filemap.c 93.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
12
#include <linux/export.h>
L
Linus Torvalds 已提交
13
#include <linux/compiler.h>
14
#include <linux/dax.h>
L
Linus Torvalds 已提交
15
#include <linux/fs.h>
16
#include <linux/sched/signal.h>
17
#include <linux/uaccess.h>
18
#include <linux/capability.h>
L
Linus Torvalds 已提交
19
#include <linux/kernel_stat.h>
20
#include <linux/gfp.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27 28
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
29
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
30 31 32
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
33
#include <linux/cpuset.h>
34
#include <linux/hugetlb.h>
35
#include <linux/memcontrol.h>
36
#include <linux/cleancache.h>
37
#include <linux/shmem_fs.h>
38
#include <linux/rmap.h>
39
#include <linux/delayacct.h>
40
#include <linux/psi.h>
41 42
#include "internal.h"

R
Robert Jarzmik 已提交
43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
46 47 48
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
49
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
68
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
69
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
70
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
71
 *        ->i_pages lock
L
Linus Torvalds 已提交
72
 *
73
 *  ->i_mutex
74
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
75 76
 *
 *  ->mmap_sem
77
 *    ->i_mmap_rwsem
78
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
79
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
80 81 82 83
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
84
 *  ->i_mutex			(generic_perform_write)
85
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
86
 *
87
 *  bdi->wb.list_lock
88
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
89
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
90
 *
91
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
92 93 94
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
95
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
96
 *
97
 *  ->page_table_lock or pte_lock
98
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
99
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
100
 *    ->i_pages lock		(try_to_unmap_one)
101 102
 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
103
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
104
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
105
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
106
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
107
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
108
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
109
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
110 111
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
112
 * ->i_mmap_rwsem
113
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
114 115
 */

116
static void page_cache_delete(struct address_space *mapping,
117 118
				   struct page *page, void *shadow)
{
119 120
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
121

122
	mapping_set_update(&xas, mapping);
123

124 125 126 127 128
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
		nr = 1U << compound_order(page);
	}
129

130 131 132
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
133

134 135
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
136

137 138 139
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

140 141 142 143 144 145 146 147 148 149 150
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
151 152
}

153 154
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
155
{
156
	int nr;
L
Linus Torvalds 已提交
157

158 159 160 161 162 163 164 165
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
166
		cleancache_invalidate_page(mapping, page);
167

168
	VM_BUG_ON_PAGE(PageTail(page), page);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
189
			page_ref_sub(page, mapcount);
190 191 192
		}
	}

193
	/* hugetlb pages do not participate in page cache accounting. */
194 195
	if (PageHuge(page))
		return;
196

197 198 199 200 201 202 203 204 205
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
	} else {
		VM_BUG_ON_PAGE(PageTransHuge(page), page);
206
	}
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
225
 * is safe.  The caller must hold the i_pages lock.
226 227 228 229 230 231 232 233
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
234
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
235 236
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

254 255 256 257 258 259 260 261 262
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
263
{
264
	struct address_space *mapping = page_mapping(page);
265
	unsigned long flags;
L
Linus Torvalds 已提交
266

M
Matt Mackall 已提交
267
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
268
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
269
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
270
	xa_unlock_irqrestore(&mapping->i_pages, flags);
271

272
	page_cache_free_page(mapping, page);
273 274 275
}
EXPORT_SYMBOL(delete_from_page_cache);

276
/*
277
 * page_cache_delete_batch - delete several pages from page cache
278 279 280
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
281 282 283
 * The function walks over mapping->i_pages and removes pages passed in @pvec
 * from the mapping. The function expects @pvec to be sorted by page index.
 * It tolerates holes in @pvec (mapping entries at those indices are not
284
 * modified). The function expects only THP head pages to be present in the
M
Matthew Wilcox 已提交
285 286
 * @pvec and takes care to delete all corresponding tail pages from the
 * mapping as well.
287
 *
M
Matthew Wilcox 已提交
288
 * The function expects the i_pages lock to be held.
289
 */
290
static void page_cache_delete_batch(struct address_space *mapping,
291 292
			     struct pagevec *pvec)
{
293
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
294 295 296 297
	int total_pages = 0;
	int i = 0, tail_pages = 0;
	struct page *page;

298 299
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
300 301
		if (i >= pagevec_count(pvec) && !tail_pages)
			break;
302
		if (xa_is_value(page))
303 304 305 306 307 308 309
			continue;
		if (!tail_pages) {
			/*
			 * Some page got inserted in our range? Skip it. We
			 * have our pages locked so they are protected from
			 * being removed.
			 */
310 311 312
			if (page != pvec->pages[i]) {
				VM_BUG_ON_PAGE(page->index >
						pvec->pages[i]->index, page);
313
				continue;
314
			}
315 316 317 318 319 320 321 322 323 324
			WARN_ON_ONCE(!PageLocked(page));
			if (PageTransHuge(page) && !PageHuge(page))
				tail_pages = HPAGE_PMD_NR - 1;
			page->mapping = NULL;
			/*
			 * Leave page->index set: truncation lookup relies
			 * upon it
			 */
			i++;
		} else {
325 326
			VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
					!= pvec->pages[i]->index, page);
327 328
			tail_pages--;
		}
329
		xas_store(&xas, NULL);
330 331 332 333 334 335 336 337 338 339 340 341 342 343
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
344
	xa_lock_irqsave(&mapping->i_pages, flags);
345 346 347 348 349
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
350
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
351
	xa_unlock_irqrestore(&mapping->i_pages, flags);
352 353 354 355 356

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

357
int filemap_check_errors(struct address_space *mapping)
358 359 360
{
	int ret = 0;
	/* Check for outstanding write errors */
361 362
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
363
		ret = -ENOSPC;
364 365
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
366 367 368
		ret = -EIO;
	return ret;
}
369
EXPORT_SYMBOL(filemap_check_errors);
370

371 372 373 374 375 376 377 378 379 380
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
381
/**
382
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
383 384
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
385
 * @end:	offset in bytes where the range ends (inclusive)
386
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
387
 *
388 389 390
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
391
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
392
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
393 394
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
395 396
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
397
 */
398 399
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
400 401 402 403
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
404
		.nr_to_write = LONG_MAX,
405 406
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
407 408 409 410 411
	};

	if (!mapping_cap_writeback_dirty(mapping))
		return 0;

412
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
413
	ret = do_writepages(mapping, &wbc);
414
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
415 416 417 418 419 420
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
421
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
422 423 424 425 426 427 428 429
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

430
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431
				loff_t end)
L
Linus Torvalds 已提交
432 433 434
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
435
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
436

437 438 439 440
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
441 442
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
443 444
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
445 446 447 448 449 450 451
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

452 453 454 455 456 457 458 459
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
460 461 462
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
463 464 465 466
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
467
	struct page *page;
468 469
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
470 471 472 473

	if (end_byte < start_byte)
		return false;

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
490

491
	return page != NULL;
492 493 494
}
EXPORT_SYMBOL(filemap_range_has_page);

495
static void __filemap_fdatawait_range(struct address_space *mapping,
496
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
497
{
498 499
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
500 501 502
	struct pagevec pvec;
	int nr_pages;

503
	if (end_byte < start_byte)
504
		return;
L
Linus Torvalds 已提交
505

506
	pagevec_init(&pvec);
507
	while (index <= end) {
L
Linus Torvalds 已提交
508 509
		unsigned i;

510
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
511
				end, PAGECACHE_TAG_WRITEBACK);
512 513 514
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
515 516 517 518
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
519
			ClearPageError(page);
L
Linus Torvalds 已提交
520 521 522 523
		}
		pagevec_release(&pvec);
		cond_resched();
	}
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
539 540
 *
 * Return: error status of the address space.
541 542 543 544
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
545 546
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
547
}
548 549
EXPORT_SYMBOL(filemap_fdatawait_range);

550 551 552 553 554 555 556 557 558 559 560 561 562
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
563 564
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
565 566 567 568 569 570 571 572 573
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
574

575 576 577 578 579 580 581 582 583 584 585
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
586 587
 *
 * Return: error status of the address space.
588
 */
589
int filemap_fdatawait_keep_errors(struct address_space *mapping)
590
{
591
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
592
	return filemap_check_and_keep_errors(mapping);
593
}
594
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
595

596
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
597
{
598 599
	return (!dax_mapping(mapping) && mapping->nrpages) ||
	    (dax_mapping(mapping) && mapping->nrexceptional);
L
Linus Torvalds 已提交
600 601 602 603
}

int filemap_write_and_wait(struct address_space *mapping)
{
604
	int err = 0;
L
Linus Torvalds 已提交
605

606
	if (mapping_needs_writeback(mapping)) {
607 608 609 610 611 612 613 614 615 616 617
		err = filemap_fdatawrite(mapping);
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
		if (err != -EIO) {
			int err2 = filemap_fdatawait(mapping);
			if (!err)
				err = err2;
618 619 620
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
621
		}
622 623
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
624
	}
625
	return err;
L
Linus Torvalds 已提交
626
}
627
EXPORT_SYMBOL(filemap_write_and_wait);
L
Linus Torvalds 已提交
628

629 630 631 632 633 634
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
635 636
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
637
 * Note that @lend is inclusive (describes the last byte to be written) so
638
 * that this function can be used to write to the very end-of-file (end = -1).
639 640
 *
 * Return: error status of the address space.
641
 */
L
Linus Torvalds 已提交
642 643 644
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
645
	int err = 0;
L
Linus Torvalds 已提交
646

647
	if (mapping_needs_writeback(mapping)) {
648 649 650 651
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO) {
652 653
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
654 655
			if (!err)
				err = err2;
656 657 658
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
659
		}
660 661
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
662
	}
663
	return err;
L
Linus Torvalds 已提交
664
}
665
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
666

667 668
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
669
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
696 697
 *
 * Return: %0 on success, negative error code otherwise.
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
715 716 717 718 719 720 721 722

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
740 741
 *
 * Return: %0 on success, negative error code otherwise.
742 743 744 745 746 747
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

748
	if (mapping_needs_writeback(mapping)) {
749 750 751 752 753 754 755 756 757 758 759 760 761
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

762 763 764 765 766 767 768 769 770 771 772 773
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
774
 * The remove + add is atomic.  This function cannot fail.
775 776
 *
 * Return: %0
777 778 779
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
780 781 782 783 784
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
785

786 787 788
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
789

790 791 792
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
793

794 795
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
796

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
		__dec_node_page_state(new, NR_FILE_PAGES);
	if (!PageHuge(new))
		__inc_node_page_state(new, NR_FILE_PAGES);
	if (PageSwapBacked(old))
		__dec_node_page_state(new, NR_SHMEM);
	if (PageSwapBacked(new))
		__inc_node_page_state(new, NR_SHMEM);
	xas_unlock_irqrestore(&xas, flags);
	mem_cgroup_migrate(old, new);
	if (freepage)
		freepage(old);
	put_page(old);
812

813
	return 0;
814 815 816
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

817 818 819 820
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
821
{
822
	XA_STATE(xas, &mapping->i_pages, offset);
823 824
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
825
	int error;
826
	void *old;
N
Nick Piggin 已提交
827

828 829
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
830
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
831

832 833
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
834
					      gfp_mask, &memcg, false);
835 836 837
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
838

839
	get_page(page);
840 841 842
	page->mapping = mapping;
	page->index = offset;

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
			__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

	if (xas_error(&xas))
		goto error;
868

869
	if (!huge)
870
		mem_cgroup_commit_charge(page, memcg, false, false);
871 872
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
873
error:
874 875
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
876
	if (!huge)
877
		mem_cgroup_cancel_charge(page, memcg, false);
878
	put_page(page);
879
	return xas_error(&xas);
L
Linus Torvalds 已提交
880
}
881 882 883 884 885 886 887 888 889 890

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
891 892
 *
 * Return: %0 on success, negative error code otherwise.
893 894 895 896 897 898 899
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
900
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
901 902

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
903
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
904
{
905
	void *shadow = NULL;
906 907
	int ret;

908
	__SetPageLocked(page);
909 910 911
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
912
		__ClearPageLocked(page);
913 914 915 916 917
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
918 919 920
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
921
		 */
922 923 924
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
925 926
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
927 928
	return ret;
}
929
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
930

931
#ifdef CONFIG_NUMA
932
struct page *__page_cache_alloc(gfp_t gfp)
933
{
934 935 936
	int n;
	struct page *page;

937
	if (cpuset_do_page_mem_spread()) {
938 939
		unsigned int cpuset_mems_cookie;
		do {
940
			cpuset_mems_cookie = read_mems_allowed_begin();
941
			n = cpuset_mem_spread_node();
942
			page = __alloc_pages_node(n, gfp, 0);
943
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
944

945
		return page;
946
	}
947
	return alloc_pages(gfp, 0);
948
}
949
EXPORT_SYMBOL(__page_cache_alloc);
950 951
#endif

L
Linus Torvalds 已提交
952 953 954 955 956 957 958 959 960 961
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
962 963 964 965 966
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
967
{
968
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
969 970
}

971
void __init pagecache_init(void)
L
Linus Torvalds 已提交
972
{
973
	int i;
L
Linus Torvalds 已提交
974

975 976 977 978
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
979 980
}

L
Linus Torvalds 已提交
981
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
982 983 984 985 986 987 988 989 990
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
991
	wait_queue_entry_t wait;
992 993
};

994
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
995
{
996 997 998 999 1000 1001 1002
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
1003

1004 1005
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
1006

1007 1008 1009 1010 1011 1012 1013 1014
	/*
	 * Stop walking if it's locked.
	 * Is this safe if put_and_wait_on_page_locked() is in use?
	 * Yes: the waker must hold a reference to this page, and if PG_locked
	 * has now already been set by another task, that task must also hold
	 * a reference to the *same usage* of this page; so there is no need
	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
	 */
1015
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
1016
		return -1;
1017

1018
	return autoremove_wake_function(wait, mode, sync, key);
1019 1020
}

1021
static void wake_up_page_bit(struct page *page, int bit_nr)
1022
{
1023 1024 1025
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1026
	wait_queue_entry_t bookmark;
1027

1028 1029 1030 1031
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1032 1033 1034 1035 1036
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1037
	spin_lock_irqsave(&q->lock, flags);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1074 1075 1076 1077 1078 1079 1080

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1097
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1098
	struct page *page, int bit_nr, int state, enum behavior behavior)
1099 1100
{
	struct wait_page_queue wait_page;
1101
	wait_queue_entry_t *wait = &wait_page.wait;
1102
	bool bit_is_set;
1103
	bool thrashing = false;
1104
	bool delayacct = false;
1105
	unsigned long pflags;
1106 1107
	int ret = 0;

1108
	if (bit_nr == PG_locked &&
1109
	    !PageUptodate(page) && PageWorkingset(page)) {
1110
		if (!PageSwapBacked(page)) {
1111
			delayacct_thrashing_start();
1112 1113
			delayacct = true;
		}
1114
		psi_memstall_enter(&pflags);
1115 1116 1117
		thrashing = true;
	}

1118
	init_wait(wait);
1119
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1120 1121 1122 1123 1124 1125 1126
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1127
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1128
			__add_wait_queue_entry_tail(q, wait);
1129 1130 1131 1132 1133 1134 1135
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

1136 1137 1138 1139 1140
		bit_is_set = test_bit(bit_nr, &page->flags);
		if (behavior == DROP)
			put_page(page);

		if (likely(bit_is_set))
1141 1142
			io_schedule();

1143
		if (behavior == EXCLUSIVE) {
1144 1145
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
1146
		} else if (behavior == SHARED) {
1147 1148 1149
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1150

1151
		if (signal_pending_state(state, current)) {
1152 1153 1154
			ret = -EINTR;
			break;
		}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

		if (behavior == DROP) {
			/*
			 * We can no longer safely access page->flags:
			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
			 * there is a risk of waiting forever on a page reused
			 * for something that keeps it locked indefinitely.
			 * But best check for -EINTR above before breaking.
			 */
			break;
		}
1166 1167 1168 1169
	}

	finish_wait(q, wait);

1170
	if (thrashing) {
1171
		if (delayacct)
1172 1173 1174
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1190
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1191 1192 1193 1194 1195 1196
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1197
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1198
}
1199
EXPORT_SYMBOL(wait_on_page_bit_killable);
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1220 1221
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1222 1223
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1224 1225 1226
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1227
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1228 1229 1230 1231 1232
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1233
	__add_wait_queue_entry_tail(q, waiter);
1234
	SetPageWaiters(page);
1235 1236 1237 1238
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1257
	return test_bit(PG_waiters, mem);
1258 1259 1260 1261
}

#endif

L
Linus Torvalds 已提交
1262
/**
1263
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1264 1265 1266 1267
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1268
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1269 1270
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1271 1272 1273 1274 1275
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1276
 */
H
Harvey Harrison 已提交
1277
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1278
{
1279
	BUILD_BUG_ON(PG_waiters != 7);
1280
	page = compound_head(page);
1281
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1282 1283
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1284 1285 1286
}
EXPORT_SYMBOL(unlock_page);

1287 1288 1289
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1290 1291 1292
 */
void end_page_writeback(struct page *page)
{
1293 1294 1295 1296 1297 1298 1299 1300 1301
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1302
		rotate_reclaimable_page(page);
1303
	}
1304 1305 1306 1307

	if (!test_clear_page_writeback(page))
		BUG();

1308
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1309 1310 1311 1312
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1313 1314 1315 1316
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1317
void page_endio(struct page *page, bool is_write, int err)
1318
{
1319
	if (!is_write) {
1320 1321 1322 1323 1324 1325 1326
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1327
	} else {
1328
		if (err) {
1329 1330
			struct address_space *mapping;

1331
			SetPageError(page);
1332 1333 1334
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1335 1336 1337 1338 1339 1340
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1341 1342
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1343
 * @__page: the page to lock
L
Linus Torvalds 已提交
1344
 */
1345
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1346
{
1347 1348
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1349 1350
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1351 1352 1353
}
EXPORT_SYMBOL(__lock_page);

1354
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1355
{
1356 1357
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1358 1359
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1360
}
1361
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1374 1375 1376
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1389
			wait_on_page_locked(page);
1390
		return 0;
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1403 1404 1405
	}
}

1406
/**
1407 1408 1409 1410
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1411
 *
1412 1413
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1414
 *
1415 1416 1417 1418 1419
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1420
 *
1421 1422 1423
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1424
 */
1425
pgoff_t page_cache_next_miss(struct address_space *mapping,
1426 1427
			     pgoff_t index, unsigned long max_scan)
{
1428
	XA_STATE(xas, &mapping->i_pages, index);
1429

1430 1431 1432
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1433
			break;
1434
		if (xas.xa_index == 0)
1435 1436 1437
			break;
	}

1438
	return xas.xa_index;
1439
}
1440
EXPORT_SYMBOL(page_cache_next_miss);
1441 1442

/**
1443 1444 1445 1446
 * page_cache_prev_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1447
 *
1448 1449
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1450
 *
1451 1452 1453 1454 1455
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1456
 *
1457 1458 1459
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1460
 */
1461
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1462 1463
			     pgoff_t index, unsigned long max_scan)
{
1464
	XA_STATE(xas, &mapping->i_pages, index);
1465

1466 1467 1468
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1469
			break;
1470
		if (xas.xa_index == ULONG_MAX)
1471 1472 1473
			break;
	}

1474
	return xas.xa_index;
1475
}
1476
EXPORT_SYMBOL(page_cache_prev_miss);
1477

1478
/**
1479
 * find_get_entry - find and get a page cache entry
1480
 * @mapping: the address_space to search
1481 1482 1483 1484
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1485
 *
1486 1487
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1488
 *
1489
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1490
 */
1491
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1492
{
1493
	XA_STATE(xas, &mapping->i_pages, offset);
1494
	struct page *head, *page;
L
Linus Torvalds 已提交
1495

N
Nick Piggin 已提交
1496 1497
	rcu_read_lock();
repeat:
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1508

1509 1510 1511
	head = compound_head(page);
	if (!page_cache_get_speculative(head))
		goto repeat;
1512

1513 1514 1515 1516 1517
	/* The page was split under us? */
	if (compound_head(page) != head) {
		put_page(head);
		goto repeat;
	}
N
Nick Piggin 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * Has the page moved?
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
		put_page(head);
		goto repeat;
N
Nick Piggin 已提交
1527
	}
N
Nick Piggin 已提交
1528
out:
N
Nick Piggin 已提交
1529 1530
	rcu_read_unlock();

L
Linus Torvalds 已提交
1531 1532
	return page;
}
1533
EXPORT_SYMBOL(find_get_entry);
L
Linus Torvalds 已提交
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1544 1545
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1546 1547
 *
 * find_lock_entry() may sleep.
1548 1549
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1550 1551
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1552 1553 1554 1555
{
	struct page *page;

repeat:
1556
	page = find_get_entry(mapping, offset);
1557
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1558 1559
		lock_page(page);
		/* Has the page been truncated? */
1560
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1561
			unlock_page(page);
1562
			put_page(page);
N
Nick Piggin 已提交
1563
			goto repeat;
L
Linus Torvalds 已提交
1564
		}
1565
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1566 1567 1568
	}
	return page;
}
1569 1570 1571
EXPORT_SYMBOL(find_lock_entry);

/**
1572
 * pagecache_get_page - find and get a page reference
1573 1574
 * @mapping: the address_space to search
 * @offset: the page index
1575
 * @fgp_flags: PCG flags
1576
 * @gfp_mask: gfp mask to use for the page cache data page allocation
1577
 *
1578
 * Looks up the page cache slot at @mapping & @offset.
L
Linus Torvalds 已提交
1579
 *
1580
 * PCG flags modify how the page is returned.
1581
 *
1582 1583 1584 1585 1586 1587 1588
 * @fgp_flags can be:
 *
 * - FGP_ACCESSED: the page will be marked accessed
 * - FGP_LOCK: Page is return locked
 * - FGP_CREAT: If page is not present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU
 *   list. The page is returned locked and with an increased
1589
 *   refcount.
L
Linus Torvalds 已提交
1590
 *
1591 1592
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 * if the GFP flags specified for FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1593
 *
1594
 * If there is a page cache page, it is returned with an increased refcount.
1595 1596
 *
 * Return: the found page or %NULL otherwise.
L
Linus Torvalds 已提交
1597
 */
1598
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1599
	int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1600
{
N
Nick Piggin 已提交
1601
	struct page *page;
1602

L
Linus Torvalds 已提交
1603
repeat:
1604
	page = find_get_entry(mapping, offset);
1605
	if (xa_is_value(page))
1606 1607 1608 1609 1610 1611 1612
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1613
				put_page(page);
1614 1615 1616 1617 1618 1619 1620 1621 1622
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
1623
			put_page(page);
1624 1625 1626 1627 1628
			goto repeat;
		}
		VM_BUG_ON_PAGE(page->index != offset, page);
	}

1629
	if (fgp_flags & FGP_ACCESSED)
1630 1631 1632 1633 1634 1635
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1636 1637 1638
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1639

1640
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1641 1642
		if (!page)
			return NULL;
1643 1644 1645 1646

		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
			fgp_flags |= FGP_LOCK;

1647
		/* Init accessed so avoid atomic mark_page_accessed later */
1648
		if (fgp_flags & FGP_ACCESSED)
1649
			__SetPageReferenced(page);
1650

1651
		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
N
Nick Piggin 已提交
1652
		if (unlikely(err)) {
1653
			put_page(page);
N
Nick Piggin 已提交
1654 1655 1656
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1657 1658
		}
	}
1659

L
Linus Torvalds 已提交
1660 1661
	return page;
}
1662
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1681 1682
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1683
 *
1684
 * Return: the number of pages and shadow entries which were found.
1685 1686 1687 1688 1689
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1690 1691
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1692 1693 1694 1695 1696 1697
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1698 1699 1700
	xas_for_each(&xas, page, ULONG_MAX) {
		struct page *head;
		if (xas_retry(&xas, page))
1701
			continue;
1702 1703 1704 1705 1706 1707
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1708
			goto export;
1709 1710 1711

		head = compound_head(page);
		if (!page_cache_get_speculative(head))
1712
			goto retry;
1713 1714

		/* The page was split under us? */
1715 1716
		if (compound_head(page) != head)
			goto put_page;
1717 1718

		/* Has the page moved? */
1719 1720 1721
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;

1722
export:
1723
		indices[ret] = xas.xa_index;
1724 1725 1726
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1727 1728 1729 1730 1731
		continue;
put_page:
		put_page(head);
retry:
		xas_reset(&xas);
1732 1733 1734 1735 1736
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1737
/**
J
Jan Kara 已提交
1738
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1739 1740
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1741
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1742 1743 1744
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1745 1746 1747 1748
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1749 1750 1751
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1752
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1753
 *
1754 1755
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1756
 * reached.
L
Linus Torvalds 已提交
1757
 */
J
Jan Kara 已提交
1758 1759 1760
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1761
{
1762 1763
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1764 1765 1766 1767
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1768 1769

	rcu_read_lock();
1770 1771 1772
	xas_for_each(&xas, page, end) {
		struct page *head;
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1773
			continue;
1774 1775
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1776
			continue;
N
Nick Piggin 已提交
1777

1778 1779
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
1780
			goto retry;
1781 1782

		/* The page was split under us? */
1783 1784
		if (compound_head(page) != head)
			goto put_page;
N
Nick Piggin 已提交
1785 1786

		/* Has the page moved? */
1787 1788
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1789

N
Nick Piggin 已提交
1790
		pages[ret] = page;
J
Jan Kara 已提交
1791
		if (++ret == nr_pages) {
1792
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1793 1794
			goto out;
		}
1795 1796 1797 1798 1799
		continue;
put_page:
		put_page(head);
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1800
	}
1801

J
Jan Kara 已提交
1802 1803 1804
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1805
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1806 1807 1808 1809 1810 1811 1812
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1813
	rcu_read_unlock();
1814

L
Linus Torvalds 已提交
1815 1816 1817
	return ret;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1828
 * Return: the number of pages which were found.
1829 1830 1831 1832
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1833 1834
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1835 1836 1837 1838
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1839 1840

	rcu_read_lock();
1841 1842 1843 1844 1845 1846 1847 1848 1849
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		struct page *head;
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1850
			break;
1851

1852 1853
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
1854
			goto retry;
1855 1856

		/* The page was split under us? */
1857 1858
		if (compound_head(page) != head)
			goto put_page;
N
Nick Piggin 已提交
1859 1860

		/* Has the page moved? */
1861 1862
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1863 1864

		pages[ret] = page;
1865 1866
		if (++ret == nr_pages)
			break;
1867 1868 1869 1870 1871
		continue;
put_page:
		put_page(head);
retry:
		xas_reset(&xas);
1872
	}
N
Nick Piggin 已提交
1873 1874
	rcu_read_unlock();
	return ret;
1875
}
1876
EXPORT_SYMBOL(find_get_pages_contig);
1877

1878
/**
1879
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1880 1881
 * @mapping:	the address_space to search
 * @index:	the starting page index
1882
 * @end:	The final page index (inclusive)
1883 1884 1885 1886
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1887
 * Like find_get_pages, except we only return pages which are tagged with
1888
 * @tag.   We update @index to index the next page for the traversal.
1889 1890
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1891
 */
1892
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1893
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1894
			struct page **pages)
L
Linus Torvalds 已提交
1895
{
1896 1897
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1898 1899 1900 1901
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1902 1903

	rcu_read_lock();
1904 1905 1906
	xas_for_each_marked(&xas, page, end, tag) {
		struct page *head;
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1907
			continue;
1908 1909 1910 1911 1912 1913
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1914
			continue;
N
Nick Piggin 已提交
1915

1916 1917
		head = compound_head(page);
		if (!page_cache_get_speculative(head))
1918
			goto retry;
N
Nick Piggin 已提交
1919

1920
		/* The page was split under us? */
1921 1922
		if (compound_head(page) != head)
			goto put_page;
1923

N
Nick Piggin 已提交
1924
		/* Has the page moved? */
1925 1926
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1927 1928

		pages[ret] = page;
1929
		if (++ret == nr_pages) {
1930
			*index = xas.xa_index + 1;
1931 1932
			goto out;
		}
1933 1934 1935 1936 1937
		continue;
put_page:
		put_page(head);
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1938
	}
1939

1940
	/*
1941
	 * We come here when we got to @end. We take care to not overflow the
1942
	 * index @index as it confuses some of the callers. This breaks the
1943 1944
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
1945 1946 1947 1948 1949 1950
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1951
	rcu_read_unlock();
L
Linus Torvalds 已提交
1952 1953 1954

	return ret;
}
1955
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1956

R
Ross Zwisler 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
/**
 * find_get_entries_tag - find and return entries that match @tag
 * @mapping:	the address_space to search
 * @start:	the starting page cache index
 * @tag:	the tag index
 * @nr_entries:	the maximum number of entries
 * @entries:	where the resulting entries are placed
 * @indices:	the cache indices corresponding to the entries in @entries
 *
 * Like find_get_entries, except we only return entries which are tagged with
 * @tag.
1968 1969
 *
 * Return: the number of entries which were found.
R
Ross Zwisler 已提交
1970 1971
 */
unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1972
			xa_mark_t tag, unsigned int nr_entries,
R
Ross Zwisler 已提交
1973 1974
			struct page **entries, pgoff_t *indices)
{
1975 1976
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
R
Ross Zwisler 已提交
1977 1978 1979 1980 1981 1982
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1983 1984 1985
	xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
		struct page *head;
		if (xas_retry(&xas, page))
R
Ross Zwisler 已提交
1986
			continue;
1987 1988 1989 1990 1991 1992
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
R
Ross Zwisler 已提交
1993
			goto export;
1994 1995 1996

		head = compound_head(page);
		if (!page_cache_get_speculative(head))
1997
			goto retry;
R
Ross Zwisler 已提交
1998

1999
		/* The page was split under us? */
2000 2001
		if (compound_head(page) != head)
			goto put_page;
2002

R
Ross Zwisler 已提交
2003
		/* Has the page moved? */
2004 2005 2006
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;

R
Ross Zwisler 已提交
2007
export:
2008
		indices[ret] = xas.xa_index;
R
Ross Zwisler 已提交
2009 2010 2011
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
2012 2013 2014 2015 2016
		continue;
put_page:
		put_page(head);
retry:
		xas_reset(&xas);
R
Ross Zwisler 已提交
2017 2018 2019 2020 2021 2022
	}
	rcu_read_unlock();
	return ret;
}
EXPORT_SYMBOL(find_get_entries_tag);

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
					struct file_ra_state *ra)
{
	ra->ra_pages /= 4;
}

2044
/**
2045 2046
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
2047 2048
 * @iter:	data destination
 * @written:	already copied
2049
 *
L
Linus Torvalds 已提交
2050
 * This is a generic file read routine, and uses the
2051
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
2052 2053 2054
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
2055 2056 2057 2058
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
2059
 */
2060
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2061
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
2062
{
2063
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
2064
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
2065
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
2066
	struct file_ra_state *ra = &filp->f_ra;
2067
	loff_t *ppos = &iocb->ki_pos;
2068 2069 2070 2071
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
2072
	unsigned int prev_offset;
2073
	int error = 0;
L
Linus Torvalds 已提交
2074

2075
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2076
		return 0;
2077 2078
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2079 2080 2081 2082 2083
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2084 2085 2086

	for (;;) {
		struct page *page;
2087
		pgoff_t end_index;
N
NeilBrown 已提交
2088
		loff_t isize;
L
Linus Torvalds 已提交
2089 2090 2091 2092
		unsigned long nr, ret;

		cond_resched();
find_page:
2093 2094 2095 2096 2097
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2098
		page = find_get_page(mapping, index);
2099
		if (!page) {
2100 2101
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2102
			page_cache_sync_readahead(mapping,
2103
					ra, filp,
2104 2105 2106 2107 2108 2109
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2110
			page_cache_async_readahead(mapping,
2111
					ra, filp, page,
2112
					index, last_index - index);
L
Linus Torvalds 已提交
2113
		}
2114
		if (!PageUptodate(page)) {
2115 2116 2117 2118 2119
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2120 2121 2122 2123 2124
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2125 2126 2127
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2128 2129 2130
			if (PageUptodate(page))
				goto page_ok;

2131
			if (inode->i_blkbits == PAGE_SHIFT ||
2132 2133
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2134
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2135
			if (unlikely(iov_iter_is_pipe(iter)))
2136
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2137
			if (!trylock_page(page))
2138
				goto page_not_up_to_date;
2139 2140 2141
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2142
			if (!mapping->a_ops->is_partially_uptodate(page,
2143
							offset, iter->count))
2144 2145 2146
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2147
page_ok:
N
NeilBrown 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2158
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2159
		if (unlikely(!isize || index > end_index)) {
2160
			put_page(page);
N
NeilBrown 已提交
2161 2162 2163 2164
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2165
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2166
		if (index == end_index) {
2167
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2168
			if (nr <= offset) {
2169
				put_page(page);
N
NeilBrown 已提交
2170 2171 2172 2173
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2183 2184
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2185
		 */
2186
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191 2192 2193
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2194 2195

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2196
		offset += ret;
2197 2198
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2199
		prev_offset = offset;
L
Linus Torvalds 已提交
2200

2201
		put_page(page);
2202 2203 2204 2205 2206 2207 2208 2209
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2210 2211 2212

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2213 2214 2215
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2216

2217
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2218
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2219 2220
		if (!page->mapping) {
			unlock_page(page);
2221
			put_page(page);
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2232 2233 2234 2235 2236 2237
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2238 2239 2240
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2241 2242
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2243
				put_page(page);
2244
				error = 0;
2245 2246
				goto find_page;
			}
L
Linus Torvalds 已提交
2247
			goto readpage_error;
2248
		}
L
Linus Torvalds 已提交
2249 2250

		if (!PageUptodate(page)) {
2251 2252 2253
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2254 2255 2256
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2257
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2258 2259
					 */
					unlock_page(page);
2260
					put_page(page);
L
Linus Torvalds 已提交
2261 2262 2263
					goto find_page;
				}
				unlock_page(page);
2264
				shrink_readahead_size_eio(filp, ra);
2265 2266
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271 2272 2273 2274
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2275
		put_page(page);
L
Linus Torvalds 已提交
2276 2277 2278 2279 2280 2281 2282
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2283
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2284
		if (!page) {
2285
			error = -ENOMEM;
N
Nick Piggin 已提交
2286
			goto out;
L
Linus Torvalds 已提交
2287
		}
2288
		error = add_to_page_cache_lru(page, mapping, index,
2289
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2290
		if (error) {
2291
			put_page(page);
2292 2293
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2294
				goto find_page;
2295
			}
L
Linus Torvalds 已提交
2296 2297 2298 2299 2300
			goto out;
		}
		goto readpage;
	}

2301 2302
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2303
out:
2304
	ra->prev_pos = prev_index;
2305
	ra->prev_pos <<= PAGE_SHIFT;
2306
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2307

2308
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2309
	file_accessed(filp);
2310
	return written ? written : error;
L
Linus Torvalds 已提交
2311 2312
}

2313
/**
A
Al Viro 已提交
2314
 * generic_file_read_iter - generic filesystem read routine
2315
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2316
 * @iter:	destination for the data read
2317
 *
A
Al Viro 已提交
2318
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2319
 * that can use the page cache directly.
2320 2321 2322
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code if nothing was read
L
Linus Torvalds 已提交
2323 2324
 */
ssize_t
A
Al Viro 已提交
2325
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2326
{
2327
	size_t count = iov_iter_count(iter);
2328
	ssize_t retval = 0;
2329 2330 2331

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2332

2333
	if (iocb->ki_flags & IOCB_DIRECT) {
2334
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2335 2336
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2337
		loff_t size;
L
Linus Torvalds 已提交
2338 2339

		size = i_size_read(inode);
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2351

2352 2353
		file_accessed(file);

2354
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2355
		if (retval >= 0) {
2356
			iocb->ki_pos += retval;
2357
			count -= retval;
2358
		}
A
Al Viro 已提交
2359
		iov_iter_revert(iter, count - iov_iter_count(iter));
2360

2361 2362 2363 2364 2365 2366
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2367 2368
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2369
		 */
2370
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2371
		    IS_DAX(inode))
2372
			goto out;
L
Linus Torvalds 已提交
2373 2374
	}

2375
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2376 2377 2378
out:
	return retval;
}
A
Al Viro 已提交
2379
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2380 2381

#ifdef CONFIG_MMU
2382 2383 2384 2385
/**
 * page_cache_read - adds requested page to the page cache if not already there
 * @file:	file to read
 * @offset:	page index
2386
 * @gfp_mask:	memory allocation flags
2387
 *
L
Linus Torvalds 已提交
2388 2389
 * This adds the requested page to the page cache if it isn't already there,
 * and schedules an I/O to read in its contents from disk.
2390 2391
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
2392
 */
2393
static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2394 2395
{
	struct address_space *mapping = file->f_mapping;
2396
	struct page *page;
2397
	int ret;
L
Linus Torvalds 已提交
2398

2399
	do {
M
Mel Gorman 已提交
2400
		page = __page_cache_alloc(gfp_mask);
2401 2402 2403
		if (!page)
			return -ENOMEM;

2404
		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2405 2406 2407 2408
		if (ret == 0)
			ret = mapping->a_ops->readpage(file, page);
		else if (ret == -EEXIST)
			ret = 0; /* losing race to add is OK */
L
Linus Torvalds 已提交
2409

2410
		put_page(page);
L
Linus Torvalds 已提交
2411

2412
	} while (ret == AOP_TRUNCATED_PAGE);
2413

2414
	return ret;
L
Linus Torvalds 已提交
2415 2416 2417 2418
}

#define MMAP_LOTSAMISS  (100)

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/*
 * Synchronous readahead happens when we don't even find
 * a page in the page cache at all.
 */
static void do_sync_mmap_readahead(struct vm_area_struct *vma,
				   struct file_ra_state *ra,
				   struct file *file,
				   pgoff_t offset)
{
	struct address_space *mapping = file->f_mapping;

	/* If we don't want any read-ahead, don't bother */
2431
	if (vma->vm_flags & VM_RAND_READ)
2432
		return;
2433 2434
	if (!ra->ra_pages)
		return;
2435

2436
	if (vma->vm_flags & VM_SEQ_READ) {
2437 2438
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2439 2440 2441
		return;
	}

2442 2443
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2444 2445 2446 2447 2448 2449 2450 2451 2452
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
		return;

2453 2454 2455
	/*
	 * mmap read-around
	 */
2456 2457 2458
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2459
	ra_submit(ra, mapping, file);
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
 * so we want to possibly extend the readahead further..
 */
static void do_async_mmap_readahead(struct vm_area_struct *vma,
				    struct file_ra_state *ra,
				    struct file *file,
				    struct page *page,
				    pgoff_t offset)
{
	struct address_space *mapping = file->f_mapping;

	/* If we don't want any read-ahead, don't bother */
2475
	if (vma->vm_flags & VM_RAND_READ)
2476 2477 2478 2479
		return;
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
	if (PageReadahead(page))
2480 2481
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2482 2483
}

2484
/**
2485
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2486
 * @vmf:	struct vm_fault containing details of the fault
2487
 *
2488
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2489 2490 2491 2492 2493
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
 * If our return value has VM_FAULT_RETRY set, it's because
 * lock_page_or_retry() returned 0.
 * The mmap_sem has usually been released in this case.
 * See __lock_page_or_retry() for the exception.
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2506 2507
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2508
 */
2509
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2510 2511
{
	int error;
2512
	struct file *file = vmf->vma->vm_file;
L
Linus Torvalds 已提交
2513 2514 2515
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2516
	pgoff_t offset = vmf->pgoff;
2517
	pgoff_t max_off;
L
Linus Torvalds 已提交
2518
	struct page *page;
2519
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2520

2521 2522
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2523
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2524 2525

	/*
2526
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2527
	 */
2528
	page = find_get_page(mapping, offset);
2529
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2530
		/*
2531 2532
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2533
		 */
2534
		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2535
	} else if (!page) {
2536
		/* No page in the page cache at all */
2537
		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2538
		count_vm_event(PGMAJFAULT);
2539
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2540 2541
		ret = VM_FAULT_MAJOR;
retry_find:
2542
		page = find_get_page(mapping, offset);
L
Linus Torvalds 已提交
2543 2544 2545 2546
		if (!page)
			goto no_cached_page;
	}

2547
	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2548
		put_page(page);
2549
		return ret | VM_FAULT_RETRY;
2550
	}
2551 2552 2553 2554 2555 2556 2557

	/* Did it get truncated? */
	if (unlikely(page->mapping != mapping)) {
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2558
	VM_BUG_ON_PAGE(page->index != offset, page);
2559

L
Linus Torvalds 已提交
2560
	/*
2561 2562
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2563
	 */
2564
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2565 2566
		goto page_not_uptodate;

2567 2568 2569 2570
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2571 2572
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2573
		unlock_page(page);
2574
		put_page(page);
2575
		return VM_FAULT_SIGBUS;
2576 2577
	}

N
Nick Piggin 已提交
2578
	vmf->page = page;
N
Nick Piggin 已提交
2579
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584 2585

no_cached_page:
	/*
	 * We're only likely to ever get here if MADV_RANDOM is in
	 * effect.
	 */
2586
	error = page_cache_read(file, offset, vmf->gfp_mask);
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

	/*
	 * The page we want has now been added to the page cache.
	 * In the unlikely event that someone removed it in the
	 * meantime, we'll just come back here and read it again.
	 */
	if (error >= 0)
		goto retry_find;

	/*
	 * An error return from page_cache_read can result if the
	 * system is low on memory, or a problem occurs while trying
	 * to schedule I/O.
	 */
S
Souptick Joarder 已提交
2601
	return vmf_error(error);
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2611
	error = mapping->a_ops->readpage(file, page);
2612 2613 2614 2615 2616
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2617
	put_page(page);
2618 2619

	if (!error || error == AOP_TRUNCATED_PAGE)
2620
		goto retry_find;
L
Linus Torvalds 已提交
2621

2622
	/* Things didn't work out. Return zero to tell the mm layer so. */
2623
	shrink_readahead_size_eio(file, ra);
N
Nick Piggin 已提交
2624
	return VM_FAULT_SIGBUS;
2625 2626 2627
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2628
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2629
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2630
{
J
Jan Kara 已提交
2631
	struct file *file = vmf->vma->vm_file;
2632
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2633
	pgoff_t last_pgoff = start_pgoff;
2634
	unsigned long max_idx;
2635
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2636
	struct page *head, *page;
2637 2638

	rcu_read_lock();
2639 2640 2641 2642
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2643
			goto next;
2644

2645
		head = compound_head(page);
2646 2647 2648 2649 2650 2651 2652

		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
		if (PageLocked(head))
			goto next;
2653
		if (!page_cache_get_speculative(head))
2654
			goto next;
2655

2656
		/* The page was split under us? */
2657 2658
		if (compound_head(page) != head)
			goto skip;
2659

2660
		/* Has the page moved? */
2661 2662
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2674 2675
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2676 2677 2678 2679
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2680

2681
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2682
		if (vmf->pte)
2683 2684
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
J
Jan Kara 已提交
2685
		if (alloc_set_pte(vmf, NULL, page))
2686
			goto unlock;
2687 2688 2689 2690 2691
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2692
		put_page(page);
2693
next:
2694
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2695
		if (pmd_trans_huge(*vmf->pmd))
2696
			break;
2697 2698 2699 2700 2701
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2702
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2703 2704
{
	struct page *page = vmf->page;
2705
	struct inode *inode = file_inode(vmf->vma->vm_file);
2706
	vm_fault_t ret = VM_FAULT_LOCKED;
2707

2708
	sb_start_pagefault(inode->i_sb);
2709
	file_update_time(vmf->vma->vm_file);
2710 2711 2712 2713 2714 2715
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2716 2717 2718 2719 2720 2721
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2722
	wait_for_stable_page(page);
2723
out:
2724
	sb_end_pagefault(inode->i_sb);
2725 2726 2727
	return ret;
}

2728
const struct vm_operations_struct generic_file_vm_ops = {
2729
	.fault		= filemap_fault,
2730
	.map_pages	= filemap_map_pages,
2731
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2757
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2758
{
S
Souptick Joarder 已提交
2759
	return VM_FAULT_SIGBUS;
2760
}
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2771
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2772 2773 2774
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2775 2776 2777 2778 2779
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2780
			put_page(page);
S
Sasha Levin 已提交
2781 2782 2783 2784 2785 2786
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2787
static struct page *do_read_cache_page(struct address_space *mapping,
2788
				pgoff_t index,
2789
				int (*filler)(void *, struct page *),
2790 2791
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2792
{
N
Nick Piggin 已提交
2793
	struct page *page;
L
Linus Torvalds 已提交
2794 2795 2796 2797
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2798
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2799 2800
		if (!page)
			return ERR_PTR(-ENOMEM);
2801
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2802
		if (unlikely(err)) {
2803
			put_page(page);
N
Nick Piggin 已提交
2804 2805
			if (err == -EEXIST)
				goto repeat;
2806
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2807 2808
			return ERR_PTR(err);
		}
2809 2810

filler:
L
Linus Torvalds 已提交
2811 2812
		err = filler(data, page);
		if (err < 0) {
2813
			put_page(page);
2814
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2815 2816
		}

2817 2818 2819 2820 2821
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2822 2823 2824
	if (PageUptodate(page))
		goto out;

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2861
	lock_page(page);
2862 2863

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2864 2865
	if (!page->mapping) {
		unlock_page(page);
2866
		put_page(page);
2867
		goto repeat;
L
Linus Torvalds 已提交
2868
	}
2869 2870

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2871 2872 2873 2874
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2875 2876
	goto filler;

2877
out:
2878 2879 2880
	mark_page_accessed(page);
	return page;
}
2881 2882

/**
S
Sasha Levin 已提交
2883
 * read_cache_page - read into page cache, fill it if needed
2884 2885 2886
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2887
 * @data:	first arg to filler(data, page) function, often left as NULL
2888 2889
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2890
 * not set, try to fill the page and wait for it to become unlocked.
2891 2892
 *
 * If the page does not get brought uptodate, return -EIO.
2893 2894
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2895
 */
S
Sasha Levin 已提交
2896
struct page *read_cache_page(struct address_space *mapping,
2897
				pgoff_t index,
2898
				int (*filler)(void *, struct page *),
2899 2900 2901 2902
				void *data)
{
	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
}
S
Sasha Levin 已提交
2903
EXPORT_SYMBOL(read_cache_page);
2904 2905 2906 2907 2908 2909 2910 2911

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2912
 * any new page allocations done using the specified allocation flags.
2913 2914
 *
 * If the page does not get brought uptodate, return -EIO.
2915 2916
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2917 2918 2919 2920 2921 2922 2923
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
	filler_t *filler = (filler_t *)mapping->a_ops->readpage;

S
Sasha Levin 已提交
2924
	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2925 2926 2927
}
EXPORT_SYMBOL(read_cache_page_gfp);

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_access_check_limits(struct file *file, loff_t pos,
				       loff_t *count)
{
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;

	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;
	*count = min(*count, max_size - pos);
	return 0;
}

static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

	return generic_access_check_limits(file, pos, count);
}

L
Linus Torvalds 已提交
2964 2965 2966
/*
 * Performs necessary checks before doing a write
 *
2967
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2968 2969 2970
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2971
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2972
{
2973
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2974
	struct inode *inode = file->f_mapping->host;
2975 2976
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
2977

2978 2979
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
2980

2981
	/* FIXME: this is for backwards compatibility with 2.4 */
2982
	if (iocb->ki_flags & IOCB_APPEND)
2983
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
2984

2985 2986 2987
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

2988 2989 2990 2991
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
2992

2993
	iov_iter_truncate(from, count);
2994
	return iov_iter_count(from);
L
Linus Torvalds 已提交
2995 2996 2997
}
EXPORT_SYMBOL(generic_write_checks);

2998 2999 3000 3001 3002 3003 3004 3005 3006
/*
 * Performs necessary checks before doing a clone.
 *
 * Can adjust amount of bytes to clone.
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
3007
			 loff_t *req_count, unsigned int remap_flags)
3008 3009 3010 3011 3012 3013 3014
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
3015
	int ret;
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
3029
	if ((remap_flags & REMAP_FILE_DEDUP) &&
3030 3031 3032 3033 3034 3035 3036 3037 3038
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

3039 3040 3041 3042 3043 3044 3045
	ret = generic_access_check_limits(file_in, pos_in, &count);
	if (ret)
		return ret;

	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3046 3047

	/*
3048 3049 3050 3051 3052
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3053
	 */
3054 3055 3056 3057
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3058
			count = ALIGN_DOWN(count, bs);
3059
		bcount = count;
L
Linus Torvalds 已提交
3060 3061
	}

3062 3063 3064 3065 3066 3067
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3068
	/*
3069 3070
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3071
	 */
3072
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3073
		return -EINVAL;
L
Linus Torvalds 已提交
3074

3075
	*req_count = count;
3076
	return 0;
L
Linus Torvalds 已提交
3077 3078
}

3079 3080 3081 3082 3083 3084
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3085
	return aops->write_begin(file, mapping, pos, len, flags,
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3096
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3097 3098 3099
}
EXPORT_SYMBOL(pagecache_write_end);

L
Linus Torvalds 已提交
3100
ssize_t
3101
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3102 3103 3104 3105
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3106
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3107
	ssize_t		written;
3108 3109
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3110

A
Al Viro 已提交
3111
	write_len = iov_iter_count(from);
3112
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3113

3114 3115 3116
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3117
					   pos + write_len - 1))
3118 3119 3120 3121 3122 3123 3124
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3125 3126 3127 3128 3129

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3130
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3131
	 */
3132
	written = invalidate_inode_pages2_range(mapping,
3133
					pos >> PAGE_SHIFT, end);
3134 3135 3136 3137 3138 3139 3140 3141
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3142 3143
	}

3144
	written = mapping->a_ops->direct_IO(iocb, from);
3145 3146 3147 3148 3149 3150 3151 3152

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3153 3154 3155 3156 3157
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
	 * them by removing it completely
3158
	 */
3159 3160 3161
	if (mapping->nrpages)
		invalidate_inode_pages2_range(mapping,
					pos >> PAGE_SHIFT, end);
3162

L
Linus Torvalds 已提交
3163
	if (written > 0) {
3164
		pos += written;
3165
		write_len -= written;
3166 3167
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3168 3169
			mark_inode_dirty(inode);
		}
3170
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3171
	}
3172
	iov_iter_revert(from, write_len - iov_iter_count(from));
3173
out:
L
Linus Torvalds 已提交
3174 3175 3176 3177
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3178 3179 3180 3181
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3182 3183
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3184 3185
{
	struct page *page;
3186
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3187

3188
	if (flags & AOP_FLAG_NOFS)
3189 3190 3191
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3192
			mapping_gfp_mask(mapping));
3193
	if (page)
3194
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3195 3196 3197

	return page;
}
3198
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3199

3200
ssize_t generic_perform_write(struct file *file,
3201 3202 3203 3204 3205 3206
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3207 3208
	unsigned int flags = 0;

3209 3210 3211 3212 3213 3214 3215
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3216 3217
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3218 3219 3220
						iov_iter_count(i));

again:
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3236 3237 3238 3239 3240
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3241
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3242
						&page, &fsdata);
3243
		if (unlikely(status < 0))
3244 3245
			break;

3246 3247
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3248

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3260
		iov_iter_advance(i, copied);
3261 3262 3263 3264 3265 3266 3267 3268 3269
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3270
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3282
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3283

3284
/**
3285
 * __generic_file_write_iter - write data to a file
3286
 * @iocb:	IO state structure (file, offset, etc.)
3287
 * @from:	iov_iter with data to write
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3300 3301 3302 3303
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3304
 */
3305
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3306 3307
{
	struct file *file = iocb->ki_filp;
3308
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3309
	struct inode 	*inode = mapping->host;
3310
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3311
	ssize_t		err;
3312
	ssize_t		status;
L
Linus Torvalds 已提交
3313 3314

	/* We can write back this queue in page reclaim */
3315
	current->backing_dev_info = inode_to_bdi(inode);
3316
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3317 3318 3319
	if (err)
		goto out;

3320 3321 3322
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3323

3324
	if (iocb->ki_flags & IOCB_DIRECT) {
3325
		loff_t pos, endbyte;
3326

3327
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3328
		/*
3329 3330 3331 3332 3333
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3334
		 */
3335
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3336 3337
			goto out;

3338
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3339
		/*
3340
		 * If generic_perform_write() returned a synchronous error
3341 3342 3343 3344 3345
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3346
		if (unlikely(status < 0)) {
3347
			err = status;
3348 3349 3350 3351 3352 3353 3354
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3355
		endbyte = pos + status - 1;
3356
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3357
		if (err == 0) {
3358
			iocb->ki_pos = endbyte + 1;
3359
			written += status;
3360
			invalidate_mapping_pages(mapping,
3361 3362
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3363 3364 3365 3366 3367 3368 3369
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3370 3371 3372
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3373
	}
L
Linus Torvalds 已提交
3374 3375 3376 3377
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3378
EXPORT_SYMBOL(__generic_file_write_iter);
3379 3380

/**
3381
 * generic_file_write_iter - write data to a file
3382
 * @iocb:	IO state structure
3383
 * @from:	iov_iter with data to write
3384
 *
3385
 * This is a wrapper around __generic_file_write_iter() to be used by most
3386 3387
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3388 3389 3390 3391
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3392
 */
3393
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3394 3395
{
	struct file *file = iocb->ki_filp;
3396
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3397 3398
	ssize_t ret;

A
Al Viro 已提交
3399
	inode_lock(inode);
3400 3401
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3402
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3403
	inode_unlock(inode);
L
Linus Torvalds 已提交
3404

3405 3406
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3407 3408
	return ret;
}
3409
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3410

3411 3412 3413 3414 3415 3416 3417
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3418
 * (presumably at page->private).
3419
 *
3420 3421 3422
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3423
 * The @gfp_mask argument specifies whether I/O may be performed to release
3424
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3425
 *
3426
 * Return: %1 if the release was successful, otherwise return zero.
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);