slab.c 110.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	spinlock_t lock;
195
	void *entry[];	/*
A
Andrew Morton 已提交
196 197 198
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
199 200 201 202
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
203
			 */
L
Linus Torvalds 已提交
204 205
};

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
223 224 225
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
226 227 228 229
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
230
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
231 232
};

233 234 235
/*
 * Need this for bootstrapping a per node allocator.
 */
236
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238
#define	CACHE_CACHE 0
239
#define	SIZE_AC MAX_NUMNODES
240
#define	SIZE_NODE (2 * MAX_NUMNODES)
241

242
static int drain_freelist(struct kmem_cache *cache,
243
			struct kmem_cache_node *n, int tofree);
244 245
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
246
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247
static void cache_reap(struct work_struct *unused);
248

249 250
static int slab_early_init = 1;

251
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
253

254
static void kmem_cache_node_init(struct kmem_cache_node *parent)
255 256 257 258 259 260
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
261
	parent->colour_next = 0;
262 263 264 265 266
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
267 268 269
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
270
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
271 272
	} while (0)

A
Andrew Morton 已提交
273 274
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
275 276 277 278
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
279 280 281 282 283

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
284 285 286
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
287
 *
A
Adrian Bunk 已提交
288
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
289 290
 * which could lock up otherwise freeable slabs.
 */
291 292
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
293 294 295 296 297 298

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
299
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
300 301 302 303 304
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
305 306
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
307
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
308
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
309 310 311 312 313
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321 322
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
323
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
324 325 326
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
327
#define	STATS_INC_NODEFREES(x)	do { } while (0)
328
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
329
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
330 331 332 333 334 335 336 337
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
338 339
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
340
 * 0		: objp
341
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
342 343
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
344
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
345
 * 		redzone word.
346
 * cachep->obj_offset: The real object.
347 348
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
349
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
350
 */
351
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
352
{
353
	return cachep->obj_offset;
L
Linus Torvalds 已提交
354 355
}

356
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
357 358
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 360
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
361 362
}

363
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
364 365 366
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
367
		return (unsigned long long *)(objp + cachep->size -
368
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
369
					      REDZONE_ALIGN);
370
	return (unsigned long long *) (objp + cachep->size -
371
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
372 373
}

374
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
375 376
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
378 379 380 381
}

#else

382
#define obj_offset(x)			0
383 384
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
385 386 387 388 389
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
390 391
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
392
 */
393 394 395
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
396
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
397

398 399
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
400
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
401
	return page->slab_cache;
402 403
}

404
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 406
				 unsigned int idx)
{
407
	return page->s_mem + cache->size * idx;
408 409
}

410
/*
411 412 413
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
414 415 416
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417
					const struct page *page, void *obj)
418
{
419
	u32 offset = (obj - page->s_mem);
420
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 422
}

L
Linus Torvalds 已提交
423
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
424
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
425 426

/* internal cache of cache description objs */
427
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
428 429 430
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
431
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
432
	.name = "kmem_cache",
L
Linus Torvalds 已提交
433 434
};

435 436
#define BAD_ALIEN_MAGIC 0x01020304ul

437 438 439 440 441 442 443 444
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
445 446 447 448
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
449
 */
450 451 452
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

453 454 455 456 457 458 459 460
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
461
	struct kmem_cache_node *n;
462 463
	int r;

464 465
	n = cachep->node[q];
	if (!n)
466 467
		return;

468 469
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

498
static void init_node_lock_keys(int q)
499
{
500
	int i;
501

502
	if (slab_state < UP)
503 504
		return;

C
Christoph Lameter 已提交
505
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
506
		struct kmem_cache_node *n;
507 508 509 510
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
511

512 513
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
514
			continue;
515

516
		slab_set_lock_classes(cache, &on_slab_l3_key,
517
				&on_slab_alc_key, q);
518 519
	}
}
520

521 522
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
523
	if (!cachep->node[q])
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

539 540 541 542 543 544 545
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
546
#else
547 548 549 550
static void init_node_lock_keys(int q)
{
}

551
static inline void init_lock_keys(void)
552 553
{
}
554

555 556 557 558 559 560 561 562
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

563 564 565 566 567 568 569
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
570 571
#endif

572
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
573

574
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
575 576 577 578
{
	return cachep->array[smp_processor_id()];
}

579 580
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
581
{
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	int nr_objs;
	size_t freelist_size;

	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
	nr_objs = slab_size / (buffer_size + idx_size);

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
	freelist_size = slab_size - nr_objs * buffer_size;
	if (freelist_size < ALIGN(nr_objs * idx_size, align))
		nr_objs--;

	return nr_objs;
604
}
L
Linus Torvalds 已提交
605

A
Andrew Morton 已提交
606 607 608
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
609 610 611 612 613 614 615
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
616

617 618 619 620 621
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
622
	 * - One unsigned int for each object
623 624 625 626 627 628 629 630 631 632 633 634 635
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
636
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
637 638
					sizeof(freelist_idx_t), align);
		mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
639 640 641
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
642 643
}

644
#if DEBUG
645
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
646

A
Andrew Morton 已提交
647 648
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
649 650
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
651
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
652
	dump_stack();
653
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
654
}
655
#endif
L
Linus Torvalds 已提交
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

673 674 675 676 677 678 679 680 681 682 683
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

684 685 686 687 688 689 690
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
691
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
692 693 694 695 696

static void init_reap_node(int cpu)
{
	int node;

697
	node = next_node(cpu_to_mem(cpu), node_online_map);
698
	if (node == MAX_NUMNODES)
699
		node = first_node(node_online_map);
700

701
	per_cpu(slab_reap_node, cpu) = node;
702 703 704 705
}

static void next_reap_node(void)
{
706
	int node = __this_cpu_read(slab_reap_node);
707 708 709 710

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
711
	__this_cpu_write(slab_reap_node, node);
712 713 714 715 716 717 718
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
719 720 721 722 723 724 725
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
726
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
727
{
728
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
729 730 731 732 733 734

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
735
	if (keventd_up() && reap_work->work.func == NULL) {
736
		init_reap_node(cpu);
737
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
738 739
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
740 741 742
	}
}

743
static struct array_cache *alloc_arraycache(int node, int entries,
744
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
745
{
P
Pekka Enberg 已提交
746
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
747 748
	struct array_cache *nc = NULL;

749
	nc = kmalloc_node(memsize, gfp, node);
750 751
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
752
	 * However, when such objects are allocated or transferred to another
753 754 755 756 757
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
758 759 760 761 762
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
763
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
764 765 766 767
	}
	return nc;
}

768
static inline bool is_slab_pfmemalloc(struct page *page)
769 770 771 772 773 774 775 776
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
777
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
778
	struct page *page;
779 780 781 782 783
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

784
	spin_lock_irqsave(&n->list_lock, flags);
785 786
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
787 788
			goto out;

789 790
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
791 792
			goto out;

793 794
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
795 796 797 798
			goto out;

	pfmemalloc_active = false;
out:
799
	spin_unlock_irqrestore(&n->list_lock, flags);
800 801
}

802
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
803 804 805 806 807 808 809
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
810
		struct kmem_cache_node *n;
811 812 813 814 815 816 817

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
818
		for (i = 0; i < ac->avail; i++) {
819 820 821 822 823 824 825 826 827 828 829 830 831
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
832 833
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
834
			struct page *page = virt_to_head_page(objp);
835
			ClearPageSlabPfmemalloc(page);
836 837 838 839 840 841 842 843 844 845 846 847 848
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
863 864 865 866
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
867
		struct page *page = virt_to_head_page(objp);
868 869 870 871
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

872 873 874 875 876 877 878 879 880
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

881 882 883
	ac->entry[ac->avail++] = objp;
}

884 885 886 887 888 889 890 891 892 893
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
894
	int nr = min3(from->avail, max, to->limit - to->avail);
895 896 897 898 899 900 901 902 903 904 905 906

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

907 908 909
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
910
#define reap_alien(cachep, n) do { } while (0)
911

912
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

932
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
933 934 935 936 937 938 939
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

940
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
941
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
942

943
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
944 945
{
	struct array_cache **ac_ptr;
946
	int memsize = sizeof(void *) * nr_node_ids;
947 948 949 950
	int i;

	if (limit > 1)
		limit = 12;
951
	ac_ptr = kzalloc_node(memsize, gfp, node);
952 953
	if (ac_ptr) {
		for_each_node(i) {
954
			if (i == node || !node_online(i))
955
				continue;
956
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
957
			if (!ac_ptr[i]) {
958
				for (i--; i >= 0; i--)
959 960 961 962 963 964 965 966 967
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
968
static void free_alien_cache(struct array_cache **ac_ptr)
969 970 971 972 973 974
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
975
	    kfree(ac_ptr[i]);
976 977 978
	kfree(ac_ptr);
}

979
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
980
				struct array_cache *ac, int node)
981
{
982
	struct kmem_cache_node *n = cachep->node[node];
983 984

	if (ac->avail) {
985
		spin_lock(&n->list_lock);
986 987 988 989 990
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
991 992
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
993

994
		free_block(cachep, ac->entry, ac->avail, node);
995
		ac->avail = 0;
996
		spin_unlock(&n->list_lock);
997 998 999
	}
}

1000 1001 1002
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1003
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1004
{
1005
	int node = __this_cpu_read(slab_reap_node);
1006

1007 1008
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1009 1010

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1011 1012 1013 1014 1015 1016
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1017 1018
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1019
{
P
Pekka Enberg 已提交
1020
	int i = 0;
1021 1022 1023 1024
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1025
		ac = alien[i];
1026 1027 1028 1029 1030 1031 1032
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1033

1034
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1035
{
J
Joonsoo Kim 已提交
1036
	int nodeid = page_to_nid(virt_to_page(objp));
1037
	struct kmem_cache_node *n;
1038
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1039 1040
	int node;

1041
	node = numa_mem_id();
1042 1043 1044 1045 1046

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1047
	if (likely(nodeid == node))
1048 1049
		return 0;

1050
	n = cachep->node[node];
1051
	STATS_INC_NODEFREES(cachep);
1052 1053
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1054
		spin_lock(&alien->lock);
1055 1056 1057 1058
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1059
		ac_put_obj(cachep, alien, objp);
1060 1061
		spin_unlock(&alien->lock);
	} else {
1062
		spin_lock(&(cachep->node[nodeid])->list_lock);
1063
		free_block(cachep, &objp, 1, nodeid);
1064
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1065 1066 1067
	}
	return 1;
}
1068 1069
#endif

1070
/*
1071
 * Allocates and initializes node for a node on each slab cache, used for
1072
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1073
 * will be allocated off-node since memory is not yet online for the new node.
1074
 * When hotplugging memory or a cpu, existing node are not replaced if
1075 1076
 * already in use.
 *
1077
 * Must hold slab_mutex.
1078
 */
1079
static int init_cache_node_node(int node)
1080 1081
{
	struct kmem_cache *cachep;
1082
	struct kmem_cache_node *n;
1083
	const int memsize = sizeof(struct kmem_cache_node);
1084

1085
	list_for_each_entry(cachep, &slab_caches, list) {
1086
		/*
1087
		 * Set up the kmem_cache_node for cpu before we can
1088 1089 1090
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1091
		if (!cachep->node[node]) {
1092 1093
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1094
				return -ENOMEM;
1095
			kmem_cache_node_init(n);
1096 1097
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1098 1099

			/*
1100 1101
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1102 1103
			 * protection here.
			 */
1104
			cachep->node[node] = n;
1105 1106
		}

1107 1108
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1109 1110
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1111
		spin_unlock_irq(&cachep->node[node]->list_lock);
1112 1113 1114 1115
	}
	return 0;
}

1116 1117 1118 1119 1120 1121
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1122
static void cpuup_canceled(long cpu)
1123 1124
{
	struct kmem_cache *cachep;
1125
	struct kmem_cache_node *n = NULL;
1126
	int node = cpu_to_mem(cpu);
1127
	const struct cpumask *mask = cpumask_of_node(node);
1128

1129
	list_for_each_entry(cachep, &slab_caches, list) {
1130 1131 1132 1133 1134 1135 1136
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1137
		n = cachep->node[node];
1138

1139
		if (!n)
1140 1141
			goto free_array_cache;

1142
		spin_lock_irq(&n->list_lock);
1143

1144 1145
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1146 1147 1148
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1149
		if (!cpumask_empty(mask)) {
1150
			spin_unlock_irq(&n->list_lock);
1151 1152 1153
			goto free_array_cache;
		}

1154
		shared = n->shared;
1155 1156 1157
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1158
			n->shared = NULL;
1159 1160
		}

1161 1162
		alien = n->alien;
		n->alien = NULL;
1163

1164
		spin_unlock_irq(&n->list_lock);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1179
	list_for_each_entry(cachep, &slab_caches, list) {
1180 1181
		n = cachep->node[node];
		if (!n)
1182
			continue;
1183
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1184 1185 1186
	}
}

1187
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1188
{
1189
	struct kmem_cache *cachep;
1190
	struct kmem_cache_node *n = NULL;
1191
	int node = cpu_to_mem(cpu);
1192
	int err;
L
Linus Torvalds 已提交
1193

1194 1195 1196 1197
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1198
	 * kmem_cache_node and not this cpu's kmem_cache_node
1199
	 */
1200
	err = init_cache_node_node(node);
1201 1202
	if (err < 0)
		goto bad;
1203 1204 1205 1206 1207

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1208
	list_for_each_entry(cachep, &slab_caches, list) {
1209 1210 1211 1212 1213
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1214
					cachep->batchcount, GFP_KERNEL);
1215 1216 1217 1218 1219
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1220
				0xbaadf00d, GFP_KERNEL);
1221 1222
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1223
				goto bad;
1224
			}
1225 1226
		}
		if (use_alien_caches) {
1227
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 1229 1230
			if (!alien) {
				kfree(shared);
				kfree(nc);
1231
				goto bad;
1232
			}
1233 1234
		}
		cachep->array[cpu] = nc;
1235 1236
		n = cachep->node[node];
		BUG_ON(!n);
1237

1238 1239
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1240 1241 1242 1243
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1244
			n->shared = shared;
1245 1246
			shared = NULL;
		}
1247
#ifdef CONFIG_NUMA
1248 1249
		if (!n->alien) {
			n->alien = alien;
1250
			alien = NULL;
L
Linus Torvalds 已提交
1251
		}
1252
#endif
1253
		spin_unlock_irq(&n->list_lock);
1254 1255
		kfree(shared);
		free_alien_cache(alien);
1256 1257
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1258 1259 1260
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1261
	}
1262 1263
	init_node_lock_keys(node);

1264 1265
	return 0;
bad:
1266
	cpuup_canceled(cpu);
1267 1268 1269
	return -ENOMEM;
}

1270
static int cpuup_callback(struct notifier_block *nfb,
1271 1272 1273 1274 1275 1276 1277 1278
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1279
		mutex_lock(&slab_mutex);
1280
		err = cpuup_prepare(cpu);
1281
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1282 1283
		break;
	case CPU_ONLINE:
1284
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1285 1286 1287
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1288
  	case CPU_DOWN_PREPARE:
1289
  	case CPU_DOWN_PREPARE_FROZEN:
1290
		/*
1291
		 * Shutdown cache reaper. Note that the slab_mutex is
1292 1293 1294 1295
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1296
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1297
		/* Now the cache_reaper is guaranteed to be not running. */
1298
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1299 1300
  		break;
  	case CPU_DOWN_FAILED:
1301
  	case CPU_DOWN_FAILED_FROZEN:
1302 1303
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1304
	case CPU_DEAD:
1305
	case CPU_DEAD_FROZEN:
1306 1307
		/*
		 * Even if all the cpus of a node are down, we don't free the
1308
		 * kmem_cache_node of any cache. This to avoid a race between
1309
		 * cpu_down, and a kmalloc allocation from another cpu for
1310
		 * memory from the node of the cpu going down.  The node
1311 1312 1313
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1314
		/* fall through */
1315
#endif
L
Linus Torvalds 已提交
1316
	case CPU_UP_CANCELED:
1317
	case CPU_UP_CANCELED_FROZEN:
1318
		mutex_lock(&slab_mutex);
1319
		cpuup_canceled(cpu);
1320
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1321 1322
		break;
	}
1323
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1324 1325
}

1326
static struct notifier_block cpucache_notifier = {
1327 1328
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1329

1330 1331 1332 1333 1334 1335
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1336
 * Must hold slab_mutex.
1337
 */
1338
static int __meminit drain_cache_node_node(int node)
1339 1340 1341 1342
{
	struct kmem_cache *cachep;
	int ret = 0;

1343
	list_for_each_entry(cachep, &slab_caches, list) {
1344
		struct kmem_cache_node *n;
1345

1346 1347
		n = cachep->node[node];
		if (!n)
1348 1349
			continue;

1350
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1351

1352 1353
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1374
		mutex_lock(&slab_mutex);
1375
		ret = init_cache_node_node(nid);
1376
		mutex_unlock(&slab_mutex);
1377 1378
		break;
	case MEM_GOING_OFFLINE:
1379
		mutex_lock(&slab_mutex);
1380
		ret = drain_cache_node_node(nid);
1381
		mutex_unlock(&slab_mutex);
1382 1383 1384 1385 1386 1387 1388 1389
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1390
	return notifier_from_errno(ret);
1391 1392 1393
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1394
/*
1395
 * swap the static kmem_cache_node with kmalloced memory
1396
 */
1397
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1398
				int nodeid)
1399
{
1400
	struct kmem_cache_node *ptr;
1401

1402
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1403 1404
	BUG_ON(!ptr);

1405
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1406 1407 1408 1409 1410
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1411
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412
	cachep->node[nodeid] = ptr;
1413 1414
}

1415
/*
1416 1417
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1418
 */
1419
static void __init set_up_node(struct kmem_cache *cachep, int index)
1420 1421 1422 1423
{
	int node;

	for_each_online_node(node) {
1424
		cachep->node[node] = &init_kmem_cache_node[index + node];
1425
		cachep->node[node]->next_reap = jiffies +
1426 1427
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1428 1429 1430
	}
}

C
Christoph Lameter 已提交
1431 1432
/*
 * The memory after the last cpu cache pointer is used for the
1433
 * the node pointer.
C
Christoph Lameter 已提交
1434
 */
1435
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1436
{
1437
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1438 1439
}

A
Andrew Morton 已提交
1440 1441 1442
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1443 1444 1445
 */
void __init kmem_cache_init(void)
{
1446 1447
	int i;

1448 1449
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1450
	kmem_cache = &kmem_cache_boot;
1451
	setup_node_pointer(kmem_cache);
1452

1453
	if (num_possible_nodes() == 1)
1454 1455
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1456
	for (i = 0; i < NUM_INIT_LISTS; i++)
1457
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1458

1459
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1460 1461 1462

	/*
	 * Fragmentation resistance on low memory - only use bigger
1463 1464
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1465
	 */
1466
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1467
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1468 1469 1470

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1471 1472 1473
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1474
	 *    Initially an __init data area is used for the head array and the
1475
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1476
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1477
	 * 2) Create the first kmalloc cache.
1478
	 *    The struct kmem_cache for the new cache is allocated normally.
1479 1480 1481
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1482
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1483
	 *    kmalloc cache with kmalloc allocated arrays.
1484
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1485 1486
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1487 1488
	 */

1489
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1490

E
Eric Dumazet 已提交
1491
	/*
1492
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1493
	 */
1494 1495
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1496
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1497 1498
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1499 1500 1501

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1502 1503
	/*
	 * Initialize the caches that provide memory for the array cache and the
1504
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1505
	 * bug.
1506 1507
	 */

1508 1509
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1510

1511 1512 1513 1514
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1515

1516 1517
	slab_early_init = 0;

L
Linus Torvalds 已提交
1518 1519
	/* 4) Replace the bootstrap head arrays */
	{
1520
		struct array_cache *ptr;
1521

1522
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1523

1524
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1525
		       sizeof(struct arraycache_init));
1526 1527 1528 1529 1530
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1531
		kmem_cache->array[smp_processor_id()] = ptr;
1532

1533
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1534

1535
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1536
		       != &initarray_generic.cache);
1537
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1538
		       sizeof(struct arraycache_init));
1539 1540 1541 1542 1543
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1544
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1545
	}
1546
	/* 5) Replace the bootstrap kmem_cache_node */
1547
	{
P
Pekka Enberg 已提交
1548 1549
		int nid;

1550
		for_each_online_node(nid) {
1551
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1552

1553
			init_list(kmalloc_caches[INDEX_AC],
1554
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1555

1556 1557 1558
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1559 1560 1561
			}
		}
	}
L
Linus Torvalds 已提交
1562

1563
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1564 1565 1566 1567 1568 1569
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1570
	slab_state = UP;
P
Peter Zijlstra 已提交
1571

1572
	/* 6) resize the head arrays to their final sizes */
1573 1574
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1575 1576
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1577
	mutex_unlock(&slab_mutex);
1578

1579 1580 1581
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1582 1583 1584
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1585 1586 1587
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1588 1589 1590
	 */
	register_cpu_notifier(&cpucache_notifier);

1591 1592 1593
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1594
	 * node.
1595 1596 1597 1598
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1599 1600 1601
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1609 1610
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1611
	 */
1612
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1613
		start_cpu_timer(cpu);
1614 1615

	/* Done! */
1616
	slab_state = FULL;
L
Linus Torvalds 已提交
1617 1618 1619 1620
	return 0;
}
__initcall(cpucache_init);

1621 1622 1623
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1624
#if DEBUG
1625
	struct kmem_cache_node *n;
1626
	struct page *page;
1627 1628
	unsigned long flags;
	int node;
1629 1630 1631 1632 1633
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1634 1635 1636 1637 1638

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1639
		cachep->name, cachep->size, cachep->gfporder);
1640 1641 1642 1643 1644

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1645 1646
		n = cachep->node[node];
		if (!n)
1647 1648
			continue;

1649
		spin_lock_irqsave(&n->list_lock, flags);
1650
		list_for_each_entry(page, &n->slabs_full, lru) {
1651 1652 1653
			active_objs += cachep->num;
			active_slabs++;
		}
1654 1655
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1656 1657
			active_slabs++;
		}
1658
		list_for_each_entry(page, &n->slabs_free, lru)
1659 1660
			num_slabs++;

1661 1662
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1663 1664 1665 1666 1667 1668 1669 1670

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1671
#endif
1672 1673
}

L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1681 1682
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1683 1684
{
	struct page *page;
1685
	int nr_pages;
1686

1687
	flags |= cachep->allocflags;
1688 1689
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1690

1691 1692 1693
	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
		return NULL;

L
Linus Torvalds 已提交
1694
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1695
	if (!page) {
1696
		memcg_uncharge_slab(cachep, cachep->gfporder);
1697
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1698
		return NULL;
1699
	}
L
Linus Torvalds 已提交
1700

1701
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1702 1703 1704
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1705
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1706
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1707 1708 1709 1710 1711
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1712 1713 1714
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
1715

1716 1717 1718 1719 1720 1721 1722 1723
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1724

1725
	return page;
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730
}

/*
 * Interface to system's page release.
 */
1731
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1732
{
1733
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1734

1735
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1736

1737 1738 1739 1740 1741 1742
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1743

1744
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1745
	__ClearPageSlabPfmemalloc(page);
1746
	__ClearPageSlab(page);
1747 1748
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1749

L
Linus Torvalds 已提交
1750 1751
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1752 1753
	__free_pages(page, cachep->gfporder);
	memcg_uncharge_slab(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1754 1755 1756 1757
}

static void kmem_rcu_free(struct rcu_head *head)
{
1758 1759
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1760

1761 1762 1763 1764
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1770
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1771
			    unsigned long caller)
L
Linus Torvalds 已提交
1772
{
1773
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1774

1775
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1776

P
Pekka Enberg 已提交
1777
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1778 1779
		return;

P
Pekka Enberg 已提交
1780 1781 1782 1783
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1791
				*addr++ = svalue;
L
Linus Torvalds 已提交
1792 1793 1794 1795 1796 1797 1798
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1799
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1800 1801 1802
}
#endif

1803
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1804
{
1805
	int size = cachep->object_size;
1806
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1807 1808

	memset(addr, val, size);
P
Pekka Enberg 已提交
1809
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1815 1816 1817
	unsigned char error = 0;
	int bad_count = 0;

1818
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1819 1820 1821 1822 1823 1824
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1825 1826
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1841 1842 1843 1844 1845
}
#endif

#if DEBUG

1846
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1852
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1853 1854
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1855 1856 1857
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1858 1859 1860
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1861
	}
1862
	realobj = (char *)objp + obj_offset(cachep);
1863
	size = cachep->object_size;
P
Pekka Enberg 已提交
1864
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1865 1866
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1867 1868
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1869 1870 1871 1872
		dump_line(realobj, i, limit);
	}
}

1873
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878
{
	char *realobj;
	int size, i;
	int lines = 0;

1879
	realobj = (char *)objp + obj_offset(cachep);
1880
	size = cachep->object_size;
L
Linus Torvalds 已提交
1881

P
Pekka Enberg 已提交
1882
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1883
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1884
		if (i == size - 1)
L
Linus Torvalds 已提交
1885 1886 1887 1888 1889 1890
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1891
				printk(KERN_ERR
1892 1893
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1894 1895 1896
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1897
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1898
			limit = 16;
P
Pekka Enberg 已提交
1899 1900
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1913
		struct page *page = virt_to_head_page(objp);
1914
		unsigned int objnr;
L
Linus Torvalds 已提交
1915

1916
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1917
		if (objnr) {
1918
			objp = index_to_obj(cachep, page, objnr - 1);
1919
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1920
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1921
			       realobj, size);
L
Linus Torvalds 已提交
1922 1923
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1924
		if (objnr + 1 < cachep->num) {
1925
			objp = index_to_obj(cachep, page, objnr + 1);
1926
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1927
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1928
			       realobj, size);
L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1935
#if DEBUG
1936 1937
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1938 1939 1940
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1941
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1942 1943 1944

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1945
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1946
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1947
				kernel_map_pages(virt_to_page(objp),
1948
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1958
					   "was overwritten");
L
Linus Torvalds 已提交
1959 1960
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1961
					   "was overwritten");
L
Linus Torvalds 已提交
1962 1963
		}
	}
1964
}
L
Linus Torvalds 已提交
1965
#else
1966 1967
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1968 1969
{
}
L
Linus Torvalds 已提交
1970 1971
#endif

1972 1973 1974
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1975
 * @page: page pointer being destroyed
1976
 *
1977
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1978 1979
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1980
 */
1981
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1982
{
1983
	void *freelist;
1984

1985 1986
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
1987
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
1998 1999

	} else {
2000
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
2001
	}
2002 2003

	/*
2004
	 * From now on, we don't use freelist
2005 2006 2007
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
2008
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
2009 2010
}

2011
/**
2012 2013 2014 2015 2016 2017 2018
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2019 2020 2021 2022 2023
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2024
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2025
			size_t size, size_t align, unsigned long flags)
2026
{
2027
	unsigned long offslab_limit;
2028
	size_t left_over = 0;
2029
	int gfporder;
2030

2031
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2032 2033 2034
		unsigned int num;
		size_t remainder;

2035
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2036 2037
		if (!num)
			continue;
2038

2039 2040 2041 2042
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

2043 2044 2045 2046 2047 2048
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
2049
			offslab_limit = size;
2050
			offslab_limit /= sizeof(freelist_idx_t);
2051 2052 2053 2054

 			if (num > offslab_limit)
				break;
		}
2055

2056
		/* Found something acceptable - save it away */
2057
		cachep->num = num;
2058
		cachep->gfporder = gfporder;
2059 2060
		left_over = remainder;

2061 2062 2063 2064 2065 2066 2067 2068
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2069 2070 2071 2072
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2073
		if (gfporder >= slab_max_order)
2074 2075
			break;

2076 2077 2078
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2079
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2080 2081 2082 2083 2084
			break;
	}
	return left_over;
}

2085
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2086
{
2087
	if (slab_state >= FULL)
2088
		return enable_cpucache(cachep, gfp);
2089

2090
	if (slab_state == DOWN) {
2091
		/*
2092
		 * Note: Creation of first cache (kmem_cache).
2093
		 * The setup_node is taken care
2094 2095 2096 2097 2098 2099 2100
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2101 2102 2103 2104 2105 2106
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2107 2108
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2109 2110
		 * otherwise the creation of further caches will BUG().
		 */
2111 2112 2113
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2114
		else
2115
			slab_state = PARTIAL_ARRAYCACHE;
2116
	} else {
2117
		/* Remaining boot caches */
2118
		cachep->array[smp_processor_id()] =
2119
			kmalloc(sizeof(struct arraycache_init), gfp);
2120

2121
		if (slab_state == PARTIAL_ARRAYCACHE) {
2122 2123
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2124 2125
		} else {
			int node;
2126
			for_each_online_node(node) {
2127
				cachep->node[node] =
2128
				    kmalloc_node(sizeof(struct kmem_cache_node),
2129
						gfp, node);
2130
				BUG_ON(!cachep->node[node]);
2131
				kmem_cache_node_init(cachep->node[node]);
2132 2133 2134
			}
		}
	}
2135
	cachep->node[numa_mem_id()]->next_reap =
2136 2137
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2138 2139 2140 2141 2142 2143 2144

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2145
	return 0;
2146 2147
}

L
Linus Torvalds 已提交
2148
/**
2149
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2150
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2151 2152 2153 2154
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2155
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2169
int
2170
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2171
{
2172
	size_t left_over, freelist_size, ralign;
2173
	gfp_t gfp;
2174
	int err;
2175
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2185 2186
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2187
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2188 2189 2190 2191 2192 2193 2194
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2195 2196
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2197 2198 2199
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2200 2201 2202
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2203 2204
	}

2205
	/*
D
David Woodhouse 已提交
2206 2207 2208
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2209
	 */
D
David Woodhouse 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2220

2221
	/* 3) caller mandated alignment */
2222 2223
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2224
	}
2225 2226
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2227
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2228
	/*
2229
	 * 4) Store it.
L
Linus Torvalds 已提交
2230
	 */
2231
	cachep->align = ralign;
L
Linus Torvalds 已提交
2232

2233 2234 2235 2236 2237
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2238
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2239 2240
#if DEBUG

2241 2242 2243 2244
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2245 2246
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2247 2248
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2249 2250
	}
	if (flags & SLAB_STORE_USER) {
2251
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2252 2253
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2254
		 */
D
David Woodhouse 已提交
2255 2256 2257 2258
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2259 2260
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2261
	if (size >= kmalloc_size(INDEX_NODE + 1)
2262 2263 2264
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2265 2266 2267 2268 2269
		size = PAGE_SIZE;
	}
#endif
#endif

2270 2271 2272
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2273 2274
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2275
	 */
2276
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2277
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282 2283
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2284
	size = ALIGN(size, cachep->align);
2285 2286 2287 2288 2289 2290
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2291

2292
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2293

2294
	if (!cachep->num)
2295
		return -E2BIG;
L
Linus Torvalds 已提交
2296

2297
	freelist_size =
2298
		ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
L
Linus Torvalds 已提交
2299 2300 2301 2302 2303

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2304
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2305
		flags &= ~CFLGS_OFF_SLAB;
2306
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2307 2308 2309 2310
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2311
		freelist_size = cachep->num * sizeof(freelist_idx_t);
2312 2313 2314 2315 2316 2317 2318 2319 2320

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2321 2322 2323 2324
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2325 2326
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2327
	cachep->colour = left_over / cachep->colour_off;
2328
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2329
	cachep->flags = flags;
2330
	cachep->allocflags = __GFP_COMP;
2331
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2332
		cachep->allocflags |= GFP_DMA;
2333
	cachep->size = size;
2334
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2335

2336
	if (flags & CFLGS_OFF_SLAB) {
2337
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2338
		/*
2339
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2340
		 * But since we go off slab only for object size greater than
2341 2342
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
2343 2344
		 * But leave a BUG_ON for some lucky dude.
		 */
2345
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2346
	}
L
Linus Torvalds 已提交
2347

2348 2349
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2350
		__kmem_cache_shutdown(cachep);
2351
		return err;
2352
	}
L
Linus Torvalds 已提交
2353

2354 2355 2356 2357 2358 2359 2360 2361
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2362 2363
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2364

2365
	return 0;
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2379
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2380 2381 2382
{
#ifdef CONFIG_SMP
	check_irq_off();
2383
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2384 2385
#endif
}
2386

2387
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2388 2389 2390
{
#ifdef CONFIG_SMP
	check_irq_off();
2391
	assert_spin_locked(&cachep->node[node]->list_lock);
2392 2393 2394
#endif
}

L
Linus Torvalds 已提交
2395 2396 2397 2398
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2399
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2400 2401
#endif

2402
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2403 2404 2405
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2406 2407
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2408
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2409
	struct array_cache *ac;
2410
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2411 2412

	check_irq_off();
2413
	ac = cpu_cache_get(cachep);
2414
	spin_lock(&cachep->node[node]->list_lock);
2415
	free_block(cachep, ac->entry, ac->avail, node);
2416
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2417 2418 2419
	ac->avail = 0;
}

2420
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2421
{
2422
	struct kmem_cache_node *n;
2423 2424
	int node;

2425
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2426
	check_irq_on();
P
Pekka Enberg 已提交
2427
	for_each_online_node(node) {
2428 2429 2430
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2431 2432 2433
	}

	for_each_online_node(node) {
2434 2435 2436
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2437
	}
L
Linus Torvalds 已提交
2438 2439
}

2440 2441 2442 2443 2444 2445 2446
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2447
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2448
{
2449 2450
	struct list_head *p;
	int nr_freed;
2451
	struct page *page;
L
Linus Torvalds 已提交
2452

2453
	nr_freed = 0;
2454
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2455

2456 2457 2458 2459
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2460 2461
			goto out;
		}
L
Linus Torvalds 已提交
2462

2463
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2464
#if DEBUG
2465
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2466
#endif
2467
		list_del(&page->lru);
2468 2469 2470 2471
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2472 2473
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2474
		slab_destroy(cache, page);
2475
		nr_freed++;
L
Linus Torvalds 已提交
2476
	}
2477 2478
out:
	return nr_freed;
L
Linus Torvalds 已提交
2479 2480
}

2481
int __kmem_cache_shrink(struct kmem_cache *cachep)
2482 2483
{
	int ret = 0, i = 0;
2484
	struct kmem_cache_node *n;
2485 2486 2487 2488 2489

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2490 2491
		n = cachep->node[i];
		if (!n)
2492 2493
			continue;

2494
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2495

2496 2497
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2498 2499 2500 2501
	}
	return (ret ? 1 : 0);
}

2502
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2503
{
2504
	int i;
2505
	struct kmem_cache_node *n;
2506
	int rc = __kmem_cache_shrink(cachep);
L
Linus Torvalds 已提交
2507

2508 2509
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2510

2511 2512
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2513

2514
	/* NUMA: free the node structures */
2515
	for_each_online_node(i) {
2516 2517 2518 2519 2520
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2521 2522 2523
		}
	}
	return 0;
L
Linus Torvalds 已提交
2524 2525
}

2526 2527
/*
 * Get the memory for a slab management obj.
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2539
 */
2540
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2541 2542
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2543
{
2544
	void *freelist;
2545
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2546

L
Linus Torvalds 已提交
2547 2548
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2549
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2550
					      local_flags, nodeid);
2551
		if (!freelist)
L
Linus Torvalds 已提交
2552 2553
			return NULL;
	} else {
2554 2555
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2556
	}
2557 2558 2559
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2560 2561
}

2562
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2563
{
2564
	return ((freelist_idx_t *)page->freelist)[idx];
2565 2566 2567
}

static inline void set_free_obj(struct page *page,
2568
					unsigned int idx, freelist_idx_t val)
2569
{
2570
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2571 2572
}

2573
static void cache_init_objs(struct kmem_cache *cachep,
2574
			    struct page *page)
L
Linus Torvalds 已提交
2575 2576 2577 2578
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2579
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2592 2593 2594
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2595 2596
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2597
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2598 2599 2600 2601

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2602
					   " end of an object");
L
Linus Torvalds 已提交
2603 2604
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2605
					   " start of an object");
L
Linus Torvalds 已提交
2606
		}
2607
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2608
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2609
			kernel_map_pages(virt_to_page(objp),
2610
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2611 2612
#else
		if (cachep->ctor)
2613
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2614
#endif
2615
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2616 2617 2618
	}
}

2619
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2620
{
2621 2622
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2623
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2624
		else
2625
			BUG_ON(cachep->allocflags & GFP_DMA);
2626
	}
L
Linus Torvalds 已提交
2627 2628
}

2629
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2630
				int nodeid)
2631
{
2632
	void *objp;
2633

2634
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2635
	page->active++;
2636
#if DEBUG
J
Joonsoo Kim 已提交
2637
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2638 2639 2640 2641 2642
#endif

	return objp;
}

2643
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2644
				void *objp, int nodeid)
2645
{
2646
	unsigned int objnr = obj_to_index(cachep, page, objp);
2647
#if DEBUG
J
Joonsoo Kim 已提交
2648
	unsigned int i;
2649

2650
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2651
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2652

2653
	/* Verify double free bug */
2654
	for (i = page->active; i < cachep->num; i++) {
2655
		if (get_free_obj(page, i) == objnr) {
2656 2657 2658 2659
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2660 2661
	}
#endif
2662
	page->active--;
2663
	set_free_obj(page, page->active, objnr);
2664 2665
}

2666 2667 2668
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2669
 * virtual address for kfree, ksize, and slab debugging.
2670
 */
2671
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2672
			   void *freelist)
L
Linus Torvalds 已提交
2673
{
2674
	page->slab_cache = cache;
2675
	page->freelist = freelist;
L
Linus Torvalds 已提交
2676 2677 2678 2679 2680 2681
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2682
static int cache_grow(struct kmem_cache *cachep,
2683
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2684
{
2685
	void *freelist;
P
Pekka Enberg 已提交
2686 2687
	size_t offset;
	gfp_t local_flags;
2688
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2689

A
Andrew Morton 已提交
2690 2691 2692
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2693
	 */
C
Christoph Lameter 已提交
2694 2695
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2696

2697
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2698
	check_irq_off();
2699 2700
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2701 2702

	/* Get colour for the slab, and cal the next value. */
2703 2704 2705 2706 2707
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2708

2709
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2722 2723 2724
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2725
	 */
2726 2727 2728
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2729 2730 2731
		goto failed;

	/* Get slab management. */
2732
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2733
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2734
	if (!freelist)
L
Linus Torvalds 已提交
2735 2736
		goto opps1;

2737
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2738

2739
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2740 2741 2742 2743

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2744
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2745 2746

	/* Make slab active. */
2747
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2748
	STATS_INC_GROWN(cachep);
2749 2750
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2751
	return 1;
A
Andrew Morton 已提交
2752
opps1:
2753
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2754
failed:
L
Linus Torvalds 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2771 2772
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2773 2774 2775
	}
}

2776 2777
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2778
	unsigned long long redzone1, redzone2;
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2794
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2795 2796 2797
			obj, redzone1, redzone2);
}

2798
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2799
				   unsigned long caller)
L
Linus Torvalds 已提交
2800 2801
{
	unsigned int objnr;
2802
	struct page *page;
L
Linus Torvalds 已提交
2803

2804 2805
	BUG_ON(virt_to_cache(objp) != cachep);

2806
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2807
	kfree_debugcheck(objp);
2808
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2809 2810

	if (cachep->flags & SLAB_RED_ZONE) {
2811
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2812 2813 2814 2815
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2816
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2817

2818
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2819 2820

	BUG_ON(objnr >= cachep->num);
2821
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2822 2823 2824

	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2825
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2826
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2827
			kernel_map_pages(virt_to_page(objp),
2828
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2844 2845
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2846 2847
{
	int batchcount;
2848
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2849
	struct array_cache *ac;
P
Pekka Enberg 已提交
2850 2851
	int node;

L
Linus Torvalds 已提交
2852
	check_irq_off();
2853
	node = numa_mem_id();
2854 2855 2856
	if (unlikely(force_refill))
		goto force_grow;
retry:
2857
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2858 2859
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2860 2861 2862 2863
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2864 2865 2866
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2867
	n = cachep->node[node];
2868

2869 2870
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2871

2872
	/* See if we can refill from the shared array */
2873 2874
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2875
		goto alloc_done;
2876
	}
2877

L
Linus Torvalds 已提交
2878 2879
	while (batchcount > 0) {
		struct list_head *entry;
2880
		struct page *page;
L
Linus Torvalds 已提交
2881
		/* Get slab alloc is to come from. */
2882 2883 2884 2885 2886
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2887 2888 2889
				goto must_grow;
		}

2890
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2891
		check_spinlock_acquired(cachep);
2892 2893 2894 2895 2896 2897

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2898
		BUG_ON(page->active >= cachep->num);
2899

2900
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2901 2902 2903 2904
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2905
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2906
									node));
L
Linus Torvalds 已提交
2907 2908 2909
		}

		/* move slabp to correct slabp list: */
2910 2911
		list_del(&page->lru);
		if (page->active == cachep->num)
2912
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2913
		else
2914
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
2915 2916
	}

A
Andrew Morton 已提交
2917
must_grow:
2918
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2919
alloc_done:
2920
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2921 2922 2923

	if (unlikely(!ac->avail)) {
		int x;
2924
force_grow:
2925
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2926

A
Andrew Morton 已提交
2927
		/* cache_grow can reenable interrupts, then ac could change. */
2928
		ac = cpu_cache_get(cachep);
2929
		node = numa_mem_id();
2930 2931 2932

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2933 2934
			return NULL;

A
Andrew Morton 已提交
2935
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2936 2937 2938
			goto retry;
	}
	ac->touched = 1;
2939 2940

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2941 2942
}

A
Andrew Morton 已提交
2943 2944
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950 2951 2952
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2953
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2954
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2955
{
P
Pekka Enberg 已提交
2956
	if (!objp)
L
Linus Torvalds 已提交
2957
		return objp;
P
Pekka Enberg 已提交
2958
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2959
#ifdef CONFIG_DEBUG_PAGEALLOC
2960
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2961
			kernel_map_pages(virt_to_page(objp),
2962
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2963 2964 2965 2966 2967 2968 2969 2970
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2971
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2972 2973

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2974 2975 2976 2977
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2978
			printk(KERN_ERR
2979
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2980 2981
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2982 2983 2984 2985
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2986
	objp += obj_offset(cachep);
2987
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2988
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2989 2990
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2991
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2992
		       objp, (int)ARCH_SLAB_MINALIGN);
2993
	}
L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3000
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3001
{
3002
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3003
		return false;
3004

3005
	return should_failslab(cachep->object_size, flags, cachep->flags);
3006 3007
}

3008
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3009
{
P
Pekka Enberg 已提交
3010
	void *objp;
L
Linus Torvalds 已提交
3011
	struct array_cache *ac;
3012
	bool force_refill = false;
L
Linus Torvalds 已提交
3013

3014
	check_irq_off();
3015

3016
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3017 3018
	if (likely(ac->avail)) {
		ac->touched = 1;
3019 3020
		objp = ac_get_obj(cachep, ac, flags, false);

3021
		/*
3022 3023
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3024
		 */
3025 3026 3027 3028 3029
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3030
	}
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3041 3042 3043 3044 3045
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3046 3047
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3048 3049 3050
	return objp;
}

3051
#ifdef CONFIG_NUMA
3052
/*
3053
 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3054 3055 3056 3057 3058 3059 3060 3061
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3062
	if (in_interrupt() || (flags & __GFP_THISNODE))
3063
		return NULL;
3064
	nid_alloc = nid_here = numa_mem_id();
3065
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3066
		nid_alloc = cpuset_slab_spread_node();
3067
	else if (current->mempolicy)
3068
		nid_alloc = mempolicy_slab_node();
3069
	if (nid_alloc != nid_here)
3070
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3071 3072 3073
	return NULL;
}

3074 3075
/*
 * Fallback function if there was no memory available and no objects on a
3076
 * certain node and fall back is permitted. First we scan all the
3077
 * available node for available objects. If that fails then we
3078 3079 3080
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3081
 */
3082
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3083
{
3084 3085
	struct zonelist *zonelist;
	gfp_t local_flags;
3086
	struct zoneref *z;
3087 3088
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3089
	void *obj = NULL;
3090
	int nid;
3091
	unsigned int cpuset_mems_cookie;
3092 3093 3094 3095

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3096
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3097

3098
retry_cpuset:
3099
	cpuset_mems_cookie = read_mems_allowed_begin();
3100
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3101

3102 3103 3104 3105 3106
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3107 3108
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3109

3110
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3111 3112
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3113 3114
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3115 3116 3117
				if (obj)
					break;
		}
3118 3119
	}

3120
	if (!obj) {
3121 3122 3123 3124 3125 3126
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3127 3128
		struct page *page;

3129 3130 3131
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3132
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3133 3134
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3135
		if (page) {
3136 3137 3138
			/*
			 * Insert into the appropriate per node queues
			 */
3139 3140
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3151
				/* cache_grow already freed obj */
3152 3153 3154
				obj = NULL;
			}
		}
3155
	}
3156

3157
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3158
		goto retry_cpuset;
3159 3160 3161
	return obj;
}

3162 3163
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3164
 */
3165
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3166
				int nodeid)
3167 3168
{
	struct list_head *entry;
3169
	struct page *page;
3170
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3171 3172 3173
	void *obj;
	int x;

3174
	VM_BUG_ON(nodeid > num_online_nodes());
3175 3176
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3177

A
Andrew Morton 已提交
3178
retry:
3179
	check_irq_off();
3180 3181 3182 3183 3184 3185
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3186 3187 3188
			goto must_grow;
	}

3189
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3190 3191 3192 3193 3194 3195
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3196
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3197

3198
	obj = slab_get_obj(cachep, page, nodeid);
3199
	n->free_objects--;
P
Pekka Enberg 已提交
3200
	/* move slabp to correct slabp list: */
3201
	list_del(&page->lru);
P
Pekka Enberg 已提交
3202

3203 3204
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3205
	else
3206
		list_add(&page->lru, &n->slabs_partial);
3207

3208
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3209
	goto done;
3210

A
Andrew Morton 已提交
3211
must_grow:
3212
	spin_unlock(&n->list_lock);
3213
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3214 3215
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3216

3217
	return fallback_alloc(cachep, flags);
3218

A
Andrew Morton 已提交
3219
done:
P
Pekka Enberg 已提交
3220
	return obj;
3221
}
3222 3223

static __always_inline void *
3224
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3225
		   unsigned long caller)
3226 3227 3228
{
	unsigned long save_flags;
	void *ptr;
3229
	int slab_node = numa_mem_id();
3230

3231
	flags &= gfp_allowed_mask;
3232

3233 3234
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3235
	if (slab_should_failslab(cachep, flags))
3236 3237
		return NULL;

3238 3239
	cachep = memcg_kmem_get_cache(cachep, flags);

3240 3241 3242
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3243
	if (nodeid == NUMA_NO_NODE)
3244
		nodeid = slab_node;
3245

3246
	if (unlikely(!cachep->node[nodeid])) {
3247 3248 3249 3250 3251
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3252
	if (nodeid == slab_node) {
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3268
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3269
				 flags);
3270

3271
	if (likely(ptr)) {
3272
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3273 3274 3275
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}
3276

3277 3278 3279 3280 3281 3282 3283 3284
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3285
	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3296 3297
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3313
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3314 3315 3316 3317
{
	unsigned long save_flags;
	void *objp;

3318
	flags &= gfp_allowed_mask;
3319

3320 3321
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3322
	if (slab_should_failslab(cachep, flags))
3323 3324
		return NULL;

3325 3326
	cachep = memcg_kmem_get_cache(cachep, flags);

3327 3328 3329 3330 3331
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3332
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3333
				 flags);
3334 3335
	prefetchw(objp);

3336
	if (likely(objp)) {
3337
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3338 3339 3340
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}
3341

3342 3343
	return objp;
}
3344 3345

/*
3346
 * Caller needs to acquire correct kmem_cache_node's list_lock
3347
 */
3348
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3349
		       int node)
L
Linus Torvalds 已提交
3350 3351
{
	int i;
3352
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3353 3354

	for (i = 0; i < nr_objects; i++) {
3355
		void *objp;
3356
		struct page *page;
L
Linus Torvalds 已提交
3357

3358 3359 3360
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3361
		page = virt_to_head_page(objp);
3362
		n = cachep->node[node];
3363
		list_del(&page->lru);
3364
		check_spinlock_acquired_node(cachep, node);
3365
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3366
		STATS_DEC_ACTIVE(cachep);
3367
		n->free_objects++;
L
Linus Torvalds 已提交
3368 3369

		/* fixup slab chains */
3370
		if (page->active == 0) {
3371 3372
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3373 3374 3375 3376 3377 3378
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
3379
				slab_destroy(cachep, page);
L
Linus Torvalds 已提交
3380
			} else {
3381
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3382 3383 3384 3385 3386 3387
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3388
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3389 3390 3391 3392
		}
	}
}

3393
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3394 3395
{
	int batchcount;
3396
	struct kmem_cache_node *n;
3397
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402 3403

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3404 3405 3406 3407
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3408
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3409 3410 3411
		if (max) {
			if (batchcount > max)
				batchcount = max;
3412
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3413
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3419
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3420
free_done:
L
Linus Torvalds 已提交
3421 3422 3423 3424 3425
#if STATS
	{
		int i = 0;
		struct list_head *p;

3426 3427
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3428
			struct page *page;
L
Linus Torvalds 已提交
3429

3430 3431
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3432 3433 3434 3435 3436 3437 3438

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3439
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3440
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3441
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3442 3443 3444
}

/*
A
Andrew Morton 已提交
3445 3446
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3447
 */
3448
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3449
				unsigned long caller)
L
Linus Torvalds 已提交
3450
{
3451
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3452 3453

	check_irq_off();
3454
	kmemleak_free_recursive(objp, cachep->flags);
3455
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3456

3457
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3458

3459 3460 3461 3462 3463 3464 3465
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3466
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3467 3468
		return;

L
Linus Torvalds 已提交
3469 3470 3471 3472 3473 3474
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3475

3476
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3487
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3488
{
3489
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3490

3491
	trace_kmem_cache_alloc(_RET_IP_, ret,
3492
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3493 3494

	return ret;
L
Linus Torvalds 已提交
3495 3496 3497
}
EXPORT_SYMBOL(kmem_cache_alloc);

3498
#ifdef CONFIG_TRACING
3499
void *
3500
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3501
{
3502 3503
	void *ret;

3504
	ret = slab_alloc(cachep, flags, _RET_IP_);
3505 3506

	trace_kmalloc(_RET_IP_, ret,
3507
		      size, cachep->size, flags);
3508
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3509
}
3510
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3511 3512
#endif

L
Linus Torvalds 已提交
3513
#ifdef CONFIG_NUMA
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3525 3526
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3527
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3528

3529
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3530
				    cachep->object_size, cachep->size,
3531
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3532 3533

	return ret;
3534
}
L
Linus Torvalds 已提交
3535 3536
EXPORT_SYMBOL(kmem_cache_alloc_node);

3537
#ifdef CONFIG_TRACING
3538
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3539
				  gfp_t flags,
3540 3541
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3542
{
3543 3544
	void *ret;

3545
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3546

3547
	trace_kmalloc_node(_RET_IP_, ret,
3548
			   size, cachep->size,
3549 3550
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3551
}
3552
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3553 3554
#endif

3555
static __always_inline void *
3556
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3557
{
3558
	struct kmem_cache *cachep;
3559

3560
	cachep = kmalloc_slab(size, flags);
3561 3562
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3563
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3564
}
3565

3566
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3567 3568
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3569
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3570
}
3571
EXPORT_SYMBOL(__kmalloc_node);
3572 3573

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3574
		int node, unsigned long caller)
3575
{
3576
	return __do_kmalloc_node(size, flags, node, caller);
3577 3578 3579 3580 3581
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3582
	return __do_kmalloc_node(size, flags, node, 0);
3583 3584
}
EXPORT_SYMBOL(__kmalloc_node);
3585
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3586
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3587 3588

/**
3589
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3590
 * @size: how many bytes of memory are required.
3591
 * @flags: the type of memory to allocate (see kmalloc).
3592
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3593
 */
3594
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3595
					  unsigned long caller)
L
Linus Torvalds 已提交
3596
{
3597
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3598
	void *ret;
L
Linus Torvalds 已提交
3599

3600
	cachep = kmalloc_slab(size, flags);
3601 3602
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3603
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3604

3605
	trace_kmalloc(caller, ret,
3606
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3607 3608

	return ret;
3609 3610 3611
}


3612
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3613 3614
void *__kmalloc(size_t size, gfp_t flags)
{
3615
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3616 3617 3618
}
EXPORT_SYMBOL(__kmalloc);

3619
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3620
{
3621
	return __do_kmalloc(size, flags, caller);
3622 3623
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3624 3625 3626 3627

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3628
	return __do_kmalloc(size, flags, 0);
3629 3630
}
EXPORT_SYMBOL(__kmalloc);
3631 3632
#endif

L
Linus Torvalds 已提交
3633 3634 3635 3636 3637 3638 3639 3640
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3641
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3642 3643
{
	unsigned long flags;
3644 3645 3646
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3647 3648

	local_irq_save(flags);
3649
	debug_check_no_locks_freed(objp, cachep->object_size);
3650
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3651
		debug_check_no_obj_freed(objp, cachep->object_size);
3652
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3653
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3654

3655
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3656 3657 3658 3659 3660 3661 3662
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3663 3664
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3665 3666 3667 3668 3669
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3670
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3671 3672
	unsigned long flags;

3673 3674
	trace_kfree(_RET_IP_, objp);

3675
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3676 3677 3678
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3679
	c = virt_to_cache(objp);
3680 3681 3682
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3683
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3684 3685 3686 3687
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3688
/*
3689
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3690
 */
3691
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3692 3693
{
	int node;
3694
	struct kmem_cache_node *n;
3695
	struct array_cache *new_shared;
3696
	struct array_cache **new_alien = NULL;
3697

3698
	for_each_online_node(node) {
3699

3700
                if (use_alien_caches) {
3701
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3702 3703 3704
                        if (!new_alien)
                                goto fail;
                }
3705

3706 3707 3708
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3709
				cachep->shared*cachep->batchcount,
3710
					0xbaadf00d, gfp);
3711 3712 3713 3714
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3715
		}
3716

3717 3718 3719
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3720

3721
			spin_lock_irq(&n->list_lock);
3722

3723
			if (shared)
3724 3725
				free_block(cachep, shared->entry,
						shared->avail, node);
3726

3727 3728 3729
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3730 3731
				new_alien = NULL;
			}
3732
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3733
					cachep->batchcount + cachep->num;
3734
			spin_unlock_irq(&n->list_lock);
3735
			kfree(shared);
3736 3737 3738
			free_alien_cache(new_alien);
			continue;
		}
3739 3740
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3741 3742
			free_alien_cache(new_alien);
			kfree(new_shared);
3743
			goto fail;
3744
		}
3745

3746
		kmem_cache_node_init(n);
3747 3748
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3749 3750 3751
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3752
					cachep->batchcount + cachep->num;
3753
		cachep->node[node] = n;
3754
	}
3755
	return 0;
3756

A
Andrew Morton 已提交
3757
fail:
3758
	if (!cachep->list.next) {
3759 3760 3761
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3762
			if (cachep->node[node]) {
3763
				n = cachep->node[node];
3764

3765 3766 3767
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3768
				cachep->node[node] = NULL;
3769 3770 3771 3772
			}
			node--;
		}
	}
3773
	return -ENOMEM;
3774 3775
}

L
Linus Torvalds 已提交
3776
struct ccupdate_struct {
3777
	struct kmem_cache *cachep;
3778
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3779 3780 3781 3782
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3783
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3784 3785 3786
	struct array_cache *old;

	check_irq_off();
3787
	old = cpu_cache_get(new->cachep);
3788

L
Linus Torvalds 已提交
3789 3790 3791 3792
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3793
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3794
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3795
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3796
{
3797
	struct ccupdate_struct *new;
3798
	int i;
L
Linus Torvalds 已提交
3799

3800 3801
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3802 3803 3804
	if (!new)
		return -ENOMEM;

3805
	for_each_online_cpu(i) {
3806
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3807
						batchcount, gfp);
3808
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3809
			for (i--; i >= 0; i--)
3810 3811
				kfree(new->new[i]);
			kfree(new);
3812
			return -ENOMEM;
L
Linus Torvalds 已提交
3813 3814
		}
	}
3815
	new->cachep = cachep;
L
Linus Torvalds 已提交
3816

3817
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3818

L
Linus Torvalds 已提交
3819 3820 3821
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3822
	cachep->shared = shared;
L
Linus Torvalds 已提交
3823

3824
	for_each_online_cpu(i) {
3825
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3826 3827
		if (!ccold)
			continue;
3828
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3829
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3830
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3831 3832
		kfree(ccold);
	}
3833
	kfree(new);
3834
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3835 3836
}

G
Glauber Costa 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3852
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3853
	for_each_memcg_cache_index(i) {
3854
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3855 3856 3857 3858 3859 3860 3861 3862
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3863
/* Called with slab_mutex held always */
3864
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3865 3866
{
	int err;
G
Glauber Costa 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3877

G
Glauber Costa 已提交
3878 3879
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3880 3881
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3882 3883
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3884
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3885 3886 3887 3888
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3889
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3890
		limit = 1;
3891
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3892
		limit = 8;
3893
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3894
		limit = 24;
3895
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3896 3897 3898 3899
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3900 3901
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3902 3903 3904 3905 3906 3907 3908 3909
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3910
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3911 3912 3913
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3914 3915 3916
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3917 3918 3919 3920
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3921 3922 3923
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3924 3925
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3926
		       cachep->name, -err);
3927
	return err;
L
Linus Torvalds 已提交
3928 3929
}

3930
/*
3931 3932
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3933
 * if drain_array() is used on the shared array.
3934
 */
3935
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3936
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3937 3938 3939
{
	int tofree;

3940 3941
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3942 3943
	if (ac->touched && !force) {
		ac->touched = 0;
3944
	} else {
3945
		spin_lock_irq(&n->list_lock);
3946 3947 3948 3949 3950 3951 3952 3953 3954
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3955
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3956 3957 3958 3959 3960
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3961
 * @w: work descriptor
L
Linus Torvalds 已提交
3962 3963 3964 3965 3966 3967
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3968 3969
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3970
 */
3971
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3972
{
3973
	struct kmem_cache *searchp;
3974
	struct kmem_cache_node *n;
3975
	int node = numa_mem_id();
3976
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3977

3978
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3979
		/* Give up. Setup the next iteration. */
3980
		goto out;
L
Linus Torvalds 已提交
3981

3982
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3983 3984
		check_irq_on();

3985
		/*
3986
		 * We only take the node lock if absolutely necessary and we
3987 3988 3989
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3990
		n = searchp->node[node];
3991

3992
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3993

3994
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3995

3996 3997 3998 3999
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4000
		if (time_after(n->next_reap, jiffies))
4001
			goto next;
L
Linus Torvalds 已提交
4002

4003
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4004

4005
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4006

4007 4008
		if (n->free_touched)
			n->free_touched = 0;
4009 4010
		else {
			int freed;
L
Linus Torvalds 已提交
4011

4012
			freed = drain_freelist(searchp, n, (n->free_limit +
4013 4014 4015
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4016
next:
L
Linus Torvalds 已提交
4017 4018 4019
		cond_resched();
	}
	check_irq_on();
4020
	mutex_unlock(&slab_mutex);
4021
	next_reap_node();
4022
out:
A
Andrew Morton 已提交
4023
	/* Set up the next iteration */
4024
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4025 4026
}

4027
#ifdef CONFIG_SLABINFO
4028
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4029
{
4030
	struct page *page;
P
Pekka Enberg 已提交
4031 4032 4033 4034
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4035
	const char *name;
L
Linus Torvalds 已提交
4036
	char *error = NULL;
4037
	int node;
4038
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4039 4040 4041

	active_objs = 0;
	num_slabs = 0;
4042
	for_each_online_node(node) {
4043 4044
		n = cachep->node[node];
		if (!n)
4045 4046
			continue;

4047
		check_irq_on();
4048
		spin_lock_irq(&n->list_lock);
4049

4050 4051
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4052 4053 4054 4055
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4056 4057
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4058
				error = "slabs_partial accounting error";
4059
			if (!page->active && !error)
4060
				error = "slabs_partial accounting error";
4061
			active_objs += page->active;
4062 4063
			active_slabs++;
		}
4064 4065
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4066
				error = "slabs_free accounting error";
4067 4068
			num_slabs++;
		}
4069 4070 4071
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4072

4073
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4074
	}
P
Pekka Enberg 已提交
4075 4076
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4077
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4078 4079
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4080
	name = cachep->name;
L
Linus Torvalds 已提交
4081 4082 4083
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4098
#if STATS
4099
	{			/* node stats */
L
Linus Torvalds 已提交
4100 4101 4102 4103 4104 4105 4106
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4107
		unsigned long node_frees = cachep->node_frees;
4108
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4109

J
Joe Perches 已提交
4110 4111 4112 4113 4114
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4124
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4137
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4138
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4139
{
P
Pekka Enberg 已提交
4140
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4141
	int limit, batchcount, shared, res;
4142
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4143

L
Linus Torvalds 已提交
4144 4145 4146 4147
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4148
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4159
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4160
	res = -EINVAL;
4161
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4162
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4163 4164
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4165
				res = 0;
L
Linus Torvalds 已提交
4166
			} else {
4167
				res = do_tune_cpucache(cachep, limit,
4168 4169
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4170 4171 4172 4173
			}
			break;
		}
	}
4174
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4175 4176 4177 4178
	if (res >= 0)
		res = count;
	return res;
}
4179 4180 4181 4182 4183

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4184 4185
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4218 4219
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4220 4221
{
	void *p;
4222 4223
	int i, j;

4224 4225
	if (n[0] == n[1])
		return;
4226
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4227 4228
		bool active = true;

4229
		for (j = page->active; j < c->num; j++) {
4230
			/* Skip freed item */
4231
			if (get_free_obj(page, j) == i) {
4232 4233 4234 4235 4236
				active = false;
				break;
			}
		}
		if (!active)
4237
			continue;
4238

4239 4240 4241 4242 4243 4244 4245 4246 4247
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4248
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4249

4250
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4251
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4252
		if (modname[0])
4253 4254 4255 4256 4257 4258 4259 4260 4261
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4262
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4263
	struct page *page;
4264
	struct kmem_cache_node *n;
4265
	const char *name;
4266
	unsigned long *x = m->private;
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4277
	x[1] = 0;
4278 4279

	for_each_online_node(node) {
4280 4281
		n = cachep->node[node];
		if (!n)
4282 4283 4284
			continue;

		check_irq_on();
4285
		spin_lock_irq(&n->list_lock);
4286

4287 4288 4289 4290
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4291
		spin_unlock_irq(&n->list_lock);
4292 4293
	}
	name = cachep->name;
4294
	if (x[0] == x[1]) {
4295
		/* Increase the buffer size */
4296
		mutex_unlock(&slab_mutex);
4297
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4298 4299
		if (!m->private) {
			/* Too bad, we are really out */
4300
			m->private = x;
4301
			mutex_lock(&slab_mutex);
4302 4303
			return -ENOMEM;
		}
4304 4305
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4306
		mutex_lock(&slab_mutex);
4307 4308 4309 4310
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4311 4312 4313
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4314 4315
		seq_putc(m, '\n');
	}
4316

4317 4318 4319
	return 0;
}

4320
static const struct seq_operations slabstats_op = {
4321
	.start = leaks_start,
4322 4323
	.next = slab_next,
	.stop = slab_stop,
4324 4325
	.show = leaks_show,
};
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4356
#endif
4357 4358 4359
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4360 4361
#endif

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4374
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4375
{
4376 4377
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4378
		return 0;
L
Linus Torvalds 已提交
4379

4380
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4381
}
K
Kirill A. Shutemov 已提交
4382
EXPORT_SYMBOL(ksize);