filemap.c 93.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12
/*
 *	linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
13
#include <linux/export.h>
L
Linus Torvalds 已提交
14
#include <linux/compiler.h>
15
#include <linux/dax.h>
L
Linus Torvalds 已提交
16
#include <linux/fs.h>
17
#include <linux/sched/signal.h>
18
#include <linux/uaccess.h>
19
#include <linux/capability.h>
L
Linus Torvalds 已提交
20
#include <linux/kernel_stat.h>
21
#include <linux/gfp.h>
L
Linus Torvalds 已提交
22 23 24 25 26 27
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
28
#include <linux/error-injection.h>
L
Linus Torvalds 已提交
29 30
#include <linux/hash.h>
#include <linux/writeback.h>
31
#include <linux/backing-dev.h>
L
Linus Torvalds 已提交
32 33 34
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
35
#include <linux/cpuset.h>
36
#include <linux/hugetlb.h>
37
#include <linux/memcontrol.h>
38
#include <linux/cleancache.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/rmap.h>
41
#include <linux/delayacct.h>
42
#include <linux/psi.h>
43 44
#include "internal.h"

R
Robert Jarzmik 已提交
45 46 47
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

L
Linus Torvalds 已提交
48 49 50
/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
51
#include <linux/buffer_head.h> /* for try_to_free_buffers */
L
Linus Torvalds 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

#include <asm/mman.h>

/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
70
 *  ->i_mmap_rwsem		(truncate_pagecache)
L
Linus Torvalds 已提交
71
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
72
 *      ->swap_lock		(exclusive_swap_page, others)
M
Matthew Wilcox 已提交
73
 *        ->i_pages lock
L
Linus Torvalds 已提交
74
 *
75
 *  ->i_mutex
76
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
L
Linus Torvalds 已提交
77 78
 *
 *  ->mmap_sem
79
 *    ->i_mmap_rwsem
80
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
M
Matthew Wilcox 已提交
81
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
L
Linus Torvalds 已提交
82 83 84 85
 *
 *  ->mmap_sem
 *    ->lock_page		(access_process_vm)
 *
A
Al Viro 已提交
86
 *  ->i_mutex			(generic_perform_write)
87
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
L
Linus Torvalds 已提交
88
 *
89
 *  bdi->wb.list_lock
90
 *    sb_lock			(fs/fs-writeback.c)
M
Matthew Wilcox 已提交
91
 *    ->i_pages lock		(__sync_single_inode)
L
Linus Torvalds 已提交
92
 *
93
 *  ->i_mmap_rwsem
L
Linus Torvalds 已提交
94 95 96
 *    ->anon_vma.lock		(vma_adjust)
 *
 *  ->anon_vma.lock
97
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
L
Linus Torvalds 已提交
98
 *
99
 *  ->page_table_lock or pte_lock
100
 *    ->swap_lock		(try_to_unmap_one)
L
Linus Torvalds 已提交
101
 *    ->private_lock		(try_to_unmap_one)
M
Matthew Wilcox 已提交
102
 *    ->i_pages lock		(try_to_unmap_one)
103 104
 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
L
Linus Torvalds 已提交
105
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
M
Matthew Wilcox 已提交
106
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
107
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
108
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
109
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
110
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
111
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
L
Linus Torvalds 已提交
112 113
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 *
114
 * ->i_mmap_rwsem
115
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
L
Linus Torvalds 已提交
116 117
 */

118
static void page_cache_delete(struct address_space *mapping,
119 120
				   struct page *page, void *shadow)
{
121 122
	XA_STATE(xas, &mapping->i_pages, page->index);
	unsigned int nr = 1;
123

124
	mapping_set_update(&xas, mapping);
125

126 127 128 129 130
	/* hugetlb pages are represented by a single entry in the xarray */
	if (!PageHuge(page)) {
		xas_set_order(&xas, page->index, compound_order(page));
		nr = 1U << compound_order(page);
	}
131

132 133 134
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageTail(page), page);
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
135

136 137
	xas_store(&xas, shadow);
	xas_init_marks(&xas);
138

139 140 141
	page->mapping = NULL;
	/* Leave page->index set: truncation lookup relies upon it */

142 143 144 145 146 147 148 149 150 151 152
	if (shadow) {
		mapping->nrexceptional += nr;
		/*
		 * Make sure the nrexceptional update is committed before
		 * the nrpages update so that final truncate racing
		 * with reclaim does not see both counters 0 at the
		 * same time and miss a shadow entry.
		 */
		smp_wmb();
	}
	mapping->nrpages -= nr;
153 154
}

155 156
static void unaccount_page_cache_page(struct address_space *mapping,
				      struct page *page)
L
Linus Torvalds 已提交
157
{
158
	int nr;
L
Linus Torvalds 已提交
159

160 161 162 163 164 165 166 167
	/*
	 * if we're uptodate, flush out into the cleancache, otherwise
	 * invalidate any existing cleancache entries.  We can't leave
	 * stale data around in the cleancache once our page is gone
	 */
	if (PageUptodate(page) && PageMappedToDisk(page))
		cleancache_put_page(page);
	else
168
		cleancache_invalidate_page(mapping, page);
169

170
	VM_BUG_ON_PAGE(PageTail(page), page);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	VM_BUG_ON_PAGE(page_mapped(page), page);
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
		int mapcount;

		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
			 current->comm, page_to_pfn(page));
		dump_page(page, "still mapped when deleted");
		dump_stack();
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);

		mapcount = page_mapcount(page);
		if (mapping_exiting(mapping) &&
		    page_count(page) >= mapcount + 2) {
			/*
			 * All vmas have already been torn down, so it's
			 * a good bet that actually the page is unmapped,
			 * and we'd prefer not to leak it: if we're wrong,
			 * some other bad page check should catch it later.
			 */
			page_mapcount_reset(page);
191
			page_ref_sub(page, mapcount);
192 193 194
		}
	}

195
	/* hugetlb pages do not participate in page cache accounting. */
196 197
	if (PageHuge(page))
		return;
198

199 200 201 202 203 204 205 206 207
	nr = hpage_nr_pages(page);

	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
	if (PageSwapBacked(page)) {
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
		if (PageTransHuge(page))
			__dec_node_page_state(page, NR_SHMEM_THPS);
	} else {
		VM_BUG_ON_PAGE(PageTransHuge(page), page);
208
	}
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

	/*
	 * At this point page must be either written or cleaned by
	 * truncate.  Dirty page here signals a bug and loss of
	 * unwritten data.
	 *
	 * This fixes dirty accounting after removing the page entirely
	 * but leaves PageDirty set: it has no effect for truncated
	 * page and anyway will be cleared before returning page into
	 * buddy allocator.
	 */
	if (WARN_ON_ONCE(PageDirty(page)))
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}

/*
 * Delete a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
M
Matthew Wilcox 已提交
227
 * is safe.  The caller must hold the i_pages lock.
228 229 230 231 232 233 234 235
 */
void __delete_from_page_cache(struct page *page, void *shadow)
{
	struct address_space *mapping = page->mapping;

	trace_mm_filemap_delete_from_page_cache(page);

	unaccount_page_cache_page(mapping, page);
236
	page_cache_delete(mapping, page, shadow);
L
Linus Torvalds 已提交
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static void page_cache_free_page(struct address_space *mapping,
				struct page *page)
{
	void (*freepage)(struct page *);

	freepage = mapping->a_ops->freepage;
	if (freepage)
		freepage(page);

	if (PageTransHuge(page) && !PageHuge(page)) {
		page_ref_sub(page, HPAGE_PMD_NR);
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
	} else {
		put_page(page);
	}
}

256 257 258 259 260 261 262 263 264
/**
 * delete_from_page_cache - delete page from page cache
 * @page: the page which the kernel is trying to remove from page cache
 *
 * This must be called only on pages that have been verified to be in the page
 * cache and locked.  It will never put the page into the free list, the caller
 * has a reference on the page.
 */
void delete_from_page_cache(struct page *page)
L
Linus Torvalds 已提交
265
{
266
	struct address_space *mapping = page_mapping(page);
267
	unsigned long flags;
L
Linus Torvalds 已提交
268

M
Matt Mackall 已提交
269
	BUG_ON(!PageLocked(page));
M
Matthew Wilcox 已提交
270
	xa_lock_irqsave(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
271
	__delete_from_page_cache(page, NULL);
M
Matthew Wilcox 已提交
272
	xa_unlock_irqrestore(&mapping->i_pages, flags);
273

274
	page_cache_free_page(mapping, page);
275 276 277
}
EXPORT_SYMBOL(delete_from_page_cache);

278
/*
279
 * page_cache_delete_batch - delete several pages from page cache
280 281 282
 * @mapping: the mapping to which pages belong
 * @pvec: pagevec with pages to delete
 *
M
Matthew Wilcox 已提交
283
 * The function walks over mapping->i_pages and removes pages passed in @pvec
284 285
 * from the mapping. The function expects @pvec to be sorted by page index
 * and is optimised for it to be dense.
M
Matthew Wilcox 已提交
286
 * It tolerates holes in @pvec (mapping entries at those indices are not
287
 * modified). The function expects only THP head pages to be present in the
288
 * @pvec.
289
 *
M
Matthew Wilcox 已提交
290
 * The function expects the i_pages lock to be held.
291
 */
292
static void page_cache_delete_batch(struct address_space *mapping,
293 294
			     struct pagevec *pvec)
{
295
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
296
	int total_pages = 0;
297
	int i = 0;
298 299
	struct page *page;

300 301
	mapping_set_update(&xas, mapping);
	xas_for_each(&xas, page, ULONG_MAX) {
302
		if (i >= pagevec_count(pvec))
303
			break;
304 305

		/* A swap/dax/shadow entry got inserted? Skip it. */
306
		if (xa_is_value(page))
307
			continue;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
		/*
		 * A page got inserted in our range? Skip it. We have our
		 * pages locked so they are protected from being removed.
		 * If we see a page whose index is higher than ours, it
		 * means our page has been removed, which shouldn't be
		 * possible because we're holding the PageLock.
		 */
		if (page != pvec->pages[i]) {
			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
					page);
			continue;
		}

		WARN_ON_ONCE(!PageLocked(page));

		if (page->index == xas.xa_index)
324
			page->mapping = NULL;
325 326 327 328 329 330 331 332 333
		/* Leave page->index set: truncation lookup relies on it */

		/*
		 * Move to the next page in the vector if this is a regular
		 * page or the index is of the last sub-page of this compound
		 * page.
		 */
		if (page->index + (1UL << compound_order(page)) - 1 ==
				xas.xa_index)
334
			i++;
335
		xas_store(&xas, NULL);
336 337 338 339 340 341 342 343 344 345 346 347 348 349
		total_pages++;
	}
	mapping->nrpages -= total_pages;
}

void delete_from_page_cache_batch(struct address_space *mapping,
				  struct pagevec *pvec)
{
	int i;
	unsigned long flags;

	if (!pagevec_count(pvec))
		return;

M
Matthew Wilcox 已提交
350
	xa_lock_irqsave(&mapping->i_pages, flags);
351 352 353 354 355
	for (i = 0; i < pagevec_count(pvec); i++) {
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);

		unaccount_page_cache_page(mapping, pvec->pages[i]);
	}
356
	page_cache_delete_batch(mapping, pvec);
M
Matthew Wilcox 已提交
357
	xa_unlock_irqrestore(&mapping->i_pages, flags);
358 359 360 361 362

	for (i = 0; i < pagevec_count(pvec); i++)
		page_cache_free_page(mapping, pvec->pages[i]);
}

363
int filemap_check_errors(struct address_space *mapping)
364 365 366
{
	int ret = 0;
	/* Check for outstanding write errors */
367 368
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
369
		ret = -ENOSPC;
370 371
	if (test_bit(AS_EIO, &mapping->flags) &&
	    test_and_clear_bit(AS_EIO, &mapping->flags))
372 373 374
		ret = -EIO;
	return ret;
}
375
EXPORT_SYMBOL(filemap_check_errors);
376

377 378 379 380 381 382 383 384 385 386
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
	/* Check for outstanding write errors */
	if (test_bit(AS_EIO, &mapping->flags))
		return -EIO;
	if (test_bit(AS_ENOSPC, &mapping->flags))
		return -ENOSPC;
	return 0;
}

L
Linus Torvalds 已提交
387
/**
388
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
389 390
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
391
 * @end:	offset in bytes where the range ends (inclusive)
392
 * @sync_mode:	enable synchronous operation
L
Linus Torvalds 已提交
393
 *
394 395 396
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
L
Linus Torvalds 已提交
397
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
398
 * opposed to a regular memory cleansing writeback.  The difference between
L
Linus Torvalds 已提交
399 400
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
401 402
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
403
 */
404 405
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
				loff_t end, int sync_mode)
L
Linus Torvalds 已提交
406 407 408 409
{
	int ret;
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
410
		.nr_to_write = LONG_MAX,
411 412
		.range_start = start,
		.range_end = end,
L
Linus Torvalds 已提交
413 414 415 416 417
	};

	if (!mapping_cap_writeback_dirty(mapping))
		return 0;

418
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
L
Linus Torvalds 已提交
419
	ret = do_writepages(mapping, &wbc);
420
	wbc_detach_inode(&wbc);
L
Linus Torvalds 已提交
421 422 423 424 425 426
	return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
	int sync_mode)
{
427
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
L
Linus Torvalds 已提交
428 429 430 431 432 433 434 435
}

int filemap_fdatawrite(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

436
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437
				loff_t end)
L
Linus Torvalds 已提交
438 439 440
{
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
441
EXPORT_SYMBOL(filemap_fdatawrite_range);
L
Linus Torvalds 已提交
442

443 444 445 446
/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:	target address_space
 *
L
Linus Torvalds 已提交
447 448
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
449 450
 *
 * Return: %0 on success, negative error code otherwise.
L
Linus Torvalds 已提交
451 452 453 454 455 456 457
 */
int filemap_flush(struct address_space *mapping)
{
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

458 459 460 461 462 463 464 465
/**
 * filemap_range_has_page - check if a page exists in range.
 * @mapping:           address space within which to check
 * @start_byte:        offset in bytes where the range starts
 * @end_byte:          offset in bytes where the range ends (inclusive)
 *
 * Find at least one page in the range supplied, usually used to check if
 * direct writing in this range will trigger a writeback.
466 467 468
 *
 * Return: %true if at least one page exists in the specified range,
 * %false otherwise.
469 470 471 472
 */
bool filemap_range_has_page(struct address_space *mapping,
			   loff_t start_byte, loff_t end_byte)
{
473
	struct page *page;
474 475
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
	pgoff_t max = end_byte >> PAGE_SHIFT;
476 477 478 479

	if (end_byte < start_byte)
		return false;

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	rcu_read_lock();
	for (;;) {
		page = xas_find(&xas, max);
		if (xas_retry(&xas, page))
			continue;
		/* Shadow entries don't count */
		if (xa_is_value(page))
			continue;
		/*
		 * We don't need to try to pin this page; we're about to
		 * release the RCU lock anyway.  It is enough to know that
		 * there was a page here recently.
		 */
		break;
	}
	rcu_read_unlock();
496

497
	return page != NULL;
498 499 500
}
EXPORT_SYMBOL(filemap_range_has_page);

501
static void __filemap_fdatawait_range(struct address_space *mapping,
502
				     loff_t start_byte, loff_t end_byte)
L
Linus Torvalds 已提交
503
{
504 505
	pgoff_t index = start_byte >> PAGE_SHIFT;
	pgoff_t end = end_byte >> PAGE_SHIFT;
L
Linus Torvalds 已提交
506 507 508
	struct pagevec pvec;
	int nr_pages;

509
	if (end_byte < start_byte)
510
		return;
L
Linus Torvalds 已提交
511

512
	pagevec_init(&pvec);
513
	while (index <= end) {
L
Linus Torvalds 已提交
514 515
		unsigned i;

516
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517
				end, PAGECACHE_TAG_WRITEBACK);
518 519 520
		if (!nr_pages)
			break;

L
Linus Torvalds 已提交
521 522 523 524
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			wait_on_page_writeback(page);
525
			ClearPageError(page);
L
Linus Torvalds 已提交
526 527 528 529
		}
		pagevec_release(&pvec);
		cond_resched();
	}
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
}

/**
 * filemap_fdatawait_range - wait for writeback to complete
 * @mapping:		address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the given address space
 * in the given range and wait for all of them.  Check error status of
 * the address space and return it.
 *
 * Since the error status of the address space is cleared by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
545 546
 *
 * Return: error status of the address space.
547 548 549 550
 */
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
			    loff_t end_byte)
{
551 552
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return filemap_check_errors(mapping);
L
Linus Torvalds 已提交
553
}
554 555
EXPORT_SYMBOL(filemap_fdatawait_range);

556 557 558 559 560 561 562 563 564 565 566 567 568
/**
 * file_fdatawait_range - wait for writeback to complete
 * @file:		file pointing to address space structure to wait for
 * @start_byte:		offset in bytes where the range starts
 * @end_byte:		offset in bytes where the range ends (inclusive)
 *
 * Walk the list of under-writeback pages of the address space that file
 * refers to, in the given range and wait for all of them.  Check error
 * status of the address space vs. the file->f_wb_err cursor and return it.
 *
 * Since the error status of the file is advanced by this function,
 * callers are responsible for checking the return value and handling and/or
 * reporting the error.
569 570
 *
 * Return: error status of the address space vs. the file->f_wb_err cursor.
571 572 573 574 575 576 577 578 579
 */
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
	struct address_space *mapping = file->f_mapping;

	__filemap_fdatawait_range(mapping, start_byte, end_byte);
	return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
580

581 582 583 584 585 586 587 588 589 590 591
/**
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 * does not clear error status of the address space.
 *
 * Use this function if callers don't handle errors themselves.  Expected
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 * fsfreeze(8)
592 593
 *
 * Return: error status of the address space.
594
 */
595
int filemap_fdatawait_keep_errors(struct address_space *mapping)
596
{
597
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
598
	return filemap_check_and_keep_errors(mapping);
599
}
600
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
601

602
static bool mapping_needs_writeback(struct address_space *mapping)
L
Linus Torvalds 已提交
603
{
604 605
	return (!dax_mapping(mapping) && mapping->nrpages) ||
	    (dax_mapping(mapping) && mapping->nrexceptional);
L
Linus Torvalds 已提交
606 607 608 609
}

int filemap_write_and_wait(struct address_space *mapping)
{
610
	int err = 0;
L
Linus Torvalds 已提交
611

612
	if (mapping_needs_writeback(mapping)) {
613 614 615 616 617 618 619 620 621 622 623
		err = filemap_fdatawrite(mapping);
		/*
		 * Even if the above returned error, the pages may be
		 * written partially (e.g. -ENOSPC), so we wait for it.
		 * But the -EIO is special case, it may indicate the worst
		 * thing (e.g. bug) happened, so we avoid waiting for it.
		 */
		if (err != -EIO) {
			int err2 = filemap_fdatawait(mapping);
			if (!err)
				err = err2;
624 625 626
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
627
		}
628 629
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
630
	}
631
	return err;
L
Linus Torvalds 已提交
632
}
633
EXPORT_SYMBOL(filemap_write_and_wait);
L
Linus Torvalds 已提交
634

635 636 637 638 639 640
/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:	the address_space for the pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
641 642
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
643
 * Note that @lend is inclusive (describes the last byte to be written) so
644
 * that this function can be used to write to the very end-of-file (end = -1).
645 646
 *
 * Return: error status of the address space.
647
 */
L
Linus Torvalds 已提交
648 649 650
int filemap_write_and_wait_range(struct address_space *mapping,
				 loff_t lstart, loff_t lend)
{
651
	int err = 0;
L
Linus Torvalds 已提交
652

653
	if (mapping_needs_writeback(mapping)) {
654 655 656 657
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO) {
658 659
			int err2 = filemap_fdatawait_range(mapping,
						lstart, lend);
660 661
			if (!err)
				err = err2;
662 663 664
		} else {
			/* Clear any previously stored errors */
			filemap_check_errors(mapping);
665
		}
666 667
	} else {
		err = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
668
	}
669
	return err;
L
Linus Torvalds 已提交
670
}
671
EXPORT_SYMBOL(filemap_write_and_wait_range);
L
Linus Torvalds 已提交
672

673 674
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
675
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

	trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);

/**
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 * 				   and advance wb_err to current one
 * @file: struct file on which the error is being reported
 *
 * When userland calls fsync (or something like nfsd does the equivalent), we
 * want to report any writeback errors that occurred since the last fsync (or
 * since the file was opened if there haven't been any).
 *
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 * then just quickly return 0. The file is all caught up.
 *
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 * it and try to swap it into place. If it works, or another task beat us
 * to it with the new value, then update the f_wb_err and return the error
 * portion. The error at this point must be reported via proper channels
 * (a'la fsync, or NFS COMMIT operation, etc.).
 *
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 * value is protected by the f_lock since we must ensure that it reflects
 * the latest value swapped in for this file descriptor.
702 703
 *
 * Return: %0 on success, negative error code otherwise.
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
 */
int file_check_and_advance_wb_err(struct file *file)
{
	int err = 0;
	errseq_t old = READ_ONCE(file->f_wb_err);
	struct address_space *mapping = file->f_mapping;

	/* Locklessly handle the common case where nothing has changed */
	if (errseq_check(&mapping->wb_err, old)) {
		/* Something changed, must use slow path */
		spin_lock(&file->f_lock);
		old = file->f_wb_err;
		err = errseq_check_and_advance(&mapping->wb_err,
						&file->f_wb_err);
		trace_file_check_and_advance_wb_err(file, old);
		spin_unlock(&file->f_lock);
	}
721 722 723 724 725 726 727 728

	/*
	 * We're mostly using this function as a drop in replacement for
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
	 * that the legacy code would have had on these flags.
	 */
	clear_bit(AS_EIO, &mapping->flags);
	clear_bit(AS_ENOSPC, &mapping->flags);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
	return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);

/**
 * file_write_and_wait_range - write out & wait on a file range
 * @file:	file pointing to address_space with pages
 * @lstart:	offset in bytes where the range starts
 * @lend:	offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that @lend is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 *
 * After writing out and waiting on the data, we check and advance the
 * f_wb_err cursor to the latest value, and return any errors detected there.
746 747
 *
 * Return: %0 on success, negative error code otherwise.
748 749 750 751 752 753
 */
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
	int err = 0, err2;
	struct address_space *mapping = file->f_mapping;

754
	if (mapping_needs_writeback(mapping)) {
755 756 757 758 759 760 761 762 763 764 765 766 767
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
						 WB_SYNC_ALL);
		/* See comment of filemap_write_and_wait() */
		if (err != -EIO)
			__filemap_fdatawait_range(mapping, lstart, lend);
	}
	err2 = file_check_and_advance_wb_err(file);
	if (!err)
		err = err2;
	return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);

768 769 770 771 772 773 774 775 776 777 778 779
/**
 * replace_page_cache_page - replace a pagecache page with a new one
 * @old:	page to be replaced
 * @new:	page to replace with
 * @gfp_mask:	allocation mode
 *
 * This function replaces a page in the pagecache with a new one.  On
 * success it acquires the pagecache reference for the new page and
 * drops it for the old page.  Both the old and new pages must be
 * locked.  This function does not add the new page to the LRU, the
 * caller must do that.
 *
780
 * The remove + add is atomic.  This function cannot fail.
781 782
 *
 * Return: %0
783 784 785
 */
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
786 787 788 789 790
	struct address_space *mapping = old->mapping;
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
	pgoff_t offset = old->index;
	XA_STATE(xas, &mapping->i_pages, offset);
	unsigned long flags;
791

792 793 794
	VM_BUG_ON_PAGE(!PageLocked(old), old);
	VM_BUG_ON_PAGE(!PageLocked(new), new);
	VM_BUG_ON_PAGE(new->mapping, new);
795

796 797 798
	get_page(new);
	new->mapping = mapping;
	new->index = offset;
799

800 801
	xas_lock_irqsave(&xas, flags);
	xas_store(&xas, new);
802

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	old->mapping = NULL;
	/* hugetlb pages do not participate in page cache accounting. */
	if (!PageHuge(old))
		__dec_node_page_state(new, NR_FILE_PAGES);
	if (!PageHuge(new))
		__inc_node_page_state(new, NR_FILE_PAGES);
	if (PageSwapBacked(old))
		__dec_node_page_state(new, NR_SHMEM);
	if (PageSwapBacked(new))
		__inc_node_page_state(new, NR_SHMEM);
	xas_unlock_irqrestore(&xas, flags);
	mem_cgroup_migrate(old, new);
	if (freepage)
		freepage(old);
	put_page(old);
818

819
	return 0;
820 821 822
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);

823 824 825 826
static int __add_to_page_cache_locked(struct page *page,
				      struct address_space *mapping,
				      pgoff_t offset, gfp_t gfp_mask,
				      void **shadowp)
L
Linus Torvalds 已提交
827
{
828
	XA_STATE(xas, &mapping->i_pages, offset);
829 830
	int huge = PageHuge(page);
	struct mem_cgroup *memcg;
N
Nick Piggin 已提交
831
	int error;
832
	void *old;
N
Nick Piggin 已提交
833

834 835
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
836
	mapping_set_update(&xas, mapping);
N
Nick Piggin 已提交
837

838 839
	if (!huge) {
		error = mem_cgroup_try_charge(page, current->mm,
840
					      gfp_mask, &memcg, false);
841 842 843
		if (error)
			return error;
	}
L
Linus Torvalds 已提交
844

845
	get_page(page);
846 847 848
	page->mapping = mapping;
	page->index = offset;

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
	do {
		xas_lock_irq(&xas);
		old = xas_load(&xas);
		if (old && !xa_is_value(old))
			xas_set_err(&xas, -EEXIST);
		xas_store(&xas, page);
		if (xas_error(&xas))
			goto unlock;

		if (xa_is_value(old)) {
			mapping->nrexceptional--;
			if (shadowp)
				*shadowp = old;
		}
		mapping->nrpages++;

		/* hugetlb pages do not participate in page cache accounting */
		if (!huge)
			__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
		xas_unlock_irq(&xas);
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));

	if (xas_error(&xas))
		goto error;
874

875
	if (!huge)
876
		mem_cgroup_commit_charge(page, memcg, false, false);
877 878
	trace_mm_filemap_add_to_page_cache(page);
	return 0;
879
error:
880 881
	page->mapping = NULL;
	/* Leave page->index set: truncation relies upon it */
882
	if (!huge)
883
		mem_cgroup_cancel_charge(page, memcg, false);
884
	put_page(page);
885
	return xas_error(&xas);
L
Linus Torvalds 已提交
886
}
887
ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
888 889 890 891 892 893 894 895 896 897

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:	page to add
 * @mapping:	the page's address_space
 * @offset:	page index
 * @gfp_mask:	page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
898 899
 *
 * Return: %0 on success, negative error code otherwise.
900 901 902 903 904 905 906
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
		pgoff_t offset, gfp_t gfp_mask)
{
	return __add_to_page_cache_locked(page, mapping, offset,
					  gfp_mask, NULL);
}
N
Nick Piggin 已提交
907
EXPORT_SYMBOL(add_to_page_cache_locked);
L
Linus Torvalds 已提交
908 909

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
A
Al Viro 已提交
910
				pgoff_t offset, gfp_t gfp_mask)
L
Linus Torvalds 已提交
911
{
912
	void *shadow = NULL;
913 914
	int ret;

915
	__SetPageLocked(page);
916 917 918
	ret = __add_to_page_cache_locked(page, mapping, offset,
					 gfp_mask, &shadow);
	if (unlikely(ret))
919
		__ClearPageLocked(page);
920 921 922 923 924
	else {
		/*
		 * The page might have been evicted from cache only
		 * recently, in which case it should be activated like
		 * any other repeatedly accessed page.
925 926 927
		 * The exception is pages getting rewritten; evicting other
		 * data from the working set, only to cache data that will
		 * get overwritten with something else, is a waste of memory.
928
		 */
929 930 931
		WARN_ON_ONCE(PageActive(page));
		if (!(gfp_mask & __GFP_WRITE) && shadow)
			workingset_refault(page, shadow);
932 933
		lru_cache_add(page);
	}
L
Linus Torvalds 已提交
934 935
	return ret;
}
936
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
L
Linus Torvalds 已提交
937

938
#ifdef CONFIG_NUMA
939
struct page *__page_cache_alloc(gfp_t gfp)
940
{
941 942 943
	int n;
	struct page *page;

944
	if (cpuset_do_page_mem_spread()) {
945 946
		unsigned int cpuset_mems_cookie;
		do {
947
			cpuset_mems_cookie = read_mems_allowed_begin();
948
			n = cpuset_mem_spread_node();
949
			page = __alloc_pages_node(n, gfp, 0);
950
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
951

952
		return page;
953
	}
954
	return alloc_pages(gfp, 0);
955
}
956
EXPORT_SYMBOL(__page_cache_alloc);
957 958
#endif

L
Linus Torvalds 已提交
959 960 961 962 963 964 965 966 967 968
/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
969 970 971 972 973
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;

static wait_queue_head_t *page_waitqueue(struct page *page)
L
Linus Torvalds 已提交
974
{
975
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
L
Linus Torvalds 已提交
976 977
}

978
void __init pagecache_init(void)
L
Linus Torvalds 已提交
979
{
980
	int i;
L
Linus Torvalds 已提交
981

982 983 984 985
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
		init_waitqueue_head(&page_wait_table[i]);

	page_writeback_init();
L
Linus Torvalds 已提交
986 987
}

L
Linus Torvalds 已提交
988
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
989 990 991 992 993 994 995 996 997
struct wait_page_key {
	struct page *page;
	int bit_nr;
	int page_match;
};

struct wait_page_queue {
	struct page *page;
	int bit_nr;
998
	wait_queue_entry_t wait;
999 1000
};

1001
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1002
{
1003 1004 1005 1006 1007 1008 1009
	struct wait_page_key *key = arg;
	struct wait_page_queue *wait_page
		= container_of(wait, struct wait_page_queue, wait);

	if (wait_page->page != key->page)
	       return 0;
	key->page_match = 1;
1010

1011 1012
	if (wait_page->bit_nr != key->bit_nr)
		return 0;
L
Linus Torvalds 已提交
1013

1014 1015 1016 1017 1018 1019 1020 1021
	/*
	 * Stop walking if it's locked.
	 * Is this safe if put_and_wait_on_page_locked() is in use?
	 * Yes: the waker must hold a reference to this page, and if PG_locked
	 * has now already been set by another task, that task must also hold
	 * a reference to the *same usage* of this page; so there is no need
	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
	 */
1022
	if (test_bit(key->bit_nr, &key->page->flags))
L
Linus Torvalds 已提交
1023
		return -1;
1024

1025
	return autoremove_wake_function(wait, mode, sync, key);
1026 1027
}

1028
static void wake_up_page_bit(struct page *page, int bit_nr)
1029
{
1030 1031 1032
	wait_queue_head_t *q = page_waitqueue(page);
	struct wait_page_key key;
	unsigned long flags;
1033
	wait_queue_entry_t bookmark;
1034

1035 1036 1037 1038
	key.page = page;
	key.bit_nr = bit_nr;
	key.page_match = 0;

1039 1040 1041 1042 1043
	bookmark.flags = 0;
	bookmark.private = NULL;
	bookmark.func = NULL;
	INIT_LIST_HEAD(&bookmark.entry);

1044
	spin_lock_irqsave(&q->lock, flags);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);

	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
		/*
		 * Take a breather from holding the lock,
		 * allow pages that finish wake up asynchronously
		 * to acquire the lock and remove themselves
		 * from wait queue
		 */
		spin_unlock_irqrestore(&q->lock, flags);
		cpu_relax();
		spin_lock_irqsave(&q->lock, flags);
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
	}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * It is possible for other pages to have collided on the waitqueue
	 * hash, so in that case check for a page match. That prevents a long-
	 * term waiter
	 *
	 * It is still possible to miss a case here, when we woke page waiters
	 * and removed them from the waitqueue, but there are still other
	 * page waiters.
	 */
	if (!waitqueue_active(q) || !key.page_match) {
		ClearPageWaiters(page);
		/*
		 * It's possible to miss clearing Waiters here, when we woke
		 * our page waiters, but the hashed waitqueue has waiters for
		 * other pages on it.
		 *
		 * That's okay, it's a rare case. The next waker will clear it.
		 */
	}
	spin_unlock_irqrestore(&q->lock, flags);
}
1081 1082 1083 1084 1085 1086 1087

static void wake_up_page(struct page *page, int bit)
{
	if (!PageWaiters(page))
		return;
	wake_up_page_bit(page, bit);
}
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
/*
 * A choice of three behaviors for wait_on_page_bit_common():
 */
enum behavior {
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
			 * __lock_page() waiting on then setting PG_locked.
			 */
	SHARED,		/* Hold ref to page and check the bit when woken, like
			 * wait_on_page_writeback() waiting on PG_writeback.
			 */
	DROP,		/* Drop ref to page before wait, no check when woken,
			 * like put_and_wait_on_page_locked() on PG_locked.
			 */
};

1104
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1105
	struct page *page, int bit_nr, int state, enum behavior behavior)
1106 1107
{
	struct wait_page_queue wait_page;
1108
	wait_queue_entry_t *wait = &wait_page.wait;
1109
	bool bit_is_set;
1110
	bool thrashing = false;
1111
	bool delayacct = false;
1112
	unsigned long pflags;
1113 1114
	int ret = 0;

1115
	if (bit_nr == PG_locked &&
1116
	    !PageUptodate(page) && PageWorkingset(page)) {
1117
		if (!PageSwapBacked(page)) {
1118
			delayacct_thrashing_start();
1119 1120
			delayacct = true;
		}
1121
		psi_memstall_enter(&pflags);
1122 1123 1124
		thrashing = true;
	}

1125
	init_wait(wait);
1126
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1127 1128 1129 1130 1131 1132 1133
	wait->func = wake_page_function;
	wait_page.page = page;
	wait_page.bit_nr = bit_nr;

	for (;;) {
		spin_lock_irq(&q->lock);

1134
		if (likely(list_empty(&wait->entry))) {
L
Linus Torvalds 已提交
1135
			__add_wait_queue_entry_tail(q, wait);
1136 1137 1138 1139 1140 1141 1142
			SetPageWaiters(page);
		}

		set_current_state(state);

		spin_unlock_irq(&q->lock);

1143 1144 1145 1146 1147
		bit_is_set = test_bit(bit_nr, &page->flags);
		if (behavior == DROP)
			put_page(page);

		if (likely(bit_is_set))
1148 1149
			io_schedule();

1150
		if (behavior == EXCLUSIVE) {
1151 1152
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
				break;
1153
		} else if (behavior == SHARED) {
1154 1155 1156
			if (!test_bit(bit_nr, &page->flags))
				break;
		}
1157

1158
		if (signal_pending_state(state, current)) {
1159 1160 1161
			ret = -EINTR;
			break;
		}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

		if (behavior == DROP) {
			/*
			 * We can no longer safely access page->flags:
			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
			 * there is a risk of waiting forever on a page reused
			 * for something that keeps it locked indefinitely.
			 * But best check for -EINTR above before breaking.
			 */
			break;
		}
1173 1174 1175 1176
	}

	finish_wait(q, wait);

1177
	if (thrashing) {
1178
		if (delayacct)
1179 1180 1181
			delayacct_thrashing_end();
		psi_memstall_leave(&pflags);
	}
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	/*
	 * A signal could leave PageWaiters set. Clearing it here if
	 * !waitqueue_active would be possible (by open-coding finish_wait),
	 * but still fail to catch it in the case of wait hash collision. We
	 * already can fail to clear wait hash collision cases, so don't
	 * bother with signals either.
	 */

	return ret;
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1197
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1198 1199 1200 1201 1202 1203
}
EXPORT_SYMBOL(wait_on_page_bit);

int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
	wait_queue_head_t *q = page_waitqueue(page);
1204
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1205
}
1206
EXPORT_SYMBOL(wait_on_page_bit_killable);
1207

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/**
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 * @page: The page to wait for.
 *
 * The caller should hold a reference on @page.  They expect the page to
 * become unlocked relatively soon, but do not wish to hold up migration
 * (for example) by holding the reference while waiting for the page to
 * come unlocked.  After this function returns, the caller should not
 * dereference @page.
 */
void put_and_wait_on_page_locked(struct page *page)
{
	wait_queue_head_t *q;

	page = compound_head(page);
	q = page_waitqueue(page);
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}

1227 1228
/**
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
R
Randy Dunlap 已提交
1229 1230
 * @page: Page defining the wait queue of interest
 * @waiter: Waiter to add to the queue
1231 1232 1233
 *
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 */
1234
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1235 1236 1237 1238 1239
{
	wait_queue_head_t *q = page_waitqueue(page);
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
1240
	__add_wait_queue_entry_tail(q, waiter);
1241
	SetPageWaiters(page);
1242 1243 1244 1245
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#ifndef clear_bit_unlock_is_negative_byte

/*
 * PG_waiters is the high bit in the same byte as PG_lock.
 *
 * On x86 (and on many other architectures), we can clear PG_lock and
 * test the sign bit at the same time. But if the architecture does
 * not support that special operation, we just do this all by hand
 * instead.
 *
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 * being cleared, but a memory barrier should be unneccssary since it is
 * in the same byte as PG_locked.
 */
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
	clear_bit_unlock(nr, mem);
	/* smp_mb__after_atomic(); */
1264
	return test_bit(PG_waiters, mem);
1265 1266 1267 1268
}

#endif

L
Linus Torvalds 已提交
1269
/**
1270
 * unlock_page - unlock a locked page
L
Linus Torvalds 已提交
1271 1272 1273 1274
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1275
 * mechanism between PageLocked pages and PageWriteback pages is shared.
L
Linus Torvalds 已提交
1276 1277
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
1278 1279 1280 1281 1282
 * Note that this depends on PG_waiters being the sign bit in the byte
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 * portably (architectures that do LL/SC can test any bit, while x86 can
 * test the sign bit).
L
Linus Torvalds 已提交
1283
 */
H
Harvey Harrison 已提交
1284
void unlock_page(struct page *page)
L
Linus Torvalds 已提交
1285
{
1286
	BUILD_BUG_ON(PG_waiters != 7);
1287
	page = compound_head(page);
1288
	VM_BUG_ON_PAGE(!PageLocked(page), page);
1289 1290
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
		wake_up_page_bit(page, PG_locked);
L
Linus Torvalds 已提交
1291 1292 1293
}
EXPORT_SYMBOL(unlock_page);

1294 1295 1296
/**
 * end_page_writeback - end writeback against a page
 * @page: the page
L
Linus Torvalds 已提交
1297 1298 1299
 */
void end_page_writeback(struct page *page)
{
1300 1301 1302 1303 1304 1305 1306 1307 1308
	/*
	 * TestClearPageReclaim could be used here but it is an atomic
	 * operation and overkill in this particular case. Failing to
	 * shuffle a page marked for immediate reclaim is too mild to
	 * justify taking an atomic operation penalty at the end of
	 * ever page writeback.
	 */
	if (PageReclaim(page)) {
		ClearPageReclaim(page);
1309
		rotate_reclaimable_page(page);
1310
	}
1311 1312 1313 1314

	if (!test_clear_page_writeback(page))
		BUG();

1315
	smp_mb__after_atomic();
L
Linus Torvalds 已提交
1316 1317 1318 1319
	wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

1320 1321 1322 1323
/*
 * After completing I/O on a page, call this routine to update the page
 * flags appropriately
 */
1324
void page_endio(struct page *page, bool is_write, int err)
1325
{
1326
	if (!is_write) {
1327 1328 1329 1330 1331 1332 1333
		if (!err) {
			SetPageUptodate(page);
		} else {
			ClearPageUptodate(page);
			SetPageError(page);
		}
		unlock_page(page);
1334
	} else {
1335
		if (err) {
1336 1337
			struct address_space *mapping;

1338
			SetPageError(page);
1339 1340 1341
			mapping = page_mapping(page);
			if (mapping)
				mapping_set_error(mapping, err);
1342 1343 1344 1345 1346 1347
		}
		end_page_writeback(page);
	}
}
EXPORT_SYMBOL_GPL(page_endio);

1348 1349
/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1350
 * @__page: the page to lock
L
Linus Torvalds 已提交
1351
 */
1352
void __lock_page(struct page *__page)
L
Linus Torvalds 已提交
1353
{
1354 1355
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1356 1357
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
				EXCLUSIVE);
L
Linus Torvalds 已提交
1358 1359 1360
}
EXPORT_SYMBOL(__lock_page);

1361
int __lock_page_killable(struct page *__page)
M
Matthew Wilcox 已提交
1362
{
1363 1364
	struct page *page = compound_head(__page);
	wait_queue_head_t *q = page_waitqueue(page);
1365 1366
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
					EXCLUSIVE);
M
Matthew Wilcox 已提交
1367
}
1368
EXPORT_SYMBOL_GPL(__lock_page_killable);
M
Matthew Wilcox 已提交
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
/*
 * Return values:
 * 1 - page is locked; mmap_sem is still held.
 * 0 - page is not locked.
 *     mmap_sem has been released (up_read()), unless flags had both
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 *     which case mmap_sem is still held.
 *
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 * with the page locked and the mmap_sem unperturbed.
 */
1381 1382 1383
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
			 unsigned int flags)
{
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		/*
		 * CAUTION! In this case, mmap_sem is not released
		 * even though return 0.
		 */
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
			return 0;

		up_read(&mm->mmap_sem);
		if (flags & FAULT_FLAG_KILLABLE)
			wait_on_page_locked_killable(page);
		else
1396
			wait_on_page_locked(page);
1397
		return 0;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	} else {
		if (flags & FAULT_FLAG_KILLABLE) {
			int ret;

			ret = __lock_page_killable(page);
			if (ret) {
				up_read(&mm->mmap_sem);
				return 0;
			}
		} else
			__lock_page(page);
		return 1;
1410 1411 1412
	}
}

1413
/**
1414 1415 1416 1417
 * page_cache_next_miss() - Find the next gap in the page cache.
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1418
 *
1419 1420
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 * gap with the lowest index.
1421
 *
1422 1423 1424 1425 1426
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 5, then subsequently a gap is
 * created at index 10, page_cache_next_miss covering both indices may
 * return 10 if called under the rcu_read_lock.
1427
 *
1428 1429 1430
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'return - index >= max_scan' will be true).
 * In the rare case of index wrap-around, 0 will be returned.
1431
 */
1432
pgoff_t page_cache_next_miss(struct address_space *mapping,
1433 1434
			     pgoff_t index, unsigned long max_scan)
{
1435
	XA_STATE(xas, &mapping->i_pages, index);
1436

1437 1438 1439
	while (max_scan--) {
		void *entry = xas_next(&xas);
		if (!entry || xa_is_value(entry))
1440
			break;
1441
		if (xas.xa_index == 0)
1442 1443 1444
			break;
	}

1445
	return xas.xa_index;
1446
}
1447
EXPORT_SYMBOL(page_cache_next_miss);
1448 1449

/**
L
Laurent Dufour 已提交
1450
 * page_cache_prev_miss() - Find the previous gap in the page cache.
1451 1452 1453
 * @mapping: Mapping.
 * @index: Index.
 * @max_scan: Maximum range to search.
1454
 *
1455 1456
 * Search the range [max(index - max_scan + 1, 0), index] for the
 * gap with the highest index.
1457
 *
1458 1459 1460 1461 1462
 * This function may be called under the rcu_read_lock.  However, this will
 * not atomically search a snapshot of the cache at a single point in time.
 * For example, if a gap is created at index 10, then subsequently a gap is
 * created at index 5, page_cache_prev_miss() covering both indices may
 * return 5 if called under the rcu_read_lock.
1463
 *
1464 1465 1466
 * Return: The index of the gap if found, otherwise an index outside the
 * range specified (in which case 'index - return >= max_scan' will be true).
 * In the rare case of wrap-around, ULONG_MAX will be returned.
1467
 */
1468
pgoff_t page_cache_prev_miss(struct address_space *mapping,
1469 1470
			     pgoff_t index, unsigned long max_scan)
{
1471
	XA_STATE(xas, &mapping->i_pages, index);
1472

1473 1474 1475
	while (max_scan--) {
		void *entry = xas_prev(&xas);
		if (!entry || xa_is_value(entry))
1476
			break;
1477
		if (xas.xa_index == ULONG_MAX)
1478 1479 1480
			break;
	}

1481
	return xas.xa_index;
1482
}
1483
EXPORT_SYMBOL(page_cache_prev_miss);
1484

1485
/**
1486
 * find_get_entry - find and get a page cache entry
1487
 * @mapping: the address_space to search
1488 1489 1490 1491
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
1492
 *
1493 1494
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1495
 *
1496
 * Return: the found page or shadow entry, %NULL if nothing is found.
L
Linus Torvalds 已提交
1497
 */
1498
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1499
{
1500
	XA_STATE(xas, &mapping->i_pages, offset);
1501
	struct page *page;
L
Linus Torvalds 已提交
1502

N
Nick Piggin 已提交
1503 1504
	rcu_read_lock();
repeat:
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	xas_reset(&xas);
	page = xas_load(&xas);
	if (xas_retry(&xas, page))
		goto repeat;
	/*
	 * A shadow entry of a recently evicted page, or a swap entry from
	 * shmem/tmpfs.  Return it without attempting to raise page count.
	 */
	if (!page || xa_is_value(page))
		goto out;
1515

1516
	if (!page_cache_get_speculative(page))
1517
		goto repeat;
1518

1519
	/*
1520
	 * Has the page moved or been split?
1521 1522 1523 1524
	 * This is part of the lockless pagecache protocol. See
	 * include/linux/pagemap.h for details.
	 */
	if (unlikely(page != xas_reload(&xas))) {
1525
		put_page(page);
1526
		goto repeat;
N
Nick Piggin 已提交
1527
	}
1528
	page = find_subpage(page, offset);
N
Nick Piggin 已提交
1529
out:
N
Nick Piggin 已提交
1530 1531
	rcu_read_unlock();

L
Linus Torvalds 已提交
1532 1533
	return page;
}
1534
EXPORT_SYMBOL(find_get_entry);
L
Linus Torvalds 已提交
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544
/**
 * find_lock_entry - locate, pin and lock a page cache entry
 * @mapping: the address_space to search
 * @offset: the page cache index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
1545 1546
 * If the slot holds a shadow entry of a previously evicted page, or a
 * swap entry from shmem/tmpfs, it is returned.
1547 1548
 *
 * find_lock_entry() may sleep.
1549 1550
 *
 * Return: the found page or shadow entry, %NULL if nothing is found.
1551 1552
 */
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
L
Linus Torvalds 已提交
1553 1554 1555 1556
{
	struct page *page;

repeat:
1557
	page = find_get_entry(mapping, offset);
1558
	if (page && !xa_is_value(page)) {
N
Nick Piggin 已提交
1559 1560
		lock_page(page);
		/* Has the page been truncated? */
1561
		if (unlikely(page_mapping(page) != mapping)) {
N
Nick Piggin 已提交
1562
			unlock_page(page);
1563
			put_page(page);
N
Nick Piggin 已提交
1564
			goto repeat;
L
Linus Torvalds 已提交
1565
		}
1566
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
L
Linus Torvalds 已提交
1567 1568 1569
	}
	return page;
}
1570 1571 1572
EXPORT_SYMBOL(find_lock_entry);

/**
1573
 * pagecache_get_page - find and get a page reference
1574 1575
 * @mapping: the address_space to search
 * @offset: the page index
1576
 * @fgp_flags: PCG flags
1577
 * @gfp_mask: gfp mask to use for the page cache data page allocation
1578
 *
1579
 * Looks up the page cache slot at @mapping & @offset.
L
Linus Torvalds 已提交
1580
 *
1581
 * PCG flags modify how the page is returned.
1582
 *
1583 1584 1585 1586 1587 1588 1589
 * @fgp_flags can be:
 *
 * - FGP_ACCESSED: the page will be marked accessed
 * - FGP_LOCK: Page is return locked
 * - FGP_CREAT: If page is not present then a new page is allocated using
 *   @gfp_mask and added to the page cache and the VM's LRU
 *   list. The page is returned locked and with an increased
1590
 *   refcount.
1591 1592 1593
 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
 *   its own locking dance if the page is already in cache, or unlock the page
 *   before returning if we had to add the page to pagecache.
L
Linus Torvalds 已提交
1594
 *
1595 1596
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 * if the GFP flags specified for FGP_CREAT are atomic.
L
Linus Torvalds 已提交
1597
 *
1598
 * If there is a page cache page, it is returned with an increased refcount.
1599 1600
 *
 * Return: the found page or %NULL otherwise.
L
Linus Torvalds 已提交
1601
 */
1602
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1603
	int fgp_flags, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1604
{
N
Nick Piggin 已提交
1605
	struct page *page;
1606

L
Linus Torvalds 已提交
1607
repeat:
1608
	page = find_get_entry(mapping, offset);
1609
	if (xa_is_value(page))
1610 1611 1612 1613 1614 1615 1616
		page = NULL;
	if (!page)
		goto no_page;

	if (fgp_flags & FGP_LOCK) {
		if (fgp_flags & FGP_NOWAIT) {
			if (!trylock_page(page)) {
1617
				put_page(page);
1618 1619 1620 1621 1622 1623 1624 1625 1626
				return NULL;
			}
		} else {
			lock_page(page);
		}

		/* Has the page been truncated? */
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
1627
			put_page(page);
1628 1629 1630 1631 1632
			goto repeat;
		}
		VM_BUG_ON_PAGE(page->index != offset, page);
	}

1633
	if (fgp_flags & FGP_ACCESSED)
1634 1635 1636 1637 1638 1639
		mark_page_accessed(page);

no_page:
	if (!page && (fgp_flags & FGP_CREAT)) {
		int err;
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1640 1641 1642
			gfp_mask |= __GFP_WRITE;
		if (fgp_flags & FGP_NOFS)
			gfp_mask &= ~__GFP_FS;
1643

1644
		page = __page_cache_alloc(gfp_mask);
N
Nick Piggin 已提交
1645 1646
		if (!page)
			return NULL;
1647

1648
		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1649 1650
			fgp_flags |= FGP_LOCK;

1651
		/* Init accessed so avoid atomic mark_page_accessed later */
1652
		if (fgp_flags & FGP_ACCESSED)
1653
			__SetPageReferenced(page);
1654

1655
		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
N
Nick Piggin 已提交
1656
		if (unlikely(err)) {
1657
			put_page(page);
N
Nick Piggin 已提交
1658 1659 1660
			page = NULL;
			if (err == -EEXIST)
				goto repeat;
L
Linus Torvalds 已提交
1661
		}
1662 1663 1664 1665 1666 1667 1668

		/*
		 * add_to_page_cache_lru locks the page, and for mmap we expect
		 * an unlocked page.
		 */
		if (page && (fgp_flags & FGP_FOR_MMAP))
			unlock_page(page);
L
Linus Torvalds 已提交
1669
	}
1670

L
Linus Torvalds 已提交
1671 1672
	return page;
}
1673
EXPORT_SYMBOL(pagecache_get_page);
L
Linus Torvalds 已提交
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
/**
 * find_get_entries - gang pagecache lookup
 * @mapping:	The address_space to search
 * @start:	The starting page cache index
 * @nr_entries:	The maximum number of entries
 * @entries:	Where the resulting entries are placed
 * @indices:	The cache indices corresponding to the entries in @entries
 *
 * find_get_entries() will search for and return a group of up to
 * @nr_entries entries in the mapping.  The entries are placed at
 * @entries.  find_get_entries() takes a reference against any actual
 * pages it returns.
 *
 * The search returns a group of mapping-contiguous page cache entries
 * with ascending indexes.  There may be holes in the indices due to
 * not-present pages.
 *
1692 1693
 * Any shadow entries of evicted pages, or swap entries from
 * shmem/tmpfs, are included in the returned array.
1694
 *
1695
 * Return: the number of pages and shadow entries which were found.
1696 1697 1698 1699 1700
 */
unsigned find_get_entries(struct address_space *mapping,
			  pgoff_t start, unsigned int nr_entries,
			  struct page **entries, pgoff_t *indices)
{
1701 1702
	XA_STATE(xas, &mapping->i_pages, start);
	struct page *page;
1703 1704 1705 1706 1707 1708
	unsigned int ret = 0;

	if (!nr_entries)
		return 0;

	rcu_read_lock();
1709 1710
	xas_for_each(&xas, page, ULONG_MAX) {
		if (xas_retry(&xas, page))
1711
			continue;
1712 1713 1714 1715 1716 1717
		/*
		 * A shadow entry of a recently evicted page, a swap
		 * entry from shmem/tmpfs or a DAX entry.  Return it
		 * without attempting to raise page count.
		 */
		if (xa_is_value(page))
1718
			goto export;
1719

1720
		if (!page_cache_get_speculative(page))
1721
			goto retry;
1722

1723
		/* Has the page moved or been split? */
1724 1725
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
1726
		page = find_subpage(page, xas.xa_index);
1727

1728
export:
1729
		indices[ret] = xas.xa_index;
1730 1731 1732
		entries[ret] = page;
		if (++ret == nr_entries)
			break;
1733 1734
		continue;
put_page:
1735
		put_page(page);
1736 1737
retry:
		xas_reset(&xas);
1738 1739 1740 1741 1742
	}
	rcu_read_unlock();
	return ret;
}

L
Linus Torvalds 已提交
1743
/**
J
Jan Kara 已提交
1744
 * find_get_pages_range - gang pagecache lookup
L
Linus Torvalds 已提交
1745 1746
 * @mapping:	The address_space to search
 * @start:	The starting page index
J
Jan Kara 已提交
1747
 * @end:	The final page index (inclusive)
L
Linus Torvalds 已提交
1748 1749 1750
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
J
Jan Kara 已提交
1751 1752 1753 1754
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 * pages in the mapping starting at index @start and up to index @end
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 * a reference against the returned pages.
L
Linus Torvalds 已提交
1755 1756 1757
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
1758
 * We also update @start to index the next page for the traversal.
L
Linus Torvalds 已提交
1759
 *
1760 1761
 * Return: the number of pages which were found. If this number is
 * smaller than @nr_pages, the end of specified range has been
J
Jan Kara 已提交
1762
 * reached.
L
Linus Torvalds 已提交
1763
 */
J
Jan Kara 已提交
1764 1765 1766
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
			      pgoff_t end, unsigned int nr_pages,
			      struct page **pages)
L
Linus Torvalds 已提交
1767
{
1768 1769
	XA_STATE(xas, &mapping->i_pages, *start);
	struct page *page;
1770 1771 1772 1773
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1774 1775

	rcu_read_lock();
1776 1777
	xas_for_each(&xas, page, end) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1778
			continue;
1779 1780
		/* Skip over shadow, swap and DAX entries */
		if (xa_is_value(page))
1781
			continue;
N
Nick Piggin 已提交
1782

1783
		if (!page_cache_get_speculative(page))
1784
			goto retry;
1785

1786
		/* Has the page moved or been split? */
1787 1788
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
L
Linus Torvalds 已提交
1789

1790
		pages[ret] = find_subpage(page, xas.xa_index);
J
Jan Kara 已提交
1791
		if (++ret == nr_pages) {
1792
			*start = xas.xa_index + 1;
J
Jan Kara 已提交
1793 1794
			goto out;
		}
1795 1796
		continue;
put_page:
1797
		put_page(page);
1798 1799
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1800
	}
1801

J
Jan Kara 已提交
1802 1803 1804
	/*
	 * We come here when there is no page beyond @end. We take care to not
	 * overflow the index @start as it confuses some of the callers. This
1805
	 * breaks the iteration when there is a page at index -1 but that is
J
Jan Kara 已提交
1806 1807 1808 1809 1810 1811 1812
	 * already broken anyway.
	 */
	if (end == (pgoff_t)-1)
		*start = (pgoff_t)-1;
	else
		*start = end + 1;
out:
N
Nick Piggin 已提交
1813
	rcu_read_unlock();
1814

L
Linus Torvalds 已提交
1815 1816 1817
	return ret;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:	The address_space to search
 * @index:	The starting page index
 * @nr_pages:	The maximum number of pages
 * @pages:	Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
1828
 * Return: the number of pages which were found.
1829 1830 1831 1832
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
			       unsigned int nr_pages, struct page **pages)
{
1833 1834
	XA_STATE(xas, &mapping->i_pages, index);
	struct page *page;
1835 1836 1837 1838
	unsigned int ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1839 1840

	rcu_read_lock();
1841 1842 1843 1844 1845 1846 1847 1848
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
		if (xas_retry(&xas, page))
			continue;
		/*
		 * If the entry has been swapped out, we can stop looking.
		 * No current caller is looking for DAX entries.
		 */
		if (xa_is_value(page))
1849
			break;
1850

1851
		if (!page_cache_get_speculative(page))
1852
			goto retry;
1853

1854
		/* Has the page moved or been split? */
1855 1856
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1857

1858
		pages[ret] = find_subpage(page, xas.xa_index);
1859 1860
		if (++ret == nr_pages)
			break;
1861 1862
		continue;
put_page:
1863
		put_page(page);
1864 1865
retry:
		xas_reset(&xas);
1866
	}
N
Nick Piggin 已提交
1867 1868
	rcu_read_unlock();
	return ret;
1869
}
1870
EXPORT_SYMBOL(find_get_pages_contig);
1871

1872
/**
1873
 * find_get_pages_range_tag - find and return pages in given range matching @tag
1874 1875
 * @mapping:	the address_space to search
 * @index:	the starting page index
1876
 * @end:	The final page index (inclusive)
1877 1878 1879 1880
 * @tag:	the tag index
 * @nr_pages:	the maximum number of pages
 * @pages:	where the resulting pages are placed
 *
L
Linus Torvalds 已提交
1881
 * Like find_get_pages, except we only return pages which are tagged with
1882
 * @tag.   We update @index to index the next page for the traversal.
1883 1884
 *
 * Return: the number of pages which were found.
L
Linus Torvalds 已提交
1885
 */
1886
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1887
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1888
			struct page **pages)
L
Linus Torvalds 已提交
1889
{
1890 1891
	XA_STATE(xas, &mapping->i_pages, *index);
	struct page *page;
1892 1893 1894 1895
	unsigned ret = 0;

	if (unlikely(!nr_pages))
		return 0;
N
Nick Piggin 已提交
1896 1897

	rcu_read_lock();
1898 1899
	xas_for_each_marked(&xas, page, end, tag) {
		if (xas_retry(&xas, page))
N
Nick Piggin 已提交
1900
			continue;
1901 1902 1903 1904 1905 1906
		/*
		 * Shadow entries should never be tagged, but this iteration
		 * is lockless so there is a window for page reclaim to evict
		 * a page we saw tagged.  Skip over it.
		 */
		if (xa_is_value(page))
1907
			continue;
N
Nick Piggin 已提交
1908

1909
		if (!page_cache_get_speculative(page))
1910
			goto retry;
N
Nick Piggin 已提交
1911

1912
		/* Has the page moved or been split? */
1913 1914
		if (unlikely(page != xas_reload(&xas)))
			goto put_page;
N
Nick Piggin 已提交
1915

1916
		pages[ret] = find_subpage(page, xas.xa_index);
1917
		if (++ret == nr_pages) {
1918
			*index = xas.xa_index + 1;
1919 1920
			goto out;
		}
1921 1922
		continue;
put_page:
1923
		put_page(page);
1924 1925
retry:
		xas_reset(&xas);
N
Nick Piggin 已提交
1926
	}
1927

1928
	/*
1929
	 * We come here when we got to @end. We take care to not overflow the
1930
	 * index @index as it confuses some of the callers. This breaks the
1931 1932
	 * iteration when there is a page at index -1 but that is already
	 * broken anyway.
1933 1934 1935 1936 1937 1938
	 */
	if (end == (pgoff_t)-1)
		*index = (pgoff_t)-1;
	else
		*index = end + 1;
out:
N
Nick Piggin 已提交
1939
	rcu_read_unlock();
L
Linus Torvalds 已提交
1940 1941 1942

	return ret;
}
1943
EXPORT_SYMBOL(find_get_pages_range_tag);
L
Linus Torvalds 已提交
1944

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
					struct file_ra_state *ra)
{
	ra->ra_pages /= 4;
}

1966
/**
1967 1968
 * generic_file_buffered_read - generic file read routine
 * @iocb:	the iocb to read
1969 1970
 * @iter:	data destination
 * @written:	already copied
1971
 *
L
Linus Torvalds 已提交
1972
 * This is a generic file read routine, and uses the
1973
 * mapping->a_ops->readpage() function for the actual low-level stuff.
L
Linus Torvalds 已提交
1974 1975 1976
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
1977 1978 1979 1980
 *
 * Return:
 * * total number of bytes copied, including those the were already @written
 * * negative error code if nothing was copied
L
Linus Torvalds 已提交
1981
 */
1982
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
1983
		struct iov_iter *iter, ssize_t written)
L
Linus Torvalds 已提交
1984
{
1985
	struct file *filp = iocb->ki_filp;
C
Christoph Hellwig 已提交
1986
	struct address_space *mapping = filp->f_mapping;
L
Linus Torvalds 已提交
1987
	struct inode *inode = mapping->host;
C
Christoph Hellwig 已提交
1988
	struct file_ra_state *ra = &filp->f_ra;
1989
	loff_t *ppos = &iocb->ki_pos;
1990 1991 1992 1993
	pgoff_t index;
	pgoff_t last_index;
	pgoff_t prev_index;
	unsigned long offset;      /* offset into pagecache page */
1994
	unsigned int prev_offset;
1995
	int error = 0;
L
Linus Torvalds 已提交
1996

1997
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1998
		return 0;
1999 2000
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);

2001 2002 2003 2004 2005
	index = *ppos >> PAGE_SHIFT;
	prev_index = ra->prev_pos >> PAGE_SHIFT;
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
	offset = *ppos & ~PAGE_MASK;
L
Linus Torvalds 已提交
2006 2007 2008

	for (;;) {
		struct page *page;
2009
		pgoff_t end_index;
N
NeilBrown 已提交
2010
		loff_t isize;
L
Linus Torvalds 已提交
2011 2012 2013 2014
		unsigned long nr, ret;

		cond_resched();
find_page:
2015 2016 2017 2018 2019
		if (fatal_signal_pending(current)) {
			error = -EINTR;
			goto out;
		}

L
Linus Torvalds 已提交
2020
		page = find_get_page(mapping, index);
2021
		if (!page) {
2022 2023
			if (iocb->ki_flags & IOCB_NOWAIT)
				goto would_block;
2024
			page_cache_sync_readahead(mapping,
2025
					ra, filp,
2026 2027 2028 2029 2030 2031
					index, last_index - index);
			page = find_get_page(mapping, index);
			if (unlikely(page == NULL))
				goto no_cached_page;
		}
		if (PageReadahead(page)) {
2032
			page_cache_async_readahead(mapping,
2033
					ra, filp, page,
2034
					index, last_index - index);
L
Linus Torvalds 已提交
2035
		}
2036
		if (!PageUptodate(page)) {
2037 2038 2039 2040 2041
			if (iocb->ki_flags & IOCB_NOWAIT) {
				put_page(page);
				goto would_block;
			}

2042 2043 2044 2045 2046
			/*
			 * See comment in do_read_cache_page on why
			 * wait_on_page_locked is used to avoid unnecessarily
			 * serialisations and why it's safe.
			 */
2047 2048 2049
			error = wait_on_page_locked_killable(page);
			if (unlikely(error))
				goto readpage_error;
2050 2051 2052
			if (PageUptodate(page))
				goto page_ok;

2053
			if (inode->i_blkbits == PAGE_SHIFT ||
2054 2055
					!mapping->a_ops->is_partially_uptodate)
				goto page_not_up_to_date;
2056
			/* pipes can't handle partially uptodate pages */
D
David Howells 已提交
2057
			if (unlikely(iov_iter_is_pipe(iter)))
2058
				goto page_not_up_to_date;
N
Nick Piggin 已提交
2059
			if (!trylock_page(page))
2060
				goto page_not_up_to_date;
2061 2062 2063
			/* Did it get truncated before we got the lock? */
			if (!page->mapping)
				goto page_not_up_to_date_locked;
2064
			if (!mapping->a_ops->is_partially_uptodate(page,
2065
							offset, iter->count))
2066 2067 2068
				goto page_not_up_to_date_locked;
			unlock_page(page);
		}
L
Linus Torvalds 已提交
2069
page_ok:
N
NeilBrown 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		/*
		 * i_size must be checked after we know the page is Uptodate.
		 *
		 * Checking i_size after the check allows us to calculate
		 * the correct value for "nr", which means the zero-filled
		 * part of the page is not copied back to userspace (unless
		 * another truncate extends the file - this is desired though).
		 */

		isize = i_size_read(inode);
2080
		end_index = (isize - 1) >> PAGE_SHIFT;
N
NeilBrown 已提交
2081
		if (unlikely(!isize || index > end_index)) {
2082
			put_page(page);
N
NeilBrown 已提交
2083 2084 2085 2086
			goto out;
		}

		/* nr is the maximum number of bytes to copy from this page */
2087
		nr = PAGE_SIZE;
N
NeilBrown 已提交
2088
		if (index == end_index) {
2089
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
N
NeilBrown 已提交
2090
			if (nr <= offset) {
2091
				put_page(page);
N
NeilBrown 已提交
2092 2093 2094 2095
				goto out;
			}
		}
		nr = nr - offset;
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100 2101 2102 2103 2104

		/* If users can be writing to this page using arbitrary
		 * virtual addresses, take care about potential aliasing
		 * before reading the page on the kernel side.
		 */
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);

		/*
2105 2106
		 * When a sequential read accesses a page several times,
		 * only mark it as accessed the first time.
L
Linus Torvalds 已提交
2107
		 */
2108
		if (prev_index != index || offset != prev_offset)
L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115
			mark_page_accessed(page);
		prev_index = index;

		/*
		 * Ok, we have the page, and it's up-to-date, so
		 * now we can copy it to user space...
		 */
2116 2117

		ret = copy_page_to_iter(page, offset, nr, iter);
L
Linus Torvalds 已提交
2118
		offset += ret;
2119 2120
		index += offset >> PAGE_SHIFT;
		offset &= ~PAGE_MASK;
J
Jan Kara 已提交
2121
		prev_offset = offset;
L
Linus Torvalds 已提交
2122

2123
		put_page(page);
2124 2125 2126 2127 2128 2129 2130 2131
		written += ret;
		if (!iov_iter_count(iter))
			goto out;
		if (ret < nr) {
			error = -EFAULT;
			goto out;
		}
		continue;
L
Linus Torvalds 已提交
2132 2133 2134

page_not_up_to_date:
		/* Get exclusive access to the page ... */
2135 2136 2137
		error = lock_page_killable(page);
		if (unlikely(error))
			goto readpage_error;
L
Linus Torvalds 已提交
2138

2139
page_not_up_to_date_locked:
N
Nick Piggin 已提交
2140
		/* Did it get truncated before we got the lock? */
L
Linus Torvalds 已提交
2141 2142
		if (!page->mapping) {
			unlock_page(page);
2143
			put_page(page);
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
			continue;
		}

		/* Did somebody else fill it already? */
		if (PageUptodate(page)) {
			unlock_page(page);
			goto page_ok;
		}

readpage:
2154 2155 2156 2157 2158 2159
		/*
		 * A previous I/O error may have been due to temporary
		 * failures, eg. multipath errors.
		 * PG_error will be set again if readpage fails.
		 */
		ClearPageError(page);
L
Linus Torvalds 已提交
2160 2161 2162
		/* Start the actual read. The read will unlock the page. */
		error = mapping->a_ops->readpage(filp, page);

2163 2164
		if (unlikely(error)) {
			if (error == AOP_TRUNCATED_PAGE) {
2165
				put_page(page);
2166
				error = 0;
2167 2168
				goto find_page;
			}
L
Linus Torvalds 已提交
2169
			goto readpage_error;
2170
		}
L
Linus Torvalds 已提交
2171 2172

		if (!PageUptodate(page)) {
2173 2174 2175
			error = lock_page_killable(page);
			if (unlikely(error))
				goto readpage_error;
L
Linus Torvalds 已提交
2176 2177 2178
			if (!PageUptodate(page)) {
				if (page->mapping == NULL) {
					/*
2179
					 * invalidate_mapping_pages got it
L
Linus Torvalds 已提交
2180 2181
					 */
					unlock_page(page);
2182
					put_page(page);
L
Linus Torvalds 已提交
2183 2184 2185
					goto find_page;
				}
				unlock_page(page);
2186
				shrink_readahead_size_eio(filp, ra);
2187 2188
				error = -EIO;
				goto readpage_error;
L
Linus Torvalds 已提交
2189 2190 2191 2192 2193 2194 2195 2196
			}
			unlock_page(page);
		}

		goto page_ok;

readpage_error:
		/* UHHUH! A synchronous read error occurred. Report it */
2197
		put_page(page);
L
Linus Torvalds 已提交
2198 2199 2200 2201 2202 2203 2204
		goto out;

no_cached_page:
		/*
		 * Ok, it wasn't cached, so we need to create a new
		 * page..
		 */
M
Mel Gorman 已提交
2205
		page = page_cache_alloc(mapping);
N
Nick Piggin 已提交
2206
		if (!page) {
2207
			error = -ENOMEM;
N
Nick Piggin 已提交
2208
			goto out;
L
Linus Torvalds 已提交
2209
		}
2210
		error = add_to_page_cache_lru(page, mapping, index,
2211
				mapping_gfp_constraint(mapping, GFP_KERNEL));
L
Linus Torvalds 已提交
2212
		if (error) {
2213
			put_page(page);
2214 2215
			if (error == -EEXIST) {
				error = 0;
L
Linus Torvalds 已提交
2216
				goto find_page;
2217
			}
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222
			goto out;
		}
		goto readpage;
	}

2223 2224
would_block:
	error = -EAGAIN;
L
Linus Torvalds 已提交
2225
out:
2226
	ra->prev_pos = prev_index;
2227
	ra->prev_pos <<= PAGE_SHIFT;
2228
	ra->prev_pos |= prev_offset;
L
Linus Torvalds 已提交
2229

2230
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2231
	file_accessed(filp);
2232
	return written ? written : error;
L
Linus Torvalds 已提交
2233 2234
}

2235
/**
A
Al Viro 已提交
2236
 * generic_file_read_iter - generic filesystem read routine
2237
 * @iocb:	kernel I/O control block
A
Al Viro 已提交
2238
 * @iter:	destination for the data read
2239
 *
A
Al Viro 已提交
2240
 * This is the "read_iter()" routine for all filesystems
L
Linus Torvalds 已提交
2241
 * that can use the page cache directly.
2242 2243 2244
 * Return:
 * * number of bytes copied, even for partial reads
 * * negative error code if nothing was read
L
Linus Torvalds 已提交
2245 2246
 */
ssize_t
A
Al Viro 已提交
2247
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
L
Linus Torvalds 已提交
2248
{
2249
	size_t count = iov_iter_count(iter);
2250
	ssize_t retval = 0;
2251 2252 2253

	if (!count)
		goto out; /* skip atime */
L
Linus Torvalds 已提交
2254

2255
	if (iocb->ki_flags & IOCB_DIRECT) {
2256
		struct file *file = iocb->ki_filp;
A
Al Viro 已提交
2257 2258
		struct address_space *mapping = file->f_mapping;
		struct inode *inode = mapping->host;
2259
		loff_t size;
L
Linus Torvalds 已提交
2260 2261

		size = i_size_read(inode);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		if (iocb->ki_flags & IOCB_NOWAIT) {
			if (filemap_range_has_page(mapping, iocb->ki_pos,
						   iocb->ki_pos + count - 1))
				return -EAGAIN;
		} else {
			retval = filemap_write_and_wait_range(mapping,
						iocb->ki_pos,
					        iocb->ki_pos + count - 1);
			if (retval < 0)
				goto out;
		}
A
Al Viro 已提交
2273

2274 2275
		file_accessed(file);

2276
		retval = mapping->a_ops->direct_IO(iocb, iter);
A
Al Viro 已提交
2277
		if (retval >= 0) {
2278
			iocb->ki_pos += retval;
2279
			count -= retval;
2280
		}
A
Al Viro 已提交
2281
		iov_iter_revert(iter, count - iov_iter_count(iter));
2282

2283 2284 2285 2286 2287 2288
		/*
		 * Btrfs can have a short DIO read if we encounter
		 * compressed extents, so if there was an error, or if
		 * we've already read everything we wanted to, or if
		 * there was a short read because we hit EOF, go ahead
		 * and return.  Otherwise fallthrough to buffered io for
2289 2290
		 * the rest of the read.  Buffered reads will not work for
		 * DAX files, so don't bother trying.
2291
		 */
2292
		if (retval < 0 || !count || iocb->ki_pos >= size ||
2293
		    IS_DAX(inode))
2294
			goto out;
L
Linus Torvalds 已提交
2295 2296
	}

2297
	retval = generic_file_buffered_read(iocb, iter, retval);
L
Linus Torvalds 已提交
2298 2299 2300
out:
	return retval;
}
A
Al Viro 已提交
2301
EXPORT_SYMBOL(generic_file_read_iter);
L
Linus Torvalds 已提交
2302 2303 2304

#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS  (100)
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
					     struct file *fpin)
{
	int flags = vmf->flags;

	if (fpin)
		return fpin;

	/*
	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
	 * anything, so we only pin the file and drop the mmap_sem if only
	 * FAULT_FLAG_ALLOW_RETRY is set.
	 */
	if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
	    FAULT_FLAG_ALLOW_RETRY) {
		fpin = get_file(vmf->vma->vm_file);
		up_read(&vmf->vma->vm_mm->mmap_sem);
	}
	return fpin;
}

/*
 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
 * @vmf - the vm_fault for this fault.
 * @page - the page to lock.
 * @fpin - the pointer to the file we may pin (or is already pinned).
 *
 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
 * It differs in that it actually returns the page locked if it returns 1 and 0
 * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
 * will point to the pinned file and needs to be fput()'ed at a later point.
 */
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
				     struct file **fpin)
{
	if (trylock_page(page))
		return 1;

2343 2344 2345 2346 2347
	/*
	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
	 * is supposed to work. We have way too many special cases..
	 */
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
		return 0;

	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
	if (vmf->flags & FAULT_FLAG_KILLABLE) {
		if (__lock_page_killable(page)) {
			/*
			 * We didn't have the right flags to drop the mmap_sem,
			 * but all fault_handlers only check for fatal signals
			 * if we return VM_FAULT_RETRY, so we need to drop the
			 * mmap_sem here and return 0 if we don't have a fpin.
			 */
			if (*fpin == NULL)
				up_read(&vmf->vma->vm_mm->mmap_sem);
			return 0;
		}
	} else
		__lock_page(page);
	return 1;
}

L
Linus Torvalds 已提交
2369

2370
/*
2371 2372 2373 2374 2375
 * Synchronous readahead happens when we don't even find a page in the page
 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
 * to drop the mmap sem we return the file that was pinned in order for us to do
 * that.  If we didn't pin a file then we return NULL.  The file that is
 * returned needs to be fput()'ed when we're done with it.
2376
 */
2377
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2378
{
2379 2380
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2381
	struct address_space *mapping = file->f_mapping;
2382
	struct file *fpin = NULL;
2383
	pgoff_t offset = vmf->pgoff;
2384 2385

	/* If we don't want any read-ahead, don't bother */
2386
	if (vmf->vma->vm_flags & VM_RAND_READ)
2387
		return fpin;
2388
	if (!ra->ra_pages)
2389
		return fpin;
2390

2391
	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2392
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2393 2394
		page_cache_sync_readahead(mapping, ra, file, offset,
					  ra->ra_pages);
2395
		return fpin;
2396 2397
	}

2398 2399
	/* Avoid banging the cache line if not needed */
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2400 2401 2402 2403 2404 2405 2406
		ra->mmap_miss++;

	/*
	 * Do we miss much more than hit in this file? If so,
	 * stop bothering with read-ahead. It will only hurt.
	 */
	if (ra->mmap_miss > MMAP_LOTSAMISS)
2407
		return fpin;
2408

2409 2410 2411
	/*
	 * mmap read-around
	 */
2412
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2413 2414 2415
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
	ra->size = ra->ra_pages;
	ra->async_size = ra->ra_pages / 4;
2416
	ra_submit(ra, mapping, file);
2417
	return fpin;
2418 2419 2420 2421
}

/*
 * Asynchronous readahead happens when we find the page and PG_readahead,
2422 2423
 * so we want to possibly extend the readahead further.  We return the file that
 * was pinned if we have to drop the mmap_sem in order to do IO.
2424
 */
2425 2426
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
					    struct page *page)
2427
{
2428 2429
	struct file *file = vmf->vma->vm_file;
	struct file_ra_state *ra = &file->f_ra;
2430
	struct address_space *mapping = file->f_mapping;
2431
	struct file *fpin = NULL;
2432
	pgoff_t offset = vmf->pgoff;
2433 2434

	/* If we don't want any read-ahead, don't bother */
2435
	if (vmf->vma->vm_flags & VM_RAND_READ)
2436
		return fpin;
2437 2438
	if (ra->mmap_miss > 0)
		ra->mmap_miss--;
2439 2440
	if (PageReadahead(page)) {
		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2441 2442
		page_cache_async_readahead(mapping, ra, file,
					   page, offset, ra->ra_pages);
2443 2444
	}
	return fpin;
2445 2446
}

2447
/**
2448
 * filemap_fault - read in file data for page fault handling
N
Nick Piggin 已提交
2449
 * @vmf:	struct vm_fault containing details of the fault
2450
 *
2451
 * filemap_fault() is invoked via the vma operations vector for a
L
Linus Torvalds 已提交
2452 2453 2454 2455 2456
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
 *
 * vma->vm_mm->mmap_sem must be held on entry.
 *
 * If our return value has VM_FAULT_RETRY set, it's because
 * lock_page_or_retry() returned 0.
 * The mmap_sem has usually been released in this case.
 * See __lock_page_or_retry() for the exception.
 *
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 * has not been released.
 *
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2469 2470
 *
 * Return: bitwise-OR of %VM_FAULT_ codes.
L
Linus Torvalds 已提交
2471
 */
2472
vm_fault_t filemap_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
2473 2474
{
	int error;
2475
	struct file *file = vmf->vma->vm_file;
2476
	struct file *fpin = NULL;
L
Linus Torvalds 已提交
2477 2478 2479
	struct address_space *mapping = file->f_mapping;
	struct file_ra_state *ra = &file->f_ra;
	struct inode *inode = mapping->host;
2480
	pgoff_t offset = vmf->pgoff;
2481
	pgoff_t max_off;
L
Linus Torvalds 已提交
2482
	struct page *page;
2483
	vm_fault_t ret = 0;
L
Linus Torvalds 已提交
2484

2485 2486
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off))
2487
		return VM_FAULT_SIGBUS;
L
Linus Torvalds 已提交
2488 2489

	/*
2490
	 * Do we have something in the page cache already?
L
Linus Torvalds 已提交
2491
	 */
2492
	page = find_get_page(mapping, offset);
2493
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
L
Linus Torvalds 已提交
2494
		/*
2495 2496
		 * We found the page, so try async readahead before
		 * waiting for the lock.
L
Linus Torvalds 已提交
2497
		 */
2498
		fpin = do_async_mmap_readahead(vmf, page);
2499
	} else if (!page) {
2500 2501
		/* No page in the page cache at all */
		count_vm_event(PGMAJFAULT);
2502
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2503
		ret = VM_FAULT_MAJOR;
2504
		fpin = do_sync_mmap_readahead(vmf);
2505
retry_find:
2506 2507 2508
		page = pagecache_get_page(mapping, offset,
					  FGP_CREAT|FGP_FOR_MMAP,
					  vmf->gfp_mask);
2509 2510 2511
		if (!page) {
			if (fpin)
				goto out_retry;
2512
			return vmf_error(-ENOMEM);
2513
		}
L
Linus Torvalds 已提交
2514 2515
	}

2516 2517
	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
		goto out_retry;
2518 2519 2520 2521 2522 2523 2524

	/* Did it get truncated? */
	if (unlikely(page->mapping != mapping)) {
		unlock_page(page);
		put_page(page);
		goto retry_find;
	}
2525
	VM_BUG_ON_PAGE(page->index != offset, page);
2526

L
Linus Torvalds 已提交
2527
	/*
2528 2529
	 * We have a locked page in the page cache, now we need to check
	 * that it's up-to-date. If not, it is going to be due to an error.
L
Linus Torvalds 已提交
2530
	 */
2531
	if (unlikely(!PageUptodate(page)))
L
Linus Torvalds 已提交
2532 2533
		goto page_not_uptodate;

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	/*
	 * We've made it this far and we had to drop our mmap_sem, now is the
	 * time to return to the upper layer and have it re-find the vma and
	 * redo the fault.
	 */
	if (fpin) {
		unlock_page(page);
		goto out_retry;
	}

2544 2545 2546 2547
	/*
	 * Found the page and have a reference on it.
	 * We must recheck i_size under page lock.
	 */
2548 2549
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
	if (unlikely(offset >= max_off)) {
2550
		unlock_page(page);
2551
		put_page(page);
2552
		return VM_FAULT_SIGBUS;
2553 2554
	}

N
Nick Piggin 已提交
2555
	vmf->page = page;
N
Nick Piggin 已提交
2556
	return ret | VM_FAULT_LOCKED;
L
Linus Torvalds 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565

page_not_uptodate:
	/*
	 * Umm, take care of errors if the page isn't up-to-date.
	 * Try to re-read it _once_. We do this synchronously,
	 * because there really aren't any performance issues here
	 * and we need to check for errors.
	 */
	ClearPageError(page);
2566
	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2567
	error = mapping->a_ops->readpage(file, page);
2568 2569 2570 2571 2572
	if (!error) {
		wait_on_page_locked(page);
		if (!PageUptodate(page))
			error = -EIO;
	}
2573 2574
	if (fpin)
		goto out_retry;
2575
	put_page(page);
2576 2577

	if (!error || error == AOP_TRUNCATED_PAGE)
2578
		goto retry_find;
L
Linus Torvalds 已提交
2579

2580
	/* Things didn't work out. Return zero to tell the mm layer so. */
2581
	shrink_readahead_size_eio(file, ra);
N
Nick Piggin 已提交
2582
	return VM_FAULT_SIGBUS;
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

out_retry:
	/*
	 * We dropped the mmap_sem, we need to return to the fault handler to
	 * re-find the vma and come back and find our hopefully still populated
	 * page.
	 */
	if (page)
		put_page(page);
	if (fpin)
		fput(fpin);
	return ret | VM_FAULT_RETRY;
2595 2596 2597
}
EXPORT_SYMBOL(filemap_fault);

J
Jan Kara 已提交
2598
void filemap_map_pages(struct vm_fault *vmf,
K
Kirill A. Shutemov 已提交
2599
		pgoff_t start_pgoff, pgoff_t end_pgoff)
2600
{
J
Jan Kara 已提交
2601
	struct file *file = vmf->vma->vm_file;
2602
	struct address_space *mapping = file->f_mapping;
K
Kirill A. Shutemov 已提交
2603
	pgoff_t last_pgoff = start_pgoff;
2604
	unsigned long max_idx;
2605
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2606
	struct page *page;
2607 2608

	rcu_read_lock();
2609 2610 2611 2612
	xas_for_each(&xas, page, end_pgoff) {
		if (xas_retry(&xas, page))
			continue;
		if (xa_is_value(page))
M
Matthew Wilcox 已提交
2613
			goto next;
2614

2615 2616 2617 2618
		/*
		 * Check for a locked page first, as a speculative
		 * reference may adversely influence page migration.
		 */
2619
		if (PageLocked(page))
2620
			goto next;
2621
		if (!page_cache_get_speculative(page))
2622
			goto next;
2623

2624
		/* Has the page moved or been split? */
2625 2626
		if (unlikely(page != xas_reload(&xas)))
			goto skip;
2627
		page = find_subpage(page, xas.xa_index);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

		if (!PageUptodate(page) ||
				PageReadahead(page) ||
				PageHWPoison(page))
			goto skip;
		if (!trylock_page(page))
			goto skip;

		if (page->mapping != mapping || !PageUptodate(page))
			goto unlock;

2639 2640
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
		if (page->index >= max_idx)
2641 2642 2643 2644
			goto unlock;

		if (file->f_ra.mmap_miss > 0)
			file->f_ra.mmap_miss--;
2645

2646
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
J
Jan Kara 已提交
2647
		if (vmf->pte)
2648 2649
			vmf->pte += xas.xa_index - last_pgoff;
		last_pgoff = xas.xa_index;
J
Jan Kara 已提交
2650
		if (alloc_set_pte(vmf, NULL, page))
2651
			goto unlock;
2652 2653 2654 2655 2656
		unlock_page(page);
		goto next;
unlock:
		unlock_page(page);
skip:
2657
		put_page(page);
2658
next:
2659
		/* Huge page is mapped? No need to proceed. */
J
Jan Kara 已提交
2660
		if (pmd_trans_huge(*vmf->pmd))
2661
			break;
2662 2663 2664 2665 2666
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);

2667
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2668 2669
{
	struct page *page = vmf->page;
2670
	struct inode *inode = file_inode(vmf->vma->vm_file);
2671
	vm_fault_t ret = VM_FAULT_LOCKED;
2672

2673
	sb_start_pagefault(inode->i_sb);
2674
	file_update_time(vmf->vma->vm_file);
2675 2676 2677 2678 2679 2680
	lock_page(page);
	if (page->mapping != inode->i_mapping) {
		unlock_page(page);
		ret = VM_FAULT_NOPAGE;
		goto out;
	}
2681 2682 2683 2684 2685 2686
	/*
	 * We mark the page dirty already here so that when freeze is in
	 * progress, we are guaranteed that writeback during freezing will
	 * see the dirty page and writeprotect it again.
	 */
	set_page_dirty(page);
2687
	wait_for_stable_page(page);
2688
out:
2689
	sb_end_pagefault(inode->i_sb);
2690 2691 2692
	return ret;
}

2693
const struct vm_operations_struct generic_file_vm_ops = {
2694
	.fault		= filemap_fault,
2695
	.map_pages	= filemap_map_pages,
2696
	.page_mkwrite	= filemap_page_mkwrite,
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	struct address_space *mapping = file->f_mapping;

	if (!mapping->a_ops->readpage)
		return -ENOEXEC;
	file_accessed(file);
	vma->vm_ops = &generic_file_vm_ops;
	return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
		return -EINVAL;
	return generic_file_mmap(file, vma);
}
#else
S
Souptick Joarder 已提交
2722
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2723
{
S
Souptick Joarder 已提交
2724
	return VM_FAULT_SIGBUS;
2725
}
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
	return -ENOSYS;
}
#endif /* CONFIG_MMU */

2736
EXPORT_SYMBOL(filemap_page_mkwrite);
L
Linus Torvalds 已提交
2737 2738 2739
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

S
Sasha Levin 已提交
2740 2741 2742 2743 2744
static struct page *wait_on_page_read(struct page *page)
{
	if (!IS_ERR(page)) {
		wait_on_page_locked(page);
		if (!PageUptodate(page)) {
2745
			put_page(page);
S
Sasha Levin 已提交
2746 2747 2748 2749 2750 2751
			page = ERR_PTR(-EIO);
		}
	}
	return page;
}

2752
static struct page *do_read_cache_page(struct address_space *mapping,
2753
				pgoff_t index,
2754
				int (*filler)(void *, struct page *),
2755 2756
				void *data,
				gfp_t gfp)
L
Linus Torvalds 已提交
2757
{
N
Nick Piggin 已提交
2758
	struct page *page;
L
Linus Torvalds 已提交
2759 2760 2761 2762
	int err;
repeat:
	page = find_get_page(mapping, index);
	if (!page) {
M
Mel Gorman 已提交
2763
		page = __page_cache_alloc(gfp);
N
Nick Piggin 已提交
2764 2765
		if (!page)
			return ERR_PTR(-ENOMEM);
2766
		err = add_to_page_cache_lru(page, mapping, index, gfp);
N
Nick Piggin 已提交
2767
		if (unlikely(err)) {
2768
			put_page(page);
N
Nick Piggin 已提交
2769 2770
			if (err == -EEXIST)
				goto repeat;
2771
			/* Presumably ENOMEM for xarray node */
L
Linus Torvalds 已提交
2772 2773
			return ERR_PTR(err);
		}
2774 2775

filler:
L
Linus Torvalds 已提交
2776 2777
		err = filler(data, page);
		if (err < 0) {
2778
			put_page(page);
2779
			return ERR_PTR(err);
L
Linus Torvalds 已提交
2780 2781
		}

2782 2783 2784 2785 2786
		page = wait_on_page_read(page);
		if (IS_ERR(page))
			return page;
		goto out;
	}
L
Linus Torvalds 已提交
2787 2788 2789
	if (PageUptodate(page))
		goto out;

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	/*
	 * Page is not up to date and may be locked due one of the following
	 * case a: Page is being filled and the page lock is held
	 * case b: Read/write error clearing the page uptodate status
	 * case c: Truncation in progress (page locked)
	 * case d: Reclaim in progress
	 *
	 * Case a, the page will be up to date when the page is unlocked.
	 *    There is no need to serialise on the page lock here as the page
	 *    is pinned so the lock gives no additional protection. Even if the
	 *    the page is truncated, the data is still valid if PageUptodate as
	 *    it's a race vs truncate race.
	 * Case b, the page will not be up to date
	 * Case c, the page may be truncated but in itself, the data may still
	 *    be valid after IO completes as it's a read vs truncate race. The
	 *    operation must restart if the page is not uptodate on unlock but
	 *    otherwise serialising on page lock to stabilise the mapping gives
	 *    no additional guarantees to the caller as the page lock is
	 *    released before return.
	 * Case d, similar to truncation. If reclaim holds the page lock, it
	 *    will be a race with remove_mapping that determines if the mapping
	 *    is valid on unlock but otherwise the data is valid and there is
	 *    no need to serialise with page lock.
	 *
	 * As the page lock gives no additional guarantee, we optimistically
	 * wait on the page to be unlocked and check if it's up to date and
	 * use the page if it is. Otherwise, the page lock is required to
	 * distinguish between the different cases. The motivation is that we
	 * avoid spurious serialisations and wakeups when multiple processes
	 * wait on the same page for IO to complete.
	 */
	wait_on_page_locked(page);
	if (PageUptodate(page))
		goto out;

	/* Distinguish between all the cases under the safety of the lock */
L
Linus Torvalds 已提交
2826
	lock_page(page);
2827 2828

	/* Case c or d, restart the operation */
L
Linus Torvalds 已提交
2829 2830
	if (!page->mapping) {
		unlock_page(page);
2831
		put_page(page);
2832
		goto repeat;
L
Linus Torvalds 已提交
2833
	}
2834 2835

	/* Someone else locked and filled the page in a very small window */
L
Linus Torvalds 已提交
2836 2837 2838 2839
	if (PageUptodate(page)) {
		unlock_page(page);
		goto out;
	}
2840 2841
	goto filler;

2842
out:
2843 2844 2845
	mark_page_accessed(page);
	return page;
}
2846 2847

/**
S
Sasha Levin 已提交
2848
 * read_cache_page - read into page cache, fill it if needed
2849 2850 2851
 * @mapping:	the page's address_space
 * @index:	the page index
 * @filler:	function to perform the read
2852
 * @data:	first arg to filler(data, page) function, often left as NULL
2853 2854
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
S
Sasha Levin 已提交
2855
 * not set, try to fill the page and wait for it to become unlocked.
2856 2857
 *
 * If the page does not get brought uptodate, return -EIO.
2858 2859
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2860
 */
S
Sasha Levin 已提交
2861
struct page *read_cache_page(struct address_space *mapping,
2862
				pgoff_t index,
2863
				int (*filler)(void *, struct page *),
2864 2865 2866 2867
				void *data)
{
	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
}
S
Sasha Levin 已提交
2868
EXPORT_SYMBOL(read_cache_page);
2869 2870 2871 2872 2873 2874 2875 2876

/**
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 * @mapping:	the page's address_space
 * @index:	the page index
 * @gfp:	the page allocator flags to use if allocating
 *
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2877
 * any new page allocations done using the specified allocation flags.
2878 2879
 *
 * If the page does not get brought uptodate, return -EIO.
2880 2881
 *
 * Return: up to date page on success, ERR_PTR() on failure.
2882 2883 2884 2885 2886 2887 2888
 */
struct page *read_cache_page_gfp(struct address_space *mapping,
				pgoff_t index,
				gfp_t gfp)
{
	filler_t *filler = (filler_t *)mapping->a_ops->readpage;

S
Sasha Levin 已提交
2889
	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2890 2891 2892
}
EXPORT_SYMBOL(read_cache_page_gfp);

2893 2894 2895 2896 2897 2898 2899 2900
/*
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 * exceeds the limit we return -EFBIG.
 */
static int generic_write_check_limits(struct file *file, loff_t pos,
				      loff_t *count)
{
2901 2902
	struct inode *inode = file->f_mapping->host;
	loff_t max_size = inode->i_sb->s_maxbytes;
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	loff_t limit = rlimit(RLIMIT_FSIZE);

	if (limit != RLIM_INFINITY) {
		if (pos >= limit) {
			send_sig(SIGXFSZ, current, 0);
			return -EFBIG;
		}
		*count = min(*count, limit - pos);
	}

2913 2914 2915 2916 2917 2918 2919 2920 2921
	if (!(file->f_flags & O_LARGEFILE))
		max_size = MAX_NON_LFS;

	if (unlikely(pos >= max_size))
		return -EFBIG;

	*count = min(*count, max_size - pos);

	return 0;
2922 2923
}

L
Linus Torvalds 已提交
2924 2925 2926
/*
 * Performs necessary checks before doing a write
 *
2927
 * Can adjust writing position or amount of bytes to write.
L
Linus Torvalds 已提交
2928 2929 2930
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
2931
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
2932
{
2933
	struct file *file = iocb->ki_filp;
L
Linus Torvalds 已提交
2934
	struct inode *inode = file->f_mapping->host;
2935 2936
	loff_t count;
	int ret;
L
Linus Torvalds 已提交
2937

2938 2939
	if (!iov_iter_count(from))
		return 0;
L
Linus Torvalds 已提交
2940

2941
	/* FIXME: this is for backwards compatibility with 2.4 */
2942
	if (iocb->ki_flags & IOCB_APPEND)
2943
		iocb->ki_pos = i_size_read(inode);
L
Linus Torvalds 已提交
2944

2945 2946 2947
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
		return -EINVAL;

2948 2949 2950 2951
	count = iov_iter_count(from);
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
2952

2953
	iov_iter_truncate(from, count);
2954
	return iov_iter_count(from);
L
Linus Torvalds 已提交
2955 2956 2957
}
EXPORT_SYMBOL(generic_write_checks);

2958 2959 2960
/*
 * Performs necessary checks before doing a clone.
 *
2961
 * Can adjust amount of bytes to clone via @req_count argument.
2962 2963 2964 2965 2966
 * Returns appropriate error code that caller should return or
 * zero in case the clone should be allowed.
 */
int generic_remap_checks(struct file *file_in, loff_t pos_in,
			 struct file *file_out, loff_t pos_out,
2967
			 loff_t *req_count, unsigned int remap_flags)
2968 2969 2970 2971 2972 2973 2974
{
	struct inode *inode_in = file_in->f_mapping->host;
	struct inode *inode_out = file_out->f_mapping->host;
	uint64_t count = *req_count;
	uint64_t bcount;
	loff_t size_in, size_out;
	loff_t bs = inode_out->i_sb->s_blocksize;
2975
	int ret;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988

	/* The start of both ranges must be aligned to an fs block. */
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
		return -EINVAL;

	/* Ensure offsets don't wrap. */
	if (pos_in + count < pos_in || pos_out + count < pos_out)
		return -EINVAL;

	size_in = i_size_read(inode_in);
	size_out = i_size_read(inode_out);

	/* Dedupe requires both ranges to be within EOF. */
2989
	if ((remap_flags & REMAP_FILE_DEDUP) &&
2990 2991 2992 2993 2994 2995 2996 2997 2998
	    (pos_in >= size_in || pos_in + count > size_in ||
	     pos_out >= size_out || pos_out + count > size_out))
		return -EINVAL;

	/* Ensure the infile range is within the infile. */
	if (pos_in >= size_in)
		return -EINVAL;
	count = min(count, size_in - (uint64_t)pos_in);

2999 3000 3001
	ret = generic_write_check_limits(file_out, pos_out, &count);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
3002 3003

	/*
3004 3005 3006 3007 3008
	 * If the user wanted us to link to the infile's EOF, round up to the
	 * next block boundary for this check.
	 *
	 * Otherwise, make sure the count is also block-aligned, having
	 * already confirmed the starting offsets' block alignment.
L
Linus Torvalds 已提交
3009
	 */
3010 3011 3012 3013
	if (pos_in + count == size_in) {
		bcount = ALIGN(size_in, bs) - pos_in;
	} else {
		if (!IS_ALIGNED(count, bs))
3014
			count = ALIGN_DOWN(count, bs);
3015
		bcount = count;
L
Linus Torvalds 已提交
3016 3017
	}

3018 3019 3020 3021 3022 3023
	/* Don't allow overlapped cloning within the same file. */
	if (inode_in == inode_out &&
	    pos_out + bcount > pos_in &&
	    pos_out < pos_in + bcount)
		return -EINVAL;

L
Linus Torvalds 已提交
3024
	/*
3025 3026
	 * We shortened the request but the caller can't deal with that, so
	 * bounce the request back to userspace.
L
Linus Torvalds 已提交
3027
	 */
3028
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3029
		return -EINVAL;
L
Linus Torvalds 已提交
3030

3031
	*req_count = count;
3032
	return 0;
L
Linus Torvalds 已提交
3033 3034
}

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058

/*
 * Performs common checks before doing a file copy/clone
 * from @file_in to @file_out.
 */
int generic_file_rw_checks(struct file *file_in, struct file *file_out)
{
	struct inode *inode_in = file_inode(file_in);
	struct inode *inode_out = file_inode(file_out);

	/* Don't copy dirs, pipes, sockets... */
	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
		return -EISDIR;
	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
		return -EINVAL;

	if (!(file_in->f_mode & FMODE_READ) ||
	    !(file_out->f_mode & FMODE_WRITE) ||
	    (file_out->f_flags & O_APPEND))
		return -EBADF;

	return 0;
}

3059 3060 3061 3062 3063 3064
int pagecache_write_begin(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned flags,
				struct page **pagep, void **fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3065
	return aops->write_begin(file, mapping, pos, len, flags,
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
							pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
				loff_t pos, unsigned len, unsigned copied,
				struct page *page, void *fsdata)
{
	const struct address_space_operations *aops = mapping->a_ops;

3076
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3077 3078 3079
}
EXPORT_SYMBOL(pagecache_write_end);

L
Linus Torvalds 已提交
3080
ssize_t
3081
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3082 3083 3084 3085
{
	struct file	*file = iocb->ki_filp;
	struct address_space *mapping = file->f_mapping;
	struct inode	*inode = mapping->host;
3086
	loff_t		pos = iocb->ki_pos;
L
Linus Torvalds 已提交
3087
	ssize_t		written;
3088 3089
	size_t		write_len;
	pgoff_t		end;
L
Linus Torvalds 已提交
3090

A
Al Viro 已提交
3091
	write_len = iov_iter_count(from);
3092
	end = (pos + write_len - 1) >> PAGE_SHIFT;
3093

3094 3095 3096
	if (iocb->ki_flags & IOCB_NOWAIT) {
		/* If there are pages to writeback, return */
		if (filemap_range_has_page(inode->i_mapping, pos,
3097
					   pos + write_len - 1))
3098 3099 3100 3101 3102 3103 3104
			return -EAGAIN;
	} else {
		written = filemap_write_and_wait_range(mapping, pos,
							pos + write_len - 1);
		if (written)
			goto out;
	}
3105 3106 3107 3108 3109

	/*
	 * After a write we want buffered reads to be sure to go to disk to get
	 * the new data.  We invalidate clean cached page from the region we're
	 * about to write.  We do this *before* the write so that we can return
3110
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3111
	 */
3112
	written = invalidate_inode_pages2_range(mapping,
3113
					pos >> PAGE_SHIFT, end);
3114 3115 3116 3117 3118 3119 3120 3121
	/*
	 * If a page can not be invalidated, return 0 to fall back
	 * to buffered write.
	 */
	if (written) {
		if (written == -EBUSY)
			return 0;
		goto out;
3122 3123
	}

3124
	written = mapping->a_ops->direct_IO(iocb, from);
3125 3126 3127 3128 3129 3130 3131 3132

	/*
	 * Finally, try again to invalidate clean pages which might have been
	 * cached by non-direct readahead, or faulted in by get_user_pages()
	 * if the source of the write was an mmap'ed region of the file
	 * we're writing.  Either one is a pretty crazy thing to do,
	 * so we don't support it 100%.  If this invalidation
	 * fails, tough, the write still worked...
3133 3134 3135 3136 3137
	 *
	 * Most of the time we do not need this since dio_complete() will do
	 * the invalidation for us. However there are some file systems that
	 * do not end up with dio_complete() being called, so let's not break
	 * them by removing it completely
3138
	 */
3139 3140 3141
	if (mapping->nrpages)
		invalidate_inode_pages2_range(mapping,
					pos >> PAGE_SHIFT, end);
3142

L
Linus Torvalds 已提交
3143
	if (written > 0) {
3144
		pos += written;
3145
		write_len -= written;
3146 3147
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
			i_size_write(inode, pos);
L
Linus Torvalds 已提交
3148 3149
			mark_inode_dirty(inode);
		}
3150
		iocb->ki_pos = pos;
L
Linus Torvalds 已提交
3151
	}
3152
	iov_iter_revert(from, write_len - iov_iter_count(from));
3153
out:
L
Linus Torvalds 已提交
3154 3155 3156 3157
	return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

N
Nick Piggin 已提交
3158 3159 3160 3161
/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
3162 3163
struct page *grab_cache_page_write_begin(struct address_space *mapping,
					pgoff_t index, unsigned flags)
N
Nick Piggin 已提交
3164 3165
{
	struct page *page;
3166
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3167

3168
	if (flags & AOP_FLAG_NOFS)
3169 3170 3171
		fgp_flags |= FGP_NOFS;

	page = pagecache_get_page(mapping, index, fgp_flags,
3172
			mapping_gfp_mask(mapping));
3173
	if (page)
3174
		wait_for_stable_page(page);
N
Nick Piggin 已提交
3175 3176 3177

	return page;
}
3178
EXPORT_SYMBOL(grab_cache_page_write_begin);
N
Nick Piggin 已提交
3179

3180
ssize_t generic_perform_write(struct file *file,
3181 3182 3183 3184 3185 3186
				struct iov_iter *i, loff_t pos)
{
	struct address_space *mapping = file->f_mapping;
	const struct address_space_operations *a_ops = mapping->a_ops;
	long status = 0;
	ssize_t written = 0;
N
Nick Piggin 已提交
3187 3188
	unsigned int flags = 0;

3189 3190 3191 3192 3193 3194 3195
	do {
		struct page *page;
		unsigned long offset;	/* Offset into pagecache page */
		unsigned long bytes;	/* Bytes to write to page */
		size_t copied;		/* Bytes copied from user */
		void *fsdata;

3196 3197
		offset = (pos & (PAGE_SIZE - 1));
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3198 3199 3200
						iov_iter_count(i));

again:
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
		/*
		 * Bring in the user page that we will copy from _first_.
		 * Otherwise there's a nasty deadlock on copying from the
		 * same page as we're writing to, without it being marked
		 * up-to-date.
		 *
		 * Not only is this an optimisation, but it is also required
		 * to check that the address is actually valid, when atomic
		 * usercopies are used, below.
		 */
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
			status = -EFAULT;
			break;
		}

J
Jan Kara 已提交
3216 3217 3218 3219 3220
		if (fatal_signal_pending(current)) {
			status = -EINTR;
			break;
		}

N
Nick Piggin 已提交
3221
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3222
						&page, &fsdata);
3223
		if (unlikely(status < 0))
3224 3225
			break;

3226 3227
		if (mapping_writably_mapped(mapping))
			flush_dcache_page(page);
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
		flush_dcache_page(page);

		status = a_ops->write_end(file, mapping, pos, bytes, copied,
						page, fsdata);
		if (unlikely(status < 0))
			break;
		copied = status;

		cond_resched();

3240
		iov_iter_advance(i, copied);
3241 3242 3243 3244 3245 3246 3247 3248 3249
		if (unlikely(copied == 0)) {
			/*
			 * If we were unable to copy any data at all, we must
			 * fall back to a single segment length write.
			 *
			 * If we didn't fallback here, we could livelock
			 * because not all segments in the iov can be copied at
			 * once without a pagefault.
			 */
3250
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
						iov_iter_single_seg_count(i));
			goto again;
		}
		pos += copied;
		written += copied;

		balance_dirty_pages_ratelimited(mapping);
	} while (iov_iter_count(i));

	return written ? written : status;
}
3262
EXPORT_SYMBOL(generic_perform_write);
L
Linus Torvalds 已提交
3263

3264
/**
3265
 * __generic_file_write_iter - write data to a file
3266
 * @iocb:	IO state structure (file, offset, etc.)
3267
 * @from:	iov_iter with data to write
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
 *
 * This function does all the work needed for actually writing data to a
 * file. It does all basic checks, removes SUID from the file, updates
 * modification times and calls proper subroutines depending on whether we
 * do direct IO or a standard buffered write.
 *
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 * object which does not need locking at all.
 *
 * This function does *not* take care of syncing data in case of O_SYNC write.
 * A caller has to handle it. This is mainly due to the fact that we want to
 * avoid syncing under i_mutex.
3280 3281 3282 3283
 *
 * Return:
 * * number of bytes written, even for truncated writes
 * * negative error code if no data has been written at all
3284
 */
3285
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3286 3287
{
	struct file *file = iocb->ki_filp;
3288
	struct address_space * mapping = file->f_mapping;
L
Linus Torvalds 已提交
3289
	struct inode 	*inode = mapping->host;
3290
	ssize_t		written = 0;
L
Linus Torvalds 已提交
3291
	ssize_t		err;
3292
	ssize_t		status;
L
Linus Torvalds 已提交
3293 3294

	/* We can write back this queue in page reclaim */
3295
	current->backing_dev_info = inode_to_bdi(inode);
3296
	err = file_remove_privs(file);
L
Linus Torvalds 已提交
3297 3298 3299
	if (err)
		goto out;

3300 3301 3302
	err = file_update_time(file);
	if (err)
		goto out;
L
Linus Torvalds 已提交
3303

3304
	if (iocb->ki_flags & IOCB_DIRECT) {
3305
		loff_t pos, endbyte;
3306

3307
		written = generic_file_direct_write(iocb, from);
L
Linus Torvalds 已提交
3308
		/*
3309 3310 3311 3312 3313
		 * If the write stopped short of completing, fall back to
		 * buffered writes.  Some filesystems do this for writes to
		 * holes, for example.  For DAX files, a buffered write will
		 * not succeed (even if it did, DAX does not handle dirty
		 * page-cache pages correctly).
L
Linus Torvalds 已提交
3314
		 */
3315
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3316 3317
			goto out;

3318
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3319
		/*
3320
		 * If generic_perform_write() returned a synchronous error
3321 3322 3323 3324 3325
		 * then we want to return the number of bytes which were
		 * direct-written, or the error code if that was zero.  Note
		 * that this differs from normal direct-io semantics, which
		 * will return -EFOO even if some bytes were written.
		 */
3326
		if (unlikely(status < 0)) {
3327
			err = status;
3328 3329 3330 3331 3332 3333 3334
			goto out;
		}
		/*
		 * We need to ensure that the page cache pages are written to
		 * disk and invalidated to preserve the expected O_DIRECT
		 * semantics.
		 */
3335
		endbyte = pos + status - 1;
3336
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3337
		if (err == 0) {
3338
			iocb->ki_pos = endbyte + 1;
3339
			written += status;
3340
			invalidate_mapping_pages(mapping,
3341 3342
						 pos >> PAGE_SHIFT,
						 endbyte >> PAGE_SHIFT);
3343 3344 3345 3346 3347 3348 3349
		} else {
			/*
			 * We don't know how much we wrote, so just return
			 * the number of bytes which were direct-written
			 */
		}
	} else {
3350 3351 3352
		written = generic_perform_write(file, from, iocb->ki_pos);
		if (likely(written > 0))
			iocb->ki_pos += written;
3353
	}
L
Linus Torvalds 已提交
3354 3355 3356 3357
out:
	current->backing_dev_info = NULL;
	return written ? written : err;
}
3358
EXPORT_SYMBOL(__generic_file_write_iter);
3359 3360

/**
3361
 * generic_file_write_iter - write data to a file
3362
 * @iocb:	IO state structure
3363
 * @from:	iov_iter with data to write
3364
 *
3365
 * This is a wrapper around __generic_file_write_iter() to be used by most
3366 3367
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 * and acquires i_mutex as needed.
3368 3369 3370 3371
 * Return:
 * * negative error code if no data has been written at all of
 *   vfs_fsync_range() failed for a synchronous write
 * * number of bytes written, even for truncated writes
3372
 */
3373
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
L
Linus Torvalds 已提交
3374 3375
{
	struct file *file = iocb->ki_filp;
3376
	struct inode *inode = file->f_mapping->host;
L
Linus Torvalds 已提交
3377 3378
	ssize_t ret;

A
Al Viro 已提交
3379
	inode_lock(inode);
3380 3381
	ret = generic_write_checks(iocb, from);
	if (ret > 0)
3382
		ret = __generic_file_write_iter(iocb, from);
A
Al Viro 已提交
3383
	inode_unlock(inode);
L
Linus Torvalds 已提交
3384

3385 3386
	if (ret > 0)
		ret = generic_write_sync(iocb, ret);
L
Linus Torvalds 已提交
3387 3388
	return ret;
}
3389
EXPORT_SYMBOL(generic_file_write_iter);
L
Linus Torvalds 已提交
3390

3391 3392 3393 3394 3395 3396 3397
/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
3398
 * (presumably at page->private).
3399
 *
3400 3401 3402
 * This may also be called if PG_fscache is set on a page, indicating that the
 * page is known to the local caching routines.
 *
3403
 * The @gfp_mask argument specifies whether I/O may be performed to release
3404
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3405
 *
3406
 * Return: %1 if the release was successful, otherwise return zero.
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
	struct address_space * const mapping = page->mapping;

	BUG_ON(!PageLocked(page));
	if (PageWriteback(page))
		return 0;

	if (mapping && mapping->a_ops->releasepage)
		return mapping->a_ops->releasepage(page, gfp_mask);
	return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);