intel_lrc.c 77.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232 233
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

234 235
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine);
236 237
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
238

239 240 241 242 243 244
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
245
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
246 247 248
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
249 250
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
251 252
	WARN_ON(i915.enable_ppgtt == -1);

253 254 255 256 257 258
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

259 260 261
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

262 263 264
	if (enable_execlists == 0)
		return 0;

265 266
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
267 268 269 270
		return 1;

	return 0;
}
271

272
static void
273
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274
{
275
	struct drm_device *dev = engine->dev;
276

277
	if (IS_GEN8(dev) || IS_GEN9(dev))
278
		engine->idle_lite_restore_wa = ~0;
279

280
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
281
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
282
					(engine->id == VCS || engine->id == VCS2);
283

284 285
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
286 287
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
288 289
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
290 291 292 293 294 295 296

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
297 298
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
299 300
}

301
/**
302 303
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
304
 *
305 306
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
307
 *
308 309 310 311 312 313
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
314
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
315
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
316
 *    bits 32-52:    ctx ID, a globally unique tag
317 318
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
319
 */
320 321
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
322
				   struct intel_engine_cs *engine)
323
{
324
	u64 desc;
325

326
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
327

328 329 330 331
	desc = engine->ctx_desc_template;			/* bits  0-11 */
	desc |= ctx->engine[engine->id].lrc_vma->node.start +	/* bits 12-31 */
	       LRC_PPHWSP_PN * PAGE_SIZE;
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
332

333
	ctx->engine[engine->id].lrc_desc = desc;
334 335
}

336
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
337
				     struct intel_engine_cs *engine)
338
{
339
	return ctx->engine[engine->id].lrc_desc;
340
}
341

342 343
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
344
{
345

346
	struct intel_engine_cs *engine = rq0->engine;
347
	struct drm_device *dev = engine->dev;
348
	struct drm_i915_private *dev_priv = dev->dev_private;
349
	uint64_t desc[2];
350

351
	if (rq1) {
352
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
353 354 355 356
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
357

358
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
359
	rq0->elsp_submitted++;
360

361
	/* You must always write both descriptors in the order below. */
362 363
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
364

365
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
366
	/* The context is automatically loaded after the following */
367
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
368

369
	/* ELSP is a wo register, use another nearby reg for posting */
370
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
371 372
}

373 374 375 376 377 378 379 380 381 382
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
383
{
384
	struct intel_engine_cs *engine = rq->engine;
385
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
386
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
387

388
	reg_state[CTX_RING_TAIL+1] = rq->tail;
389

390 391 392 393 394 395 396
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
397 398
}

399 400
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
401
{
402
	struct drm_i915_private *dev_priv = rq0->i915;
403
	unsigned int fw_domains = rq0->engine->fw_domains;
404

405
	execlists_update_context(rq0);
406

407
	if (rq1)
408
		execlists_update_context(rq1);
409

410
	spin_lock_irq(&dev_priv->uncore.lock);
411
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
412

413
	execlists_elsp_write(rq0, rq1);
414

415
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
416
	spin_unlock_irq(&dev_priv->uncore.lock);
417 418
}

419
static void execlists_context_unqueue(struct intel_engine_cs *engine)
420
{
421
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
422
	struct drm_i915_gem_request *cursor, *tmp;
423

424
	assert_spin_locked(&engine->execlist_lock);
425

426 427 428 429
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
430
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
431

432
	/* Try to read in pairs */
433
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
434 435 436
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
437
		} else if (req0->ctx == cursor->ctx) {
438 439
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
440
			cursor->elsp_submitted = req0->elsp_submitted;
441 442
			list_del(&req0->execlist_link);
			i915_gem_request_unreference(req0);
443 444 445
			req0 = cursor;
		} else {
			req1 = cursor;
446
			WARN_ON(req1->elsp_submitted);
447 448 449 450
			break;
		}
	}

451 452 453
	if (unlikely(!req0))
		return;

454
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
455
		/*
456 457 458 459 460 461
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
462
		 */
463
		struct intel_ringbuffer *ringbuf;
464

465
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
466 467
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
468 469
	}

470
	execlists_submit_requests(req0, req1);
471 472
}

473
static unsigned int
474
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
475
{
476
	struct drm_i915_gem_request *head_req;
477

478
	assert_spin_locked(&engine->execlist_lock);
479

480
	head_req = list_first_entry_or_null(&engine->execlist_queue,
481
					    struct drm_i915_gem_request,
482 483
					    execlist_link);

484 485
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
486 487 488 489 490 491

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

492 493
	list_del(&head_req->execlist_link);
	i915_gem_request_unreference(head_req);
494

495
	return 1;
496 497
}

498
static u32
499
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
500
		   u32 *context_id)
B
Ben Widawsky 已提交
501
{
502
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
503
	u32 status;
B
Ben Widawsky 已提交
504

505 506
	read_pointer %= GEN8_CSB_ENTRIES;

507
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
508 509 510

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
511

512
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
513 514 515
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
516 517
}

518
/**
519
 * intel_lrc_irq_handler() - handle Context Switch interrupts
520
 * @engine: Engine Command Streamer to handle.
521 522 523 524
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
525
static void intel_lrc_irq_handler(unsigned long data)
526
{
527
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
529
	u32 status_pointer;
530
	unsigned int read_pointer, write_pointer;
531 532
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
533 534
	unsigned int submit_contexts = 0;

535
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
536

537
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
538

539
	read_pointer = engine->next_context_status_buffer;
540
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
541
	if (read_pointer > write_pointer)
542
		write_pointer += GEN8_CSB_ENTRIES;
543 544

	while (read_pointer < write_pointer) {
545 546 547 548 549 550
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
551

552 553 554 555 556 557 558 559
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

560
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
561 562 563 564 565 566 567

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
568 569 570 571 572
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

573
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
574 575
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
576
				execlists_check_remove_request(engine, csb[i][1]);
577 578
	}

579
	if (submit_contexts) {
580
		if (!engine->disable_lite_restore_wa ||
581 582
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
583
	}
584

585
	spin_unlock(&engine->execlist_lock);
586 587 588

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
589 590
}

591
static void execlists_context_queue(struct drm_i915_gem_request *request)
592
{
593
	struct intel_engine_cs *engine = request->engine;
594
	struct drm_i915_gem_request *cursor;
595
	int num_elements = 0;
596

597
	spin_lock_bh(&engine->execlist_lock);
598

599
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
600 601 602 603
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
604
		struct drm_i915_gem_request *tail_req;
605

606
		tail_req = list_last_entry(&engine->execlist_queue,
607
					   struct drm_i915_gem_request,
608 609
					   execlist_link);

610
		if (request->ctx == tail_req->ctx) {
611
			WARN(tail_req->elsp_submitted != 0,
612
				"More than 2 already-submitted reqs queued\n");
613 614
			list_del(&tail_req->execlist_link);
			i915_gem_request_unreference(tail_req);
615 616 617
		}
	}

618
	i915_gem_request_reference(request);
619
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
620
	request->ctx_hw_id = request->ctx->hw_id;
621
	if (num_elements == 0)
622
		execlists_context_unqueue(engine);
623

624
	spin_unlock_bh(&engine->execlist_lock);
625 626
}

627
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
628
{
629
	struct intel_engine_cs *engine = req->engine;
630 631 632 633
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
634
	if (engine->gpu_caches_dirty)
635 636
		flush_domains = I915_GEM_GPU_DOMAINS;

637
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
638 639 640
	if (ret)
		return ret;

641
	engine->gpu_caches_dirty = false;
642 643 644
	return 0;
}

645
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
646 647
				 struct list_head *vmas)
{
648
	const unsigned other_rings = ~intel_engine_flag(req->engine);
649 650 651 652 653 654 655 656
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

657
		if (obj->active & other_rings) {
658
			ret = i915_gem_object_sync(obj, req->engine, &req);
659 660 661
			if (ret)
				return ret;
		}
662 663 664 665 666 667 668 669 670 671 672 673 674

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
675
	return logical_ring_invalidate_all_caches(req);
676 677
}

678
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
679
{
680
	struct intel_engine_cs *engine = request->engine;
681
	int ret;
682

683 684 685 686
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
687
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
688

689 690 691 692 693 694
	if (request->ctx->engine[engine->id].state == NULL) {
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

695
	request->ringbuf = request->ctx->engine[engine->id].ringbuf;
696

697 698 699 700 701 702 703 704 705 706 707 708 709
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

710 711 712
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
713

714 715 716 717
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	if (!request->ctx->engine[engine->id].initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

		request->ctx->engine[engine->id].initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

733
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
734 735 736
	return 0;

err_unpin:
737
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
738
	return ret;
739 740 741 742
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
743
 * @request: Request to advance the logical ringbuffer of.
744 745 746 747 748 749
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
750
static int
751
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
752
{
753
	struct intel_ringbuffer *ringbuf = request->ringbuf;
754
	struct drm_i915_private *dev_priv = request->i915;
755
	struct intel_engine_cs *engine = request->engine;
756

757 758
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
759

760 761 762 763 764 765 766 767 768
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
769

770
	if (intel_engine_stopped(engine))
771
		return 0;
772

773 774 775 776 777 778 779 780
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
781

782 783 784 785
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
786 787

	return 0;
788 789
}

790 791 792 793 794 795 796 797 798 799
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
800
 * @dispatch_flags: translated execbuffer call flags.
801 802 803 804 805 806
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
807
int intel_execlists_submission(struct i915_execbuffer_params *params,
808
			       struct drm_i915_gem_execbuffer2 *args,
809
			       struct list_head *vmas)
810
{
811
	struct drm_device       *dev = params->dev;
812
	struct intel_engine_cs *engine = params->engine;
813
	struct drm_i915_private *dev_priv = dev->dev_private;
814
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
815
	u64 exec_start;
816 817 818 819 820 821 822 823 824 825
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
826
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

851
	ret = execlists_move_to_gpu(params->request, vmas);
852 853 854
	if (ret)
		return ret;

855
	if (engine == &dev_priv->engine[RCS] &&
856
	    instp_mode != dev_priv->relative_constants_mode) {
857
		ret = intel_ring_begin(params->request, 4);
858 859 860 861 862
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
863
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
864 865 866 867 868 869
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

870 871 872
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

873
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
874 875 876
	if (ret)
		return ret;

877
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
878

879
	i915_gem_execbuffer_move_to_active(vmas, params->request);
880

881 882 883
	return 0;
}

884
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
885
{
886
	struct drm_i915_gem_request *req, *tmp;
887
	LIST_HEAD(cancel_list);
888

889
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
890

891
	spin_lock_bh(&engine->execlist_lock);
892
	list_replace_init(&engine->execlist_queue, &cancel_list);
893
	spin_unlock_bh(&engine->execlist_lock);
894

895
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
896
		list_del(&req->execlist_link);
897
		i915_gem_request_unreference(req);
898 899 900
	}
}

901
void intel_logical_ring_stop(struct intel_engine_cs *engine)
902
{
903
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
904 905
	int ret;

906
	if (!intel_engine_initialized(engine))
907 908
		return;

909
	ret = intel_engine_idle(engine);
910
	if (ret)
911
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
912
			  engine->name, ret);
913 914

	/* TODO: Is this correct with Execlists enabled? */
915 916 917
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
918 919
		return;
	}
920
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
921 922
}

923
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
924
{
925
	struct intel_engine_cs *engine = req->engine;
926 927
	int ret;

928
	if (!engine->gpu_caches_dirty)
929 930
		return 0;

931
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
932 933 934
	if (ret)
		return ret;

935
	engine->gpu_caches_dirty = false;
936 937 938
	return 0;
}

939 940
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
941
{
942 943 944
	struct drm_i915_private *dev_priv = ctx->i915;
	struct drm_i915_gem_object *ctx_obj;
	struct intel_ringbuffer *ringbuf;
945 946
	void *vaddr;
	u32 *lrc_reg_state;
947
	int ret;
948

949
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
950

951 952 953 954
	if (ctx->engine[engine->id].pin_count++)
		return 0;

	ctx_obj = ctx->engine[engine->id].state;
955 956 957
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
958
		goto err;
959

960 961 962
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
963 964 965
		goto unpin_ctx_obj;
	}

966 967
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

968
	ringbuf = ctx->engine[engine->id].ringbuf;
969
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
970
	if (ret)
971
		goto unpin_map;
972

973
	i915_gem_context_reference(ctx);
974 975
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
976
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
977
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
978
	ctx_obj->dirty = true;
979

980 981 982
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
983

984
	return 0;
985

986 987
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
988 989
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
990 991
err:
	ctx->engine[engine->id].pin_count = 0;
992 993 994
	return ret;
}

995 996
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
997
{
998
	struct drm_i915_gem_object *ctx_obj;
999

1000 1001
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
	GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
1002

1003 1004
	if (--ctx->engine[engine->id].pin_count)
		return;
1005

1006
	intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1007

1008 1009 1010
	ctx_obj = ctx->engine[engine->id].state;
	i915_gem_object_unpin_map(ctx_obj);
	i915_gem_object_ggtt_unpin(ctx_obj);
1011

1012 1013 1014
	ctx->engine[engine->id].lrc_vma = NULL;
	ctx->engine[engine->id].lrc_desc = 0;
	ctx->engine[engine->id].lrc_reg_state = NULL;
1015

1016
	i915_gem_context_unreference(ctx);
1017 1018
}

1019
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1020 1021
{
	int ret, i;
1022
	struct intel_engine_cs *engine = req->engine;
1023
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1024
	struct drm_device *dev = engine->dev;
1025 1026 1027
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1028
	if (w->count == 0)
1029 1030
		return 0;

1031
	engine->gpu_caches_dirty = true;
1032
	ret = logical_ring_flush_all_caches(req);
1033 1034 1035
	if (ret)
		return ret;

1036
	ret = intel_ring_begin(req, w->count * 2 + 2);
1037 1038 1039 1040 1041
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1042
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1043 1044 1045 1046 1047 1048
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1049
	engine->gpu_caches_dirty = true;
1050
	ret = logical_ring_flush_all_caches(req);
1051 1052 1053 1054 1055 1056
	if (ret)
		return ret;

	return 0;
}

1057
#define wa_ctx_emit(batch, index, cmd)					\
1058
	do {								\
1059 1060
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1061 1062
			return -ENOSPC;					\
		}							\
1063
		batch[__index] = (cmd);					\
1064 1065
	} while (0)

V
Ville Syrjälä 已提交
1066
#define wa_ctx_emit_reg(batch, index, reg) \
1067
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1085
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1086 1087 1088 1089 1090
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1091 1092 1093 1094 1095 1096
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1097
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1098 1099
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1100
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1101
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1102
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1103
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1104 1105 1106
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1107
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1118
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1119
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1120
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1121
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1122
	wa_ctx_emit(batch, index, 0);
1123 1124 1125 1126

	return index;
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1165
 *
1166 1167 1168 1169 1170 1171 1172 1173
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1174
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1175 1176 1177 1178
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1179
	uint32_t scratch_addr;
1180 1181
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1182
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1183
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1184

1185
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1186 1187
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1188 1189 1190
		if (rc < 0)
			return rc;
		index = rc;
1191 1192
	}

1193 1194
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1195
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1196

1197 1198 1199 1200 1201 1202 1203 1204 1205
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1206

1207 1208
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1209
		wa_ctx_emit(batch, index, MI_NOOP);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1227
 * @batch: page in which WA are loaded
1228 1229 1230 1231 1232 1233 1234 1235 1236
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1237
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1238 1239 1240 1241 1242 1243
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1244
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1245
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1246

1247
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1248 1249 1250 1251

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1252
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1253 1254 1255 1256
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1257
	int ret;
1258
	struct drm_device *dev = engine->dev;
1259 1260
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1261
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1262
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1263
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1264
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1265

1266
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1267
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1268 1269 1270 1271
	if (ret < 0)
		return ret;
	index = ret;

1272 1273 1274 1275 1276 1277 1278
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1279
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1280 1281 1282 1283
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1284
	struct drm_device *dev = engine->dev;
1285 1286
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1287
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1288
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1289
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1290
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1291
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1292 1293 1294 1295 1296
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1316
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1317
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1318
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1319 1320
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1321 1322 1323 1324 1325
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1326
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1327 1328 1329
{
	int ret;

1330
	engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1331
						   PAGE_ALIGN(size));
1332
	if (IS_ERR(engine->wa_ctx.obj)) {
1333
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1334 1335 1336
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1337 1338
	}

1339
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1340 1341 1342
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1343
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1344 1345 1346 1347 1348 1349
		return ret;
	}

	return 0;
}

1350
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1351
{
1352 1353 1354 1355
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1356 1357 1358
	}
}

1359
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1360 1361 1362 1363 1364
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1365
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1366

1367
	WARN_ON(engine->id != RCS);
1368

1369
	/* update this when WA for higher Gen are added */
1370
	if (INTEL_INFO(engine->dev)->gen > 9) {
1371
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1372
			  INTEL_INFO(engine->dev)->gen);
1373
		return 0;
1374
	}
1375

1376
	/* some WA perform writes to scratch page, ensure it is valid */
1377 1378
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1379 1380 1381
		return -EINVAL;
	}

1382
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1383 1384 1385 1386 1387
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1388
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1389 1390 1391
	batch = kmap_atomic(page);
	offset = 0;

1392 1393
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1394 1395 1396 1397 1398 1399
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1400
		ret = gen8_init_perctx_bb(engine,
1401 1402 1403 1404 1405
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1406 1407
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1408 1409 1410 1411 1412 1413
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1414
		ret = gen9_init_perctx_bb(engine,
1415 1416 1417 1418 1419
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1420 1421 1422 1423 1424
	}

out:
	kunmap_atomic(batch);
	if (ret)
1425
		lrc_destroy_wa_ctx_obj(engine);
1426 1427 1428 1429

	return ret;
}

1430 1431 1432 1433 1434 1435 1436 1437 1438
static void lrc_init_hws(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1439
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1440
{
1441
	struct drm_device *dev = engine->dev;
1442
	struct drm_i915_private *dev_priv = dev->dev_private;
1443
	unsigned int next_context_status_buffer_hw;
1444

1445
	lrc_init_hws(engine);
1446

1447 1448 1449
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1450

1451
	I915_WRITE(RING_MODE_GEN7(engine),
1452 1453
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1454
	POSTING_READ(RING_MODE_GEN7(engine));
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1465 1466
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1467
	 */
1468
	next_context_status_buffer_hw =
1469
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1470 1471 1472 1473 1474 1475 1476 1477 1478

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1479 1480
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1481

1482
	intel_engine_init_hangcheck(engine);
1483

1484
	return intel_mocs_init_engine(engine);
1485 1486
}

1487
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1488
{
1489
	struct drm_device *dev = engine->dev;
1490 1491 1492
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1493
	ret = gen8_init_common_ring(engine);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1507
	return init_workarounds_ring(engine);
1508 1509
}

1510
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1511 1512 1513
{
	int ret;

1514
	ret = gen8_init_common_ring(engine);
1515 1516 1517
	if (ret)
		return ret;

1518
	return init_workarounds_ring(engine);
1519 1520
}

1521 1522 1523
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1524
	struct intel_engine_cs *engine = req->engine;
1525 1526 1527 1528
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1529
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1530 1531 1532 1533 1534 1535 1536
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1537 1538
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1539
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1540 1541
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1542 1543 1544 1545 1546 1547 1548 1549 1550
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1551
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1552
			      u64 offset, unsigned dispatch_flags)
1553
{
1554
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1555
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1556 1557
	int ret;

1558 1559 1560 1561
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1562 1563
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1564
	if (req->ctx->ppgtt &&
1565
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1566 1567
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1568 1569 1570 1571
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1572

1573
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1574 1575
	}

1576
	ret = intel_ring_begin(req, 4);
1577 1578 1579 1580
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1581 1582 1583 1584
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1585 1586 1587 1588 1589 1590 1591 1592
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1593
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1594
{
1595
	struct drm_device *dev = engine->dev;
1596 1597 1598
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1599
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1600 1601 1602
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1603 1604 1605 1606
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1607 1608 1609 1610 1611 1612
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1613
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1614
{
1615
	struct drm_device *dev = engine->dev;
1616 1617 1618 1619
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1620 1621 1622
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1623 1624 1625 1626
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1627
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1628 1629 1630
			   u32 invalidate_domains,
			   u32 unused)
{
1631
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1632
	struct intel_engine_cs *engine = ringbuf->engine;
1633
	struct drm_device *dev = engine->dev;
1634 1635 1636 1637
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1638
	ret = intel_ring_begin(request, 4);
1639 1640 1641 1642 1643
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1644 1645 1646 1647 1648 1649 1650 1651 1652
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1653
		if (engine == &dev_priv->engine[VCS])
1654
			cmd |= MI_INVALIDATE_BSD;
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1668
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1669 1670 1671
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1672
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1673
	struct intel_engine_cs *engine = ringbuf->engine;
1674
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1675
	bool vf_flush_wa = false;
1676 1677 1678 1679 1680 1681 1682 1683
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1684
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1685
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1698 1699 1700 1701
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1702
		if (IS_GEN9(engine->dev))
1703 1704
			vf_flush_wa = true;
	}
1705

1706
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1707 1708 1709
	if (ret)
		return ret;

1710 1711 1712 1713 1714 1715 1716 1717 1718
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1730
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1731
{
1732
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1733 1734
}

1735
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1736
{
1737
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1738 1739
}

1740
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1752
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1753 1754
}

1755
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1756
{
1757
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1758 1759

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1760
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1761 1762
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1775
static int gen8_emit_request(struct drm_i915_gem_request *request)
1776
{
1777
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1778 1779
	int ret;

1780
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1781 1782 1783
	if (ret)
		return ret;

1784 1785
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1786 1787

	intel_logical_ring_emit(ringbuf,
1788 1789
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1790
				hws_seqno_address(request->engine) |
1791
				MI_FLUSH_DW_USE_GTT);
1792
	intel_logical_ring_emit(ringbuf, 0);
1793
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1794 1795
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1796 1797
	return intel_logical_ring_advance_and_submit(request);
}
1798

1799 1800 1801 1802
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1803

1804
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1805 1806 1807
	if (ret)
		return ret;

1808 1809 1810
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1811 1812 1813 1814
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1815
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1816 1817 1818 1819
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1820
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1821 1822
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1823 1824
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1825
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1826
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1827
	return intel_logical_ring_advance_and_submit(request);
1828 1829
}

1830
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1831 1832 1833 1834
{
	struct render_state so;
	int ret;

1835
	ret = i915_gem_render_state_prepare(req->engine, &so);
1836 1837 1838 1839 1840 1841
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1842
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1843
				       I915_DISPATCH_SECURE);
1844 1845 1846
	if (ret)
		goto out;

1847
	ret = req->engine->emit_bb_start(req,
1848 1849 1850 1851 1852
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1853
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1854 1855 1856 1857 1858 1859

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1860
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1861 1862 1863
{
	int ret;

1864
	ret = intel_logical_ring_workarounds_emit(req);
1865 1866 1867
	if (ret)
		return ret;

1868 1869 1870 1871 1872 1873 1874 1875
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1876
	return intel_lr_context_render_state_init(req);
1877 1878
}

1879 1880 1881 1882 1883 1884
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1885
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1886
{
1887
	struct drm_i915_private *dev_priv;
1888

1889
	if (!intel_engine_initialized(engine))
1890 1891
		return;

1892 1893 1894 1895 1896 1897 1898
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1899
	dev_priv = engine->dev->dev_private;
1900

1901 1902 1903
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1904
	}
1905

1906 1907
	if (engine->cleanup)
		engine->cleanup(engine);
1908

1909 1910
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1911

1912
	if (engine->status_page.obj) {
1913
		i915_gem_object_unpin_map(engine->status_page.obj);
1914
		engine->status_page.obj = NULL;
1915
	}
1916
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1917

1918 1919 1920
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1921

1922 1923
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
1924 1925
}

1926 1927
static void
logical_ring_default_vfuncs(struct drm_device *dev,
1928
			    struct intel_engine_cs *engine)
1929 1930
{
	/* Default vfuncs which can be overriden by each engine. */
1931 1932 1933 1934 1935 1936
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1937 1938
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1939
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1940
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1941
		engine->set_seqno = bxt_a_set_seqno;
1942 1943 1944
	}
}

1945
static inline void
1946
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1947
{
1948 1949
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1950 1951
}

1952
static int
1953 1954 1955
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1956
	void *hws;
1957 1958 1959 1960

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1961 1962 1963 1964
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1965
	engine->status_page.obj = dctx_obj;
1966 1967

	return 0;
1968 1969
}

1970
static int
1971
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1972
{
1973 1974 1975
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_context *dctx = dev_priv->kernel_context;
	enum forcewake_domains fw_domains;
1976 1977 1978
	int ret;

	/* Intentionally left blank. */
1979
	engine->buffer = NULL;
1980

1981 1982 1983 1984 1985
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
1986

1987 1988 1989
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	spin_lock_init(&engine->execlist_lock);
1990

1991 1992 1993
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

1994
	logical_ring_init_platform_invariants(engine);
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2010
	ret = i915_cmd_parser_init_ring(engine);
2011
	if (ret)
2012
		goto error;
2013

2014
	ret = execlists_context_deferred_alloc(dctx, engine);
2015
	if (ret)
2016
		goto error;
2017 2018

	/* As this is the default context, always pin it */
2019
	ret = intel_lr_context_pin(dctx, engine);
2020
	if (ret) {
2021 2022
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2023
		goto error;
2024
	}
2025

2026
	/* And setup the hardware status page. */
2027 2028 2029 2030 2031
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2032

2033 2034 2035
	return 0;

error:
2036
	intel_logical_ring_cleanup(engine);
2037
	return ret;
2038 2039 2040 2041 2042
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2043
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2044
	int ret;
2045

2046 2047 2048 2049 2050
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2051

2052
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2053
	if (HAS_L3_DPF(dev))
2054
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2055

2056
	logical_ring_default_vfuncs(dev, engine);
2057 2058

	/* Override some for render ring. */
2059
	if (INTEL_INFO(dev)->gen >= 9)
2060
		engine->init_hw = gen9_init_render_ring;
2061
	else
2062 2063 2064 2065 2066
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2067

2068
	engine->dev = dev;
2069

2070
	ret = intel_init_pipe_control(engine);
2071 2072 2073
	if (ret)
		return ret;

2074
	ret = intel_init_workaround_bb(engine);
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2085
	ret = logical_ring_init(dev, engine);
2086
	if (ret) {
2087
		lrc_destroy_wa_ctx_obj(engine);
2088
	}
2089 2090

	return ret;
2091 2092 2093 2094 2095
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2096
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2097

2098 2099 2100 2101 2102
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2103

2104 2105
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2106

2107
	return logical_ring_init(dev, engine);
2108 2109 2110 2111 2112
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2113
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2114

2115 2116 2117 2118 2119
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2120

2121 2122
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2123

2124
	return logical_ring_init(dev, engine);
2125 2126 2127 2128 2129
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2130
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2131

2132 2133 2134 2135 2136
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2137

2138 2139
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2140

2141
	return logical_ring_init(dev, engine);
2142 2143 2144 2145 2146
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2147
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2148

2149 2150 2151 2152 2153
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2154

2155 2156
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2157

2158
	return logical_ring_init(dev, engine);
2159 2160
}

2161 2162 2163 2164 2165
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2166
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2167 2168 2169 2170
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2207
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2208
cleanup_blt_ring:
2209
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2210
cleanup_bsd_ring:
2211
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2212
cleanup_render_ring:
2213
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2214 2215 2216 2217

	return ret;
}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2261
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2262 2263 2264
{
	u32 indirect_ctx_offset;

2265
	switch (INTEL_INFO(engine->dev)->gen) {
2266
	default:
2267
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2282
static int
2283 2284
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2285 2286
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2287
{
2288
	struct drm_device *dev = engine->dev;
2289
	struct drm_i915_private *dev_priv = dev->dev_private;
2290
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2291 2292
	void *vaddr;
	u32 *reg_state;
2293 2294
	int ret;

2295 2296 2297
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2298 2299 2300 2301 2302 2303
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2304 2305 2306 2307
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2308 2309
		return ret;
	}
2310
	ctx_obj->dirty = true;
2311 2312 2313

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2314
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2315 2316 2317 2318 2319 2320

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2321
	reg_state[CTX_LRI_HEADER_0] =
2322 2323 2324
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2325 2326
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2327 2328
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2329 2330 2331 2332
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2333 2334 2335
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2336 2337 2338 2339
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2340
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2341 2342 2343 2344 2345 2346
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2347
		       RING_BB_PPGTT);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2363 2364 2365 2366 2367 2368 2369
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2370
				intel_lr_indirect_ctx_offset(engine) << 6;
2371 2372 2373 2374 2375

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2376
	}
2377
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2378 2379
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2380
	/* PDP values well be assigned later if needed */
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2397

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2410
		execlists_update_context_pdps(ppgtt, reg_state);
2411 2412
	}

2413
	if (engine->id == RCS) {
2414
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2415 2416
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2417 2418
	}

2419
	i915_gem_object_unpin_map(ctx_obj);
2420 2421 2422 2423

	return 0;
}

2424 2425 2426 2427 2428 2429 2430 2431
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2432 2433
void intel_lr_context_free(struct intel_context *ctx)
{
2434 2435
	int i;

2436
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2437
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2438
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2439

D
Dave Gordon 已提交
2440 2441
		if (!ctx_obj)
			continue;
2442

D
Dave Gordon 已提交
2443 2444 2445
		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2446 2447 2448
	}
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2463
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2464 2465 2466
{
	int ret = 0;

2467
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2468

2469
	switch (engine->id) {
2470
	case RCS:
2471
		if (INTEL_INFO(engine->dev)->gen >= 9)
2472 2473 2474
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2485 2486
}

2487
/**
2488
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2489
 * @ctx: LR context to create.
2490
 * @engine: engine to be used with the context.
2491 2492 2493 2494 2495 2496 2497
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2498
 * Return: non-zero on error.
2499
 */
2500 2501
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine)
2502
{
2503
	struct drm_device *dev = engine->dev;
2504 2505
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2506
	struct intel_ringbuffer *ringbuf;
2507 2508
	int ret;

2509
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2510
	WARN_ON(ctx->engine[engine->id].state);
2511

2512
	context_size = round_up(intel_lr_context_size(engine), 4096);
2513

2514 2515 2516
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2517
	ctx_obj = i915_gem_object_create(dev, context_size);
2518
	if (IS_ERR(ctx_obj)) {
2519
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2520
		return PTR_ERR(ctx_obj);
2521 2522
	}

2523
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2524 2525
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2526
		goto error_deref_obj;
2527 2528
	}

2529
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2530 2531
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2532
		goto error_ringbuf;
2533 2534
	}

2535 2536
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2537
	ctx->engine[engine->id].initialised = engine->init_context == NULL;
2538 2539

	return 0;
2540

2541 2542
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2543
error_deref_obj:
2544
	drm_gem_object_unreference(&ctx_obj->base);
2545 2546
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2547
	return ret;
2548
}
2549

2550 2551
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2552
{
2553
	struct intel_engine_cs *engine;
2554

2555
	for_each_engine(engine, dev_priv) {
2556
		struct drm_i915_gem_object *ctx_obj =
2557
				ctx->engine[engine->id].state;
2558
		struct intel_ringbuffer *ringbuf =
2559
				ctx->engine[engine->id].ringbuf;
2560
		void *vaddr;
2561 2562 2563 2564 2565
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2566 2567
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2568
			continue;
2569 2570 2571

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2572 2573 2574 2575

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2576
		i915_gem_object_unpin_map(ctx_obj);
2577 2578 2579 2580 2581

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}