slab.c 116.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 152 153
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
154
 */
155
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
175
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
176
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
178
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
179
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
183
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
184
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391 392
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
393 394
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
395

396
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
397
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
398
	unsigned int gfporder;
L
Linus Torvalds 已提交
399 400

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
401
	gfp_t gfpflags;
L
Linus Torvalds 已提交
402

A
Andrew Morton 已提交
403
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
404
	unsigned int colour_off;	/* colour offset */
405
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
406
	unsigned int slab_size;
A
Andrew Morton 已提交
407
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
408 409

	/* constructor func */
410
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
411 412

	/* de-constructor func */
413
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
414

415
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
416 417
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
418

419
/* 6) statistics */
L
Linus Torvalds 已提交
420
#if STATS
P
Pekka Enberg 已提交
421 422 423 424 425 426 427 428 429
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
430
	unsigned long node_overflow;
P
Pekka Enberg 已提交
431 432 433 434
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
435 436
#endif
#if DEBUG
437 438 439 440 441 442 443 444
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
445
#endif
E
Eric Dumazet 已提交
446 447 448 449 450 451 452 453 454 455 456
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
457 458 459 460 461 462
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
463 464 465
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
466
 *
A
Adrian Bunk 已提交
467
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
468 469 470 471 472 473 474 475 476 477
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
478
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
479 480 481 482 483
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
484 485
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
486
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
487
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
488 489 490 491 492
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
493 494 495 496 497 498 499 500 501
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
502
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
503 504 505
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
506
#define	STATS_INC_NODEFREES(x)	do { } while (0)
507
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
508
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
509 510 511 512 513 514 515 516
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
517 518
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
519
 * 0		: objp
520
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
521 522
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
523
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
524
 * 		redzone word.
525 526
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
527 528
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
529
 */
530
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
531
{
532
	return cachep->obj_offset;
L
Linus Torvalds 已提交
533 534
}

535
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
536
{
537
	return cachep->obj_size;
L
Linus Torvalds 已提交
538 539
}

540
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
541 542
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
543 544
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
545 546
}

547
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
548 549 550
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
551 552 553 554 555
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
					      BYTES_PER_WORD);
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
556 557
}

558
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
559 560
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
561
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
562 563 564 565
}

#else

566 567
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
568 569
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
570 571 572 573 574
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
575 576
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
596 597 598 599
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
600
 */
601 602 603 604 605 606 607
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
608
	page = compound_head(page);
609
	BUG_ON(!PageSlab(page));
610 611 612 613 614 615 616 617 618 619
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
620
	BUG_ON(!PageSlab(page));
621 622
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
623

624 625
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
626
	struct page *page = virt_to_head_page(obj);
627 628 629 630 631
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
632
	struct page *page = virt_to_head_page(obj);
633 634 635
	return page_get_slab(page);
}

636 637 638 639 640 641
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

642 643 644 645 646 647 648 649
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
650
{
651 652
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
653 654
}

A
Andrew Morton 已提交
655 656 657
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
675
	{NULL,}
L
Linus Torvalds 已提交
676 677 678 679
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
680
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
681
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
682
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
683 684

/* internal cache of cache description objs */
685
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
686 687 688
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
689
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
690
	.name = "kmem_cache",
L
Linus Torvalds 已提交
691 692
};

693 694
#define BAD_ALIEN_MAGIC 0x01020304ul

695 696 697 698 699 700 701 702
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
703 704 705 706
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
707
 */
708 709 710 711
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
712 713 714

{
	int q;
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
742 743 744
	}
}
#else
745
static inline void init_lock_keys(void)
746 747 748 749
{
}
#endif

750 751 752 753
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
754
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
755 756 757 758 759 760 761 762
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
763 764
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
765 766 767
	FULL
} g_cpucache_up;

768 769 770 771 772 773 774 775
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

776
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
777

778
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
779 780 781 782
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
783 784
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
785 786 787 788 789
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
790 791 792
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
793
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
794 795 796 797 798
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
799
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
800 801 802
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
803
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
804 805
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
806
#endif
L
Linus Torvalds 已提交
807 808 809
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
810
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
811 812 813 814
{
	return __find_general_cachep(size, gfpflags);
}

815
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
816
{
817 818
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
819

A
Andrew Morton 已提交
820 821 822
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
823 824 825 826 827 828 829
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
879 880 881 882
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
883 884
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
885 886
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
887
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
888 889 890
	dump_stack();
}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
922
		node = first_node(node_online_map);
923

924
	per_cpu(reap_node, cpu) = node;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
948 949 950 951 952 953 954 955 956
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
957
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
958 959 960 961 962 963

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
964
	if (keventd_up() && reap_work->work.func == NULL) {
965
		init_reap_node(cpu);
966
		INIT_DELAYED_WORK(reap_work, cache_reap);
967 968
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
969 970 971
	}
}

972
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
973
					    int batchcount)
L
Linus Torvalds 已提交
974
{
P
Pekka Enberg 已提交
975
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
976 977
	struct array_cache *nc = NULL;

978
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
979 980 981 982 983
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
984
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
985 986 987 988
	}
	return nc;
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1038
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1039 1040 1041 1042 1043 1044 1045
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1046
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1047
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1048

P
Pekka Enberg 已提交
1049
static struct array_cache **alloc_alien_cache(int node, int limit)
1050 1051
{
	struct array_cache **ac_ptr;
1052
	int memsize = sizeof(void *) * nr_node_ids;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1066
				for (i--; i <= 0; i--)
1067 1068 1069 1070 1071 1072 1073 1074 1075
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1076
static void free_alien_cache(struct array_cache **ac_ptr)
1077 1078 1079 1080 1081 1082
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1083
	    kfree(ac_ptr[i]);
1084 1085 1086
	kfree(ac_ptr);
}

1087
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1088
				struct array_cache *ac, int node)
1089 1090 1091 1092 1093
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1094 1095 1096 1097 1098
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1099 1100
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1101

1102
		free_block(cachep, ac->entry, ac->avail, node);
1103 1104 1105 1106 1107
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1108 1109 1110 1111 1112 1113 1114 1115 1116
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1117 1118

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1119 1120 1121 1122 1123 1124
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1125 1126
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1127
{
P
Pekka Enberg 已提交
1128
	int i = 0;
1129 1130 1131 1132
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1133
		ac = alien[i];
1134 1135 1136 1137 1138 1139 1140
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1141

1142
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1143 1144 1145 1146 1147
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1148 1149 1150
	int node;

	node = numa_node_id();
1151 1152 1153 1154 1155

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1156
	if (likely(slabp->nodeid == node))
1157 1158
		return 0;

P
Pekka Enberg 已提交
1159
	l3 = cachep->nodelists[node];
1160 1161 1162
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1163
		spin_lock(&alien->lock);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1177 1178
#endif

1179
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1180
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1181 1182
{
	long cpu = (long)hcpu;
1183
	struct kmem_cache *cachep;
1184 1185 1186
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1187 1188 1189

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1190
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1191 1192
		/*
		 * We need to do this right in the beginning since
1193 1194 1195 1196 1197
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1198
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1199 1200
			/*
			 * Set up the size64 kmemlist for cpu before we can
1201 1202 1203 1204
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1205 1206
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1207 1208 1209
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1210
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1211

1212 1213 1214 1215 1216
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1217 1218
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1219

1220 1221
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1222 1223
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1224 1225 1226
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1227 1228 1229 1230
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1231
		list_for_each_entry(cachep, &cache_chain, next) {
1232
			struct array_cache *nc;
1233
			struct array_cache *shared = NULL;
1234
			struct array_cache **alien = NULL;
1235

1236
			nc = alloc_arraycache(node, cachep->limit,
1237
						cachep->batchcount);
L
Linus Torvalds 已提交
1238 1239
			if (!nc)
				goto bad;
1240 1241
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1242 1243
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1244 1245 1246
				if (!shared)
					goto bad;
			}
1247 1248 1249 1250 1251
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1252
			cachep->array[cpu] = nc;
1253 1254 1255
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1256 1257 1258 1259 1260 1261 1262 1263
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1264
			}
1265 1266 1267 1268 1269 1270 1271 1272 1273
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1274 1275 1276
		}
		break;
	case CPU_ONLINE:
1277
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1278 1279 1280
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1281 1282 1283 1284 1285 1286
	case CPU_DOWN_PREPARE:
		mutex_lock(&cache_chain_mutex);
		break;
	case CPU_DOWN_FAILED:
		mutex_unlock(&cache_chain_mutex);
		break;
L
Linus Torvalds 已提交
1287
	case CPU_DEAD:
1288 1289 1290 1291 1292 1293 1294 1295
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1296
		/* fall thru */
1297
#endif
L
Linus Torvalds 已提交
1298 1299 1300
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1301 1302
			struct array_cache *shared;
			struct array_cache **alien;
1303
			cpumask_t mask;
L
Linus Torvalds 已提交
1304

1305
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1306 1307 1308
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1309 1310 1311
			l3 = cachep->nodelists[node];

			if (!l3)
1312
				goto free_array_cache;
1313

1314
			spin_lock_irq(&l3->list_lock);
1315 1316 1317 1318

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1319
				free_block(cachep, nc->entry, nc->avail, node);
1320 1321

			if (!cpus_empty(mask)) {
1322
				spin_unlock_irq(&l3->list_lock);
1323
				goto free_array_cache;
P
Pekka Enberg 已提交
1324
			}
1325

1326 1327
			shared = l3->shared;
			if (shared) {
1328 1329
				free_block(cachep, shared->entry,
					   shared->avail, node);
1330 1331 1332
				l3->shared = NULL;
			}

1333 1334 1335 1336 1337 1338 1339 1340 1341
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1342
			}
1343
free_array_cache:
L
Linus Torvalds 已提交
1344 1345
			kfree(nc);
		}
1346 1347 1348 1349 1350 1351 1352 1353 1354
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1355
			drain_freelist(cachep, l3, l3->free_objects);
1356
		}
I
Ingo Molnar 已提交
1357
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1358 1359 1360
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1361
bad:
L
Linus Torvalds 已提交
1362 1363 1364
	return NOTIFY_BAD;
}

1365 1366 1367
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1368

1369 1370 1371
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1372 1373
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1374 1375 1376 1377 1378 1379 1380 1381
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1382 1383 1384 1385 1386
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1387 1388 1389 1390 1391
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1392 1393 1394
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399 1400
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1401
	int i;
1402
	int order;
P
Pekka Enberg 已提交
1403
	int node;
1404

1405 1406 1407
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1408 1409 1410 1411 1412
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1423 1424 1425
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1426 1427 1428
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1429
	 * 2) Create the first kmalloc cache.
1430
	 *    The struct kmem_cache for the new cache is allocated normally.
1431 1432 1433
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1434 1435
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1436 1437 1438
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1439 1440
	 */

P
Pekka Enberg 已提交
1441 1442
	node = numa_node_id();

L
Linus Torvalds 已提交
1443 1444 1445 1446 1447
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1448
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1449

E
Eric Dumazet 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1459 1460
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1461 1462
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1463

1464 1465 1466 1467 1468 1469
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1470
	BUG_ON(!cache_cache.num);
1471
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1472 1473 1474
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1480 1481 1482 1483
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1484 1485 1486
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1487 1488 1489 1490
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1491

A
Andrew Morton 已提交
1492
	if (INDEX_AC != INDEX_L3) {
1493
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1494 1495 1496 1497 1498 1499
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1500

1501 1502
	slab_early_init = 0;

L
Linus Torvalds 已提交
1503
	while (sizes->cs_size != ULONG_MAX) {
1504 1505
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1506 1507 1508
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1509 1510
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1511
		if (!sizes->cs_cachep) {
1512
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1513 1514 1515 1516 1517
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1518 1519 1520
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1521 1522 1523 1524 1525
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1526
#endif
L
Linus Torvalds 已提交
1527 1528 1529 1530 1531
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1532
		struct array_cache *ptr;
1533

L
Linus Torvalds 已提交
1534
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1535

L
Linus Torvalds 已提交
1536
		local_irq_disable();
1537 1538
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1539
		       sizeof(struct arraycache_init));
1540 1541 1542 1543 1544
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1545 1546
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1547

L
Linus Torvalds 已提交
1548
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1549

L
Linus Torvalds 已提交
1550
		local_irq_disable();
1551
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1552
		       != &initarray_generic.cache);
1553
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1554
		       sizeof(struct arraycache_init));
1555 1556 1557 1558 1559
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1560
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1561
		    ptr;
L
Linus Torvalds 已提交
1562 1563
		local_irq_enable();
	}
1564 1565
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1566 1567
		int nid;

1568
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1569
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1570

P
Pekka Enberg 已提交
1571
		for_each_online_node(nid) {
1572
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1573
				  &initkmem_list3[SIZE_AC + nid], nid);
1574 1575 1576

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1577
					  &initkmem_list3[SIZE_L3 + nid], nid);
1578 1579 1580
			}
		}
	}
L
Linus Torvalds 已提交
1581

1582
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1583
	{
1584
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1585
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1586
		list_for_each_entry(cachep, &cache_chain, next)
1587 1588
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1589
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1590 1591
	}

1592 1593 1594 1595
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1596 1597 1598
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1599 1600 1601
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1602 1603 1604
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1605 1606 1607
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1608 1609 1610 1611 1612 1613 1614
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1615 1616
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1617
	 */
1618
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1619
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1631
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1632 1633
{
	struct page *page;
1634
	int nr_pages;
L
Linus Torvalds 已提交
1635 1636
	int i;

1637
#ifndef CONFIG_MMU
1638 1639 1640
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1641
	 */
1642
	flags |= __GFP_COMP;
1643
#endif
1644

1645
	flags |= cachep->gfpflags;
1646 1647

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1648 1649 1650
	if (!page)
		return NULL;

1651
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1652
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1653 1654 1655 1656 1657
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1658 1659 1660
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1661 1662 1663 1664 1665
}

/*
 * Interface to system's page release.
 */
1666
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1667
{
P
Pekka Enberg 已提交
1668
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1669 1670 1671
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1672 1673 1674 1675 1676 1677
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1678
	while (i--) {
N
Nick Piggin 已提交
1679 1680
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1690
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1691
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1701
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1702
			    unsigned long caller)
L
Linus Torvalds 已提交
1703
{
1704
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1705

1706
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1707

P
Pekka Enberg 已提交
1708
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1709 1710
		return;

P
Pekka Enberg 已提交
1711 1712 1713 1714
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719 1720 1721
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1722
				*addr++ = svalue;
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728 1729
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1730
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1731 1732 1733
}
#endif

1734
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1735
{
1736 1737
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1738 1739

	memset(addr, val, size);
P
Pekka Enberg 已提交
1740
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1746 1747 1748
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1749
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1750 1751 1752 1753 1754
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1755
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1756
	}
L
Linus Torvalds 已提交
1757
	printk("\n");
D
Dave Jones 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1772 1773 1774 1775 1776
}
#endif

#if DEBUG

1777
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1783
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1784 1785
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1786 1787 1788 1789
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1790
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1791
		print_symbol("(%s)",
A
Andrew Morton 已提交
1792
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1793 1794
		printk("\n");
	}
1795 1796
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1797
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1798 1799
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1800 1801
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1802 1803 1804 1805
		dump_line(realobj, i, limit);
	}
}

1806
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1807 1808 1809 1810 1811
{
	char *realobj;
	int size, i;
	int lines = 0;

1812 1813
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1814

P
Pekka Enberg 已提交
1815
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1816
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1817
		if (i == size - 1)
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1824
				printk(KERN_ERR
1825 1826
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1827 1828 1829
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1830
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1831
			limit = 16;
P
Pekka Enberg 已提交
1832 1833
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1846
		struct slab *slabp = virt_to_slab(objp);
1847
		unsigned int objnr;
L
Linus Torvalds 已提交
1848

1849
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1850
		if (objnr) {
1851
			objp = index_to_obj(cachep, slabp, objnr - 1);
1852
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1853
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1854
			       realobj, size);
L
Linus Torvalds 已提交
1855 1856
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1857
		if (objnr + 1 < cachep->num) {
1858
			objp = index_to_obj(cachep, slabp, objnr + 1);
1859
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1860
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1861
			       realobj, size);
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1868 1869
#if DEBUG
/**
1870 1871 1872 1873 1874 1875
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1876
 */
1877
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1878 1879 1880
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1881
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1882 1883 1884

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1885 1886
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1887
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1888
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1889 1890 1891 1892 1893 1894 1895 1896 1897
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1898
					   "was overwritten");
L
Linus Torvalds 已提交
1899 1900
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1901
					   "was overwritten");
L
Linus Torvalds 已提交
1902 1903
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1904
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1905
	}
1906
}
L
Linus Torvalds 已提交
1907
#else
1908
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1909
{
L
Linus Torvalds 已提交
1910 1911 1912
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1913
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1914
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1915 1916
		}
	}
1917
}
L
Linus Torvalds 已提交
1918 1919
#endif

1920 1921 1922 1923 1924
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1925
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1926 1927
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1928
 */
1929
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1930 1931 1932 1933
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1934 1935 1936
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1937
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1943 1944
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1945 1946 1947
	}
}

A
Andrew Morton 已提交
1948 1949 1950 1951
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1952
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1953 1954 1955 1956
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1957
		cachep->nodelists[node] = &initkmem_list3[index + node];
1958
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1959 1960
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1961 1962 1963
	}
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1985
/**
1986 1987 1988 1989 1990 1991 1992
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1993 1994 1995 1996 1997
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1998
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1999
			size_t size, size_t align, unsigned long flags)
2000
{
2001
	unsigned long offslab_limit;
2002
	size_t left_over = 0;
2003
	int gfporder;
2004

A
Andrew Morton 已提交
2005
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2006 2007 2008
		unsigned int num;
		size_t remainder;

2009
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2010 2011
		if (!num)
			continue;
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2025

2026
		/* Found something acceptable - save it away */
2027
		cachep->num = num;
2028
		cachep->gfporder = gfporder;
2029 2030
		left_over = remainder;

2031 2032 2033 2034 2035 2036 2037 2038
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2039 2040 2041 2042
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2043
		if (gfporder >= slab_break_gfp_order)
2044 2045
			break;

2046 2047 2048
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2049
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2050 2051 2052 2053 2054
			break;
	}
	return left_over;
}

2055
static int setup_cpu_cache(struct kmem_cache *cachep)
2056
{
2057 2058 2059
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2106
	return 0;
2107 2108
}

L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2124 2125
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2138
struct kmem_cache *
L
Linus Torvalds 已提交
2139
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2140 2141
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2142
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2143 2144
{
	size_t left_over, slab_size, ralign;
2145
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2146 2147 2148 2149

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2150
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2151
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2152 2153
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2154 2155
		BUG();
	}
L
Linus Torvalds 已提交
2156

2157
	/*
2158 2159
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2160
	 */
I
Ingo Molnar 已提交
2161
	mutex_lock(&cache_chain_mutex);
2162

2163
	list_for_each_entry(pc, &cache_chain, next) {
2164 2165 2166 2167 2168 2169 2170 2171
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2172
		res = probe_kernel_address(pc->name, tmp);
2173
		if (res) {
2174 2175
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2176
			       pc->buffer_size);
2177 2178 2179
			continue;
		}

P
Pekka Enberg 已提交
2180
		if (!strcmp(pc->name, name)) {
2181 2182
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2183 2184 2185 2186 2187
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2197
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2198
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2209 2210
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2211
	 */
2212
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2213

A
Andrew Morton 已提交
2214 2215
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2216 2217 2218
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2219 2220 2221
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2222 2223
	}

A
Andrew Morton 已提交
2224 2225
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2226 2227
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2228 2229 2230 2231
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2232 2233
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2234
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2235 2236 2237 2238
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2239 2240 2241 2242 2243 2244 2245

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2246
		ralign = __alignof__(unsigned long long);
2247

2248
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2249 2250 2251
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2252
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2253 2254 2255
	if (ralign < align) {
		ralign = align;
	}
2256
	/* disable debug if necessary */
2257
	if (ralign > __alignof__(unsigned long long))
2258
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2259
	/*
2260
	 * 4) Store it.
L
Linus Torvalds 已提交
2261 2262 2263 2264
	 */
	align = ralign;

	/* Get cache's description obj. */
2265
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2266
	if (!cachep)
2267
		goto oops;
L
Linus Torvalds 已提交
2268 2269

#if DEBUG
2270
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2271

2272 2273 2274 2275
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2276 2277
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2278 2279
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2280 2281
	}
	if (flags & SLAB_STORE_USER) {
2282 2283
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2284 2285 2286 2287
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2288
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2289 2290
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2291 2292 2293 2294 2295
		size = PAGE_SIZE;
	}
#endif
#endif

2296 2297 2298 2299 2300 2301
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2302 2303 2304 2305 2306 2307 2308 2309
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2310
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2311 2312

	if (!cachep->num) {
2313 2314
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2315 2316
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2317
		goto oops;
L
Linus Torvalds 已提交
2318
	}
P
Pekka Enberg 已提交
2319 2320
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2333 2334
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2335 2336 2337 2338 2339 2340
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2341
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2342 2343 2344
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2345
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2346
		cachep->gfpflags |= GFP_DMA;
2347
	cachep->buffer_size = size;
2348
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2349

2350
	if (flags & CFLGS_OFF_SLAB) {
2351
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2352 2353 2354 2355 2356 2357 2358 2359 2360
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2361 2362 2363 2364
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2365 2366 2367 2368 2369
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2370 2371 2372

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2373
oops:
L
Linus Torvalds 已提交
2374 2375
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2376
		      name);
I
Ingo Molnar 已提交
2377
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2393
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2394 2395 2396
{
#ifdef CONFIG_SMP
	check_irq_off();
2397
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2398 2399
#endif
}
2400

2401
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2402 2403 2404 2405 2406 2407 2408
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2409 2410 2411 2412
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2413
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2414 2415
#endif

2416 2417 2418 2419
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2420 2421
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2422
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2423
	struct array_cache *ac;
2424
	int node = numa_node_id();
L
Linus Torvalds 已提交
2425 2426

	check_irq_off();
2427
	ac = cpu_cache_get(cachep);
2428 2429 2430
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2431 2432 2433
	ac->avail = 0;
}

2434
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2435
{
2436 2437 2438
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2439
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2440
	check_irq_on();
P
Pekka Enberg 已提交
2441
	for_each_online_node(node) {
2442
		l3 = cachep->nodelists[node];
2443 2444 2445 2446 2447 2448 2449
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2450
			drain_array(cachep, l3, l3->shared, 1, node);
2451
	}
L
Linus Torvalds 已提交
2452 2453
}

2454 2455 2456 2457 2458 2459 2460 2461
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2462
{
2463 2464
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2465 2466
	struct slab *slabp;

2467 2468
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2469

2470
		spin_lock_irq(&l3->list_lock);
2471
		p = l3->slabs_free.prev;
2472 2473 2474 2475
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2476

2477
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2478
#if DEBUG
2479
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2480 2481
#endif
		list_del(&slabp->list);
2482 2483 2484 2485 2486
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2487
		spin_unlock_irq(&l3->list_lock);
2488 2489
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2490
	}
2491 2492
out:
	return nr_freed;
L
Linus Torvalds 已提交
2493 2494
}

2495
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2496
static int __cache_shrink(struct kmem_cache *cachep)
2497 2498 2499 2500 2501 2502 2503 2504 2505
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2506 2507 2508 2509 2510 2511 2512
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2513 2514 2515 2516
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2517 2518 2519 2520 2521 2522 2523
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2524
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2525
{
2526
	int ret;
2527
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2528

2529 2530 2531 2532
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2533 2534 2535 2536 2537 2538 2539
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2540
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2552
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2553
{
2554
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2555 2556

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2557
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2558 2559 2560 2561 2562 2563
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2564
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2565
		mutex_unlock(&cache_chain_mutex);
2566
		return;
L
Linus Torvalds 已提交
2567 2568 2569
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2570
		synchronize_rcu();
L
Linus Torvalds 已提交
2571

2572
	__kmem_cache_destroy(cachep);
2573
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2574 2575 2576
}
EXPORT_SYMBOL(kmem_cache_destroy);

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2588
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2589 2590
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2591 2592
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2593

L
Linus Torvalds 已提交
2594 2595
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2596
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2597
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2598 2599 2600
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2601
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2602 2603 2604 2605
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2606
	slabp->s_mem = objp + colour_off;
2607
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2608 2609 2610 2611 2612
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2613
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2614 2615
}

2616
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2617
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2618 2619 2620 2621
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2622
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2635 2636 2637
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2638 2639
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2640
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2641
				     ctor_flags);
L
Linus Torvalds 已提交
2642 2643 2644 2645

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2646
					   " end of an object");
L
Linus Torvalds 已提交
2647 2648
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2649
					   " start of an object");
L
Linus Torvalds 已提交
2650
		}
A
Andrew Morton 已提交
2651 2652
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2653
			kernel_map_pages(virt_to_page(objp),
2654
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2655 2656 2657 2658
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2659
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2660
	}
P
Pekka Enberg 已提交
2661
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2662 2663 2664
	slabp->free = 0;
}

2665
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2666
{
2667 2668 2669 2670 2671 2672
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2673 2674
}

A
Andrew Morton 已提交
2675 2676
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2677
{
2678
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2692 2693
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2694
{
2695
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2696 2697 2698 2699 2700

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2701
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2702
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2703
				"'%s', objp %p\n", cachep->name, objp);
2704 2705 2706 2707 2708 2709 2710 2711
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2712 2713 2714 2715 2716 2717 2718
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2719
{
2720
	int nr_pages;
L
Linus Torvalds 已提交
2721 2722
	struct page *page;

2723
	page = virt_to_page(addr);
2724

2725
	nr_pages = 1;
2726
	if (likely(!PageCompound(page)))
2727 2728
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2729
	do {
2730 2731
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2732
		page++;
2733
	} while (--nr_pages);
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2740 2741
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2742
{
P
Pekka Enberg 已提交
2743 2744 2745 2746
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2747
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2748

A
Andrew Morton 已提交
2749 2750 2751
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2752
	 */
2753
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
L
Linus Torvalds 已提交
2754 2755

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2756
	local_flags = (flags & GFP_LEVEL_MASK);
2757
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2758
	check_irq_off();
2759 2760
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2761 2762

	/* Get colour for the slab, and cal the next value. */
2763 2764 2765 2766 2767
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2768

2769
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2782 2783 2784
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2785
	 */
2786 2787
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2788
	if (!objp)
L
Linus Torvalds 已提交
2789 2790 2791
		goto failed;

	/* Get slab management. */
2792 2793
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2794
	if (!slabp)
L
Linus Torvalds 已提交
2795 2796
		goto opps1;

2797
	slabp->nodeid = nodeid;
2798
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2799 2800 2801 2802 2803 2804

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2805
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2806 2807

	/* Make slab active. */
2808
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2809
	STATS_INC_GROWN(cachep);
2810 2811
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2812
	return 1;
A
Andrew Morton 已提交
2813
opps1:
L
Linus Torvalds 已提交
2814
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2815
failed:
L
Linus Torvalds 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2833 2834
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2835 2836 2837
	}
}

2838 2839
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2840
	unsigned long long redzone1, redzone2;
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2856
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2857 2858 2859
			obj, redzone1, redzone2);
}

2860
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2861
				   void *caller)
L
Linus Torvalds 已提交
2862 2863 2864 2865 2866
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2867
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2868
	kfree_debugcheck(objp);
2869
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2870

2871
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2872 2873

	if (cachep->flags & SLAB_RED_ZONE) {
2874
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2881
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2882 2883

	BUG_ON(objnr >= cachep->num);
2884
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889

	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2890
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2891
	}
2892 2893 2894
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2895 2896
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2897
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2898
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2899
			kernel_map_pages(virt_to_page(objp),
2900
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2911
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2912 2913 2914
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2915

L
Linus Torvalds 已提交
2916 2917 2918 2919 2920 2921 2922
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2923 2924 2925 2926
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2927
		for (i = 0;
2928
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2929
		     i++) {
A
Andrew Morton 已提交
2930
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2931
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2932
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2944
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2945 2946 2947 2948
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2949 2950 2951
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2952 2953

	check_irq_off();
2954
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2955
retry:
L
Linus Torvalds 已提交
2956 2957
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2958 2959 2960 2961
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2962 2963 2964
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2965
	l3 = cachep->nodelists[node];
2966 2967 2968

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2969

2970 2971 2972 2973
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2989 2990 2991 2992 2993 2994 2995 2996

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
2997 2998 2999 3000 3001
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3002
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3003
							    node);
L
Linus Torvalds 已提交
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3015
must_grow:
L
Linus Torvalds 已提交
3016
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3017
alloc_done:
3018
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3019 3020 3021

	if (unlikely(!ac->avail)) {
		int x;
3022
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3023

A
Andrew Morton 已提交
3024
		/* cache_grow can reenable interrupts, then ac could change. */
3025
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3026
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3027 3028
			return NULL;

A
Andrew Morton 已提交
3029
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3030 3031 3032
			goto retry;
	}
	ac->touched = 1;
3033
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3034 3035
}

A
Andrew Morton 已提交
3036 3037
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043 3044 3045
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3046 3047
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3048
{
P
Pekka Enberg 已提交
3049
	if (!objp)
L
Linus Torvalds 已提交
3050
		return objp;
P
Pekka Enberg 已提交
3051
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3052
#ifdef CONFIG_DEBUG_PAGEALLOC
3053
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3054
			kernel_map_pages(virt_to_page(objp),
3055
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3067 3068 3069 3070
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3071
			printk(KERN_ERR
3072
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3073 3074
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3075 3076 3077 3078
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3079 3080 3081 3082 3083
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3084
		slabp = page_get_slab(virt_to_head_page(objp));
3085 3086 3087 3088
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3089
	objp += obj_offset(cachep);
3090 3091
	if (cachep->ctor && cachep->flags & SLAB_POISON)
		cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3092 3093 3094 3095 3096 3097
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3098 3099 3100 3101 3102 3103
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3117
	.ignore_gfp_wait = 1,
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3146
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3177
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3178
{
P
Pekka Enberg 已提交
3179
	void *objp;
L
Linus Torvalds 已提交
3180 3181
	struct array_cache *ac;

3182
	check_irq_off();
3183

3184
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3185 3186 3187
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3188
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3189 3190 3191 3192
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3193 3194 3195
	return objp;
}

3196
#ifdef CONFIG_NUMA
3197
/*
3198
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3199 3200 3201 3202 3203 3204 3205 3206
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3207
	if (in_interrupt() || (flags & __GFP_THISNODE))
3208 3209 3210 3211 3212 3213 3214
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3215
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3216 3217 3218
	return NULL;
}

3219 3220
/*
 * Fallback function if there was no memory available and no objects on a
3221 3222 3223 3224 3225
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3226
 */
3227
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3228
{
3229 3230
	struct zonelist *zonelist;
	gfp_t local_flags;
3231 3232
	struct zone **z;
	void *obj = NULL;
3233
	int nid;
3234 3235 3236 3237 3238 3239 3240

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3241

3242 3243 3244 3245 3246
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3247
	for (z = zonelist->zones; *z && !obj; z++) {
3248
		nid = zone_to_nid(*z);
3249

3250
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3251 3252 3253 3254 3255 3256
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3257
	if (!obj) {
3258 3259 3260 3261 3262 3263
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3264 3265 3266
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3267
		obj = kmem_getpages(cache, flags, -1);
3268 3269
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3286
				/* cache_grow already freed obj */
3287 3288 3289
				obj = NULL;
			}
		}
3290
	}
3291 3292 3293
	return obj;
}

3294 3295
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3296
 */
3297
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3298
				int nodeid)
3299 3300
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3301 3302 3303 3304 3305 3306 3307 3308
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3309
retry:
3310
	check_irq_off();
P
Pekka Enberg 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3330
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3331 3332 3333 3334 3335
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3336
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3337
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3338
	else
P
Pekka Enberg 已提交
3339
		list_add(&slabp->list, &l3->slabs_partial);
3340

P
Pekka Enberg 已提交
3341 3342
	spin_unlock(&l3->list_lock);
	goto done;
3343

A
Andrew Morton 已提交
3344
must_grow:
P
Pekka Enberg 已提交
3345
	spin_unlock(&l3->list_lock);
3346
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3347 3348
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3349

3350
	return fallback_alloc(cachep, flags);
3351

A
Andrew Morton 已提交
3352
done:
P
Pekka Enberg 已提交
3353
	return obj;
3354
}
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3375 3376 3377
	if (should_failslab(cachep, flags))
		return NULL;

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3448 3449 3450
	if (should_failslab(cachep, flags))
		return NULL;

3451 3452 3453 3454 3455 3456 3457 3458 3459
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3460 3461 3462 3463

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3464
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3465
		       int node)
L
Linus Torvalds 已提交
3466 3467
{
	int i;
3468
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3469 3470 3471 3472 3473

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3474
		slabp = virt_to_slab(objp);
3475
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3476
		list_del(&slabp->list);
3477
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3478
		check_slabp(cachep, slabp);
3479
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3480
		STATS_DEC_ACTIVE(cachep);
3481
		l3->free_objects++;
L
Linus Torvalds 已提交
3482 3483 3484 3485
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3486 3487
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3488 3489 3490 3491 3492 3493
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3494 3495
				slab_destroy(cachep, slabp);
			} else {
3496
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3497 3498 3499 3500 3501 3502
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3503
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3504 3505 3506 3507
		}
	}
}

3508
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3509 3510
{
	int batchcount;
3511
	struct kmem_list3 *l3;
3512
	int node = numa_node_id();
L
Linus Torvalds 已提交
3513 3514 3515 3516 3517 3518

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3519
	l3 = cachep->nodelists[node];
3520
	spin_lock(&l3->list_lock);
3521 3522
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3523
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3524 3525 3526
		if (max) {
			if (batchcount > max)
				batchcount = max;
3527
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3528
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3529 3530 3531 3532 3533
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3534
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3535
free_done:
L
Linus Torvalds 已提交
3536 3537 3538 3539 3540
#if STATS
	{
		int i = 0;
		struct list_head *p;

3541 3542
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3554
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3555
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3556
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3557 3558 3559
}

/*
A
Andrew Morton 已提交
3560 3561
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3562
 */
3563
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3564
{
3565
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3566 3567 3568 3569

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3570
	if (use_alien_caches && cache_free_alien(cachep, objp))
3571 3572
		return;

L
Linus Torvalds 已提交
3573 3574
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3575
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3576 3577 3578 3579
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3580
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3592
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3593
{
3594
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3595 3596 3597
}
EXPORT_SYMBOL(kmem_cache_alloc);

3598
/**
3599
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3629
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3630
{
P
Pekka Enberg 已提交
3631
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3632
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3633
	unsigned long align_mask = BYTES_PER_WORD - 1;
3634
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3650
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3651 3652
		goto out;
	return 1;
A
Andrew Morton 已提交
3653
out:
L
Linus Torvalds 已提交
3654 3655 3656 3657
	return 0;
}

#ifdef CONFIG_NUMA
3658 3659 3660 3661 3662
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3663 3664
EXPORT_SYMBOL(kmem_cache_alloc_node);

3665 3666
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3667
{
3668
	struct kmem_cache *cachep;
3669 3670 3671 3672 3673 3674

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3675 3676 3677 3678 3679 3680 3681

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3682
EXPORT_SYMBOL(__kmalloc_node);
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3698 3699

/**
3700
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3701
 * @size: how many bytes of memory are required.
3702
 * @flags: the type of memory to allocate (see kmalloc).
3703
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3704
 */
3705 3706
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3707
{
3708
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3709

3710 3711 3712 3713 3714 3715
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3716 3717
	if (unlikely(cachep == NULL))
		return NULL;
3718 3719 3720 3721
	return __cache_alloc(cachep, flags, caller);
}


3722
#ifdef CONFIG_DEBUG_SLAB
3723 3724
void *__kmalloc(size_t size, gfp_t flags)
{
3725
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3726 3727 3728
}
EXPORT_SYMBOL(__kmalloc);

3729 3730 3731 3732 3733
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3734 3735 3736 3737 3738 3739 3740

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3741 3742
#endif

P
Pekka Enberg 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 *
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3790 3791 3792 3793 3794 3795 3796 3797
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3798
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3799 3800 3801
{
	unsigned long flags;

3802 3803
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3804
	local_irq_save(flags);
3805
	debug_check_no_locks_freed(objp, obj_size(cachep));
3806
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3807 3808 3809 3810 3811 3812 3813 3814
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3815 3816
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3817 3818 3819 3820 3821
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3822
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3823 3824 3825 3826 3827 3828
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3829
	c = virt_to_cache(objp);
3830
	debug_check_no_locks_freed(objp, obj_size(c));
3831
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3832 3833 3834 3835
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3836
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3837
{
3838
	return obj_size(cachep);
L
Linus Torvalds 已提交
3839 3840 3841
}
EXPORT_SYMBOL(kmem_cache_size);

3842
const char *kmem_cache_name(struct kmem_cache *cachep)
3843 3844 3845 3846 3847
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3848
/*
3849
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3850
 */
3851
static int alloc_kmemlist(struct kmem_cache *cachep)
3852 3853 3854
{
	int node;
	struct kmem_list3 *l3;
3855
	struct array_cache *new_shared;
3856
	struct array_cache **new_alien = NULL;
3857 3858

	for_each_online_node(node) {
3859

3860 3861 3862 3863 3864
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3865

3866 3867 3868
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3869
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3870
					0xbaadf00d);
3871 3872 3873 3874
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3875
		}
3876

A
Andrew Morton 已提交
3877 3878
		l3 = cachep->nodelists[node];
		if (l3) {
3879 3880
			struct array_cache *shared = l3->shared;

3881 3882
			spin_lock_irq(&l3->list_lock);

3883
			if (shared)
3884 3885
				free_block(cachep, shared->entry,
						shared->avail, node);
3886

3887 3888
			l3->shared = new_shared;
			if (!l3->alien) {
3889 3890 3891
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3892
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3893
					cachep->batchcount + cachep->num;
3894
			spin_unlock_irq(&l3->list_lock);
3895
			kfree(shared);
3896 3897 3898
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3899
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3900 3901 3902
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3903
			goto fail;
3904
		}
3905 3906 3907

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3908
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3909
		l3->shared = new_shared;
3910
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3911
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3912
					cachep->batchcount + cachep->num;
3913 3914
		cachep->nodelists[node] = l3;
	}
3915
	return 0;
3916

A
Andrew Morton 已提交
3917
fail:
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3933
	return -ENOMEM;
3934 3935
}

L
Linus Torvalds 已提交
3936
struct ccupdate_struct {
3937
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3938 3939 3940 3941 3942
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3943
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3944 3945 3946
	struct array_cache *old;

	check_irq_off();
3947
	old = cpu_cache_get(new->cachep);
3948

L
Linus Torvalds 已提交
3949 3950 3951 3952
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3953
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3954 3955
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3956
{
3957
	struct ccupdate_struct *new;
3958
	int i;
L
Linus Torvalds 已提交
3959

3960 3961 3962 3963
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3964
	for_each_online_cpu(i) {
3965
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3966
						batchcount);
3967
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3968
			for (i--; i >= 0; i--)
3969 3970
				kfree(new->new[i]);
			kfree(new);
3971
			return -ENOMEM;
L
Linus Torvalds 已提交
3972 3973
		}
	}
3974
	new->cachep = cachep;
L
Linus Torvalds 已提交
3975

3976
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3977

L
Linus Torvalds 已提交
3978 3979 3980
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3981
	cachep->shared = shared;
L
Linus Torvalds 已提交
3982

3983
	for_each_online_cpu(i) {
3984
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3985 3986
		if (!ccold)
			continue;
3987
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3988
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3989
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3990 3991
		kfree(ccold);
	}
3992
	kfree(new);
3993
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3994 3995
}

3996
/* Called with cache_chain_mutex held always */
3997
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3998 3999 4000 4001
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4002 4003
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4004 4005
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4006
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4007 4008 4009 4010
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4011
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4012
		limit = 1;
4013
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4014
		limit = 8;
4015
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4016
		limit = 24;
4017
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4018 4019 4020 4021
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4022 4023
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029 4030 4031
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4032
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4033 4034 4035
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4036 4037 4038
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4039 4040 4041 4042
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4043
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4044 4045
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4046
		       cachep->name, -err);
4047
	return err;
L
Linus Torvalds 已提交
4048 4049
}

4050 4051
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4052 4053
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4054 4055 4056
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4057 4058 4059
{
	int tofree;

4060 4061
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4062 4063
	if (ac->touched && !force) {
		ac->touched = 0;
4064
	} else {
4065
		spin_lock_irq(&l3->list_lock);
4066 4067 4068 4069 4070 4071 4072 4073 4074
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4075
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4076 4077 4078 4079 4080
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4081
 * @w: work descriptor
L
Linus Torvalds 已提交
4082 4083 4084 4085 4086 4087
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4088 4089
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4090
 */
4091
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4092
{
4093
	struct kmem_cache *searchp;
4094
	struct kmem_list3 *l3;
4095
	int node = numa_node_id();
4096 4097
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4098

4099
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4100
		/* Give up. Setup the next iteration. */
4101
		goto out;
L
Linus Torvalds 已提交
4102

4103
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4104 4105
		check_irq_on();

4106 4107 4108 4109 4110
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4111
		l3 = searchp->nodelists[node];
4112

4113
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4114

4115
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4116

4117 4118 4119 4120
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4121
		if (time_after(l3->next_reap, jiffies))
4122
			goto next;
L
Linus Torvalds 已提交
4123

4124
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4125

4126
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4127

4128
		if (l3->free_touched)
4129
			l3->free_touched = 0;
4130 4131
		else {
			int freed;
L
Linus Torvalds 已提交
4132

4133 4134 4135 4136
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4137
next:
L
Linus Torvalds 已提交
4138 4139 4140
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4141
	mutex_unlock(&cache_chain_mutex);
4142
	next_reap_node();
4143
	refresh_cpu_vm_stats(smp_processor_id());
4144
out:
A
Andrew Morton 已提交
4145
	/* Set up the next iteration */
4146
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4147 4148 4149 4150
}

#ifdef CONFIG_PROC_FS

4151
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4152
{
4153 4154 4155 4156
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4157
#if STATS
4158
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4159
#else
4160
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4161
#endif
4162 4163 4164 4165
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4166
#if STATS
4167
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4168
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4169
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4170
#endif
4171 4172 4173 4174 4175 4176 4177 4178
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4179
	mutex_lock(&cache_chain_mutex);
4180 4181
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4182 4183 4184 4185 4186 4187
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4188
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4189 4190 4191 4192
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4193
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4194
	++*pos;
A
Andrew Morton 已提交
4195 4196
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4197 4198 4199 4200
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4201
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4202 4203 4204 4205
}

static int s_show(struct seq_file *m, void *p)
{
4206
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4207 4208 4209 4210 4211
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4212
	const char *name;
L
Linus Torvalds 已提交
4213
	char *error = NULL;
4214 4215
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4216 4217 4218

	active_objs = 0;
	num_slabs = 0;
4219 4220 4221 4222 4223
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4224 4225
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4226

4227
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4228 4229 4230 4231 4232
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4233
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4234 4235 4236 4237 4238 4239 4240
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4241
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4242 4243 4244 4245 4246
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4247 4248
		if (l3->shared)
			shared_avail += l3->shared->avail;
4249

4250
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4251
	}
P
Pekka Enberg 已提交
4252 4253
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4254
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4255 4256
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4257
	name = cachep->name;
L
Linus Torvalds 已提交
4258 4259 4260 4261
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4262
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4263
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4264
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4265
		   cachep->limit, cachep->batchcount, cachep->shared);
4266
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4267
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4268
#if STATS
P
Pekka Enberg 已提交
4269
	{			/* list3 stats */
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4277
		unsigned long node_frees = cachep->node_frees;
4278
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4279

4280
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4281
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4282
				reaped, errors, max_freeable, node_allocs,
4283
				node_frees, overflows);
L
Linus Torvalds 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4293
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4314
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4315 4316 4317 4318
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4329 4330
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4331
{
P
Pekka Enberg 已提交
4332
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4333
	int limit, batchcount, shared, res;
4334
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4335

L
Linus Torvalds 已提交
4336 4337 4338 4339
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4340
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4351
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4352
	res = -EINVAL;
4353
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4354
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4355 4356
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4357
				res = 0;
L
Linus Torvalds 已提交
4358
			} else {
4359
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4360
						       batchcount, shared);
L
Linus Torvalds 已提交
4361 4362 4363 4364
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4365
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4366 4367 4368 4369
	if (res >= 0)
		res = count;
	return res;
}
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4479
		list_for_each_entry(slabp, &l3->slabs_full, list)
4480
			handle_slab(n, cachep, slabp);
4481
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4508

4509 4510 4511
	return 0;
}

4512
const struct seq_operations slabstats_op = {
4513 4514 4515 4516 4517 4518
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4519 4520
#endif

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4533
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4534
{
4535 4536
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4537

4538
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4539
}