slab.c 111.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
I
Ingo Molnar 已提交
110
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177 178
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
182 183
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

206
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
207 208
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209 210
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
220 221 222 223 224 225
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
245
	struct rcu_head head;
246
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
247
	void *addr;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
267
	spinlock_t lock;
A
Andrew Morton 已提交
268 269 270 271 272 273
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
274 275
};

A
Andrew Morton 已提交
276 277 278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
279 280 281 282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
296 297 298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299 300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

312 313 314 315 316 317 318
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
static void enable_cpucache(struct kmem_cache *cachep);
static void cache_reap(void *unused);

319
/*
A
Andrew Morton 已提交
320 321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325 326
	extern void __bad_size(void);

327 328 329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340 341 342
	return 0;
}

343 344
static int slab_early_init = 1;

345 346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
347

P
Pekka Enberg 已提交
348
static void kmem_list3_init(struct kmem_list3 *parent)
349 350 351 352 353 354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356 357 358 359 360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
361 362 363 364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365 366
	} while (0)

A
Andrew Morton 已提交
367 368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369 370 371 372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
373 374

/*
375
 * struct kmem_cache
L
Linus Torvalds 已提交
376 377 378
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
379

380
struct kmem_cache {
L
Linus Torvalds 已提交
381
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
384 385 386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
390
	struct kmem_list3 *nodelists[MAX_NUMNODES];
391

A
Andrew Morton 已提交
392 393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
394

395
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
396
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
397
	unsigned int gfporder;
L
Linus Torvalds 已提交
398 399

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
400
	gfp_t gfpflags;
L
Linus Torvalds 已提交
401

A
Andrew Morton 已提交
402
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
405
	unsigned int slab_size;
A
Andrew Morton 已提交
406
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
407 408

	/* constructor func */
409
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
410 411

	/* de-constructor func */
412
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
413

414
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
415 416
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
417

418
/* 6) statistics */
L
Linus Torvalds 已提交
419
#if STATS
P
Pekka Enberg 已提交
420 421 422 423 424 425 426 427 428
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
429
	unsigned long node_overflow;
P
Pekka Enberg 已提交
430 431 432 433
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
434 435
#endif
#if DEBUG
436 437 438 439 440 441 442 443
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
444 445 446 447 448 449 450
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
451 452 453
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
454
 *
A
Adrian Bunk 已提交
455
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
466
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
467 468 469 470 471
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
472 473
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
490
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
491 492 493
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494
#define	STATS_INC_NODEFREES(x)	do { } while (0)
495
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
496
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
505 506
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
507
 * 0		: objp
508
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
509 510
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
511
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
512
 * 		redzone word.
513 514
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
515 516
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
517
 */
518
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_offset;
L
Linus Torvalds 已提交
521 522
}

523
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
524
{
525
	return cachep->obj_size;
L
Linus Torvalds 已提交
526 527
}

528
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
529 530
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
532 533
}

534
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
535 536 537
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
538
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
539
					 2 * BYTES_PER_WORD);
540
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542
}

543
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
544 545
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
547 548 549 550
}

#else

551 552
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
553 554 555 556 557 558 559
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
560 561
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
581 582 583 584
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
585
 */
586 587 588 589 590 591 592
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
593 594
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
595
	BUG_ON(!PageSlab(page));
596 597 598 599 600 601 602 603 604 605
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
606 607
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
608
	BUG_ON(!PageSlab(page));
609 610
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
611

612 613 614 615 616 617 618 619 620 621 622 623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

624 625 626 627 628 629 630 631 632 633 634 635
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
636 637 638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
656
	{NULL,}
L
Linus Torvalds 已提交
657 658 659 660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664 665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
667 668 669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
671
	.name = "kmem_cache",
L
Linus Torvalds 已提交
672
#if DEBUG
673
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
674 675 676
#endif
};

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
 */
static struct lock_class_key on_slab_key;

static inline void init_lock_keys(struct cache_sizes *s)
{
	int q;

	for (q = 0; q < MAX_NUMNODES; q++) {
		if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
			continue;
		lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
				  &on_slab_key);
	}
}

#else
static inline void init_lock_keys(struct cache_sizes *s)
{
}
#endif



L
Linus Torvalds 已提交
708
/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
709
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
710 711 712
static struct list_head cache_chain;

/*
A
Andrew Morton 已提交
713 714
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
L
Linus Torvalds 已提交
715 716 717 718 719 720 721 722 723 724 725
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
726 727
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
728 729 730
	FULL
} g_cpucache_up;

731 732 733 734 735 736 737 738
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

L
Linus Torvalds 已提交
739 740
static DEFINE_PER_CPU(struct work_struct, reap_work);

741
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
742 743 744 745
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
746 747
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
748 749 750 751 752
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
753 754 755
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
756
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
757 758 759 760 761
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
762
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
763 764 765 766 767 768 769 770
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
771
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
772 773 774 775
{
	return __find_general_cachep(size, gfpflags);
}

776
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
777
{
778 779
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
780

A
Andrew Morton 已提交
781 782 783
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
784 785 786 787 788 789 790
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
840 841 842 843
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
844 845
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
846 847
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
848
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
849 850 851
	dump_stack();
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
867
		node = first_node(node_online_map);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
910
		init_reap_node(cpu);
L
Linus Torvalds 已提交
911 912 913 914 915
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

916
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
917
					    int batchcount)
L
Linus Torvalds 已提交
918
{
P
Pekka Enberg 已提交
919
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
920 921
	struct array_cache *nc = NULL;

922
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
923 924 925 926 927
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
928
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
929 930 931 932
	}
	return nc;
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

957
#ifdef CONFIG_NUMA
958
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
959
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
960

P
Pekka Enberg 已提交
961
static struct array_cache **alloc_alien_cache(int node, int limit)
962 963
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
964
	int memsize = sizeof(void *) * MAX_NUMNODES;
965 966 967 968 969 970 971 972 973 974 975 976 977
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
978
				for (i--; i <= 0; i--)
979 980 981 982 983 984 985 986 987
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
988
static void free_alien_cache(struct array_cache **ac_ptr)
989 990 991 992 993 994
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
995
	    kfree(ac_ptr[i]);
996 997 998
	kfree(ac_ptr);
}

999
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1000
				struct array_cache *ac, int node)
1001 1002 1003 1004 1005
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1006 1007 1008 1009 1010
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1011 1012
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1013

1014
		free_block(cachep, ac->entry, ac->avail, node);
1015 1016 1017 1018 1019
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1029 1030

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1031 1032 1033 1034 1035 1036
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1037 1038
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1039
{
P
Pekka Enberg 已提交
1040
	int i = 0;
1041 1042 1043 1044
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1045
		ac = alien[i];
1046 1047 1048 1049 1050 1051 1052
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1053

1054
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1072
		spin_lock(&alien->lock);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1087
#else
1088

1089
#define drain_alien_cache(cachep, alien) do { } while (0)
1090
#define reap_alien(cachep, l3) do { } while (0)
1091

1092 1093 1094 1095 1096
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

1097 1098 1099
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1100

1101
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1102 1103 1104 1105
{
	return 0;
}

1106 1107
#endif

1108
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1109
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1110 1111
{
	long cpu = (long)hcpu;
1112
	struct kmem_cache *cachep;
1113 1114 1115
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1116 1117 1118

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1119
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1120 1121
		/*
		 * We need to do this right in the beginning since
1122 1123 1124 1125 1126
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1127
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1128 1129
			/*
			 * Set up the size64 kmemlist for cpu before we can
1130 1131 1132 1133
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1134 1135
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1136 1137 1138
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1139
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1140

1141 1142 1143 1144 1145
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1146 1147
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1148

1149 1150
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1151 1152
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1153 1154 1155
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1156 1157 1158 1159
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1160
		list_for_each_entry(cachep, &cache_chain, next) {
1161
			struct array_cache *nc;
1162 1163
			struct array_cache *shared;
			struct array_cache **alien;
1164

1165
			nc = alloc_arraycache(node, cachep->limit,
1166
						cachep->batchcount);
L
Linus Torvalds 已提交
1167 1168
			if (!nc)
				goto bad;
1169 1170 1171 1172 1173
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1174

1175 1176 1177
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1178
			cachep->array[cpu] = nc;
1179 1180 1181
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1182 1183 1184 1185 1186 1187 1188 1189
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1190
			}
1191 1192 1193 1194 1195 1196 1197 1198 1199
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1200
		}
I
Ingo Molnar 已提交
1201
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206 1207
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1208 1209 1210 1211 1212 1213 1214 1215
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1216 1217
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1218
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1219 1220
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1221 1222
			struct array_cache *shared;
			struct array_cache **alien;
1223
			cpumask_t mask;
L
Linus Torvalds 已提交
1224

1225
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1226 1227 1228
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1229 1230 1231
			l3 = cachep->nodelists[node];

			if (!l3)
1232
				goto free_array_cache;
1233

1234
			spin_lock_irq(&l3->list_lock);
1235 1236 1237 1238

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1239
				free_block(cachep, nc->entry, nc->avail, node);
1240 1241

			if (!cpus_empty(mask)) {
1242
				spin_unlock_irq(&l3->list_lock);
1243
				goto free_array_cache;
P
Pekka Enberg 已提交
1244
			}
1245

1246 1247
			shared = l3->shared;
			if (shared) {
1248
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1249
					   l3->shared->avail, node);
1250 1251 1252
				l3->shared = NULL;
			}

1253 1254 1255 1256 1257 1258 1259 1260 1261
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1262
			}
1263
free_array_cache:
L
Linus Torvalds 已提交
1264 1265
			kfree(nc);
		}
1266 1267 1268 1269 1270 1271 1272 1273 1274
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1275
			drain_freelist(cachep, l3, l3->free_objects);
1276
		}
I
Ingo Molnar 已提交
1277
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1278 1279 1280 1281
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1282
bad:
I
Ingo Molnar 已提交
1283
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1284 1285 1286
	return NOTIFY_BAD;
}

1287 1288 1289
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1290

1291 1292 1293
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1294 1295
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1296 1297 1298 1299 1300 1301 1302 1303 1304
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1305 1306 1307 1308 1309
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1310 1311 1312 1313 1314
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1315 1316 1317
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1318 1319 1320 1321 1322 1323
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1324
	int i;
1325
	int order;
1326 1327 1328 1329 1330 1331

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1342 1343 1344
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1345 1346 1347
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1348
	 * 2) Create the first kmalloc cache.
1349
	 *    The struct kmem_cache for the new cache is allocated normally.
1350 1351 1352
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1353 1354
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1355 1356 1357
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362 1363 1364
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1365
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1366

A
Andrew Morton 已提交
1367 1368
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1369

1370 1371 1372 1373 1374 1375
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1376
	BUG_ON(!cache_cache.num);
1377
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1378 1379 1380
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1381 1382 1383 1384 1385

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1386 1387 1388 1389
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1390 1391 1392
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1393 1394 1395 1396
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1397

A
Andrew Morton 已提交
1398
	if (INDEX_AC != INDEX_L3) {
1399
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1400 1401 1402 1403 1404 1405
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1406

1407 1408
	slab_early_init = 0;

L
Linus Torvalds 已提交
1409
	while (sizes->cs_size != ULONG_MAX) {
1410 1411
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1412 1413 1414
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1415 1416
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1417
		if (!sizes->cs_cachep) {
1418
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1419 1420 1421 1422 1423
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1424
		init_lock_keys(sizes);
L
Linus Torvalds 已提交
1425 1426

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1427 1428 1429 1430 1431
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1437
		struct array_cache *ptr;
1438

L
Linus Torvalds 已提交
1439
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1440

L
Linus Torvalds 已提交
1441
		local_irq_disable();
1442 1443
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1444
		       sizeof(struct arraycache_init));
1445 1446 1447 1448 1449
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1450 1451
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1452

L
Linus Torvalds 已提交
1453
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1454

L
Linus Torvalds 已提交
1455
		local_irq_disable();
1456
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1457
		       != &initarray_generic.cache);
1458
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1459
		       sizeof(struct arraycache_init));
1460 1461 1462 1463 1464
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1465
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1466
		    ptr;
L
Linus Torvalds 已提交
1467 1468
		local_irq_enable();
	}
1469 1470 1471 1472 1473
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1474
			  numa_node_id());
1475 1476 1477

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1478
				  &initkmem_list3[SIZE_AC + node], node);
1479 1480 1481

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1482 1483
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1484 1485 1486
			}
		}
	}
L
Linus Torvalds 已提交
1487

1488
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1489
	{
1490
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1491
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1492
		list_for_each_entry(cachep, &cache_chain, next)
A
Andrew Morton 已提交
1493
			enable_cpucache(cachep);
I
Ingo Molnar 已提交
1494
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1495 1496 1497 1498 1499
	}

	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1500 1501 1502
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1503 1504 1505
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1506 1507 1508
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513 1514 1515
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1516 1517
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1518
	 */
1519
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1520
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1532
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1533 1534
{
	struct page *page;
1535
	int nr_pages;
L
Linus Torvalds 已提交
1536 1537
	int i;

1538
#ifndef CONFIG_MMU
1539 1540 1541
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1542
	 */
1543
	flags |= __GFP_COMP;
1544
#endif
1545 1546 1547
	flags |= cachep->gfpflags;

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1548 1549 1550
	if (!page)
		return NULL;

1551
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1552
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1553
		atomic_add(nr_pages, &slab_reclaim_pages);
1554
	add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
1555 1556 1557
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562
}

/*
 * Interface to system's page release.
 */
1563
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1564
{
P
Pekka Enberg 已提交
1565
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1566 1567 1568
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1569
	sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
L
Linus Torvalds 已提交
1570
	while (i--) {
N
Nick Piggin 已提交
1571 1572
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1573 1574 1575 1576 1577
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1578 1579
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1580 1581 1582 1583
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1584
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1585
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1595
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1596
			    unsigned long caller)
L
Linus Torvalds 已提交
1597
{
1598
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1599

1600
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1601

P
Pekka Enberg 已提交
1602
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1603 1604
		return;

P
Pekka Enberg 已提交
1605 1606 1607 1608
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1609 1610 1611 1612 1613 1614 1615
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1616
				*addr++ = svalue;
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1624
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1625 1626 1627
}
#endif

1628
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1629
{
1630 1631
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1632 1633

	memset(addr, val, size);
P
Pekka Enberg 已提交
1634
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
A
Andrew Morton 已提交
1641
	for (i = 0; i < limit; i++)
P
Pekka Enberg 已提交
1642
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1643 1644 1645 1646 1647 1648
	printk("\n");
}
#endif

#if DEBUG

1649
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1656 1657
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1658 1659 1660 1661
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1662
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1663
		print_symbol("(%s)",
A
Andrew Morton 已提交
1664
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1665 1666
		printk("\n");
	}
1667 1668
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1669
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1670 1671
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1672 1673
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1674 1675 1676 1677
		dump_line(realobj, i, limit);
	}
}

1678
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683
{
	char *realobj;
	int size, i;
	int lines = 0;

1684 1685
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1686

P
Pekka Enberg 已提交
1687
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1688
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1689
		if (i == size - 1)
L
Linus Torvalds 已提交
1690 1691 1692 1693 1694 1695
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1696
				printk(KERN_ERR
A
Andrew Morton 已提交
1697 1698
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1699 1700 1701
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1702
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1703
			limit = 16;
P
Pekka Enberg 已提交
1704 1705
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1718
		struct slab *slabp = virt_to_slab(objp);
1719
		unsigned int objnr;
L
Linus Torvalds 已提交
1720

1721
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1722
		if (objnr) {
1723
			objp = index_to_obj(cachep, slabp, objnr - 1);
1724
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1725
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1726
			       realobj, size);
L
Linus Torvalds 已提交
1727 1728
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1729
		if (objnr + 1 < cachep->num) {
1730
			objp = index_to_obj(cachep, slabp, objnr + 1);
1731
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1732
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1733
			       realobj, size);
L
Linus Torvalds 已提交
1734 1735 1736 1737 1738 1739
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1740 1741
#if DEBUG
/**
1742 1743 1744 1745 1746 1747
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1748
 */
1749
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1750 1751 1752
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1753
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1754 1755 1756

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1757 1758
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1759
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1760
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1770
					   "was overwritten");
L
Linus Torvalds 已提交
1771 1772
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1773
					   "was overwritten");
L
Linus Torvalds 已提交
1774 1775
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1776
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1777
	}
1778
}
L
Linus Torvalds 已提交
1779
#else
1780
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1781
{
L
Linus Torvalds 已提交
1782 1783 1784
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1785
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1786
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1787 1788
		}
	}
1789
}
L
Linus Torvalds 已提交
1790 1791
#endif

1792 1793 1794 1795 1796
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1797
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1798 1799
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1800
 */
1801
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1802 1803 1804 1805
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1806 1807 1808
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1809
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1815 1816
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1817 1818 1819
	}
}

A
Andrew Morton 已提交
1820 1821 1822 1823
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1824
static void set_up_list3s(struct kmem_cache *cachep, int index)
1825 1826 1827 1828
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1829
		cachep->nodelists[node] = &initkmem_list3[index + node];
1830
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1831 1832
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1833 1834 1835
	}
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1857
/**
1858 1859 1860 1861 1862 1863 1864
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1865 1866 1867 1868 1869
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1870
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1871
			size_t size, size_t align, unsigned long flags)
1872
{
1873
	unsigned long offslab_limit;
1874
	size_t left_over = 0;
1875
	int gfporder;
1876

A
Andrew Morton 已提交
1877
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1878 1879 1880
		unsigned int num;
		size_t remainder;

1881
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1882 1883
		if (!num)
			continue;
1884

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1897

1898
		/* Found something acceptable - save it away */
1899
		cachep->num = num;
1900
		cachep->gfporder = gfporder;
1901 1902
		left_over = remainder;

1903 1904 1905 1906 1907 1908 1909 1910
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1911 1912 1913 1914
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1915
		if (gfporder >= slab_break_gfp_order)
1916 1917
			break;

1918 1919 1920
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1921
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1922 1923 1924 1925 1926
			break;
	}
	return left_over;
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static void setup_cpu_cache(struct kmem_cache *cachep)
{
	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
		return;
	}
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
}

L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
1996 1997
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2010
struct kmem_cache *
L
Linus Torvalds 已提交
2011
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2012 2013
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2014
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2015 2016
{
	size_t left_over, slab_size, ralign;
2017
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2018 2019 2020 2021

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2022
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2023
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2024 2025
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2026 2027
		BUG();
	}
L
Linus Torvalds 已提交
2028

2029 2030 2031 2032 2033 2034
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
2035
	mutex_lock(&cache_chain_mutex);
2036

2037
	list_for_each_entry(pc, &cache_chain, next) {
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2052
			       pc->buffer_size);
2053 2054 2055
			continue;
		}

P
Pekka Enberg 已提交
2056
		if (!strcmp(pc->name, name)) {
2057 2058 2059 2060 2061 2062
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2063 2064 2065 2066 2067
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2068
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2078
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2079
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2090 2091
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2092
	 */
2093
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2094

A
Andrew Morton 已提交
2095 2096
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2097 2098 2099
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2100 2101 2102
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2103 2104
	}

A
Andrew Morton 已提交
2105 2106
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2107 2108
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2109 2110 2111 2112
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2113 2114
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2115
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2116 2117 2118 2119
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2120 2121 2122 2123 2124 2125 2126 2127 2128

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

L
Linus Torvalds 已提交
2129 2130 2131 2132
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2133
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2139
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2140
	}
A
Andrew Morton 已提交
2141
	/*
2142
	 * 4) Store it.
L
Linus Torvalds 已提交
2143 2144 2145 2146
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2147
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2148
	if (!cachep)
2149
		goto oops;
L
Linus Torvalds 已提交
2150 2151

#if DEBUG
2152
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2153

2154 2155 2156 2157
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2158 2159
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2160
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2161
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2162 2163
	}
	if (flags & SLAB_STORE_USER) {
2164 2165
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2166 2167 2168 2169
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2170
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2171 2172
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177
		size = PAGE_SIZE;
	}
#endif
#endif

2178 2179 2180 2181 2182 2183
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2184 2185 2186 2187 2188 2189 2190 2191
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2192
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2198
		goto oops;
L
Linus Torvalds 已提交
2199
	}
P
Pekka Enberg 已提交
2200 2201
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2214 2215
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2222
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2228
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2229

2230
	if (flags & CFLGS_OFF_SLAB) {
2231
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2232 2233 2234 2235 2236 2237 2238 2239 2240
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


2246
	setup_cpu_cache(cachep);
L
Linus Torvalds 已提交
2247 2248 2249

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2250
oops:
L
Linus Torvalds 已提交
2251 2252
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2253
		      name);
I
Ingo Molnar 已提交
2254
	mutex_unlock(&cache_chain_mutex);
2255
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2271
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2272 2273 2274
{
#ifdef CONFIG_SMP
	check_irq_off();
2275
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2276 2277
#endif
}
2278

2279
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2280 2281 2282 2283 2284 2285 2286
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2287 2288 2289 2290
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2291
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2292 2293
#endif

2294 2295 2296 2297
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2298 2299
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2300
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2301
	struct array_cache *ac;
2302
	int node = numa_node_id();
L
Linus Torvalds 已提交
2303 2304

	check_irq_off();
2305
	ac = cpu_cache_get(cachep);
2306 2307 2308
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2309 2310 2311
	ac->avail = 0;
}

2312
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2313
{
2314 2315 2316
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2317
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2318
	check_irq_on();
P
Pekka Enberg 已提交
2319
	for_each_online_node(node) {
2320
		l3 = cachep->nodelists[node];
2321 2322 2323 2324 2325 2326 2327
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2328
			drain_array(cachep, l3, l3->shared, 1, node);
2329
	}
L
Linus Torvalds 已提交
2330 2331
}

2332 2333 2334 2335 2336 2337 2338 2339
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2340
{
2341 2342
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2343 2344
	struct slab *slabp;

2345 2346
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2347

2348
		spin_lock_irq(&l3->list_lock);
2349
		p = l3->slabs_free.prev;
2350 2351 2352 2353
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2354

2355
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2356
#if DEBUG
2357
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2358 2359
#endif
		list_del(&slabp->list);
2360 2361 2362 2363 2364
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2365
		spin_unlock_irq(&l3->list_lock);
2366 2367
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2368
	}
2369 2370
out:
	return nr_freed;
L
Linus Torvalds 已提交
2371 2372
}

2373
static int __cache_shrink(struct kmem_cache *cachep)
2374 2375 2376 2377 2378 2379 2380 2381 2382
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2383 2384 2385 2386 2387 2388 2389
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2390 2391 2392 2393
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2394 2395 2396 2397 2398 2399 2400
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2401
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2402
{
2403
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2413
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2426
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2427
{
2428
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2429 2430 2431 2432 2433

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2434
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2435 2436 2437 2438
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2439
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2440 2441 2442

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2443
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2444
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2445
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2446 2447 2448 2449 2450
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2451
		synchronize_rcu();
L
Linus Torvalds 已提交
2452

2453
	__kmem_cache_destroy(cachep);
L
Linus Torvalds 已提交
2454 2455 2456 2457 2458
	unlock_cpu_hotplug();
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2470
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2471 2472
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2473 2474
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2475

L
Linus Torvalds 已提交
2476 2477
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2478 2479
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2480 2481 2482
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2483
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2484 2485 2486 2487
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2488
	slabp->s_mem = objp + colour_off;
2489
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2495
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2496 2497
}

2498
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2499
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2500 2501 2502 2503
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2504
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2517 2518 2519
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2520 2521
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2522
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2523
				     ctor_flags);
L
Linus Torvalds 已提交
2524 2525 2526 2527

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2528
					   " end of an object");
L
Linus Torvalds 已提交
2529 2530
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2531
					   " start of an object");
L
Linus Torvalds 已提交
2532
		}
A
Andrew Morton 已提交
2533 2534
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2535
			kernel_map_pages(virt_to_page(objp),
2536
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2537 2538 2539 2540
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2541
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2542
	}
P
Pekka Enberg 已提交
2543
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2544 2545 2546
	slabp->free = 0;
}

2547
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2548
{
A
Andrew Morton 已提交
2549 2550 2551 2552
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2553 2554
}

A
Andrew Morton 已提交
2555 2556
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2557
{
2558
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2572 2573
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2574
{
2575
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2576 2577 2578 2579 2580

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2581
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2582
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2583
				"'%s', objp %p\n", cachep->name, objp);
2584 2585 2586 2587 2588 2589 2590 2591
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2592 2593 2594 2595 2596 2597 2598
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2599
{
2600
	int nr_pages;
L
Linus Torvalds 已提交
2601 2602
	struct page *page;

2603
	page = virt_to_page(addr);
2604

2605
	nr_pages = 1;
2606
	if (likely(!PageCompound(page)))
2607 2608
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2609
	do {
2610 2611
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2612
		page++;
2613
	} while (--nr_pages);
L
Linus Torvalds 已提交
2614 2615 2616 2617 2618 2619
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2620
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2621
{
P
Pekka Enberg 已提交
2622 2623 2624 2625 2626
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2627
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2628

A
Andrew Morton 已提交
2629 2630 2631
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2632
	 */
2633
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2646
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2647
	check_irq_off();
2648 2649
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2650 2651

	/* Get colour for the slab, and cal the next value. */
2652 2653 2654 2655 2656
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2657

2658
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2671 2672 2673
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2674
	 */
A
Andrew Morton 已提交
2675 2676
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2677 2678 2679
		goto failed;

	/* Get slab management. */
2680
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2681
	if (!slabp)
L
Linus Torvalds 已提交
2682 2683
		goto opps1;

2684
	slabp->nodeid = nodeid;
2685
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690 2691

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2692
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2693 2694

	/* Make slab active. */
2695
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2696
	STATS_INC_GROWN(cachep);
2697 2698
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2699
	return 1;
A
Andrew Morton 已提交
2700
opps1:
L
Linus Torvalds 已提交
2701
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2702
failed:
L
Linus Torvalds 已提交
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2722 2723
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2724 2725 2726
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2727 2728
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2729 2730 2731 2732
		BUG();
	}
}

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2755
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2756
				   void *caller)
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2762
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2763 2764 2765
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2766
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2767 2768

	if (cachep->flags & SLAB_RED_ZONE) {
2769
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2770 2771 2772 2773 2774 2775
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2776
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2777 2778

	BUG_ON(objnr >= cachep->num);
2779
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2780 2781

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2782 2783 2784 2785
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2786
		 */
2787
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2788
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2794
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2795
	}
2796 2797 2798
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2799 2800
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2801
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2802
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2803
			kernel_map_pages(virt_to_page(objp),
2804
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2815
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2816 2817 2818
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2819

L
Linus Torvalds 已提交
2820 2821 2822 2823 2824 2825 2826
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2827 2828 2829 2830
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2831
		for (i = 0;
2832
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2833
		     i++) {
A
Andrew Morton 已提交
2834
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2835
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2836
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2848
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2849 2850 2851 2852 2853 2854
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2855
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2856
retry:
L
Linus Torvalds 已提交
2857 2858
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2859 2860 2861 2862
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2863 2864 2865
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2866 2867 2868 2869
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2870

2871 2872 2873 2874
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2895 2896
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2908
must_grow:
L
Linus Torvalds 已提交
2909
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2910
alloc_done:
2911
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2912 2913 2914

	if (unlikely(!ac->avail)) {
		int x;
2915 2916
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2917
		/* cache_grow can reenable interrupts, then ac could change. */
2918
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2919
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2920 2921
			return NULL;

A
Andrew Morton 已提交
2922
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2923 2924 2925
			goto retry;
	}
	ac->touched = 1;
2926
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2927 2928
}

A
Andrew Morton 已提交
2929 2930
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2931 2932 2933 2934 2935 2936 2937 2938
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2939 2940
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
2941
{
P
Pekka Enberg 已提交
2942
	if (!objp)
L
Linus Torvalds 已提交
2943
		return objp;
P
Pekka Enberg 已提交
2944
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2945
#ifdef CONFIG_DEBUG_PAGEALLOC
2946
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2947
			kernel_map_pages(virt_to_page(objp),
2948
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2960 2961 2962 2963
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2964
			printk(KERN_ERR
A
Andrew Morton 已提交
2965 2966 2967
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2968 2969 2970 2971
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
2982
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2983
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2984
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2985 2986 2987 2988 2989

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2990
	}
L
Linus Torvalds 已提交
2991 2992 2993 2994 2995 2996
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2997
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2998
{
P
Pekka Enberg 已提交
2999
	void *objp;
L
Linus Torvalds 已提交
3000 3001
	struct array_cache *ac;

3002
#ifdef CONFIG_NUMA
3003
	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3004 3005 3006
		objp = alternate_node_alloc(cachep, flags);
		if (objp != NULL)
			return objp;
3007 3008 3009
	}
#endif

3010
	check_irq_off();
3011
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3012 3013 3014
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3015
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3016 3017 3018 3019
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3020 3021 3022
	return objp;
}

A
Andrew Morton 已提交
3023 3024
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
3025 3026
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
3027
	void *objp;
3028 3029 3030 3031 3032

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
3033
	local_irq_restore(save_flags);
3034
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3035
					    caller);
3036
	prefetchw(objp);
L
Linus Torvalds 已提交
3037 3038 3039
	return objp;
}

3040
#ifdef CONFIG_NUMA
3041
/*
3042
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt())
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

3063 3064
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3065
 */
A
Andrew Morton 已提交
3066 3067
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
3068 3069
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3070 3071 3072 3073 3074 3075 3076 3077
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3078
retry:
3079
	check_irq_off();
P
Pekka Enberg 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3099
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3100 3101 3102 3103 3104
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3105
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3106
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3107
	else
P
Pekka Enberg 已提交
3108
		list_add(&slabp->list, &l3->slabs_partial);
3109

P
Pekka Enberg 已提交
3110 3111
	spin_unlock(&l3->list_lock);
	goto done;
3112

A
Andrew Morton 已提交
3113
must_grow:
P
Pekka Enberg 已提交
3114 3115
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
3116

P
Pekka Enberg 已提交
3117 3118
	if (!x)
		return NULL;
3119

P
Pekka Enberg 已提交
3120
	goto retry;
A
Andrew Morton 已提交
3121
done:
P
Pekka Enberg 已提交
3122
	return obj;
3123 3124 3125 3126 3127 3128
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3129
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3130
		       int node)
L
Linus Torvalds 已提交
3131 3132
{
	int i;
3133
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3134 3135 3136 3137 3138

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3139
		slabp = virt_to_slab(objp);
3140
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3141
		list_del(&slabp->list);
3142
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3143
		check_slabp(cachep, slabp);
3144
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3145
		STATS_DEC_ACTIVE(cachep);
3146
		l3->free_objects++;
L
Linus Torvalds 已提交
3147 3148 3149 3150
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3151 3152
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3153 3154 3155 3156 3157 3158
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3159 3160
				slab_destroy(cachep, slabp);
			} else {
3161
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3162 3163 3164 3165 3166 3167
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3168
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3169 3170 3171 3172
		}
	}
}

3173
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3174 3175
{
	int batchcount;
3176
	struct kmem_list3 *l3;
3177
	int node = numa_node_id();
L
Linus Torvalds 已提交
3178 3179 3180 3181 3182 3183

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3184
	l3 = cachep->nodelists[node];
3185
	spin_lock(&l3->list_lock);
3186 3187
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3188
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3189 3190 3191
		if (max) {
			if (batchcount > max)
				batchcount = max;
3192
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3193
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3199
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3200
free_done:
L
Linus Torvalds 已提交
3201 3202 3203 3204 3205
#if STATS
	{
		int i = 0;
		struct list_head *p;

3206 3207
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3219
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3220
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3221
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3222 3223 3224
}

/*
A
Andrew Morton 已提交
3225 3226
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3227
 */
3228
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3229
{
3230
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3231 3232 3233 3234

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3235
	if (cache_free_alien(cachep, objp))
3236 3237
		return;

L
Linus Torvalds 已提交
3238 3239
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3240
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3241 3242 3243 3244
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3245
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3257
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3258
{
3259
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3260 3261 3262
}
EXPORT_SYMBOL(kmem_cache_alloc);

3263
/**
3264
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3294
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3295
{
P
Pekka Enberg 已提交
3296
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3297
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3298
	unsigned long align_mask = BYTES_PER_WORD - 1;
3299
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3315
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3316 3317
		goto out;
	return 1;
A
Andrew Morton 已提交
3318
out:
L
Linus Torvalds 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3332 3333
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3334
 */
3335
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3336
{
3337 3338
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3339

3340 3341
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3342 3343

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3344
			!cachep->nodelists[nodeid])
3345 3346 3347
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3348
	local_irq_restore(save_flags);
3349 3350 3351

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3352

3353
	return ptr;
L
Linus Torvalds 已提交
3354 3355 3356
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

3357
void *__kmalloc_node(size_t size, gfp_t flags, int node)
3358
{
3359
	struct kmem_cache *cachep;
3360 3361 3362 3363 3364 3365

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3366
EXPORT_SYMBOL(__kmalloc_node);
L
Linus Torvalds 已提交
3367 3368 3369
#endif

/**
3370
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3371
 * @size: how many bytes of memory are required.
3372
 * @flags: the type of memory to allocate (see kmalloc).
3373
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3374
 */
3375 3376
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3377
{
3378
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3379

3380 3381 3382 3383 3384 3385
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3386 3387
	if (unlikely(cachep == NULL))
		return NULL;
3388 3389 3390 3391 3392 3393
	return __cache_alloc(cachep, flags, caller);
}


void *__kmalloc(size_t size, gfp_t flags)
{
3394
#ifndef CONFIG_DEBUG_SLAB
3395
	return __do_kmalloc(size, flags, NULL);
3396 3397 3398
#else
	return __do_kmalloc(size, flags, __builtin_return_address(0));
#endif
L
Linus Torvalds 已提交
3399 3400 3401
}
EXPORT_SYMBOL(__kmalloc);

3402
#ifdef CONFIG_DEBUG_SLAB
3403 3404 3405 3406 3407 3408 3409
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#endif

L
Linus Torvalds 已提交
3410 3411
#ifdef CONFIG_SMP
/**
3412 3413 3414
 * percpu_depopulate - depopulate per-cpu data for given cpu
 * @__pdata: per-cpu data to depopulate
 * @cpu: depopulate per-cpu data for this cpu
L
Linus Torvalds 已提交
3415
 *
3416 3417
 * Depopulating per-cpu data for a cpu going offline would be a typical
 * use case. You need to register a cpu hotplug handler for that purpose.
L
Linus Torvalds 已提交
3418
 */
3419
void percpu_depopulate(void *__pdata, int cpu)
L
Linus Torvalds 已提交
3420
{
3421 3422 3423 3424 3425 3426 3427
	struct percpu_data *pdata = __percpu_disguise(__pdata);
	if (pdata->ptrs[cpu]) {
		kfree(pdata->ptrs[cpu]);
		pdata->ptrs[cpu] = NULL;
	}
}
EXPORT_SYMBOL_GPL(percpu_depopulate);
L
Linus Torvalds 已提交
3428

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
/**
 * percpu_depopulate_mask - depopulate per-cpu data for some cpu's
 * @__pdata: per-cpu data to depopulate
 * @mask: depopulate per-cpu data for cpu's selected through mask bits
 */
void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
{
	int cpu;
	for_each_cpu_mask(cpu, *mask)
		percpu_depopulate(__pdata, cpu);
}
EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
L
Linus Torvalds 已提交
3441

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
/**
 * percpu_populate - populate per-cpu data for given cpu
 * @__pdata: per-cpu data to populate further
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @cpu: populate per-data for this cpu
 *
 * Populating per-cpu data for a cpu coming online would be a typical
 * use case. You need to register a cpu hotplug handler for that purpose.
 * Per-cpu object is populated with zeroed buffer.
 */
void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
{
	struct percpu_data *pdata = __percpu_disguise(__pdata);
	int node = cpu_to_node(cpu);
3457

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	BUG_ON(pdata->ptrs[cpu]);
	if (node_online(node)) {
		/* FIXME: kzalloc_node(size, gfp, node) */
		pdata->ptrs[cpu] = kmalloc_node(size, gfp, node);
		if (pdata->ptrs[cpu])
			memset(pdata->ptrs[cpu], 0, size);
	} else
		pdata->ptrs[cpu] = kzalloc(size, gfp);
	return pdata->ptrs[cpu];
}
EXPORT_SYMBOL_GPL(percpu_populate);
L
Linus Torvalds 已提交
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
/**
 * percpu_populate_mask - populate per-cpu data for more cpu's
 * @__pdata: per-cpu data to populate further
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @mask: populate per-cpu data for cpu's selected through mask bits
 *
 * Per-cpu objects are populated with zeroed buffers.
 */
int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
			   cpumask_t *mask)
{
	cpumask_t populated = CPU_MASK_NONE;
	int cpu;
L
Linus Torvalds 已提交
3484

3485 3486 3487 3488 3489 3490 3491 3492 3493
	for_each_cpu_mask(cpu, *mask)
		if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
			__percpu_depopulate_mask(__pdata, &populated);
			return -ENOMEM;
		} else
			cpu_set(cpu, populated);
	return 0;
}
EXPORT_SYMBOL_GPL(__percpu_populate_mask);
L
Linus Torvalds 已提交
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
/**
 * percpu_alloc_mask - initial setup of per-cpu data
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @mask: populate per-data for cpu's selected through mask bits
 *
 * Populating per-cpu data for all online cpu's would be a typical use case,
 * which is simplified by the percpu_alloc() wrapper.
 * Per-cpu objects are populated with zeroed buffers.
 */
void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
{
	void *pdata = kzalloc(sizeof(struct percpu_data), gfp);
	void *__pdata = __percpu_disguise(pdata);

	if (unlikely(!pdata))
		return NULL;
	if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask)))
		return __pdata;
L
Linus Torvalds 已提交
3514 3515 3516
	kfree(pdata);
	return NULL;
}
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
EXPORT_SYMBOL_GPL(__percpu_alloc_mask);

/**
 * percpu_free - final cleanup of per-cpu data
 * @__pdata: object to clean up
 *
 * We simply clean up any per-cpu object left. No need for the client to
 * track and specify through a bis mask which per-cpu objects are to free.
 */
void percpu_free(void *__pdata)
{
	__percpu_depopulate_mask(__pdata, &cpu_possible_map);
	kfree(__percpu_disguise(__pdata));
}
EXPORT_SYMBOL_GPL(percpu_free);
#endif	/* CONFIG_SMP */
L
Linus Torvalds 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3542
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3543 3544 3545
{
	unsigned long flags;

3546 3547
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3548
	local_irq_save(flags);
3549
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3550 3551 3552 3553 3554 3555 3556 3557
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3558 3559
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3565
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3566 3567 3568 3569 3570 3571
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3572
	c = virt_to_cache(objp);
3573
	debug_check_no_locks_freed(objp, obj_size(c));
3574
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3575 3576 3577 3578
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3579
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3580
{
3581
	return obj_size(cachep);
L
Linus Torvalds 已提交
3582 3583 3584
}
EXPORT_SYMBOL(kmem_cache_size);

3585
const char *kmem_cache_name(struct kmem_cache *cachep)
3586 3587 3588 3589 3590
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3591
/*
3592
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3593
 */
3594
static int alloc_kmemlist(struct kmem_cache *cachep)
3595 3596 3597
{
	int node;
	struct kmem_list3 *l3;
3598 3599
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3600 3601

	for_each_online_node(node) {
3602

A
Andrew Morton 已提交
3603 3604
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3605
			goto fail;
3606

3607 3608
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3609
					0xbaadf00d);
3610 3611
		if (!new_shared) {
			free_alien_cache(new_alien);
3612
			goto fail;
3613
		}
3614

A
Andrew Morton 已提交
3615 3616
		l3 = cachep->nodelists[node];
		if (l3) {
3617 3618
			struct array_cache *shared = l3->shared;

3619 3620
			spin_lock_irq(&l3->list_lock);

3621
			if (shared)
3622 3623
				free_block(cachep, shared->entry,
						shared->avail, node);
3624

3625 3626
			l3->shared = new_shared;
			if (!l3->alien) {
3627 3628 3629
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3630
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3631
					cachep->batchcount + cachep->num;
3632
			spin_unlock_irq(&l3->list_lock);
3633
			kfree(shared);
3634 3635 3636
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3637
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3638 3639 3640
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3641
			goto fail;
3642
		}
3643 3644 3645

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3646
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3647
		l3->shared = new_shared;
3648
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3649
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3650
					cachep->batchcount + cachep->num;
3651 3652
		cachep->nodelists[node] = l3;
	}
3653
	return 0;
3654

A
Andrew Morton 已提交
3655
fail:
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3671
	return -ENOMEM;
3672 3673
}

L
Linus Torvalds 已提交
3674
struct ccupdate_struct {
3675
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3676 3677 3678 3679 3680
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3681
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3682 3683 3684
	struct array_cache *old;

	check_irq_off();
3685
	old = cpu_cache_get(new->cachep);
3686

L
Linus Torvalds 已提交
3687 3688 3689 3690
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3691
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3692 3693
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3694 3695
{
	struct ccupdate_struct new;
3696
	int i, err;
L
Linus Torvalds 已提交
3697

P
Pekka Enberg 已提交
3698
	memset(&new.new, 0, sizeof(new.new));
3699
	for_each_online_cpu(i) {
A
Andrew Morton 已提交
3700 3701
		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
						batchcount);
3702
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3703 3704
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3705
			return -ENOMEM;
L
Linus Torvalds 已提交
3706 3707 3708 3709
		}
	}
	new.cachep = cachep;

A
Andrew Morton 已提交
3710
	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3711

L
Linus Torvalds 已提交
3712 3713 3714
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3715
	cachep->shared = shared;
L
Linus Torvalds 已提交
3716

3717
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3718 3719 3720
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3721
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3722
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3723
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3724 3725 3726
		kfree(ccold);
	}

3727 3728 3729
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3730
		       cachep->name, -err);
3731
		BUG();
L
Linus Torvalds 已提交
3732 3733 3734 3735
	}
	return 0;
}

3736
/* Called with cache_chain_mutex held always */
3737
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3738 3739 3740 3741
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3742 3743
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3744 3745
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3746
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3747 3748 3749 3750
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3751
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3752
		limit = 1;
3753
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3754
		limit = 8;
3755
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3756
		limit = 24;
3757
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3758 3759 3760 3761
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3762 3763
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3773
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3774 3775 3776 3777
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3778 3779 3780
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3781 3782 3783 3784
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3785
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3786 3787
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3788
		       cachep->name, -err);
L
Linus Torvalds 已提交
3789 3790
}

3791 3792
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3793 3794
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3795 3796 3797
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3798 3799 3800
{
	int tofree;

3801 3802
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3803 3804
	if (ac->touched && !force) {
		ac->touched = 0;
3805
	} else {
3806
		spin_lock_irq(&l3->list_lock);
3807 3808 3809 3810 3811 3812 3813 3814 3815
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3816
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3817 3818 3819 3820 3821
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3822
 * @unused: unused parameter
L
Linus Torvalds 已提交
3823 3824 3825 3826 3827 3828
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3829 3830
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3831 3832 3833
 */
static void cache_reap(void *unused)
{
3834
	struct kmem_cache *searchp;
3835
	struct kmem_list3 *l3;
3836
	int node = numa_node_id();
L
Linus Torvalds 已提交
3837

I
Ingo Molnar 已提交
3838
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3839
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3840 3841
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3842 3843 3844
		return;
	}

3845
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
3846 3847
		check_irq_on();

3848 3849 3850 3851 3852
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3853
		l3 = searchp->nodelists[node];
3854

3855
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3856

3857
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3858

3859 3860 3861 3862
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3863
		if (time_after(l3->next_reap, jiffies))
3864
			goto next;
L
Linus Torvalds 已提交
3865

3866
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3867

3868
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3869

3870
		if (l3->free_touched)
3871
			l3->free_touched = 0;
3872 3873
		else {
			int freed;
L
Linus Torvalds 已提交
3874

3875 3876 3877 3878
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3879
next:
L
Linus Torvalds 已提交
3880 3881 3882
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3883
	mutex_unlock(&cache_chain_mutex);
3884
	next_reap_node();
3885
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
3886
	/* Set up the next iteration */
3887
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3888 3889 3890 3891
}

#ifdef CONFIG_PROC_FS

3892
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3893
{
3894 3895 3896 3897
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3898
#if STATS
3899
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3900
#else
3901
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3902
#endif
3903 3904 3905 3906
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3907
#if STATS
3908
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3909
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3910
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3911
#endif
3912 3913 3914 3915 3916 3917 3918 3919
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3920
	mutex_lock(&cache_chain_mutex);
3921 3922
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3923 3924 3925 3926 3927 3928
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3929
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3930 3931 3932 3933
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3934
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3935
	++*pos;
A
Andrew Morton 已提交
3936 3937
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3938 3939 3940 3941
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3942
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3943 3944 3945 3946
}

static int s_show(struct seq_file *m, void *p)
{
3947
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
3948 3949 3950 3951 3952
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3953
	const char *name;
L
Linus Torvalds 已提交
3954
	char *error = NULL;
3955 3956
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3957 3958 3959

	active_objs = 0;
	num_slabs = 0;
3960 3961 3962 3963 3964
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3965 3966
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3967

3968
		list_for_each_entry(slabp, &l3->slabs_full, list) {
3969 3970 3971 3972 3973
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3974
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3975 3976 3977 3978 3979 3980 3981
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
3982
		list_for_each_entry(slabp, &l3->slabs_free, list) {
3983 3984 3985 3986 3987
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3988 3989
		if (l3->shared)
			shared_avail += l3->shared->avail;
3990

3991
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3992
	}
P
Pekka Enberg 已提交
3993 3994
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3995
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3996 3997
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3998
	name = cachep->name;
L
Linus Torvalds 已提交
3999 4000 4001 4002
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4003
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4004
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4005
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4006
		   cachep->limit, cachep->batchcount, cachep->shared);
4007
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4008
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4009
#if STATS
P
Pekka Enberg 已提交
4010
	{			/* list3 stats */
L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4018
		unsigned long node_frees = cachep->node_frees;
4019
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4020

4021
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4022
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4023
				reaped, errors, max_freeable, node_allocs,
4024
				node_frees, overflows);
L
Linus Torvalds 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4034
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4056 4057 4058 4059
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4070 4071
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4072
{
P
Pekka Enberg 已提交
4073
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4074
	int limit, batchcount, shared, res;
4075
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4076

L
Linus Torvalds 已提交
4077 4078 4079 4080
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4081
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4092
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4093
	res = -EINVAL;
4094
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4095
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4096 4097
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4098
				res = 0;
L
Linus Torvalds 已提交
4099
			} else {
4100
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4101
						       batchcount, shared);
L
Linus Torvalds 已提交
4102 4103 4104 4105
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4106
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4107 4108 4109 4110
	if (res >= 0)
		res = count;
	return res;
}
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4220
		list_for_each_entry(slabp, &l3->slabs_full, list)
4221
			handle_slab(n, cachep, slabp);
4222
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4259 4260
#endif

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4273 4274
unsigned int ksize(const void *objp)
{
4275 4276
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4277

4278
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4279
}