已提交
1831
	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1832
		struct page *head, *page;
1833 1834 1835

		if (iter.index > end)
			break;
N
Nick Piggin 已提交
1836
repeat:
1837
		page = radix_tree_deref_slot(slot);
N
Nick Piggin 已提交
1838 1839
		if (unlikely(!page))
			continue;
1840

1841
		if (radix_tree_exception(page)) {
1842
			if (radix_tree_deref_retry(page)) {
M
Matthew Wilcox 已提交
1843 1844
				slot = radix_tree_iter_retry(&iter);
				continue;
1845
			}
1846
			/*
1847 1848 1849 1850 1851 1852 1853 1854 1855
			 * A shadow entry of a recently evicted page.
			 *
			 * Those entries should never be tagged, but
			 * this tree walk is lockless and the tags are
			 * looked up in bulk, one radix tree node at a
			 * time, so there is a sizable window for page
			 * reclaim to evict a page we saw tagged.
			 *
			 * Skip over it.
1856
			 */
1857
			continue;
1858
		}
N
Nick Piggin 已提交
1859

1860 1861
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
N
Nick Piggin 已提交
1862 1863
			goto repeat;

1864 1865 1866 1867 1868 1869
		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
			goto repeat;
		}

N
Nick Piggin 已提交
1870
		/* Has the page moved? */
1871
		if (unlikely(page != *slot)) {
1872
			put_page(head);
N
Nick Piggin 已提交
1873 1874 1875 1876
			goto repeat;
		}

		pages[ret] = page;
1877 1878 1879 1880
		if (++ret == nr_pages) {
			*index = pages[ret - 1]->index + 1;
			goto out;
		}
N
Nick Piggin 已提交
1881
	}
1882

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	/*
	 * We come here when we got at @end. We take care to not overflow the
	 * index @index as it confuses some of the callers. This breaks the
	 * iteration when there is page at index -1 but that is already broken
	 * anyway.
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1894
	rcu_read_unlock();
L
Linus Torvalds 已提交
1895 1896 1897

	return ret;
}
1898
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1899

R
Ross Zwisler 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/**
 * find_get_entries_tag - find and return entries that match @tag
 * @mapping:	the address_space to search
 * @start:	the starting page cache index
 * @tag:	the tag index
 * @nr_entries:	the maximum number of entries
 * @entries:	where the resulting entries are placed
 * @indices:	the cache indices corresponding to the entries in @entries
 *
 * Like find_get_entries, except we only return entries which are tagged with
 * @tag.
 */
unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
			int tag, unsigned int nr_entries,
			struct page **entries, pgoff_t *indices)
{
	void **slot;
	unsigned int ret = 0;
	struct radix_tree_iter iter;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
M
Matthew Wilcox 已提交
1924
	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1925
		struct page *head, *page;
R
Ross Zwisler 已提交
1926 1927 1928 1929 1930 1931
repeat:
		page = radix_tree_deref_slot(slot);
		if (unlikely(!page))
			continue;
		if (radix_tree_exception(page)) {
			if (radix_tree_deref_retry(page)) {
M
Matthew Wilcox 已提交
1932 1933
				slot = radix_tree_iter_retry(&iter);
				continue;
R
Ross Zwisler 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942
			}

			/*
			 * A shadow entry of a recently evicted page, a swap
			 * entry from shmem/tmpfs or a DAX entry.  Return it
			 * without attempting to raise page count.
			 */
			goto export;
		}
1943 1944 1945

		head = compound_head(page);
		if (!page_cache_get_speculative(head))
R
Ross Zwisler 已提交
1946 1947
			goto repeat;

1948 1949 1950 1951 1952 1953
		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
			goto repeat;
		}

R
Ross Zwisler 已提交
1954 1955
		/* Has the page moved? */
		if (unlikely(page != *slot)) {
1956
			put_page(head);
R
Ross Zwisler 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
			goto repeat;
		}
export:
		indices[ret] = iter.index;
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
	}
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL(find_get_entries_tag);

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
					struct file_ra_state *ra)
{
	ra->ra_pages /= 4;
}

1991
/**
1992 1993
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
1994 1995
 * @iter:	data destination
 * @written:	already copied
1996
 *
L
Linus Torvalds 已提交
1997
 * This is a generic file read routine, and uses the
1998
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
1999 2000 2001 2002
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 */
2003
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2004
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
2005
{
2006
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
2007
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
2008
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
2009
	struct file_ra_state *ra = &filp->f_ra;
2010
	loff_t *ppos = &iocb->ki_pos;
2011 2012 2013 2014
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
2015
	unsigned int prev_offset;
2016
	int error = 0;
L
Linus Torvalds 已提交
2017

2018
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2019
		return 0;
2020 2021
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2022 2023 2024 2025 2026
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2027 2028 2029

	for (;;) {
		struct page *page;
2030
		pgoff_t end_index;
N
NeilBrown 已提交
2031
		loff_t isize;
L
Linus Torvalds 已提交
2032 2033 2034 2035
		unsigned long nr, ret;

		cond_resched();
find_page:
2036 2037 2038 2039 2040
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2041
		page = find_get_page(mapping, index);
2042
		if (!page) {
2043 2044
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2045
			page_cache_sync_readahead(mapping,
2046
					ra, filp,
2047 2048 2049 2050 2051 2052
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2053
			page_cache_async_readahead(mapping,
2054
					ra, filp, page,
2055
					index, last_index - index);
L
Linus Torvalds 已提交
2056
		}
2057
		if (!PageUptodate(page)) {
2058 2059 2060 2061 2062
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2063 2064 2065 2066 2067
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2068 2069 2070
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2071 2072 2073
			if (PageUptodate(page))
				goto page_ok;

2074
			if (inode->i_blkbits == PAGE_SHIFT ||
2075 2076
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2077 2078 2079
			/* pipes can't handle partially uptodate pages */
			if (unlikely(iter->type & ITER_PIPE))
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2080
			if (!trylock_page(page))
2081
				goto page_not_up_to_date;
2082 2083 2084
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2085
			if (!mapping->a_ops->is_partially_uptodate(page,
2086
							offset, iter->count))
2087 2088 2089
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2090
page_ok:
N
NeilBrown 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2101
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2102
		if (unlikely(!isize || index > end_index)) {
2103
			put_page(page);
N
NeilBrown 已提交
2104 2105 2106 2107
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2108
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2109
		if (index == end_index) {
2110
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2111
			if (nr <= offset) {
2112
				put_page(page);
N
NeilBrown 已提交
2113 2114 2115 2116
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2126 2127
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2128
		 */
2129
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2130 2131 2132 2133 2134 2135 2136
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2137 2138

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2139
		offset += ret;
2140 2141
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2142
		prev_offset = offset;
L
Linus Torvalds 已提交
2143

2144
		put_page(page);
2145 2146 2147 2148 2149 2150 2151 2152
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2153 2154 2155

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2156 2157 2158
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2159

2160
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2161
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2162 2163
		if (!page->mapping) {
			unlock_page(page);
2164
			put_page(page);
L
Linus Torvalds 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2175 2176 2177 2178 2179 2180
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2181 2182 2183
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2184 2185
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2186
				put_page(page);
2187
				error = 0;
2188 2189
				goto find_page;
			}
L
Linus Torvalds 已提交
2190
			goto readpage_error;
2191
		}
L
Linus Torvalds 已提交
2192 2193

		if (!PageUptodate(page)) {
2194 2195 2196
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2197 2198 2199
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2200
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2201 2202
					 */
					unlock_page(page);
2203
					put_page(page);
L
Linus Torvalds 已提交
2204 2205 2206
					goto find_page;
				}
				unlock_page(page);
2207
				shrink_readahead_size_eio(filp, ra);
2208 2209
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215 2216 2217
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2218
		put_page(page);
L
Linus Torvalds 已提交
2219 2220 2221 2222 2223 2224 2225
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2226
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2227
		if (!page) {
2228
			error = -ENOMEM;
N
Nick Piggin 已提交
2229
			goto out;
L
Linus Torvalds 已提交
2230
		}
2231
		error = add_to_page_cache_lru(page, mapping, index,
2232
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2233
		if (error) {
2234
			put_page(page);
2235 2236
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2237
				goto find_page;
2238
			}
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243
			goto out;
		}
		goto readpage;
	}

2244 2245
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2246
out:
2247
	ra->prev_pos = prev_index;
2248
	ra->prev_pos <<= PAGE_SHIFT;
2249
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2250

2251
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2252
	file_accessed(filp);
2253
	return written ? written : error;
L
Linus Torvalds 已提交
2254 2255
}

2256
/**
A
Al Viro 已提交
2257
 * generic_file_read_iter - generic filesystem read routine
2258
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2259
 * @iter:	destination for the data read
2260
 *
A
Al Viro 已提交
2261
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2262 2263 2264
 * that can use the page cache directly.
 */
ssize_t
A
Al Viro 已提交
2265
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2266
{
2267
	size_t count = iov_iter_count(iter);
2268
	ssize_t retval = 0;
2269 2270 2271

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2272

2273
	if (iocb->ki_flags & IOCB_DIRECT) {
2274
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2275 2276
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2277
		loff_t size;
L
Linus Torvalds 已提交
2278 2279

		size = i_size_read(inode);
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2291

2292 2293
		file_accessed(file);

2294
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2295
		if (retval >= 0) {
2296
			iocb->ki_pos += retval;
2297
			count -= retval;
2298
		}
A
Al Viro 已提交
2299
		iov_iter_revert(iter, count - iov_iter_count(iter));
2300

2301 2302 2303 2304 2305 2306
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2307 2308
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2309
		 */
2310
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2311
		    IS_DAX(inode))
2312
			goto out;
L
Linus Torvalds 已提交
2313 2314
	}

2315
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2316 2317 2318
out:
	return retval;
}
A
Al Viro 已提交
2319
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2320 2321

#ifdef CONFIG_MMU
2322 2323 2324 2325
/**
 * page_cache_read - adds requested page to the page cache if not already there
 * @file:	file to read
 * @offset:	page index
2326
 * @gfp_mask:	memory allocation flags
2327
 *
L
Linus Torvalds 已提交
2328 2329 2330
 * This adds the requested page to the page cache if it isn't already there,
 * and schedules an I/O to read in its contents from disk.
 */
2331
static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2332 2333
{
	struct address_space *mapping = file->f_mapping;
2334
	struct page *page;
2335
	int ret;
L
Linus Torvalds 已提交
2336

2337
	do {
M
Mel Gorman 已提交
2338
		page = __page_cache_alloc(gfp_mask);
2339 2340 2341
		if (!page)
			return -ENOMEM;

2342
		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2343 2344 2345 2346
		if (ret == 0)
			ret = mapping->a_ops->readpage(file, page);
		else if (ret == -EEXIST)
			ret = 0; /* losing race to add is OK */
L
Linus Torvalds 已提交
2347

2348
		put_page(page);
L
Linus Torvalds 已提交
2349

2350
	} while (ret == AOP_TRUNCATED_PAGE);
2351

2352
	return ret;
L
Linus Torvalds 已提交
2353 2354 2355 2356
}

#define MMAP_LOTSAMISS  (100)

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
/*
 * Synchronous readahead happens when we don't even find
 * a page in the page cache at all.
 */
static void do_sync_mmap_readahead(struct vm_area_struct *vma,
				   struct file_ra_state *ra,
				   struct file *file,
				   pgoff_t offset)
{
	struct address_space *mapping = file->f_mapping;

	/* If we don't want any read-ahead, don't bother */
2369
	if (vma->vm_flags & VM_RAND_READ)
2370
		return;
2371 2372
	if (!ra->ra_pages)
		return;
2373

2374
	if (vma->vm_flags & VM_SEQ_READ) {
2375 2376
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2377 2378 2379
		return;
	}

2380 2381
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2382 2383 2384 2385 2386 2387 2388 2389 2390
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
		return;

2391 2392 2393
	/*
	 * mmap read-around
	 */
2394 2395 2396
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2397
	ra_submit(ra, mapping, file);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
 * so we want to possibly extend the readahead further..
 */
static void do_async_mmap_readahead(struct vm_area_struct *vma,
				    struct file_ra_state *ra,
				    struct file *file,
				    struct page *page,
				    pgoff_t offset)
{
	struct address_space *mapping = file->f_mapping;

	/* If we don't want any read-ahead, don't bother */
2413
	if (vma->vm_flags & VM_RAND_READ)
2414 2415 2416 2417
		return;
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
	if (PageReadahead(page))
2418 2419
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2420 2421
}

2422
/**
2423
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2424
 * @vmf:	struct vm_fault containing details of the fault
2425
 *
2426
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2427 2428 2429 2430 2431
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
 * If our return value has VM_FAULT_RETRY set, it's because
 * lock_page_or_retry() returned 0.
 * The mmap_sem has usually been released in this case.
 * See __lock_page_or_retry() for the exception.
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
L
Linus Torvalds 已提交
2444
 */
2445
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2446 2447
{
	int error;
2448
	struct file *file = vmf->vma->vm_file;
L
Linus Torvalds 已提交
2449 2450 2451
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2452
	pgoff_t offset = vmf->pgoff;
2453
	pgoff_t max_off;
L
Linus Torvalds 已提交
2454
	struct page *page;
2455
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2456

2457 2458
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2459
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2460 2461

	/*
2462
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2463
	 */
2464
	page = find_get_page(mapping, offset);
2465
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2466
		/*
2467 2468
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2469
		 */
2470
		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2471
	} else if (!page) {
2472
		/* No page in the page cache at all */
2473
		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2474
		count_vm_event(PGMAJFAULT);
2475
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2476 2477
		ret = VM_FAULT_MAJOR;
retry_find:
2478
		page = find_get_page(mapping, offset);
L
Linus Torvalds 已提交
2479 2480 2481 2482
		if (!page)
			goto no_cached_page;
	}

2483
	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2484
		put_page(page);
2485
		return ret | VM_FAULT_RETRY;
2486
	}
2487 2488 2489 2490 2491 2492 2493

	/* Did it get truncated? */
	if (unlikely(page->mapping != mapping)) {
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2494
	VM_BUG_ON_PAGE(page->index != offset, page);
2495

L
Linus Torvalds 已提交
2496
	/*
2497 2498
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2499
	 */
2500
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2501 2502
		goto page_not_uptodate;

2503 2504 2505 2506
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2507 2508
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2509
		unlock_page(page);
2510
		put_page(page);
2511
		return VM_FAULT_SIGBUS;
2512 2513
	}

N
Nick Piggin 已提交
2514
	vmf->page = page;
N
Nick Piggin 已提交
2515
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2516 2517 2518 2519 2520 2521

no_cached_page:
	/*
	 * We're only likely to ever get here if MADV_RANDOM is in
	 * effect.
	 */
2522
	error = page_cache_read(file, offset, vmf->gfp_mask);
L
Linus Torvalds 已提交
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

	/*
	 * The page we want has now been added to the page cache.
	 * In the unlikely event that someone removed it in the
	 * meantime, we'll just come back here and read it again.
	 */
	if (error >= 0)
		goto retry_find;

	/*
	 * An error return from page_cache_read can result if the
	 * system is low on memory, or a problem occurs while trying
	 * to schedule I/O.
	 */
	if (error == -ENOMEM)
N
Nick Piggin 已提交
2538 2539
		return VM_FAULT_OOM;
	return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2549
	error = mapping->a_ops->readpage(file, page);
2550 2551 2552 2553 2554
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2555
	put_page(page);
2556 2557

	if (!error || error == AOP_TRUNCATED_PAGE)
2558
		goto retry_find;
L
Linus Torvalds 已提交
2559

2560
	/* Things didn't work out. Return zero to tell the mm layer so. */
2561
	shrink_readahead_size_eio(file, ra);
N
Nick Piggin 已提交
2562
	return VM_FAULT_SIGBUS;
2563 2564 2565
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2566
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2567
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2568 2569 2570
{
	struct radix_tree_iter iter;
	void **slot;
J
Jan Kara 已提交
2571
	struct file *file = vmf->vma->vm_file;
2572
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2573
	pgoff_t last_pgoff = start_pgoff;
2574
	unsigned long max_idx;
2575
	struct page *head, *page;
2576 2577

	rcu_read_lock();
M
Matthew Wilcox 已提交
2578
	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
K
Kirill A. Shutemov 已提交
2579
		if (iter.index > end_pgoff)
2580 2581 2582 2583 2584 2585
			break;
repeat:
		page = radix_tree_deref_slot(slot);
		if (unlikely(!page))
			goto next;
		if (radix_tree_exception(page)) {
M
Matthew Wilcox 已提交
2586 2587 2588 2589 2590
			if (radix_tree_deref_retry(page)) {
				slot = radix_tree_iter_retry(&iter);
				continue;
			}
			goto next;
2591 2592
		}

2593 2594
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
2595 2596
			goto repeat;

2597 2598 2599 2600 2601 2602
		/* The page was split under us? */
		if (compound_head(page) != head) {
			put_page(head);
			goto repeat;
		}

2603 2604
		/* Has the page moved? */
		if (unlikely(page != *slot)) {
2605
			put_page(head);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
			goto repeat;
		}

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2619 2620
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2621 2622 2623 2624
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2625

J
Jan Kara 已提交
2626 2627 2628
		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
		if (vmf->pte)
			vmf->pte += iter.index - last_pgoff;
2629
		last_pgoff = iter.index;
J
Jan Kara 已提交
2630
		if (alloc_set_pte(vmf, NULL, page))
2631
			goto unlock;
2632 2633 2634 2635 2636
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2637
		put_page(page);
2638
next:
2639
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2640
		if (pmd_trans_huge(*vmf->pmd))
2641
			break;
K
Kirill A. Shutemov 已提交
2642
		if (iter.index == end_pgoff)
2643 2644 2645 2646 2647 2648
			break;
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2649
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2650 2651
{
	struct page *page = vmf->page;
2652
	struct inode *inode = file_inode(vmf->vma->vm_file);
2653
	vm_fault_t ret = VM_FAULT_LOCKED;
2654

2655
	sb_start_pagefault(inode->i_sb);
2656
	file_update_time(vmf->vma->vm_file);
2657 2658 2659 2660 2661 2662
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2663 2664 2665 2666 2667 2668
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2669
	wait_for_stable_page(page);
2670
out:
2671
	sb_end_pagefault(inode->i_sb);
2672 2673 2674
	return ret;
}

2675
const struct vm_operations_struct generic_file_vm_ops = {
2676
	.fault		= filemap_fault,
2677
	.map_pages	= filemap_map_pages,
2678
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
2704 2705 2706 2707
int filemap_page_mkwrite(struct vm_fault *vmf)
{
	return -ENOSYS;
}
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2718
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2719 2720 2721
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2722 2723 2724 2725 2726
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2727
			put_page(page);
S
Sasha Levin 已提交
2728 2729 2730 2731 2732 2733
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2734
static struct page *do_read_cache_page(struct address_space *mapping,
2735
				pgoff_t index,
2736
				int (*filler)(void *, struct page *),
2737 2738
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2739
{
N
Nick Piggin 已提交
2740
	struct page *page;
L
Linus Torvalds 已提交
2741 2742 2743 2744
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2745
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2746 2747
		if (!page)
			return ERR_PTR(-ENOMEM);
2748
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2749
		if (unlikely(err)) {
2750
			put_page(page);
N
Nick Piggin 已提交
2751 2752
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
2753 2754 2755
			/* Presumably ENOMEM for radix tree node */
			return ERR_PTR(err);
		}
2756 2757

filler:
L
Linus Torvalds 已提交
2758 2759
		err = filler(data, page);
		if (err < 0) {
2760
			put_page(page);
2761
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2762 2763
		}

2764 2765 2766 2767 2768
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2769 2770 2771
	if (PageUptodate(page))
		goto out;

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2808
	lock_page(page);
2809 2810

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2811 2812
	if (!page->mapping) {
		unlock_page(page);
2813
		put_page(page);
2814
		goto repeat;
L
Linus Torvalds 已提交
2815
	}
2816 2817

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2818 2819 2820 2821
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2822 2823
	goto filler;

2824
out:
2825 2826 2827
	mark_page_accessed(page);
	return page;
}
2828 2829

/**
S
Sasha Levin 已提交
2830
 * read_cache_page - read into page cache, fill it if needed
2831 2832 2833
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2834
 * @data:	first arg to filler(data, page) function, often left as NULL
2835 2836
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2837
 * not set, try to fill the page and wait for it to become unlocked.
2838 2839 2840
 *
 * If the page does not get brought uptodate, return -EIO.
 */
S
Sasha Levin 已提交
2841
struct page *read_cache_page(struct address_space *mapping,
2842
				pgoff_t index,
2843
				int (*filler)(void *, struct page *),
2844 2845 2846 2847
				void *data)
{
	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
}
S
Sasha Levin 已提交
2848
EXPORT_SYMBOL(read_cache_page);
2849 2850 2851 2852 2853 2854 2855 2856

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2857
 * any new page allocations done using the specified allocation flags.
2858 2859 2860 2861 2862 2863 2864 2865 2866
 *
 * If the page does not get brought uptodate, return -EIO.
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
	filler_t *filler = (filler_t *)mapping->a_ops->readpage;

S
Sasha Levin 已提交
2867
	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2868 2869 2870
}
EXPORT_SYMBOL(read_cache_page_gfp);

L
Linus Torvalds 已提交
2871 2872 2873
/*
 * Performs necessary checks before doing a write
 *
2874
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2875 2876 2877
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2878
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2879
{
2880
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2881
	struct inode *inode = file->f_mapping->host;
J
Jiri Slaby 已提交
2882
	unsigned long limit = rlimit(RLIMIT_FSIZE);
2883
	loff_t pos;
L
Linus Torvalds 已提交
2884

2885 2886
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
2887

2888
	/* FIXME: this is for backwards compatibility with 2.4 */
2889
	if (iocb->ki_flags & IOCB_APPEND)
2890
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
2891

2892
	pos = iocb->ki_pos;
L
Linus Torvalds 已提交
2893

2894 2895 2896
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

2897
	if (limit != RLIM_INFINITY) {
2898
		if (iocb->ki_pos >= limit) {
2899 2900
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
L
Linus Torvalds 已提交
2901
		}
2902
		iov_iter_truncate(from, limit - (unsigned long)pos);
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907
	}

	/*
	 * LFS rule
	 */
2908
	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
L
Linus Torvalds 已提交
2909
				!(file->f_flags & O_LARGEFILE))) {
2910
		if (pos >= MAX_NON_LFS)
L
Linus Torvalds 已提交
2911
			return -EFBIG;
2912
		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
L
Linus Torvalds 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921
	}

	/*
	 * Are we about to exceed the fs block limit ?
	 *
	 * If we have written data it becomes a short write.  If we have
	 * exceeded without writing data we send a signal and return EFBIG.
	 * Linus frestrict idea will clean these up nicely..
	 */
2922 2923
	if (unlikely(pos >= inode->i_sb->s_maxbytes))
		return -EFBIG;
L
Linus Torvalds 已提交
2924

2925 2926
	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
	return iov_iter_count(from);
L
Linus Torvalds 已提交
2927 2928 2929
}
EXPORT_SYMBOL(generic_write_checks);

2930 2931 2932 2933 2934 2935
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

2936
	return aops->write_begin(file, mapping, pos, len, flags,
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

2947
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2948 2949 2950
}
EXPORT_SYMBOL(pagecache_write_end);

L
Linus Torvalds 已提交
2951
ssize_t
2952
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2953 2954 2955 2956
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
2957
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
2958
	ssize_t		written;
2959 2960
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
2961

A
Al Viro 已提交
2962
	write_len = iov_iter_count(from);
2963
	end = (pos + write_len - 1) >> PAGE_SHIFT;
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
					   pos + iov_iter_count(from)))
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
2976 2977 2978 2979 2980

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
2981
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2982
	 */
2983
	written = invalidate_inode_pages2_range(mapping,
2984
					pos >> PAGE_SHIFT, end);
2985 2986 2987 2988 2989 2990 2991 2992
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
2993 2994
	}

2995
	written = mapping->a_ops->direct_IO(iocb, from);
2996 2997 2998 2999 3000 3001 3002 3003

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3004 3005 3006 3007 3008
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
	 * them by removing it completely
3009
	 */
3010 3011 3012
	if (mapping->nrpages)
		invalidate_inode_pages2_range(mapping,
					pos >> PAGE_SHIFT, end);
3013

L
Linus Torvalds 已提交
3014
	if (written > 0) {
3015
		pos += written;
3016
		write_len -= written;
3017 3018
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3019 3020
			mark_inode_dirty(inode);
		}
3021
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3022
	}
3023
	iov_iter_revert(from, write_len - iov_iter_count(from));
3024
out:
L
Linus Torvalds 已提交
3025 3026 3027 3028
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3029 3030 3031 3032
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3033 3034
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3035 3036
{
	struct page *page;
3037
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3038

3039
	if (flags & AOP_FLAG_NOFS)
3040 3041 3042
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3043
			mapping_gfp_mask(mapping));
3044
	if (page)
3045
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3046 3047 3048

	return page;
}
3049
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3050

3051
ssize_t generic_perform_write(struct file *file,
3052 3053 3054 3055 3056 3057
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3058 3059
	unsigned int flags = 0;

3060 3061 3062 3063 3064 3065 3066
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3067 3068
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3069 3070 3071
						iov_iter_count(i));

again:
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3087 3088 3089 3090 3091
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3092
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3093
						&page, &fsdata);
3094
		if (unlikely(status < 0))
3095 3096
			break;

3097 3098
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3111
		iov_iter_advance(i, copied);
3112 3113 3114 3115 3116 3117 3118 3119 3120
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3121
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3133
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3134

3135
/**
3136
 * __generic_file_write_iter - write data to a file
3137
 * @iocb:	IO state structure (file, offset, etc.)
3138
 * @from:	iov_iter with data to write
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
 */
3152
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3153 3154
{
	struct file *file = iocb->ki_filp;
3155
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3156
	struct inode 	*inode = mapping->host;
3157
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3158
	ssize_t		err;
3159
	ssize_t		status;
L
Linus Torvalds 已提交
3160 3161

	/* We can write back this queue in page reclaim */
3162
	current->backing_dev_info = inode_to_bdi(inode);
3163
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3164 3165 3166
	if (err)
		goto out;

3167 3168 3169
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3170

3171
	if (iocb->ki_flags & IOCB_DIRECT) {
3172
		loff_t pos, endbyte;
3173

3174
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3175
		/*
3176 3177 3178 3179 3180
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3181
		 */
3182
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3183 3184
			goto out;

3185
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3186
		/*
3187
		 * If generic_perform_write() returned a synchronous error
3188 3189 3190 3191 3192
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3193
		if (unlikely(status < 0)) {
3194
			err = status;
3195 3196 3197 3198 3199 3200 3201
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3202
		endbyte = pos + status - 1;
3203
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3204
		if (err == 0) {
3205
			iocb->ki_pos = endbyte + 1;
3206
			written += status;
3207
			invalidate_mapping_pages(mapping,
3208 3209
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3210 3211 3212 3213 3214 3215 3216
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3217 3218 3219
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3220
	}
L
Linus Torvalds 已提交
3221 3222 3223 3224
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3225
EXPORT_SYMBOL(__generic_file_write_iter);
3226 3227

/**
3228
 * generic_file_write_iter - write data to a file
3229
 * @iocb:	IO state structure
3230
 * @from:	iov_iter with data to write
3231
 *
3232
 * This is a wrapper around __generic_file_write_iter() to be used by most
3233 3234 3235
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
 */
3236
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3237 3238
{
	struct file *file = iocb->ki_filp;
3239
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3240 3241
	ssize_t ret;

A
Al Viro 已提交
3242
	inode_lock(inode);
3243 3244
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3245
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3246
	inode_unlock(inode);
L
Linus Torvalds 已提交
3247

3248 3249
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3250 3251
	return ret;
}
3252
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3253

3254 3255 3256 3257 3258 3259 3260
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3261
 * (presumably at page->private).  If the release was successful, return '1'.
3262 3263
 * Otherwise return zero.
 *
3264 3265 3266
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3267
 * The @gfp_mask argument specifies whether I/O may be performed to release
3268
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
 *
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);