i915_gem_execbuffer.c 72.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

29 30
#include <linux/dma_remapping.h>
#include <linux/reservation.h>
31
#include <linux/sync_file.h>
32 33
#include <linux/uaccess.h>

34
#include <drm/drmP.h>
35
#include <drm/drm_syncobj.h>
36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_gem_clflush.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44 45 46 47 48 49
enum {
	FORCE_CPU_RELOC = 1,
	FORCE_GTT_RELOC,
	FORCE_GPU_RELOC,
#define DBG_FORCE_RELOC 0 /* choose one of the above! */
};
50

51 52 53 54 55 56
#define __EXEC_OBJECT_HAS_REF		BIT(31)
#define __EXEC_OBJECT_HAS_PIN		BIT(30)
#define __EXEC_OBJECT_HAS_FENCE		BIT(29)
#define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
#define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
#define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
57 58 59 60
#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)

#define __EXEC_HAS_RELOC	BIT(31)
#define __EXEC_VALIDATED	BIT(30)
61
#define __EXEC_INTERNAL_FLAGS	(~0u << 30)
62
#define UPDATE			PIN_OFFSET_FIXED
63 64

#define BATCH_OFFSET_BIAS (256*1024)
65

66 67
#define __I915_EXEC_ILLEGAL_FLAGS \
	(__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
68

69 70 71 72 73 74 75 76 77
/* Catch emission of unexpected errors for CI! */
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
#undef EINVAL
#define EINVAL ({ \
	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
	22; \
})
#endif

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/**
 * DOC: User command execution
 *
 * Userspace submits commands to be executed on the GPU as an instruction
 * stream within a GEM object we call a batchbuffer. This instructions may
 * refer to other GEM objects containing auxiliary state such as kernels,
 * samplers, render targets and even secondary batchbuffers. Userspace does
 * not know where in the GPU memory these objects reside and so before the
 * batchbuffer is passed to the GPU for execution, those addresses in the
 * batchbuffer and auxiliary objects are updated. This is known as relocation,
 * or patching. To try and avoid having to relocate each object on the next
 * execution, userspace is told the location of those objects in this pass,
 * but this remains just a hint as the kernel may choose a new location for
 * any object in the future.
 *
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
 * At the level of talking to the hardware, submitting a batchbuffer for the
 * GPU to execute is to add content to a buffer from which the HW
 * command streamer is reading.
 *
 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 *    Execlists, this command is not placed on the same buffer as the
 *    remaining items.
 *
 * 2. Add a command to invalidate caches to the buffer.
 *
 * 3. Add a batchbuffer start command to the buffer; the start command is
 *    essentially a token together with the GPU address of the batchbuffer
 *    to be executed.
 *
 * 4. Add a pipeline flush to the buffer.
 *
 * 5. Add a memory write command to the buffer to record when the GPU
 *    is done executing the batchbuffer. The memory write writes the
 *    global sequence number of the request, ``i915_request::global_seqno``;
 *    the i915 driver uses the current value in the register to determine
 *    if the GPU has completed the batchbuffer.
 *
 * 6. Add a user interrupt command to the buffer. This command instructs
 *    the GPU to issue an interrupt when the command, pipeline flush and
 *    memory write are completed.
 *
 * 7. Inform the hardware of the additional commands added to the buffer
 *    (by updating the tail pointer).
 *
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
 * Processing an execbuf ioctl is conceptually split up into a few phases.
 *
 * 1. Validation - Ensure all the pointers, handles and flags are valid.
 * 2. Reservation - Assign GPU address space for every object
 * 3. Relocation - Update any addresses to point to the final locations
 * 4. Serialisation - Order the request with respect to its dependencies
 * 5. Construction - Construct a request to execute the batchbuffer
 * 6. Submission (at some point in the future execution)
 *
 * Reserving resources for the execbuf is the most complicated phase. We
 * neither want to have to migrate the object in the address space, nor do
 * we want to have to update any relocations pointing to this object. Ideally,
 * we want to leave the object where it is and for all the existing relocations
 * to match. If the object is given a new address, or if userspace thinks the
 * object is elsewhere, we have to parse all the relocation entries and update
 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 * all the target addresses in all of its objects match the value in the
 * relocation entries and that they all match the presumed offsets given by the
 * list of execbuffer objects. Using this knowledge, we know that if we haven't
 * moved any buffers, all the relocation entries are valid and we can skip
 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 *
 *      The addresses written in the objects must match the corresponding
 *      reloc.presumed_offset which in turn must match the corresponding
 *      execobject.offset.
 *
 *      Any render targets written to in the batch must be flagged with
 *      EXEC_OBJECT_WRITE.
 *
 *      To avoid stalling, execobject.offset should match the current
 *      address of that object within the active context.
 *
 * The reservation is done is multiple phases. First we try and keep any
 * object already bound in its current location - so as long as meets the
 * constraints imposed by the new execbuffer. Any object left unbound after the
 * first pass is then fitted into any available idle space. If an object does
 * not fit, all objects are removed from the reservation and the process rerun
 * after sorting the objects into a priority order (more difficult to fit
 * objects are tried first). Failing that, the entire VM is cleared and we try
 * to fit the execbuf once last time before concluding that it simply will not
 * fit.
 *
 * A small complication to all of this is that we allow userspace not only to
 * specify an alignment and a size for the object in the address space, but
 * we also allow userspace to specify the exact offset. This objects are
 * simpler to place (the location is known a priori) all we have to do is make
 * sure the space is available.
 *
 * Once all the objects are in place, patching up the buried pointers to point
 * to the final locations is a fairly simple job of walking over the relocation
 * entry arrays, looking up the right address and rewriting the value into
 * the object. Simple! ... The relocation entries are stored in user memory
 * and so to access them we have to copy them into a local buffer. That copy
 * has to avoid taking any pagefaults as they may lead back to a GEM object
 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 * the relocation into multiple passes. First we try to do everything within an
 * atomic context (avoid the pagefaults) which requires that we never wait. If
 * we detect that we may wait, or if we need to fault, then we have to fallback
 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 * bells yet?) Dropping the mutex means that we lose all the state we have
 * built up so far for the execbuf and we must reset any global data. However,
 * we do leave the objects pinned in their final locations - which is a
 * potential issue for concurrent execbufs. Once we have left the mutex, we can
 * allocate and copy all the relocation entries into a large array at our
 * leisure, reacquire the mutex, reclaim all the objects and other state and
 * then proceed to update any incorrect addresses with the objects.
 *
 * As we process the relocation entries, we maintain a record of whether the
 * object is being written to. Using NORELOC, we expect userspace to provide
 * this information instead. We also check whether we can skip the relocation
 * by comparing the expected value inside the relocation entry with the target's
 * final address. If they differ, we have to map the current object and rewrite
 * the 4 or 8 byte pointer within.
 *
 * Serialising an execbuf is quite simple according to the rules of the GEM
 * ABI. Execution within each context is ordered by the order of submission.
 * Writes to any GEM object are in order of submission and are exclusive. Reads
 * from a GEM object are unordered with respect to other reads, but ordered by
 * writes. A write submitted after a read cannot occur before the read, and
 * similarly any read submitted after a write cannot occur before the write.
 * Writes are ordered between engines such that only one write occurs at any
 * time (completing any reads beforehand) - using semaphores where available
 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 * reads before starting, and any read (either using set-domain or pread) must
 * flush all GPU writes before starting. (Note we only employ a barrier before,
 * we currently rely on userspace not concurrently starting a new execution
 * whilst reading or writing to an object. This may be an advantage or not
 * depending on how much you trust userspace not to shoot themselves in the
 * foot.) Serialisation may just result in the request being inserted into
 * a DAG awaiting its turn, but most simple is to wait on the CPU until
 * all dependencies are resolved.
 *
 * After all of that, is just a matter of closing the request and handing it to
 * the hardware (well, leaving it in a queue to be executed). However, we also
 * offer the ability for batchbuffers to be run with elevated privileges so
 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 * Before any batch is given extra privileges we first must check that it
 * contains no nefarious instructions, we check that each instruction is from
 * our whitelist and all registers are also from an allowed list. We first
 * copy the user's batchbuffer to a shadow (so that the user doesn't have
 * access to it, either by the CPU or GPU as we scan it) and then parse each
 * instruction. If everything is ok, we set a flag telling the hardware to run
 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 */

229
struct i915_execbuffer {
230 231 232 233
	struct drm_i915_private *i915; /** i915 backpointer */
	struct drm_file *file; /** per-file lookup tables and limits */
	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
234 235
	struct i915_vma **vma;
	unsigned int *flags;
236 237 238 239 240

	struct intel_engine_cs *engine; /** engine to queue the request to */
	struct i915_gem_context *ctx; /** context for building the request */
	struct i915_address_space *vm; /** GTT and vma for the request */

241
	struct i915_request *request; /** our request to build */
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	struct i915_vma *batch; /** identity of the batch obj/vma */

	/** actual size of execobj[] as we may extend it for the cmdparser */
	unsigned int buffer_count;

	/** list of vma not yet bound during reservation phase */
	struct list_head unbound;

	/** list of vma that have execobj.relocation_count */
	struct list_head relocs;

	/**
	 * Track the most recently used object for relocations, as we
	 * frequently have to perform multiple relocations within the same
	 * obj/page
	 */
258
	struct reloc_cache {
259 260 261
		struct drm_mm_node node; /** temporary GTT binding */
		unsigned long vaddr; /** Current kmap address */
		unsigned long page; /** Currently mapped page index */
262
		unsigned int gen; /** Cached value of INTEL_GEN */
263
		bool use_64bit_reloc : 1;
264 265 266
		bool has_llc : 1;
		bool has_fence : 1;
		bool needs_unfenced : 1;
267

268
		struct i915_request *rq;
269 270
		u32 *rq_cmd;
		unsigned int rq_size;
271
	} reloc_cache;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

	u64 invalid_flags; /** Set of execobj.flags that are invalid */
	u32 context_flags; /** Set of execobj.flags to insert from the ctx */

	u32 batch_start_offset; /** Location within object of batch */
	u32 batch_len; /** Length of batch within object */
	u32 batch_flags; /** Flags composed for emit_bb_start() */

	/**
	 * Indicate either the size of the hastable used to resolve
	 * relocation handles, or if negative that we are using a direct
	 * index into the execobj[].
	 */
	int lut_size;
	struct hlist_head *buckets; /** ht for relocation handles */
287 288
};

289
#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 * Used to convert any address to canonical form.
 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
 * addresses to be in a canonical form:
 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
 * canonical form [63:48] == [47]."
 */
#define GEN8_HIGH_ADDRESS_BIT 47
static inline u64 gen8_canonical_addr(u64 address)
{
	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}

static inline u64 gen8_noncanonical_addr(u64 address)
{
	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
}

310 311
static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
{
312
	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
313 314
}

315
static int eb_create(struct i915_execbuffer *eb)
316
{
317 318
	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
		unsigned int size = 1 + ilog2(eb->buffer_count);
319

320 321 322 323 324 325 326 327 328 329 330
		/*
		 * Without a 1:1 association between relocation handles and
		 * the execobject[] index, we instead create a hashtable.
		 * We size it dynamically based on available memory, starting
		 * first with 1:1 assocative hash and scaling back until
		 * the allocation succeeds.
		 *
		 * Later on we use a positive lut_size to indicate we are
		 * using this hashtable, and a negative value to indicate a
		 * direct lookup.
		 */
331
		do {
332
			gfp_t flags;
333 334 335 336 337 338 339

			/* While we can still reduce the allocation size, don't
			 * raise a warning and allow the allocation to fail.
			 * On the last pass though, we want to try as hard
			 * as possible to perform the allocation and warn
			 * if it fails.
			 */
340
			flags = GFP_KERNEL;
341 342 343
			if (size > 1)
				flags |= __GFP_NORETRY | __GFP_NOWARN;

344
			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
345
					      flags);
346 347 348 349
			if (eb->buckets)
				break;
		} while (--size);

350 351
		if (unlikely(!size))
			return -ENOMEM;
352

353
		eb->lut_size = size;
354
	} else {
355
		eb->lut_size = -eb->buffer_count;
356
	}
357

358
	return 0;
359 360
}

361 362
static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
363 364
		 const struct i915_vma *vma,
		 unsigned int flags)
365 366 367 368 369 370 371
{
	if (vma->node.size < entry->pad_to_size)
		return true;

	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
		return true;

372
	if (flags & EXEC_OBJECT_PINNED &&
373 374 375
	    vma->node.start != entry->offset)
		return true;

376
	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
377 378 379
	    vma->node.start < BATCH_OFFSET_BIAS)
		return true;

380
	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
381 382 383
	    (vma->node.start + vma->node.size - 1) >> 32)
		return true;

384 385 386 387
	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
	    !i915_vma_is_map_and_fenceable(vma))
		return true;

388 389 390
	return false;
}

391
static inline bool
392
eb_pin_vma(struct i915_execbuffer *eb,
393
	   const struct drm_i915_gem_exec_object2 *entry,
394 395
	   struct i915_vma *vma)
{
396 397
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
398

399
	if (vma->node.size)
400
		pin_flags = vma->node.start;
401
	else
402
		pin_flags = entry->offset & PIN_OFFSET_MASK;
403

404 405 406
	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
		pin_flags |= PIN_GLOBAL;
407

408 409
	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
		return false;
410

411
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
412
		if (unlikely(i915_vma_pin_fence(vma))) {
413
			i915_vma_unpin(vma);
414
			return false;
415 416
		}

417
		if (vma->fence)
418
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
419 420
	}

421 422
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	return !eb_vma_misplaced(entry, vma, exec_flags);
423 424
}

425
static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
426
{
427
	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
428

429
	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
430
		__i915_vma_unpin_fence(vma);
431

432
	__i915_vma_unpin(vma);
433 434
}

435
static inline void
436
eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
437
{
438
	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
439
		return;
440

441 442
	__eb_unreserve_vma(vma, *flags);
	*flags &= ~__EXEC_OBJECT_RESERVED;
443 444
}

445 446 447 448
static int
eb_validate_vma(struct i915_execbuffer *eb,
		struct drm_i915_gem_exec_object2 *entry,
		struct i915_vma *vma)
449
{
450 451
	if (unlikely(entry->flags & eb->invalid_flags))
		return -EINVAL;
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
		return -EINVAL;

	/*
	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
	 * any non-page-aligned or non-canonical addresses.
	 */
	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
		     entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
		return -EINVAL;

	/* pad_to_size was once a reserved field, so sanitize it */
	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
		if (unlikely(offset_in_page(entry->pad_to_size)))
			return -EINVAL;
	} else {
		entry->pad_to_size = 0;
470 471
	}

472
	if (unlikely(vma->exec_flags)) {
473 474 475 476 477 478 479 480 481 482 483 484
		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
			  entry->handle, (int)(entry - eb->exec));
		return -EINVAL;
	}

	/*
	 * From drm_mm perspective address space is continuous,
	 * so from this point we're always using non-canonical
	 * form internally.
	 */
	entry->offset = gen8_noncanonical_addr(entry->offset);

485 486 487 488 489 490 491 492 493 494 495 496
	if (!eb->reloc_cache.has_fence) {
		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
	} else {
		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
		     eb->reloc_cache.needs_unfenced) &&
		    i915_gem_object_is_tiled(vma->obj))
			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
	}

	if (!(entry->flags & EXEC_OBJECT_PINNED))
		entry->flags |= eb->context_flags;

497
	return 0;
498 499
}

500
static int
501 502 503
eb_add_vma(struct i915_execbuffer *eb,
	   unsigned int i, unsigned batch_idx,
	   struct i915_vma *vma)
504
{
505
	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
506 507 508 509 510 511 512 513
	int err;

	GEM_BUG_ON(i915_vma_is_closed(vma));

	if (!(eb->args->flags & __EXEC_VALIDATED)) {
		err = eb_validate_vma(eb, entry, vma);
		if (unlikely(err))
			return err;
514 515
	}

516
	if (eb->lut_size > 0) {
517
		vma->exec_handle = entry->handle;
518
		hlist_add_head(&vma->exec_node,
519 520
			       &eb->buckets[hash_32(entry->handle,
						    eb->lut_size)]);
521
	}
522

523 524 525 526 527 528 529 530 531
	if (entry->relocation_count)
		list_add_tail(&vma->reloc_link, &eb->relocs);

	/*
	 * Stash a pointer from the vma to execobj, so we can query its flags,
	 * size, alignment etc as provided by the user. Also we stash a pointer
	 * to the vma inside the execobj so that we can use a direct lookup
	 * to find the right target VMA when doing relocations.
	 */
532
	eb->vma[i] = vma;
533
	eb->flags[i] = entry->flags;
534
	vma->exec_flags = &eb->flags[i];
535

536 537 538 539 540 541 542 543 544 545
	/*
	 * SNA is doing fancy tricks with compressing batch buffers, which leads
	 * to negative relocation deltas. Usually that works out ok since the
	 * relocate address is still positive, except when the batch is placed
	 * very low in the GTT. Ensure this doesn't happen.
	 *
	 * Note that actual hangs have only been observed on gen7, but for
	 * paranoia do it everywhere.
	 */
	if (i == batch_idx) {
546 547
		if (entry->relocation_count &&
		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
548 549 550 551 552 553 554
			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
		if (eb->reloc_cache.has_fence)
			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;

		eb->batch = vma;
	}

555
	err = 0;
556
	if (eb_pin_vma(eb, entry, vma)) {
557 558 559 560
		if (entry->offset != vma->node.start) {
			entry->offset = vma->node.start | UPDATE;
			eb->args->flags |= __EXEC_HAS_RELOC;
		}
561 562 563 564 565 566
	} else {
		eb_unreserve_vma(vma, vma->exec_flags);

		list_add_tail(&vma->exec_link, &eb->unbound);
		if (drm_mm_node_allocated(&vma->node))
			err = i915_vma_unbind(vma);
567 568
		if (unlikely(err))
			vma->exec_flags = NULL;
569 570 571 572 573 574 575 576 577 578
	}
	return err;
}

static inline int use_cpu_reloc(const struct reloc_cache *cache,
				const struct drm_i915_gem_object *obj)
{
	if (!i915_gem_object_has_struct_page(obj))
		return false;

579 580 581 582 583
	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
		return true;

	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
		return false;
584 585 586 587 588 589 590 591 592

	return (cache->has_llc ||
		obj->cache_dirty ||
		obj->cache_level != I915_CACHE_NONE);
}

static int eb_reserve_vma(const struct i915_execbuffer *eb,
			  struct i915_vma *vma)
{
593 594 595
	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
	unsigned int exec_flags = *vma->exec_flags;
	u64 pin_flags;
596 597
	int err;

598 599 600
	pin_flags = PIN_USER | PIN_NONBLOCK;
	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
		pin_flags |= PIN_GLOBAL;
601 602 603 604 605

	/*
	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
	 * limit address to the first 4GBs for unflagged objects.
	 */
606 607
	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
		pin_flags |= PIN_ZONE_4G;
608

609 610
	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
		pin_flags |= PIN_MAPPABLE;
611

612 613 614 615 616
	if (exec_flags & EXEC_OBJECT_PINNED) {
		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
617 618
	}

619 620 621
	err = i915_vma_pin(vma,
			   entry->pad_to_size, entry->alignment,
			   pin_flags);
622 623 624 625 626 627 628 629
	if (err)
		return err;

	if (entry->offset != vma->node.start) {
		entry->offset = vma->node.start | UPDATE;
		eb->args->flags |= __EXEC_HAS_RELOC;
	}

630
	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
631
		err = i915_vma_pin_fence(vma);
632 633 634 635 636
		if (unlikely(err)) {
			i915_vma_unpin(vma);
			return err;
		}

637
		if (vma->fence)
638
			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
639 640
	}

641 642
	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
643

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	return 0;
}

static int eb_reserve(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	struct list_head last;
	struct i915_vma *vma;
	unsigned int i, pass;
	int err;

	/*
	 * Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to make
	 * room for the earlier objects *unless* we need to defragment.
	 */

	pass = 0;
	err = 0;
	do {
		list_for_each_entry(vma, &eb->unbound, exec_link) {
			err = eb_reserve_vma(eb, vma);
			if (err)
				break;
		}
		if (err != -ENOSPC)
			return err;

		/* Resort *all* the objects into priority order */
		INIT_LIST_HEAD(&eb->unbound);
		INIT_LIST_HEAD(&last);
		for (i = 0; i < count; i++) {
684 685
			unsigned int flags = eb->flags[i];
			struct i915_vma *vma = eb->vma[i];
686

687 688
			if (flags & EXEC_OBJECT_PINNED &&
			    flags & __EXEC_OBJECT_HAS_PIN)
689 690
				continue;

691
			eb_unreserve_vma(vma, &eb->flags[i]);
692

693
			if (flags & EXEC_OBJECT_PINNED)
694
				list_add(&vma->exec_link, &eb->unbound);
695
			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
				list_add_tail(&vma->exec_link, &eb->unbound);
			else
				list_add_tail(&vma->exec_link, &last);
		}
		list_splice_tail(&last, &eb->unbound);

		switch (pass++) {
		case 0:
			break;

		case 1:
			/* Too fragmented, unbind everything and retry */
			err = i915_gem_evict_vm(eb->vm);
			if (err)
				return err;
			break;

		default:
			return -ENOSPC;
		}
	} while (1);
717
}
718

719 720
static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
{
721 722 723 724
	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
		return 0;
	else
		return eb->buffer_count - 1;
725 726 727 728 729 730 731
}

static int eb_select_context(struct i915_execbuffer *eb)
{
	struct i915_gem_context *ctx;

	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
732 733
	if (unlikely(!ctx))
		return -ENOENT;
734

735
	eb->ctx = ctx;
736
	eb->vm = ctx->ppgtt ? &ctx->ppgtt->vm : &eb->i915->ggtt.vm;
737 738 739 740 741 742 743 744 745

	eb->context_flags = 0;
	if (ctx->flags & CONTEXT_NO_ZEROMAP)
		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;

	return 0;
}

static int eb_lookup_vmas(struct i915_execbuffer *eb)
746
{
747
	struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
748
	struct drm_i915_gem_object *obj;
749
	unsigned int i, batch;
750
	int err;
751

752 753 754 755 756 757
	if (unlikely(i915_gem_context_is_closed(eb->ctx)))
		return -ENOENT;

	if (unlikely(i915_gem_context_is_banned(eb->ctx)))
		return -EIO;

758 759
	INIT_LIST_HEAD(&eb->relocs);
	INIT_LIST_HEAD(&eb->unbound);
760

761 762
	batch = eb_batch_index(eb);

763 764
	for (i = 0; i < eb->buffer_count; i++) {
		u32 handle = eb->exec[i].handle;
765
		struct i915_lut_handle *lut;
766
		struct i915_vma *vma;
767

768 769
		vma = radix_tree_lookup(handles_vma, handle);
		if (likely(vma))
770
			goto add_vma;
771

772
		obj = i915_gem_object_lookup(eb->file, handle);
773
		if (unlikely(!obj)) {
774
			err = -ENOENT;
775
			goto err_vma;
776 777
		}

778
		vma = i915_vma_instance(obj, eb->vm, NULL);
C
Chris Wilson 已提交
779
		if (unlikely(IS_ERR(vma))) {
780
			err = PTR_ERR(vma);
781
			goto err_obj;
782 783
		}

784 785 786 787 788 789 790 791
		lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
		if (unlikely(!lut)) {
			err = -ENOMEM;
			goto err_obj;
		}

		err = radix_tree_insert(handles_vma, handle, vma);
		if (unlikely(err)) {
792
			kmem_cache_free(eb->i915->luts, lut);
793
			goto err_obj;
794
		}
795

796
		/* transfer ref to ctx */
797 798
		if (!vma->open_count++)
			i915_vma_reopen(vma);
799 800 801 802 803
		list_add(&lut->obj_link, &obj->lut_list);
		list_add(&lut->ctx_link, &eb->ctx->handles_list);
		lut->ctx = eb->ctx;
		lut->handle = handle;

804
add_vma:
805
		err = eb_add_vma(eb, i, batch, vma);
806
		if (unlikely(err))
807
			goto err_vma;
808

809 810
		GEM_BUG_ON(vma != eb->vma[i]);
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
811 812
		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
813 814
	}

815 816 817
	eb->args->flags |= __EXEC_VALIDATED;
	return eb_reserve(eb);

818
err_obj:
819
	i915_gem_object_put(obj);
820 821
err_vma:
	eb->vma[i] = NULL;
822
	return err;
823 824
}

825
static struct i915_vma *
826
eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
827
{
828 829
	if (eb->lut_size < 0) {
		if (handle >= -eb->lut_size)
830
			return NULL;
831
		return eb->vma[handle];
832 833
	} else {
		struct hlist_head *head;
834
		struct i915_vma *vma;
835

836
		head = &eb->buckets[hash_32(handle, eb->lut_size)];
837
		hlist_for_each_entry(vma, head, exec_node) {
838 839
			if (vma->exec_handle == handle)
				return vma;
840 841 842
		}
		return NULL;
	}
843 844
}

845
static void eb_release_vmas(const struct i915_execbuffer *eb)
846
{
847 848 849 850
	const unsigned int count = eb->buffer_count;
	unsigned int i;

	for (i = 0; i < count; i++) {
851 852
		struct i915_vma *vma = eb->vma[i];
		unsigned int flags = eb->flags[i];
853

854
		if (!vma)
855
			break;
856

857 858 859
		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
		vma->exec_flags = NULL;
		eb->vma[i] = NULL;
860

861 862
		if (flags & __EXEC_OBJECT_HAS_PIN)
			__eb_unreserve_vma(vma, flags);
863

864
		if (flags & __EXEC_OBJECT_HAS_REF)
865
			i915_vma_put(vma);
866
	}
867 868
}

869
static void eb_reset_vmas(const struct i915_execbuffer *eb)
870
{
871
	eb_release_vmas(eb);
872
	if (eb->lut_size > 0)
873 874
		memset(eb->buckets, 0,
		       sizeof(struct hlist_head) << eb->lut_size);
875 876
}

877
static void eb_destroy(const struct i915_execbuffer *eb)
878
{
879 880
	GEM_BUG_ON(eb->reloc_cache.rq);

881
	if (eb->lut_size > 0)
882
		kfree(eb->buckets);
883 884
}

885
static inline u64
886
relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
887
		  const struct i915_vma *target)
888
{
889
	return gen8_canonical_addr((int)reloc->delta + target->node.start);
890 891
}

892 893
static void reloc_cache_init(struct reloc_cache *cache,
			     struct drm_i915_private *i915)
894
{
895
	cache->page = -1;
896
	cache->vaddr = 0;
897
	/* Must be a variable in the struct to allow GCC to unroll. */
898
	cache->gen = INTEL_GEN(i915);
899
	cache->has_llc = HAS_LLC(i915);
900
	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
901 902
	cache->has_fence = cache->gen < 4;
	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
903
	cache->node.allocated = false;
904 905
	cache->rq = NULL;
	cache->rq_size = 0;
906
}
907

908 909 910 911 912 913 914 915
static inline void *unmask_page(unsigned long p)
{
	return (void *)(uintptr_t)(p & PAGE_MASK);
}

static inline unsigned int unmask_flags(unsigned long p)
{
	return p & ~PAGE_MASK;
916 917
}

918 919
#define KMAP 0x4 /* after CLFLUSH_FLAGS */

920 921 922 923 924 925 926
static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
{
	struct drm_i915_private *i915 =
		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
	return &i915->ggtt;
}

927 928 929 930 931 932 933
static void reloc_gpu_flush(struct reloc_cache *cache)
{
	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
	i915_gem_object_unpin_map(cache->rq->batch->obj);
	i915_gem_chipset_flush(cache->rq->i915);

934
	i915_request_add(cache->rq);
935 936 937
	cache->rq = NULL;
}

938
static void reloc_cache_reset(struct reloc_cache *cache)
939
{
940
	void *vaddr;
941

942 943 944
	if (cache->rq)
		reloc_gpu_flush(cache);

945 946
	if (!cache->vaddr)
		return;
947

948 949 950 951
	vaddr = unmask_page(cache->vaddr);
	if (cache->vaddr & KMAP) {
		if (cache->vaddr & CLFLUSH_AFTER)
			mb();
952

953 954 955
		kunmap_atomic(vaddr);
		i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
	} else {
956
		wmb();
957
		io_mapping_unmap_atomic((void __iomem *)vaddr);
958
		if (cache->node.allocated) {
959
			struct i915_ggtt *ggtt = cache_to_ggtt(cache);
960

961 962 963
			ggtt->vm.clear_range(&ggtt->vm,
					     cache->node.start,
					     cache->node.size);
964 965 966
			drm_mm_remove_node(&cache->node);
		} else {
			i915_vma_unpin((struct i915_vma *)cache->node.mm);
967
		}
968
	}
969 970 971

	cache->vaddr = 0;
	cache->page = -1;
972 973 974 975
}

static void *reloc_kmap(struct drm_i915_gem_object *obj,
			struct reloc_cache *cache,
976
			unsigned long page)
977
{
978 979 980 981 982 983
	void *vaddr;

	if (cache->vaddr) {
		kunmap_atomic(unmask_page(cache->vaddr));
	} else {
		unsigned int flushes;
984
		int err;
985

986 987 988
		err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
		if (err)
			return ERR_PTR(err);
989 990 991

		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
992

993 994 995 996
		cache->vaddr = flushes | KMAP;
		cache->node.mm = (void *)obj;
		if (flushes)
			mb();
997 998
	}

999 1000
	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1001
	cache->page = page;
1002

1003
	return vaddr;
1004 1005
}

1006 1007
static void *reloc_iomap(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1008
			 unsigned long page)
1009
{
1010
	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1011
	unsigned long offset;
1012
	void *vaddr;
1013

1014
	if (cache->vaddr) {
1015
		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1016 1017
	} else {
		struct i915_vma *vma;
1018
		int err;
1019

1020
		if (use_cpu_reloc(cache, obj))
1021
			return NULL;
1022

1023 1024 1025
		err = i915_gem_object_set_to_gtt_domain(obj, true);
		if (err)
			return ERR_PTR(err);
1026

1027
		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1028 1029 1030
					       PIN_MAPPABLE |
					       PIN_NONBLOCK |
					       PIN_NONFAULT);
1031 1032
		if (IS_ERR(vma)) {
			memset(&cache->node, 0, sizeof(cache->node));
1033
			err = drm_mm_insert_node_in_range
1034
				(&ggtt->vm.mm, &cache->node,
1035
				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1036
				 0, ggtt->mappable_end,
1037
				 DRM_MM_INSERT_LOW);
1038
			if (err) /* no inactive aperture space, use cpu reloc */
1039
				return NULL;
1040
		} else {
1041 1042
			err = i915_vma_put_fence(vma);
			if (err) {
1043
				i915_vma_unpin(vma);
1044
				return ERR_PTR(err);
1045
			}
1046

1047 1048
			cache->node.start = vma->node.start;
			cache->node.mm = (void *)vma;
1049
		}
1050
	}
1051

1052 1053
	offset = cache->node.start;
	if (cache->node.allocated) {
1054
		wmb();
1055 1056 1057
		ggtt->vm.insert_page(&ggtt->vm,
				     i915_gem_object_get_dma_address(obj, page),
				     offset, I915_CACHE_NONE, 0);
1058 1059
	} else {
		offset += page << PAGE_SHIFT;
1060 1061
	}

1062
	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1063
							 offset);
1064 1065
	cache->page = page;
	cache->vaddr = (unsigned long)vaddr;
1066

1067
	return vaddr;
1068 1069
}

1070 1071
static void *reloc_vaddr(struct drm_i915_gem_object *obj,
			 struct reloc_cache *cache,
1072
			 unsigned long page)
1073
{
1074
	void *vaddr;
1075

1076 1077 1078 1079 1080 1081 1082 1083
	if (cache->page == page) {
		vaddr = unmask_page(cache->vaddr);
	} else {
		vaddr = NULL;
		if ((cache->vaddr & KMAP) == 0)
			vaddr = reloc_iomap(obj, cache, page);
		if (!vaddr)
			vaddr = reloc_kmap(obj, cache, page);
1084 1085
	}

1086
	return vaddr;
1087 1088
}

1089
static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1090
{
1091 1092 1093 1094 1095
	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
		if (flushes & CLFLUSH_BEFORE) {
			clflushopt(addr);
			mb();
		}
1096

1097
		*addr = value;
1098

1099 1100
		/*
		 * Writes to the same cacheline are serialised by the CPU
1101 1102 1103 1104 1105 1106 1107 1108 1109
		 * (including clflush). On the write path, we only require
		 * that it hits memory in an orderly fashion and place
		 * mb barriers at the start and end of the relocation phase
		 * to ensure ordering of clflush wrt to the system.
		 */
		if (flushes & CLFLUSH_AFTER)
			clflushopt(addr);
	} else
		*addr = value;
1110 1111
}

1112 1113 1114 1115 1116 1117
static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
			     struct i915_vma *vma,
			     unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	struct drm_i915_gem_object *obj;
1118
	struct i915_request *rq;
1119 1120 1121 1122
	struct i915_vma *batch;
	u32 *cmd;
	int err;

1123
	GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1124 1125 1126 1127 1128 1129

	obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
	if (IS_ERR(obj))
		return PTR_ERR(obj);

	cmd = i915_gem_object_pin_map(obj,
1130 1131 1132
				      cache->has_llc ?
				      I915_MAP_FORCE_WB :
				      I915_MAP_FORCE_WC);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	i915_gem_object_unpin_pages(obj);
	if (IS_ERR(cmd))
		return PTR_ERR(cmd);

	err = i915_gem_object_set_to_wc_domain(obj, false);
	if (err)
		goto err_unmap;

	batch = i915_vma_instance(obj, vma->vm, NULL);
	if (IS_ERR(batch)) {
		err = PTR_ERR(batch);
		goto err_unmap;
	}

	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
	if (err)
		goto err_unmap;

1151
	rq = i915_request_alloc(eb->engine, eb->ctx);
1152 1153 1154 1155 1156
	if (IS_ERR(rq)) {
		err = PTR_ERR(rq);
		goto err_unpin;
	}

1157
	err = i915_request_await_object(rq, vma->obj, true);
1158 1159 1160 1161 1162 1163 1164 1165 1166
	if (err)
		goto err_request;

	err = eb->engine->emit_bb_start(rq,
					batch->node.start, PAGE_SIZE,
					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
	if (err)
		goto err_request;

1167
	GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1168
	i915_vma_move_to_active(batch, rq, 0);
1169 1170 1171
	reservation_object_lock(batch->resv, NULL);
	reservation_object_add_excl_fence(batch->resv, &rq->fence);
	reservation_object_unlock(batch->resv);
1172 1173
	i915_vma_unpin(batch);

1174
	i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1175 1176 1177
	reservation_object_lock(vma->resv, NULL);
	reservation_object_add_excl_fence(vma->resv, &rq->fence);
	reservation_object_unlock(vma->resv);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	rq->batch = batch;

	cache->rq = rq;
	cache->rq_cmd = cmd;
	cache->rq_size = 0;

	/* Return with batch mapping (cmd) still pinned */
	return 0;

err_request:
1189
	i915_request_add(rq);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
err_unpin:
	i915_vma_unpin(batch);
err_unmap:
	i915_gem_object_unpin_map(obj);
	return err;
}

static u32 *reloc_gpu(struct i915_execbuffer *eb,
		      struct i915_vma *vma,
		      unsigned int len)
{
	struct reloc_cache *cache = &eb->reloc_cache;
	u32 *cmd;

	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
		reloc_gpu_flush(cache);

	if (unlikely(!cache->rq)) {
		int err;

1210 1211 1212 1213
		/* If we need to copy for the cmdparser, we will stall anyway */
		if (eb_use_cmdparser(eb))
			return ERR_PTR(-EWOULDBLOCK);

1214 1215 1216
		if (!intel_engine_can_store_dword(eb->engine))
			return ERR_PTR(-ENODEV);

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		err = __reloc_gpu_alloc(eb, vma, len);
		if (unlikely(err))
			return ERR_PTR(err);
	}

	cmd = cache->rq_cmd + cache->rq_size;
	cache->rq_size += len;

	return cmd;
}

1228 1229
static u64
relocate_entry(struct i915_vma *vma,
1230
	       const struct drm_i915_gem_relocation_entry *reloc,
1231 1232
	       struct i915_execbuffer *eb,
	       const struct i915_vma *target)
1233
{
1234
	u64 offset = reloc->offset;
1235 1236
	u64 target_offset = relocation_target(reloc, target);
	bool wide = eb->reloc_cache.use_64bit_reloc;
1237
	void *vaddr;
1238

1239 1240
	if (!eb->reloc_cache.vaddr &&
	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1241
	     !reservation_object_test_signaled_rcu(vma->resv, true))) {
1242 1243 1244 1245 1246 1247 1248 1249 1250
		const unsigned int gen = eb->reloc_cache.gen;
		unsigned int len;
		u32 *batch;
		u64 addr;

		if (wide)
			len = offset & 7 ? 8 : 5;
		else if (gen >= 4)
			len = 4;
1251
		else
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
			len = 3;

		batch = reloc_gpu(eb, vma, len);
		if (IS_ERR(batch))
			goto repeat;

		addr = gen8_canonical_addr(vma->node.start + offset);
		if (wide) {
			if (offset & 7) {
				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);

				addr = gen8_canonical_addr(addr + 4);

				*batch++ = MI_STORE_DWORD_IMM_GEN4;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = upper_32_bits(target_offset);
			} else {
				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
				*batch++ = lower_32_bits(addr);
				*batch++ = upper_32_bits(addr);
				*batch++ = lower_32_bits(target_offset);
				*batch++ = upper_32_bits(target_offset);
			}
		} else if (gen >= 6) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else if (gen >= 4) {
			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
			*batch++ = 0;
			*batch++ = addr;
			*batch++ = target_offset;
		} else {
			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
			*batch++ = addr;
			*batch++ = target_offset;
		}

		goto out;
	}

1298
repeat:
1299
	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1300 1301 1302 1303 1304
	if (IS_ERR(vaddr))
		return PTR_ERR(vaddr);

	clflush_write32(vaddr + offset_in_page(offset),
			lower_32_bits(target_offset),
1305
			eb->reloc_cache.vaddr);
1306 1307 1308 1309 1310 1311

	if (wide) {
		offset += sizeof(u32);
		target_offset >>= 32;
		wide = false;
		goto repeat;
1312 1313
	}

1314
out:
1315
	return target->node.start | UPDATE;
1316 1317
}

1318 1319 1320 1321
static u64
eb_relocate_entry(struct i915_execbuffer *eb,
		  struct i915_vma *vma,
		  const struct drm_i915_gem_relocation_entry *reloc)
1322
{
1323
	struct i915_vma *target;
1324
	int err;
1325

1326
	/* we've already hold a reference to all valid objects */
1327 1328
	target = eb_get_vma(eb, reloc->target_handle);
	if (unlikely(!target))
1329
		return -ENOENT;
1330

1331
	/* Validate that the target is in a valid r/w GPU domain */
1332
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1333
		DRM_DEBUG("reloc with multiple write domains: "
1334
			  "target %d offset %d "
1335
			  "read %08x write %08x",
1336
			  reloc->target_handle,
1337 1338 1339
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1340
		return -EINVAL;
1341
	}
1342 1343
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
1344
		DRM_DEBUG("reloc with read/write non-GPU domains: "
1345
			  "target %d offset %d "
1346
			  "read %08x write %08x",
1347
			  reloc->target_handle,
1348 1349 1350
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
1351
		return -EINVAL;
1352 1353
	}

1354
	if (reloc->write_domain) {
1355
		*target->exec_flags |= EXEC_OBJECT_WRITE;
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		/*
		 * Sandybridge PPGTT errata: We need a global gtt mapping
		 * for MI and pipe_control writes because the gpu doesn't
		 * properly redirect them through the ppgtt for non_secure
		 * batchbuffers.
		 */
		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
		    IS_GEN6(eb->i915)) {
			err = i915_vma_bind(target, target->obj->cache_level,
					    PIN_GLOBAL);
			if (WARN_ONCE(err,
				      "Unexpected failure to bind target VMA!"))
				return err;
		}
1371
	}
1372

1373 1374
	/*
	 * If the relocation already has the right value in it, no
1375 1376
	 * more work needs to be done.
	 */
1377 1378
	if (!DBG_FORCE_RELOC &&
	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1379
		return 0;
1380 1381

	/* Check that the relocation address is valid... */
1382
	if (unlikely(reloc->offset >
1383
		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1384
		DRM_DEBUG("Relocation beyond object bounds: "
1385 1386 1387 1388
			  "target %d offset %d size %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset,
			  (int)vma->size);
1389
		return -EINVAL;
1390
	}
1391
	if (unlikely(reloc->offset & 3)) {
1392
		DRM_DEBUG("Relocation not 4-byte aligned: "
1393 1394 1395
			  "target %d offset %d.\n",
			  reloc->target_handle,
			  (int)reloc->offset);
1396
		return -EINVAL;
1397 1398
	}

1399 1400 1401 1402 1403 1404
	/*
	 * If we write into the object, we need to force the synchronisation
	 * barrier, either with an asynchronous clflush or if we executed the
	 * patching using the GPU (though that should be serialised by the
	 * timeline). To be completely sure, and since we are required to
	 * do relocations we are already stalling, disable the user's opt
1405
	 * out of our synchronisation.
1406
	 */
1407
	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1408

1409
	/* and update the user's relocation entry */
1410
	return relocate_entry(vma, reloc, eb, target);
1411 1412
}

1413
static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1414
{
1415
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1416 1417
	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
	struct drm_i915_gem_relocation_entry __user *urelocs;
1418
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1419
	unsigned int remain;
1420

1421
	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1422
	remain = entry->relocation_count;
1423 1424
	if (unlikely(remain > N_RELOC(ULONG_MAX)))
		return -EINVAL;
1425

1426 1427 1428 1429 1430
	/*
	 * We must check that the entire relocation array is safe
	 * to read. However, if the array is not writable the user loses
	 * the updated relocation values.
	 */
1431
	if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1432 1433 1434 1435 1436 1437 1438
		return -EFAULT;

	do {
		struct drm_i915_gem_relocation_entry *r = stack;
		unsigned int count =
			min_t(unsigned int, remain, ARRAY_SIZE(stack));
		unsigned int copied;
1439

1440 1441
		/*
		 * This is the fast path and we cannot handle a pagefault
1442 1443 1444 1445 1446 1447 1448
		 * whilst holding the struct mutex lest the user pass in the
		 * relocations contained within a mmaped bo. For in such a case
		 * we, the page fault handler would call i915_gem_fault() and
		 * we would try to acquire the struct mutex again. Obviously
		 * this is bad and so lockdep complains vehemently.
		 */
		pagefault_disable();
1449
		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1450
		pagefault_enable();
1451 1452
		if (unlikely(copied)) {
			remain = -EFAULT;
1453 1454
			goto out;
		}
1455

1456
		remain -= count;
1457
		do {
1458
			u64 offset = eb_relocate_entry(eb, vma, r);
1459

1460 1461 1462
			if (likely(offset == 0)) {
			} else if ((s64)offset < 0) {
				remain = (int)offset;
1463
				goto out;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
			} else {
				/*
				 * Note that reporting an error now
				 * leaves everything in an inconsistent
				 * state as we have *already* changed
				 * the relocation value inside the
				 * object. As we have not changed the
				 * reloc.presumed_offset or will not
				 * change the execobject.offset, on the
				 * call we may not rewrite the value
				 * inside the object, leaving it
				 * dangling and causing a GPU hang. Unless
				 * userspace dynamically rebuilds the
				 * relocations on each execbuf rather than
				 * presume a static tree.
				 *
				 * We did previously check if the relocations
				 * were writable (access_ok), an error now
				 * would be a strange race with mprotect,
				 * having already demonstrated that we
				 * can read from this userspace address.
				 */
				offset = gen8_canonical_addr(offset & ~UPDATE);
				__put_user(offset,
					   &urelocs[r-stack].presumed_offset);
1489
			}
1490 1491 1492
		} while (r++, --count);
		urelocs += ARRAY_SIZE(stack);
	} while (remain);
1493
out:
1494
	reloc_cache_reset(&eb->reloc_cache);
1495
	return remain;
1496 1497 1498
}

static int
1499
eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1500
{
1501
	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1502 1503 1504 1505
	struct drm_i915_gem_relocation_entry *relocs =
		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
	unsigned int i;
	int err;
1506 1507

	for (i = 0; i < entry->relocation_count; i++) {
1508
		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1509

1510 1511 1512 1513
		if ((s64)offset < 0) {
			err = (int)offset;
			goto err;
		}
1514
	}
1515 1516 1517 1518
	err = 0;
err:
	reloc_cache_reset(&eb->reloc_cache);
	return err;
1519 1520
}

1521
static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1522
{
1523 1524 1525
	const char __user *addr, *end;
	unsigned long size;
	char __maybe_unused c;
1526

1527 1528 1529
	size = entry->relocation_count;
	if (size == 0)
		return 0;
1530

1531 1532
	if (size > N_RELOC(ULONG_MAX))
		return -EINVAL;
1533

1534 1535 1536 1537
	addr = u64_to_user_ptr(entry->relocs_ptr);
	size *= sizeof(struct drm_i915_gem_relocation_entry);
	if (!access_ok(VERIFY_READ, addr, size))
		return -EFAULT;
1538

1539 1540 1541 1542 1543
	end = addr + size;
	for (; addr < end; addr += PAGE_SIZE) {
		int err = __get_user(c, addr);
		if (err)
			return err;
1544
	}
1545
	return __get_user(c, end - 1);
1546
}
1547

1548
static int eb_copy_relocations(const struct i915_execbuffer *eb)
1549
{
1550 1551 1552
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1553

1554 1555 1556 1557 1558 1559
	for (i = 0; i < count; i++) {
		const unsigned int nreloc = eb->exec[i].relocation_count;
		struct drm_i915_gem_relocation_entry __user *urelocs;
		struct drm_i915_gem_relocation_entry *relocs;
		unsigned long size;
		unsigned long copied;
1560

1561 1562
		if (nreloc == 0)
			continue;
1563

1564 1565 1566
		err = check_relocations(&eb->exec[i]);
		if (err)
			goto err;
1567

1568 1569
		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
		size = nreloc * sizeof(*relocs);
1570

1571
		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1572 1573 1574 1575 1576
		if (!relocs) {
			kvfree(relocs);
			err = -ENOMEM;
			goto err;
		}
1577

1578 1579 1580 1581 1582 1583 1584
		/* copy_from_user is limited to < 4GiB */
		copied = 0;
		do {
			unsigned int len =
				min_t(u64, BIT_ULL(31), size - copied);

			if (__copy_from_user((char *)relocs + copied,
1585
					     (char __user *)urelocs + copied,
1586 1587 1588 1589 1590
					     len)) {
				kvfree(relocs);
				err = -EFAULT;
				goto err;
			}
1591

1592 1593
			copied += len;
		} while (copied < size);
1594

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
		/*
		 * As we do not update the known relocation offsets after
		 * relocating (due to the complexities in lock handling),
		 * we need to mark them as invalid now so that we force the
		 * relocation processing next time. Just in case the target
		 * object is evicted and then rebound into its old
		 * presumed_offset before the next execbuffer - if that
		 * happened we would make the mistake of assuming that the
		 * relocations were valid.
		 */
		user_access_begin();
		for (copied = 0; copied < nreloc; copied++)
			unsafe_put_user(-1,
					&urelocs[copied].presumed_offset,
					end_user);
end_user:
		user_access_end();
1612

1613 1614
		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
	}
1615

1616
	return 0;
1617

1618 1619 1620 1621 1622 1623 1624 1625
err:
	while (i--) {
		struct drm_i915_gem_relocation_entry *relocs =
			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
		if (eb->exec[i].relocation_count)
			kvfree(relocs);
	}
	return err;
1626 1627
}

1628
static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1629
{
1630 1631
	const unsigned int count = eb->buffer_count;
	unsigned int i;
1632

1633
	if (unlikely(i915_modparams.prefault_disable))
1634
		return 0;
1635

1636 1637
	for (i = 0; i < count; i++) {
		int err;
1638

1639 1640 1641 1642
		err = check_relocations(&eb->exec[i]);
		if (err)
			return err;
	}
1643

1644
	return 0;
1645 1646
}

1647
static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1648
{
1649
	struct drm_device *dev = &eb->i915->drm;
1650
	bool have_copy = false;
1651
	struct i915_vma *vma;
1652 1653 1654 1655 1656 1657 1658
	int err = 0;

repeat:
	if (signal_pending(current)) {
		err = -ERESTARTSYS;
		goto out;
	}
1659

1660
	/* We may process another execbuffer during the unlock... */
1661
	eb_reset_vmas(eb);
1662 1663
	mutex_unlock(&dev->struct_mutex);

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	/*
	 * We take 3 passes through the slowpatch.
	 *
	 * 1 - we try to just prefault all the user relocation entries and
	 * then attempt to reuse the atomic pagefault disabled fast path again.
	 *
	 * 2 - we copy the user entries to a local buffer here outside of the
	 * local and allow ourselves to wait upon any rendering before
	 * relocations
	 *
	 * 3 - we already have a local copy of the relocation entries, but
	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
	 */
	if (!err) {
		err = eb_prefault_relocations(eb);
	} else if (!have_copy) {
		err = eb_copy_relocations(eb);
		have_copy = err == 0;
	} else {
		cond_resched();
		err = 0;
1685
	}
1686 1687 1688
	if (err) {
		mutex_lock(&dev->struct_mutex);
		goto out;
1689 1690
	}

1691 1692 1693
	/* A frequent cause for EAGAIN are currently unavailable client pages */
	flush_workqueue(eb->i915->mm.userptr_wq);

1694 1695
	err = i915_mutex_lock_interruptible(dev);
	if (err) {
1696
		mutex_lock(&dev->struct_mutex);
1697
		goto out;
1698 1699
	}

1700
	/* reacquire the objects */
1701 1702
	err = eb_lookup_vmas(eb);
	if (err)
1703
		goto err;
1704

1705 1706
	GEM_BUG_ON(!eb->batch);

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	list_for_each_entry(vma, &eb->relocs, reloc_link) {
		if (!have_copy) {
			pagefault_disable();
			err = eb_relocate_vma(eb, vma);
			pagefault_enable();
			if (err)
				goto repeat;
		} else {
			err = eb_relocate_vma_slow(eb, vma);
			if (err)
				goto err;
		}
1719 1720
	}

1721 1722
	/*
	 * Leave the user relocations as are, this is the painfully slow path,
1723 1724 1725 1726 1727 1728
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	if (err == -EAGAIN)
		goto repeat;

out:
	if (have_copy) {
		const unsigned int count = eb->buffer_count;
		unsigned int i;

		for (i = 0; i < count; i++) {
			const struct drm_i915_gem_exec_object2 *entry =
				&eb->exec[i];
			struct drm_i915_gem_relocation_entry *relocs;

			if (!entry->relocation_count)
				continue;

			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
			kvfree(relocs);
		}
	}

1750
	return err;
1751 1752
}

1753
static int eb_relocate(struct i915_execbuffer *eb)
1754
{
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	if (eb_lookup_vmas(eb))
		goto slow;

	/* The objects are in their final locations, apply the relocations. */
	if (eb->args->flags & __EXEC_HAS_RELOC) {
		struct i915_vma *vma;

		list_for_each_entry(vma, &eb->relocs, reloc_link) {
			if (eb_relocate_vma(eb, vma))
				goto slow;
		}
	}

	return 0;

slow:
	return eb_relocate_slow(eb);
}

1774
static void eb_export_fence(struct i915_vma *vma,
1775
			    struct i915_request *rq,
1776 1777
			    unsigned int flags)
{
1778
	struct reservation_object *resv = vma->resv;
1779 1780 1781 1782 1783 1784 1785 1786

	/*
	 * Ignore errors from failing to allocate the new fence, we can't
	 * handle an error right now. Worst case should be missed
	 * synchronisation leading to rendering corruption.
	 */
	reservation_object_lock(resv, NULL);
	if (flags & EXEC_OBJECT_WRITE)
1787
		reservation_object_add_excl_fence(resv, &rq->fence);
1788
	else if (reservation_object_reserve_shared(resv) == 0)
1789
		reservation_object_add_shared_fence(resv, &rq->fence);
1790 1791 1792 1793 1794 1795 1796 1797
	reservation_object_unlock(resv);
}

static int eb_move_to_gpu(struct i915_execbuffer *eb)
{
	const unsigned int count = eb->buffer_count;
	unsigned int i;
	int err;
1798

1799
	for (i = 0; i < count; i++) {
1800 1801
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];
1802
		struct drm_i915_gem_object *obj = vma->obj;
1803

1804
		if (flags & EXEC_OBJECT_CAPTURE) {
1805
			struct i915_capture_list *capture;
1806 1807 1808 1809 1810

			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
			if (unlikely(!capture))
				return -ENOMEM;

1811
			capture->next = eb->request->capture_list;
1812
			capture->vma = eb->vma[i];
1813
			eb->request->capture_list = capture;
1814 1815
		}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
		/*
		 * If the GPU is not _reading_ through the CPU cache, we need
		 * to make sure that any writes (both previous GPU writes from
		 * before a change in snooping levels and normal CPU writes)
		 * caught in that cache are flushed to main memory.
		 *
		 * We want to say
		 *   obj->cache_dirty &&
		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
		 * but gcc's optimiser doesn't handle that as well and emits
		 * two jumps instead of one. Maybe one day...
		 */
		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1829
			if (i915_gem_clflush_object(obj, 0))
1830
				flags &= ~EXEC_OBJECT_ASYNC;
1831 1832
		}

1833 1834
		if (flags & EXEC_OBJECT_ASYNC)
			continue;
1835

1836
		err = i915_request_await_object
1837
			(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1838 1839 1840 1841 1842
		if (err)
			return err;
	}

	for (i = 0; i < count; i++) {
1843 1844 1845 1846 1847
		unsigned int flags = eb->flags[i];
		struct i915_vma *vma = eb->vma[i];

		i915_vma_move_to_active(vma, eb->request, flags);
		eb_export_fence(vma, eb->request, flags);
1848

1849 1850 1851 1852
		__eb_unreserve_vma(vma, flags);
		vma->exec_flags = NULL;

		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1853
			i915_vma_put(vma);
1854
	}
1855
	eb->exec = NULL;
1856

1857
	/* Unconditionally flush any chipset caches (for streaming writes). */
1858
	i915_gem_chipset_flush(eb->i915);
1859

1860
	return 0;
1861 1862
}

1863
static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1864
{
1865
	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1866 1867
		return false;

C
Chris Wilson 已提交
1868
	/* Kernel clipping was a DRI1 misfeature */
1869 1870 1871 1872
	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
		if (exec->num_cliprects || exec->cliprects_ptr)
			return false;
	}
C
Chris Wilson 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

	if (exec->DR4 == 0xffffffff) {
		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
		exec->DR4 = 0;
	}
	if (exec->DR1 || exec->DR4)
		return false;

	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
		return false;

	return true;
1885 1886
}

1887
void i915_vma_move_to_active(struct i915_vma *vma,
1888
			     struct i915_request *rq,
1889 1890 1891
			     unsigned int flags)
{
	struct drm_i915_gem_object *obj = vma->obj;
1892
	const unsigned int idx = rq->engine->id;
1893

1894
	lockdep_assert_held(&rq->i915->drm.struct_mutex);
1895 1896
	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));

1897 1898
	/*
	 * Add a reference if we're newly entering the active list.
1899 1900 1901 1902 1903 1904
	 * The order in which we add operations to the retirement queue is
	 * vital here: mark_active adds to the start of the callback list,
	 * such that subsequent callbacks are called first. Therefore we
	 * add the active reference first and queue for it to be dropped
	 * *last*.
	 */
1905 1906 1907
	if (!i915_vma_is_active(vma))
		obj->active_count++;
	i915_vma_set_active(vma, idx);
1908
	i915_gem_active_set(&vma->last_read[idx], rq);
1909
	list_move_tail(&vma->vm_link, &vma->vm->active_list);
1910

1911
	obj->write_domain = 0;
1912
	if (flags & EXEC_OBJECT_WRITE) {
1913
		obj->write_domain = I915_GEM_DOMAIN_RENDER;
1914

1915
		if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1916
			i915_gem_active_set(&obj->frontbuffer_write, rq);
1917

1918
		obj->read_domains = 0;
1919
	}
1920
	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1921

1922
	if (flags & EXEC_OBJECT_NEEDS_FENCE)
1923
		i915_gem_active_set(&vma->last_fence, rq);
1924 1925
}

1926
static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1927
{
1928 1929
	u32 *cs;
	int i;
1930

1931
	if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1932 1933 1934
		DRM_DEBUG("sol reset is gen7/rcs only\n");
		return -EINVAL;
	}
1935

1936
	cs = intel_ring_begin(rq, 4 * 2 + 2);
1937 1938
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1939

1940
	*cs++ = MI_LOAD_REGISTER_IMM(4);
1941
	for (i = 0; i < 4; i++) {
1942 1943
		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
		*cs++ = 0;
1944
	}
1945
	*cs++ = MI_NOOP;
1946
	intel_ring_advance(rq, cs);
1947 1948 1949 1950

	return 0;
}

1951
static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1952 1953
{
	struct drm_i915_gem_object *shadow_batch_obj;
1954
	struct i915_vma *vma;
1955
	int err;
1956

1957 1958
	shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
						   PAGE_ALIGN(eb->batch_len));
1959
	if (IS_ERR(shadow_batch_obj))
1960
		return ERR_CAST(shadow_batch_obj);
1961

1962
	err = intel_engine_cmd_parser(eb->engine,
1963
				      eb->batch->obj,
1964
				      shadow_batch_obj,
1965 1966
				      eb->batch_start_offset,
				      eb->batch_len,
1967
				      is_master);
1968 1969
	if (err) {
		if (err == -EACCES) /* unhandled chained batch */
C
Chris Wilson 已提交
1970 1971
			vma = NULL;
		else
1972
			vma = ERR_PTR(err);
C
Chris Wilson 已提交
1973 1974
		goto out;
	}
1975

C
Chris Wilson 已提交
1976 1977 1978
	vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
	if (IS_ERR(vma))
		goto out;
C
Chris Wilson 已提交
1979

1980 1981 1982 1983 1984
	eb->vma[eb->buffer_count] = i915_vma_get(vma);
	eb->flags[eb->buffer_count] =
		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
	vma->exec_flags = &eb->flags[eb->buffer_count];
	eb->buffer_count++;
1985

C
Chris Wilson 已提交
1986
out:
C
Chris Wilson 已提交
1987
	i915_gem_object_unpin_pages(shadow_batch_obj);
C
Chris Wilson 已提交
1988
	return vma;
1989
}
1990

1991
static void
1992
add_to_client(struct i915_request *rq, struct drm_file *file)
1993
{
1994 1995
	rq->file_priv = file->driver_priv;
	list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1996 1997
}

1998
static int eb_submit(struct i915_execbuffer *eb)
1999
{
2000
	int err;
2001

2002 2003 2004
	err = eb_move_to_gpu(eb);
	if (err)
		return err;
2005

2006
	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2007 2008 2009
		err = i915_reset_gen7_sol_offsets(eb->request);
		if (err)
			return err;
2010 2011
	}

2012
	err = eb->engine->emit_bb_start(eb->request,
2013 2014 2015
					eb->batch->node.start +
					eb->batch_start_offset,
					eb->batch_len,
2016 2017 2018
					eb->batch_flags);
	if (err)
		return err;
2019

C
Chris Wilson 已提交
2020
	return 0;
2021 2022
}

2023
/*
2024
 * Find one BSD ring to dispatch the corresponding BSD command.
2025
 * The engine index is returned.
2026
 */
2027
static unsigned int
2028 2029
gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
			 struct drm_file *file)
2030 2031 2032
{
	struct drm_i915_file_private *file_priv = file->driver_priv;

2033
	/* Check whether the file_priv has already selected one ring. */
2034 2035 2036
	if ((int)file_priv->bsd_engine < 0)
		file_priv->bsd_engine = atomic_fetch_xor(1,
			 &dev_priv->mm.bsd_engine_dispatch_index);
2037

2038
	return file_priv->bsd_engine;
2039 2040
}

2041 2042
#define I915_USER_RINGS (4)

2043
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2044 2045 2046 2047 2048 2049 2050
	[I915_EXEC_DEFAULT]	= RCS,
	[I915_EXEC_RENDER]	= RCS,
	[I915_EXEC_BLT]		= BCS,
	[I915_EXEC_BSD]		= VCS,
	[I915_EXEC_VEBOX]	= VECS
};

2051 2052 2053 2054
static struct intel_engine_cs *
eb_select_engine(struct drm_i915_private *dev_priv,
		 struct drm_file *file,
		 struct drm_i915_gem_execbuffer2 *args)
2055 2056
{
	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2057
	struct intel_engine_cs *engine;
2058 2059 2060

	if (user_ring_id > I915_USER_RINGS) {
		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2061
		return NULL;
2062 2063 2064 2065 2066 2067
	}

	if ((user_ring_id != I915_EXEC_BSD) &&
	    ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
		DRM_DEBUG("execbuf with non bsd ring but with invalid "
			  "bsd dispatch flags: %d\n", (int)(args->flags));
2068
		return NULL;
2069 2070 2071 2072 2073 2074
	}

	if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;

		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2075
			bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2076 2077
		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
			   bsd_idx <= I915_EXEC_BSD_RING2) {
2078
			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2079 2080 2081 2082
			bsd_idx--;
		} else {
			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
				  bsd_idx);
2083
			return NULL;
2084 2085
		}

2086
		engine = dev_priv->engine[_VCS(bsd_idx)];
2087
	} else {
2088
		engine = dev_priv->engine[user_ring_map[user_ring_id]];
2089 2090
	}

2091
	if (!engine) {
2092
		DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2093
		return NULL;
2094 2095
	}

2096
	return engine;
2097 2098
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
static void
__free_fence_array(struct drm_syncobj **fences, unsigned int n)
{
	while (n--)
		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
	kvfree(fences);
}

static struct drm_syncobj **
get_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_file *file)
{
2111
	const unsigned long nfences = args->num_cliprects;
2112 2113
	struct drm_i915_gem_exec_fence __user *user;
	struct drm_syncobj **fences;
2114
	unsigned long n;
2115 2116 2117 2118 2119
	int err;

	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
		return NULL;

2120 2121 2122 2123 2124
	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
	if (nfences > min_t(unsigned long,
			    ULONG_MAX / sizeof(*user),
			    SIZE_MAX / sizeof(*fences)))
2125 2126 2127
		return ERR_PTR(-EINVAL);

	user = u64_to_user_ptr(args->cliprects_ptr);
2128
	if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2129 2130
		return ERR_PTR(-EFAULT);

2131
	fences = kvmalloc_array(nfences, sizeof(*fences),
2132
				__GFP_NOWARN | GFP_KERNEL);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	if (!fences)
		return ERR_PTR(-ENOMEM);

	for (n = 0; n < nfences; n++) {
		struct drm_i915_gem_exec_fence fence;
		struct drm_syncobj *syncobj;

		if (__copy_from_user(&fence, user++, sizeof(fence))) {
			err = -EFAULT;
			goto err;
		}

2145 2146 2147 2148 2149
		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
			err = -EINVAL;
			goto err;
		}

2150 2151 2152 2153 2154 2155 2156
		syncobj = drm_syncobj_find(file, fence.handle);
		if (!syncobj) {
			DRM_DEBUG("Invalid syncobj handle provided\n");
			err = -ENOENT;
			goto err;
		}

2157 2158 2159
		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
	}

	return fences;

err:
	__free_fence_array(fences, n);
	return ERR_PTR(err);
}

static void
put_fence_array(struct drm_i915_gem_execbuffer2 *args,
		struct drm_syncobj **fences)
{
	if (fences)
		__free_fence_array(fences, args->num_cliprects);
}

static int
await_fence_array(struct i915_execbuffer *eb,
		  struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	unsigned int n;
	int err;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		struct dma_fence *fence;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_WAIT))
			continue;

J
Jason Ekstrand 已提交
2195
		fence = drm_syncobj_fence_get(syncobj);
2196 2197 2198
		if (!fence)
			return -EINVAL;

2199
		err = i915_request_await_dma_fence(eb->request, fence);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		dma_fence_put(fence);
		if (err < 0)
			return err;
	}

	return 0;
}

static void
signal_fence_array(struct i915_execbuffer *eb,
		   struct drm_syncobj **fences)
{
	const unsigned int nfences = eb->args->num_cliprects;
	struct dma_fence * const fence = &eb->request->fence;
	unsigned int n;

	for (n = 0; n < nfences; n++) {
		struct drm_syncobj *syncobj;
		unsigned int flags;

		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
		if (!(flags & I915_EXEC_FENCE_SIGNAL))
			continue;

		drm_syncobj_replace_fence(syncobj, fence);
	}
}

2228
static int
2229
i915_gem_do_execbuffer(struct drm_device *dev,
2230 2231
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
2232 2233
		       struct drm_i915_gem_exec_object2 *exec,
		       struct drm_syncobj **fences)
2234
{
2235
	struct i915_execbuffer eb;
2236 2237 2238
	struct dma_fence *in_fence = NULL;
	struct sync_file *out_fence = NULL;
	int out_fence_fd = -1;
2239
	int err;
2240

2241
	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2242 2243
	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2244

2245 2246 2247
	eb.i915 = to_i915(dev);
	eb.file = file;
	eb.args = args;
2248
	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2249
		args->flags |= __EXEC_HAS_RELOC;
2250

2251
	eb.exec = exec;
2252 2253
	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
	eb.vma[0] = NULL;
2254 2255
	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);

2256 2257 2258
	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
	if (USES_FULL_PPGTT(eb.i915))
		eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2259 2260
	reloc_cache_init(&eb.reloc_cache, eb.i915);

2261
	eb.buffer_count = args->buffer_count;
2262 2263 2264
	eb.batch_start_offset = args->batch_start_offset;
	eb.batch_len = args->batch_len;

2265
	eb.batch_flags = 0;
2266
	if (args->flags & I915_EXEC_SECURE) {
2267
		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2268 2269
		    return -EPERM;

2270
		eb.batch_flags |= I915_DISPATCH_SECURE;
2271
	}
2272
	if (args->flags & I915_EXEC_IS_PINNED)
2273
		eb.batch_flags |= I915_DISPATCH_PINNED;
2274

2275 2276
	eb.engine = eb_select_engine(eb.i915, file, args);
	if (!eb.engine)
2277 2278
		return -EINVAL;

2279
	if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2280
		if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2281 2282 2283
			DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
			return -EINVAL;
		}
2284
		if (eb.engine->id != RCS) {
2285
			DRM_DEBUG("RS is not available on %s\n",
2286
				 eb.engine->name);
2287 2288 2289
			return -EINVAL;
		}

2290
		eb.batch_flags |= I915_DISPATCH_RS;
2291 2292
	}

2293 2294
	if (args->flags & I915_EXEC_FENCE_IN) {
		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2295 2296
		if (!in_fence)
			return -EINVAL;
2297 2298 2299 2300 2301
	}

	if (args->flags & I915_EXEC_FENCE_OUT) {
		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
		if (out_fence_fd < 0) {
2302
			err = out_fence_fd;
2303
			goto err_in_fence;
2304 2305 2306
		}
	}

2307 2308 2309 2310 2311
	err = eb_create(&eb);
	if (err)
		goto err_out_fence;

	GEM_BUG_ON(!eb.lut_size);
2312

2313 2314 2315 2316
	err = eb_select_context(&eb);
	if (unlikely(err))
		goto err_destroy;

2317 2318
	/*
	 * Take a local wakeref for preparing to dispatch the execbuf as
2319 2320 2321 2322 2323
	 * we expect to access the hardware fairly frequently in the
	 * process. Upon first dispatch, we acquire another prolonged
	 * wakeref that we hold until the GPU has been idle for at least
	 * 100ms.
	 */
2324
	intel_runtime_pm_get(eb.i915);
2325

2326 2327 2328
	err = i915_mutex_lock_interruptible(dev);
	if (err)
		goto err_rpm;
2329

2330
	err = eb_relocate(&eb);
2331
	if (err) {
2332 2333 2334 2335 2336 2337 2338 2339 2340
		/*
		 * If the user expects the execobject.offset and
		 * reloc.presumed_offset to be an exact match,
		 * as for using NO_RELOC, then we cannot update
		 * the execobject.offset until we have completed
		 * relocation.
		 */
		args->flags &= ~__EXEC_HAS_RELOC;
		goto err_vma;
2341
	}
2342

2343
	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2344
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2345 2346
		err = -EINVAL;
		goto err_vma;
2347
	}
2348 2349
	if (eb.batch_start_offset > eb.batch->size ||
	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2350
		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2351 2352
		err = -EINVAL;
		goto err_vma;
2353
	}
2354

2355
	if (eb_use_cmdparser(&eb)) {
2356 2357
		struct i915_vma *vma;

2358
		vma = eb_parse(&eb, drm_is_current_master(file));
2359
		if (IS_ERR(vma)) {
2360 2361
			err = PTR_ERR(vma);
			goto err_vma;
2362
		}
2363

2364
		if (vma) {
2365 2366 2367 2368 2369 2370 2371 2372 2373
			/*
			 * Batch parsed and accepted:
			 *
			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
			 * bit from MI_BATCH_BUFFER_START commands issued in
			 * the dispatch_execbuffer implementations. We
			 * specifically don't want that set on batches the
			 * command parser has accepted.
			 */
2374
			eb.batch_flags |= I915_DISPATCH_SECURE;
2375 2376
			eb.batch_start_offset = 0;
			eb.batch = vma;
2377
		}
2378 2379
	}

2380 2381
	if (eb.batch_len == 0)
		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2382

2383 2384
	/*
	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2385
	 * batch" bit. Hence we need to pin secure batches into the global gtt.
B
Ben Widawsky 已提交
2386
	 * hsw should have this fixed, but bdw mucks it up again. */
2387
	if (eb.batch_flags & I915_DISPATCH_SECURE) {
C
Chris Wilson 已提交
2388
		struct i915_vma *vma;
2389

2390 2391 2392 2393 2394 2395
		/*
		 * So on first glance it looks freaky that we pin the batch here
		 * outside of the reservation loop. But:
		 * - The batch is already pinned into the relevant ppgtt, so we
		 *   already have the backing storage fully allocated.
		 * - No other BO uses the global gtt (well contexts, but meh),
2396
		 *   so we don't really have issues with multiple objects not
2397 2398 2399
		 *   fitting due to fragmentation.
		 * So this is actually safe.
		 */
2400
		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
C
Chris Wilson 已提交
2401
		if (IS_ERR(vma)) {
2402 2403
			err = PTR_ERR(vma);
			goto err_vma;
C
Chris Wilson 已提交
2404
		}
2405

2406
		eb.batch = vma;
2407
	}
2408

2409 2410 2411
	/* All GPU relocation batches must be submitted prior to the user rq */
	GEM_BUG_ON(eb.reloc_cache.rq);

2412
	/* Allocate a request for this batch buffer nice and early. */
2413
	eb.request = i915_request_alloc(eb.engine, eb.ctx);
2414
	if (IS_ERR(eb.request)) {
2415
		err = PTR_ERR(eb.request);
2416
		goto err_batch_unpin;
2417
	}
2418

2419
	if (in_fence) {
2420
		err = i915_request_await_dma_fence(eb.request, in_fence);
2421
		if (err < 0)
2422 2423 2424
			goto err_request;
	}

2425 2426 2427 2428 2429 2430
	if (fences) {
		err = await_fence_array(&eb, fences);
		if (err)
			goto err_request;
	}

2431
	if (out_fence_fd != -1) {
2432
		out_fence = sync_file_create(&eb.request->fence);
2433
		if (!out_fence) {
2434
			err = -ENOMEM;
2435 2436 2437 2438
			goto err_request;
		}
	}

2439 2440
	/*
	 * Whilst this request exists, batch_obj will be on the
2441 2442 2443 2444 2445
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2446
	eb.request->batch = eb.batch;
2447

2448
	trace_i915_request_queue(eb.request, eb.batch_flags);
2449
	err = eb_submit(&eb);
2450
err_request:
2451
	i915_request_add(eb.request);
2452
	add_to_client(eb.request, file);
2453

2454 2455 2456
	if (fences)
		signal_fence_array(&eb, fences);

2457
	if (out_fence) {
2458
		if (err == 0) {
2459
			fd_install(out_fence_fd, out_fence->file);
2460
			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2461 2462 2463 2464 2465 2466
			args->rsvd2 |= (u64)out_fence_fd << 32;
			out_fence_fd = -1;
		} else {
			fput(out_fence->file);
		}
	}
2467

2468
err_batch_unpin:
2469
	if (eb.batch_flags & I915_DISPATCH_SECURE)
2470
		i915_vma_unpin(eb.batch);
2471 2472 2473
err_vma:
	if (eb.exec)
		eb_release_vmas(&eb);
2474
	mutex_unlock(&dev->struct_mutex);
2475
err_rpm:
2476
	intel_runtime_pm_put(eb.i915);
2477 2478
	i915_gem_context_put(eb.ctx);
err_destroy:
2479
	eb_destroy(&eb);
2480
err_out_fence:
2481 2482
	if (out_fence_fd != -1)
		put_unused_fd(out_fence_fd);
2483
err_in_fence:
2484
	dma_fence_put(in_fence);
2485
	return err;
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
static size_t eb_element_size(void)
{
	return (sizeof(struct drm_i915_gem_exec_object2) +
		sizeof(struct i915_vma *) +
		sizeof(unsigned int));
}

static bool check_buffer_count(size_t count)
{
	const size_t sz = eb_element_size();

	/*
	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
	 * array size (see eb_create()). Otherwise, we can accept an array as
	 * large as can be addressed (though use large arrays at your peril)!
	 */

	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
}

2508 2509 2510 2511 2512
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
2513 2514
i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file)
2515 2516 2517 2518 2519
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2520
	const size_t count = args->buffer_count;
2521 2522
	unsigned int i;
	int err;
2523

2524 2525
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2526 2527 2528
		return -EINVAL;
	}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;
	i915_execbuffer2_set_context_id(exec2, 0);

	if (!i915_gem_check_execbuffer(&exec2))
		return -EINVAL;

2543
	/* Copy in the exec list from userland */
2544
	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2545
				   __GFP_NOWARN | GFP_KERNEL);
2546
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2547
				    __GFP_NOWARN | GFP_KERNEL);
2548
	if (exec_list == NULL || exec2_list == NULL) {
2549
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2550
			  args->buffer_count);
M
Michal Hocko 已提交
2551 2552
		kvfree(exec_list);
		kvfree(exec2_list);
2553 2554
		return -ENOMEM;
	}
2555
	err = copy_from_user(exec_list,
2556
			     u64_to_user_ptr(args->buffers_ptr),
2557
			     sizeof(*exec_list) * count);
2558
	if (err) {
2559
		DRM_DEBUG("copy %d exec entries failed %d\n",
2560
			  args->buffer_count, err);
M
Michal Hocko 已提交
2561 2562
		kvfree(exec_list);
		kvfree(exec2_list);
2563 2564 2565 2566 2567 2568 2569 2570 2571
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
2572
		if (INTEL_GEN(to_i915(dev)) < 4)
2573 2574 2575 2576 2577
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

2578
	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2579
	if (exec2.flags & __EXEC_HAS_RELOC) {
2580
		struct drm_i915_gem_exec_object __user *user_exec_list =
2581
			u64_to_user_ptr(args->buffers_ptr);
2582

2583
		/* Copy the new buffer offsets back to the user's exec list. */
2584
		for (i = 0; i < args->buffer_count; i++) {
2585 2586 2587
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2588
			exec2_list[i].offset =
2589 2590 2591 2592 2593
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			exec2_list[i].offset &= PIN_OFFSET_MASK;
			if (__copy_to_user(&user_exec_list[i].offset,
					   &exec2_list[i].offset,
					   sizeof(user_exec_list[i].offset)))
2594
				break;
2595 2596 2597
		}
	}

M
Michal Hocko 已提交
2598 2599
	kvfree(exec_list);
	kvfree(exec2_list);
2600
	return err;
2601 2602 2603
}

int
2604 2605
i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
			   struct drm_file *file)
2606 2607
{
	struct drm_i915_gem_execbuffer2 *args = data;
2608
	struct drm_i915_gem_exec_object2 *exec2_list;
2609
	struct drm_syncobj **fences = NULL;
2610
	const size_t count = args->buffer_count;
2611
	int err;
2612

2613 2614
	if (!check_buffer_count(count)) {
		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2615 2616 2617
		return -EINVAL;
	}

2618 2619 2620 2621
	if (!i915_gem_check_execbuffer(args))
		return -EINVAL;

	/* Allocate an extra slot for use by the command parser */
2622
	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2623
				    __GFP_NOWARN | GFP_KERNEL);
2624
	if (exec2_list == NULL) {
2625 2626
		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
			  count);
2627 2628
		return -ENOMEM;
	}
2629 2630
	if (copy_from_user(exec2_list,
			   u64_to_user_ptr(args->buffers_ptr),
2631 2632
			   sizeof(*exec2_list) * count)) {
		DRM_DEBUG("copy %zd exec entries failed\n", count);
M
Michal Hocko 已提交
2633
		kvfree(exec2_list);
2634 2635 2636
		return -EFAULT;
	}

2637 2638 2639 2640 2641 2642 2643 2644 2645
	if (args->flags & I915_EXEC_FENCE_ARRAY) {
		fences = get_fence_array(args, file);
		if (IS_ERR(fences)) {
			kvfree(exec2_list);
			return PTR_ERR(fences);
		}
	}

	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2646 2647 2648 2649 2650 2651 2652 2653

	/*
	 * Now that we have begun execution of the batchbuffer, we ignore
	 * any new error after this point. Also given that we have already
	 * updated the associated relocations, we try to write out the current
	 * object locations irrespective of any error.
	 */
	if (args->flags & __EXEC_HAS_RELOC) {
2654
		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2655 2656
			u64_to_user_ptr(args->buffers_ptr);
		unsigned int i;
2657

2658 2659
		/* Copy the new buffer offsets back to the user's exec list. */
		user_access_begin();
2660
		for (i = 0; i < args->buffer_count; i++) {
2661 2662 2663
			if (!(exec2_list[i].offset & UPDATE))
				continue;

2664
			exec2_list[i].offset =
2665 2666 2667 2668
				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
			unsafe_put_user(exec2_list[i].offset,
					&user_exec_list[i].offset,
					end_user);
2669
		}
2670 2671
end_user:
		user_access_end();
2672 2673
	}

2674
	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2675
	put_fence_array(args, fences);
M
Michal Hocko 已提交
2676
	kvfree(exec2_list);
2677
	return err;
2678
}