slab.c 110.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
I
Ingo Molnar 已提交
110
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177 178
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
182 183
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

206
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
207 208
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209 210
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
220 221 222 223 224 225
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
245
	struct rcu_head head;
246
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
247
	void *addr;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
267
	spinlock_t lock;
A
Andrew Morton 已提交
268 269 270 271 272 273
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
274 275
};

A
Andrew Morton 已提交
276 277 278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
279 280 281 282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
296 297 298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299 300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

312 313 314 315
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
316
static int enable_cpucache(struct kmem_cache *cachep);
317 318
static void cache_reap(void *unused);

319
/*
A
Andrew Morton 已提交
320 321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325 326
	extern void __bad_size(void);

327 328 329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340 341 342
	return 0;
}

343 344
static int slab_early_init = 1;

345 346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
347

P
Pekka Enberg 已提交
348
static void kmem_list3_init(struct kmem_list3 *parent)
349 350 351 352 353 354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356 357 358 359 360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
361 362 363 364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365 366
	} while (0)

A
Andrew Morton 已提交
367 368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369 370 371 372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
373 374

/*
375
 * struct kmem_cache
L
Linus Torvalds 已提交
376 377 378
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
379

380
struct kmem_cache {
L
Linus Torvalds 已提交
381
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
384 385 386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
390
	struct kmem_list3 *nodelists[MAX_NUMNODES];
391

A
Andrew Morton 已提交
392 393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
394

395
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
396
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
397
	unsigned int gfporder;
L
Linus Torvalds 已提交
398 399

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
400
	gfp_t gfpflags;
L
Linus Torvalds 已提交
401

A
Andrew Morton 已提交
402
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
405
	unsigned int slab_size;
A
Andrew Morton 已提交
406
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
407 408

	/* constructor func */
409
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
410 411

	/* de-constructor func */
412
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
413

414
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
415 416
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
417

418
/* 6) statistics */
L
Linus Torvalds 已提交
419
#if STATS
P
Pekka Enberg 已提交
420 421 422 423 424 425 426 427 428
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
429
	unsigned long node_overflow;
P
Pekka Enberg 已提交
430 431 432 433
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
434 435
#endif
#if DEBUG
436 437 438 439 440 441 442 443
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
444 445 446 447 448 449 450
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
451 452 453
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
454
 *
A
Adrian Bunk 已提交
455
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
466
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
467 468 469 470 471
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
472 473
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
490
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
491 492 493
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494
#define	STATS_INC_NODEFREES(x)	do { } while (0)
495
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
496
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
505 506
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
507
 * 0		: objp
508
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
509 510
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
511
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
512
 * 		redzone word.
513 514
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
515 516
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
517
 */
518
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_offset;
L
Linus Torvalds 已提交
521 522
}

523
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
524
{
525
	return cachep->obj_size;
L
Linus Torvalds 已提交
526 527
}

528
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
529 530
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
532 533
}

534
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
535 536 537
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
538
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
539
					 2 * BYTES_PER_WORD);
540
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542
}

543
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
544 545
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
547 548 549 550
}

#else

551 552
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
553 554 555 556 557 558 559
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
560 561
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
581 582 583 584
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
585
 */
586 587 588 589 590 591 592
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
593 594
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
595
	BUG_ON(!PageSlab(page));
596 597 598 599 600 601 602 603 604 605
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
606 607
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
608
	BUG_ON(!PageSlab(page));
609 610
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
611

612 613 614 615 616 617 618 619 620 621 622 623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

624 625 626 627 628 629 630 631 632 633 634 635
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
636 637 638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
656
	{NULL,}
L
Linus Torvalds 已提交
657 658 659 660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664 665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
667 668 669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
671
	.name = "kmem_cache",
L
Linus Torvalds 已提交
672
#if DEBUG
673
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
674 675 676
#endif
};

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
 */
static struct lock_class_key on_slab_key;

static inline void init_lock_keys(struct cache_sizes *s)
{
	int q;

	for (q = 0; q < MAX_NUMNODES; q++) {
		if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
			continue;
		lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
				  &on_slab_key);
	}
}

#else
static inline void init_lock_keys(struct cache_sizes *s)
{
}
#endif



L
Linus Torvalds 已提交
708
/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
709
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
710 711 712
static struct list_head cache_chain;

/*
A
Andrew Morton 已提交
713 714
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
L
Linus Torvalds 已提交
715 716 717 718 719 720 721 722 723 724 725
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
726 727
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
728 729 730
	FULL
} g_cpucache_up;

731 732 733 734 735 736 737 738
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

L
Linus Torvalds 已提交
739 740
static DEFINE_PER_CPU(struct work_struct, reap_work);

741
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
742 743 744 745
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
746 747
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
748 749 750 751 752
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
753 754 755
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
756
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
757 758 759 760 761
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
762
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
763 764 765 766 767 768 769 770
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
771
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
772 773 774 775
{
	return __find_general_cachep(size, gfpflags);
}

776
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
777
{
778 779
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
780

A
Andrew Morton 已提交
781 782 783
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
784 785 786 787 788 789 790
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
840 841 842 843
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
844 845
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
846 847
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
848
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
849 850 851
	dump_stack();
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
867
		node = first_node(node_online_map);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
910
		init_reap_node(cpu);
L
Linus Torvalds 已提交
911 912 913 914 915
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

916
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
917
					    int batchcount)
L
Linus Torvalds 已提交
918
{
P
Pekka Enberg 已提交
919
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
920 921
	struct array_cache *nc = NULL;

922
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
923 924 925 926 927
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
928
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
929 930 931 932
	}
	return nc;
}

933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

957
#ifdef CONFIG_NUMA
958
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
959
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
960

P
Pekka Enberg 已提交
961
static struct array_cache **alloc_alien_cache(int node, int limit)
962 963
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
964
	int memsize = sizeof(void *) * MAX_NUMNODES;
965 966 967 968 969 970 971 972 973 974 975 976 977
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
978
				for (i--; i <= 0; i--)
979 980 981 982 983 984 985 986 987
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
988
static void free_alien_cache(struct array_cache **ac_ptr)
989 990 991 992 993 994
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
995
	    kfree(ac_ptr[i]);
996 997 998
	kfree(ac_ptr);
}

999
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1000
				struct array_cache *ac, int node)
1001 1002 1003 1004 1005
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1006 1007 1008 1009 1010
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1011 1012
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1013

1014
		free_block(cachep, ac->entry, ac->avail, node);
1015 1016 1017 1018 1019
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1020 1021 1022 1023 1024 1025 1026 1027 1028
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1029 1030

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1031 1032 1033 1034 1035 1036
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1037 1038
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1039
{
P
Pekka Enberg 已提交
1040
	int i = 0;
1041 1042 1043 1044
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1045
		ac = alien[i];
1046 1047 1048 1049 1050 1051 1052
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1053

1054
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1072
		spin_lock(&alien->lock);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1087
#else
1088

1089
#define drain_alien_cache(cachep, alien) do { } while (0)
1090
#define reap_alien(cachep, l3) do { } while (0)
1091

1092 1093 1094 1095 1096
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

1097 1098 1099
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1100

1101
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1102 1103 1104 1105
{
	return 0;
}

1106 1107
#endif

1108
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1109
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1110 1111
{
	long cpu = (long)hcpu;
1112
	struct kmem_cache *cachep;
1113 1114 1115
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1116 1117 1118

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1119
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1120 1121
		/*
		 * We need to do this right in the beginning since
1122 1123 1124 1125 1126
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1127
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1128 1129
			/*
			 * Set up the size64 kmemlist for cpu before we can
1130 1131 1132 1133
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1134 1135
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1136 1137 1138
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1139
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1140

1141 1142 1143 1144 1145
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1146 1147
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1148

1149 1150
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1151 1152
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1153 1154 1155
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1156 1157 1158 1159
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1160
		list_for_each_entry(cachep, &cache_chain, next) {
1161
			struct array_cache *nc;
1162 1163
			struct array_cache *shared;
			struct array_cache **alien;
1164

1165
			nc = alloc_arraycache(node, cachep->limit,
1166
						cachep->batchcount);
L
Linus Torvalds 已提交
1167 1168
			if (!nc)
				goto bad;
1169 1170 1171 1172 1173
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1174

1175 1176 1177
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1178
			cachep->array[cpu] = nc;
1179 1180 1181
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1182 1183 1184 1185 1186 1187 1188 1189
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1190
			}
1191 1192 1193 1194 1195 1196 1197 1198 1199
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1200
		}
I
Ingo Molnar 已提交
1201
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1202 1203 1204 1205 1206 1207
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1208 1209 1210 1211 1212 1213 1214 1215
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1216 1217
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1218
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1219 1220
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1221 1222
			struct array_cache *shared;
			struct array_cache **alien;
1223
			cpumask_t mask;
L
Linus Torvalds 已提交
1224

1225
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1226 1227 1228
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1229 1230 1231
			l3 = cachep->nodelists[node];

			if (!l3)
1232
				goto free_array_cache;
1233

1234
			spin_lock_irq(&l3->list_lock);
1235 1236 1237 1238

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1239
				free_block(cachep, nc->entry, nc->avail, node);
1240 1241

			if (!cpus_empty(mask)) {
1242
				spin_unlock_irq(&l3->list_lock);
1243
				goto free_array_cache;
P
Pekka Enberg 已提交
1244
			}
1245

1246 1247
			shared = l3->shared;
			if (shared) {
1248
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1249
					   l3->shared->avail, node);
1250 1251 1252
				l3->shared = NULL;
			}

1253 1254 1255 1256 1257 1258 1259 1260 1261
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1262
			}
1263
free_array_cache:
L
Linus Torvalds 已提交
1264 1265
			kfree(nc);
		}
1266 1267 1268 1269 1270 1271 1272 1273 1274
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1275
			drain_freelist(cachep, l3, l3->free_objects);
1276
		}
I
Ingo Molnar 已提交
1277
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1278 1279 1280 1281
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1282
bad:
I
Ingo Molnar 已提交
1283
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1284 1285 1286
	return NOTIFY_BAD;
}

1287 1288 1289
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1290

1291 1292 1293
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1294 1295
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1296 1297 1298 1299 1300 1301 1302 1303 1304
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1305 1306 1307 1308 1309
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1310 1311 1312 1313 1314
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1315 1316 1317
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1318 1319 1320 1321 1322 1323
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1324
	int i;
1325
	int order;
1326 1327 1328 1329 1330 1331

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1342 1343 1344
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1345 1346 1347
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1348
	 * 2) Create the first kmalloc cache.
1349
	 *    The struct kmem_cache for the new cache is allocated normally.
1350 1351 1352
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1353 1354
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1355 1356 1357
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362 1363 1364
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1365
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1366

A
Andrew Morton 已提交
1367 1368
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1369

1370 1371 1372 1373 1374 1375
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1376
	BUG_ON(!cache_cache.num);
1377
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1378 1379 1380
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1381 1382 1383 1384 1385

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1386 1387 1388 1389
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1390 1391 1392
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1393 1394 1395 1396
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1397

A
Andrew Morton 已提交
1398
	if (INDEX_AC != INDEX_L3) {
1399
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1400 1401 1402 1403 1404 1405
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1406

1407 1408
	slab_early_init = 0;

L
Linus Torvalds 已提交
1409
	while (sizes->cs_size != ULONG_MAX) {
1410 1411
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1412 1413 1414
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1415 1416
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1417
		if (!sizes->cs_cachep) {
1418
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1419 1420 1421 1422 1423
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1424
		init_lock_keys(sizes);
L
Linus Torvalds 已提交
1425 1426

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1427 1428 1429 1430 1431
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1432 1433 1434 1435 1436
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1437
		struct array_cache *ptr;
1438

L
Linus Torvalds 已提交
1439
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1440

L
Linus Torvalds 已提交
1441
		local_irq_disable();
1442 1443
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1444
		       sizeof(struct arraycache_init));
1445 1446 1447 1448 1449
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1450 1451
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1452

L
Linus Torvalds 已提交
1453
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1454

L
Linus Torvalds 已提交
1455
		local_irq_disable();
1456
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1457
		       != &initarray_generic.cache);
1458
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1459
		       sizeof(struct arraycache_init));
1460 1461 1462 1463 1464
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1465
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1466
		    ptr;
L
Linus Torvalds 已提交
1467 1468
		local_irq_enable();
	}
1469 1470 1471 1472 1473
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1474
			  numa_node_id());
1475 1476 1477

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1478
				  &initkmem_list3[SIZE_AC + node], node);
1479 1480 1481

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1482 1483
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1484 1485 1486
			}
		}
	}
L
Linus Torvalds 已提交
1487

1488
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1489
	{
1490
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1491
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1492
		list_for_each_entry(cachep, &cache_chain, next)
1493 1494
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1495
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500
	}

	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1501 1502 1503
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1504 1505 1506
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1507 1508 1509
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1510 1511 1512 1513 1514 1515 1516
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1517 1518
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1519
	 */
1520
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1521
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1533
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1534 1535
{
	struct page *page;
1536
	int nr_pages;
L
Linus Torvalds 已提交
1537 1538
	int i;

1539
#ifndef CONFIG_MMU
1540 1541 1542
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1543
	 */
1544
	flags |= __GFP_COMP;
1545
#endif
1546 1547 1548
	flags |= cachep->gfpflags;

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1549 1550 1551
	if (!page)
		return NULL;

1552
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1553
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1554
		atomic_add(nr_pages, &slab_reclaim_pages);
1555
	add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
1556 1557 1558
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563
}

/*
 * Interface to system's page release.
 */
1564
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1565
{
P
Pekka Enberg 已提交
1566
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1567 1568 1569
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1570
	sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
L
Linus Torvalds 已提交
1571
	while (i--) {
N
Nick Piggin 已提交
1572 1573
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1579 1580
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1581 1582 1583 1584
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1585
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1586
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1596
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1597
			    unsigned long caller)
L
Linus Torvalds 已提交
1598
{
1599
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1600

1601
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1602

P
Pekka Enberg 已提交
1603
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1604 1605
		return;

P
Pekka Enberg 已提交
1606 1607 1608 1609
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615 1616
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1617
				*addr++ = svalue;
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1625
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1626 1627 1628
}
#endif

1629
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1630
{
1631 1632
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1633 1634

	memset(addr, val, size);
P
Pekka Enberg 已提交
1635
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1636 1637 1638 1639 1640 1641
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
A
Andrew Morton 已提交
1642
	for (i = 0; i < limit; i++)
P
Pekka Enberg 已提交
1643
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649
	printk("\n");
}
#endif

#if DEBUG

1650
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1657 1658
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1659 1660 1661 1662
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1663
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1664
		print_symbol("(%s)",
A
Andrew Morton 已提交
1665
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1666 1667
		printk("\n");
	}
1668 1669
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1670
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1671 1672
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1673 1674
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1675 1676 1677 1678
		dump_line(realobj, i, limit);
	}
}

1679
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1680 1681 1682 1683 1684
{
	char *realobj;
	int size, i;
	int lines = 0;

1685 1686
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1687

P
Pekka Enberg 已提交
1688
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1689
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1690
		if (i == size - 1)
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695 1696
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1697
				printk(KERN_ERR
A
Andrew Morton 已提交
1698 1699
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1700 1701 1702
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1703
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1704
			limit = 16;
P
Pekka Enberg 已提交
1705 1706
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1719
		struct slab *slabp = virt_to_slab(objp);
1720
		unsigned int objnr;
L
Linus Torvalds 已提交
1721

1722
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1723
		if (objnr) {
1724
			objp = index_to_obj(cachep, slabp, objnr - 1);
1725
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1726
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1727
			       realobj, size);
L
Linus Torvalds 已提交
1728 1729
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1730
		if (objnr + 1 < cachep->num) {
1731
			objp = index_to_obj(cachep, slabp, objnr + 1);
1732
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1733
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1734
			       realobj, size);
L
Linus Torvalds 已提交
1735 1736 1737 1738 1739 1740
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1741 1742
#if DEBUG
/**
1743 1744 1745 1746 1747 1748
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1749
 */
1750
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1751 1752 1753
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1754
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1755 1756 1757

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1758 1759
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1760
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1761
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1771
					   "was overwritten");
L
Linus Torvalds 已提交
1772 1773
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1774
					   "was overwritten");
L
Linus Torvalds 已提交
1775 1776
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1777
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1778
	}
1779
}
L
Linus Torvalds 已提交
1780
#else
1781
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1782
{
L
Linus Torvalds 已提交
1783 1784 1785
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1786
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1787
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1788 1789
		}
	}
1790
}
L
Linus Torvalds 已提交
1791 1792
#endif

1793 1794 1795 1796 1797
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1798
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1799 1800
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1801
 */
1802
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1803 1804 1805 1806
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1807 1808 1809
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1810
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1816 1817
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1818 1819 1820
	}
}

A
Andrew Morton 已提交
1821 1822 1823 1824
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1825
static void set_up_list3s(struct kmem_cache *cachep, int index)
1826 1827 1828 1829
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1830
		cachep->nodelists[node] = &initkmem_list3[index + node];
1831
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1832 1833
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1834 1835 1836
	}
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1858
/**
1859 1860 1861 1862 1863 1864 1865
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1866 1867 1868 1869 1870
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1871
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1872
			size_t size, size_t align, unsigned long flags)
1873
{
1874
	unsigned long offslab_limit;
1875
	size_t left_over = 0;
1876
	int gfporder;
1877

A
Andrew Morton 已提交
1878
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1879 1880 1881
		unsigned int num;
		size_t remainder;

1882
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1883 1884
		if (!num)
			continue;
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1898

1899
		/* Found something acceptable - save it away */
1900
		cachep->num = num;
1901
		cachep->gfporder = gfporder;
1902 1903
		left_over = remainder;

1904 1905 1906 1907 1908 1909 1910 1911
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1912 1913 1914 1915
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1916
		if (gfporder >= slab_break_gfp_order)
1917 1918
			break;

1919 1920 1921
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1922
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1923 1924 1925 1926 1927
			break;
	}
	return left_over;
}

1928
static int setup_cpu_cache(struct kmem_cache *cachep)
1929
{
1930 1931 1932
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1979
	return 0;
1980 1981
}

L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
1997 1998
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2011
struct kmem_cache *
L
Linus Torvalds 已提交
2012
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2013 2014
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2015
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2016 2017
{
	size_t left_over, slab_size, ralign;
2018
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2019 2020 2021 2022

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2023
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2024
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2025 2026
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2027 2028
		BUG();
	}
L
Linus Torvalds 已提交
2029

2030 2031 2032 2033 2034 2035
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
2036
	mutex_lock(&cache_chain_mutex);
2037

2038
	list_for_each_entry(pc, &cache_chain, next) {
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2053
			       pc->buffer_size);
2054 2055 2056
			continue;
		}

P
Pekka Enberg 已提交
2057
		if (!strcmp(pc->name, name)) {
2058 2059 2060 2061 2062 2063
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2064 2065 2066 2067 2068
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2069
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2079
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2080
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2091 2092
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2093
	 */
2094
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2095

A
Andrew Morton 已提交
2096 2097
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2098 2099 2100
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2101 2102 2103
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2104 2105
	}

A
Andrew Morton 已提交
2106 2107
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2108 2109
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2110 2111 2112 2113
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2114 2115
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2116
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2117 2118 2119 2120
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2121 2122 2123 2124 2125 2126 2127 2128 2129

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

L
Linus Torvalds 已提交
2130 2131 2132 2133
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2134
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2135 2136 2137 2138 2139
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2140
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2141
	}
A
Andrew Morton 已提交
2142
	/*
2143
	 * 4) Store it.
L
Linus Torvalds 已提交
2144 2145 2146 2147
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2148
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2149
	if (!cachep)
2150
		goto oops;
L
Linus Torvalds 已提交
2151 2152

#if DEBUG
2153
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2154

2155 2156 2157 2158
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2159 2160
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2161
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2162
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2163 2164
	}
	if (flags & SLAB_STORE_USER) {
2165 2166
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2167 2168 2169 2170
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2171
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2172 2173
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178
		size = PAGE_SIZE;
	}
#endif
#endif

2179 2180 2181 2182 2183 2184
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2185 2186 2187 2188 2189 2190 2191 2192
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2193
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2194 2195 2196 2197 2198

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2199
		goto oops;
L
Linus Torvalds 已提交
2200
	}
P
Pekka Enberg 已提交
2201 2202
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2215 2216
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2217 2218 2219 2220 2221 2222
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2223
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2224 2225 2226 2227 2228
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2229
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2230

2231
	if (flags & CFLGS_OFF_SLAB) {
2232
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2233 2234 2235 2236 2237 2238 2239 2240 2241
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2242 2243 2244 2245
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2246 2247 2248 2249 2250
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2251 2252 2253

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2254
oops:
L
Linus Torvalds 已提交
2255 2256
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2257
		      name);
I
Ingo Molnar 已提交
2258
	mutex_unlock(&cache_chain_mutex);
2259
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2275
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2276 2277 2278
{
#ifdef CONFIG_SMP
	check_irq_off();
2279
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2280 2281
#endif
}
2282

2283
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2284 2285 2286 2287 2288 2289 2290
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2291 2292 2293 2294
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2295
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2296 2297
#endif

2298 2299 2300 2301
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2302 2303
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2304
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2305
	struct array_cache *ac;
2306
	int node = numa_node_id();
L
Linus Torvalds 已提交
2307 2308

	check_irq_off();
2309
	ac = cpu_cache_get(cachep);
2310 2311 2312
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2313 2314 2315
	ac->avail = 0;
}

2316
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2317
{
2318 2319 2320
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2321
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2322
	check_irq_on();
P
Pekka Enberg 已提交
2323
	for_each_online_node(node) {
2324
		l3 = cachep->nodelists[node];
2325 2326 2327 2328 2329 2330 2331
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2332
			drain_array(cachep, l3, l3->shared, 1, node);
2333
	}
L
Linus Torvalds 已提交
2334 2335
}

2336 2337 2338 2339 2340 2341 2342 2343
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2344
{
2345 2346
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2347 2348
	struct slab *slabp;

2349 2350
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2351

2352
		spin_lock_irq(&l3->list_lock);
2353
		p = l3->slabs_free.prev;
2354 2355 2356 2357
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2358

2359
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2360
#if DEBUG
2361
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2362 2363
#endif
		list_del(&slabp->list);
2364 2365 2366 2367 2368
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2369
		spin_unlock_irq(&l3->list_lock);
2370 2371
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2372
	}
2373 2374
out:
	return nr_freed;
L
Linus Torvalds 已提交
2375 2376
}

2377
static int __cache_shrink(struct kmem_cache *cachep)
2378 2379 2380 2381 2382 2383 2384 2385 2386
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2387 2388 2389 2390 2391 2392 2393
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2394 2395 2396 2397
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2398 2399 2400 2401 2402 2403 2404
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2405
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2406
{
2407
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2417
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2430
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2431
{
2432
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2433 2434 2435 2436 2437

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2438
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2439 2440 2441 2442
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2443
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2444 2445 2446

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2447
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2448
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2449
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2450 2451 2452 2453 2454
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2455
		synchronize_rcu();
L
Linus Torvalds 已提交
2456

2457
	__kmem_cache_destroy(cachep);
L
Linus Torvalds 已提交
2458 2459 2460 2461 2462
	unlock_cpu_hotplug();
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2474
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2475 2476
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2477 2478
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2479

L
Linus Torvalds 已提交
2480 2481
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2482 2483
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2484 2485 2486
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2487
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2488 2489 2490 2491
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2492
	slabp->s_mem = objp + colour_off;
2493
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2499
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2500 2501
}

2502
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2503
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2504 2505 2506 2507
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2508
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2521 2522 2523
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2524 2525
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2526
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2527
				     ctor_flags);
L
Linus Torvalds 已提交
2528 2529 2530 2531

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2532
					   " end of an object");
L
Linus Torvalds 已提交
2533 2534
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2535
					   " start of an object");
L
Linus Torvalds 已提交
2536
		}
A
Andrew Morton 已提交
2537 2538
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2539
			kernel_map_pages(virt_to_page(objp),
2540
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2541 2542 2543 2544
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2545
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2546
	}
P
Pekka Enberg 已提交
2547
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2548 2549 2550
	slabp->free = 0;
}

2551
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2552
{
A
Andrew Morton 已提交
2553 2554 2555 2556
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2557 2558
}

A
Andrew Morton 已提交
2559 2560
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2561
{
2562
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2576 2577
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2578
{
2579
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2580 2581 2582 2583 2584

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2585
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2586
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2587
				"'%s', objp %p\n", cachep->name, objp);
2588 2589 2590 2591 2592 2593 2594 2595
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2596 2597 2598 2599 2600 2601 2602
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2603
{
2604
	int nr_pages;
L
Linus Torvalds 已提交
2605 2606
	struct page *page;

2607
	page = virt_to_page(addr);
2608

2609
	nr_pages = 1;
2610
	if (likely(!PageCompound(page)))
2611 2612
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2613
	do {
2614 2615
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2616
		page++;
2617
	} while (--nr_pages);
L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2624
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2625
{
P
Pekka Enberg 已提交
2626 2627 2628 2629 2630
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2631
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2632

A
Andrew Morton 已提交
2633 2634 2635
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2636
	 */
2637
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2650
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2651
	check_irq_off();
2652 2653
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2654 2655

	/* Get colour for the slab, and cal the next value. */
2656 2657 2658 2659 2660
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2661

2662
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2675 2676 2677
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2678
	 */
A
Andrew Morton 已提交
2679 2680
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2681 2682 2683
		goto failed;

	/* Get slab management. */
2684
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2685
	if (!slabp)
L
Linus Torvalds 已提交
2686 2687
		goto opps1;

2688
	slabp->nodeid = nodeid;
2689
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2690 2691 2692 2693 2694 2695

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2696
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2697 2698

	/* Make slab active. */
2699
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2700
	STATS_INC_GROWN(cachep);
2701 2702
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2703
	return 1;
A
Andrew Morton 已提交
2704
opps1:
L
Linus Torvalds 已提交
2705
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2706
failed:
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2726 2727
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2728 2729 2730
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2731 2732
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2733 2734 2735 2736
		BUG();
	}
}

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2759
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2760
				   void *caller)
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2766
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2767 2768 2769
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2770
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2771 2772

	if (cachep->flags & SLAB_RED_ZONE) {
2773
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2774 2775 2776 2777 2778 2779
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2780
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2781 2782

	BUG_ON(objnr >= cachep->num);
2783
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2784 2785

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2786 2787 2788 2789
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2790
		 */
2791
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2792
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2798
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2799
	}
2800 2801 2802
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2803 2804
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2805
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2806
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2807
			kernel_map_pages(virt_to_page(objp),
2808
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2819
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2820 2821 2822
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2823

L
Linus Torvalds 已提交
2824 2825 2826 2827 2828 2829 2830
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2831 2832 2833 2834
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2835
		for (i = 0;
2836
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2837
		     i++) {
A
Andrew Morton 已提交
2838
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2839
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2840
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2852
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2859
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2860
retry:
L
Linus Torvalds 已提交
2861 2862
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2863 2864 2865 2866
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2867 2868 2869
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2870 2871 2872 2873
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2874

2875 2876 2877 2878
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2899 2900
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2912
must_grow:
L
Linus Torvalds 已提交
2913
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2914
alloc_done:
2915
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2916 2917 2918

	if (unlikely(!ac->avail)) {
		int x;
2919 2920
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2921
		/* cache_grow can reenable interrupts, then ac could change. */
2922
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2923
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2924 2925
			return NULL;

A
Andrew Morton 已提交
2926
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2927 2928 2929
			goto retry;
	}
	ac->touched = 1;
2930
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2931 2932
}

A
Andrew Morton 已提交
2933 2934
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940 2941 2942
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2943 2944
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
2945
{
P
Pekka Enberg 已提交
2946
	if (!objp)
L
Linus Torvalds 已提交
2947
		return objp;
P
Pekka Enberg 已提交
2948
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2949
#ifdef CONFIG_DEBUG_PAGEALLOC
2950
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2951
			kernel_map_pages(virt_to_page(objp),
2952
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2964 2965 2966 2967
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2968
			printk(KERN_ERR
A
Andrew Morton 已提交
2969 2970 2971
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2972 2973 2974 2975
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
2986
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2987
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2988
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2989 2990 2991 2992 2993

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2994
	}
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3001
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3002
{
P
Pekka Enberg 已提交
3003
	void *objp;
L
Linus Torvalds 已提交
3004 3005
	struct array_cache *ac;

3006
#ifdef CONFIG_NUMA
3007
	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3008 3009 3010
		objp = alternate_node_alloc(cachep, flags);
		if (objp != NULL)
			return objp;
3011 3012 3013
	}
#endif

3014
	check_irq_off();
3015
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3016 3017 3018
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3019
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3020 3021 3022 3023
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3024 3025 3026
	return objp;
}

A
Andrew Morton 已提交
3027 3028
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
3029 3030
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
3031
	void *objp;
3032 3033 3034 3035 3036

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
3037
	local_irq_restore(save_flags);
3038
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3039
					    caller);
3040
	prefetchw(objp);
L
Linus Torvalds 已提交
3041 3042 3043
	return objp;
}

3044
#ifdef CONFIG_NUMA
3045
/*
3046
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt())
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

3067 3068
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3069
 */
A
Andrew Morton 已提交
3070 3071
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
3072 3073
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3074 3075 3076 3077 3078 3079 3080 3081
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3082
retry:
3083
	check_irq_off();
P
Pekka Enberg 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3103
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3104 3105 3106 3107 3108
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3109
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3110
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3111
	else
P
Pekka Enberg 已提交
3112
		list_add(&slabp->list, &l3->slabs_partial);
3113

P
Pekka Enberg 已提交
3114 3115
	spin_unlock(&l3->list_lock);
	goto done;
3116

A
Andrew Morton 已提交
3117
must_grow:
P
Pekka Enberg 已提交
3118 3119
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
3120

P
Pekka Enberg 已提交
3121 3122
	if (!x)
		return NULL;
3123

P
Pekka Enberg 已提交
3124
	goto retry;
A
Andrew Morton 已提交
3125
done:
P
Pekka Enberg 已提交
3126
	return obj;
3127 3128 3129 3130 3131 3132
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3133
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3134
		       int node)
L
Linus Torvalds 已提交
3135 3136
{
	int i;
3137
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3138 3139 3140 3141 3142

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3143
		slabp = virt_to_slab(objp);
3144
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3145
		list_del(&slabp->list);
3146
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3147
		check_slabp(cachep, slabp);
3148
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3149
		STATS_DEC_ACTIVE(cachep);
3150
		l3->free_objects++;
L
Linus Torvalds 已提交
3151 3152 3153 3154
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3155 3156
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3157 3158 3159 3160 3161 3162
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3163 3164
				slab_destroy(cachep, slabp);
			} else {
3165
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3166 3167 3168 3169 3170 3171
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3172
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3173 3174 3175 3176
		}
	}
}

3177
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3178 3179
{
	int batchcount;
3180
	struct kmem_list3 *l3;
3181
	int node = numa_node_id();
L
Linus Torvalds 已提交
3182 3183 3184 3185 3186 3187

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3188
	l3 = cachep->nodelists[node];
3189
	spin_lock(&l3->list_lock);
3190 3191
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3192
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3193 3194 3195
		if (max) {
			if (batchcount > max)
				batchcount = max;
3196
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3197
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3198 3199 3200 3201 3202
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3203
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3204
free_done:
L
Linus Torvalds 已提交
3205 3206 3207 3208 3209
#if STATS
	{
		int i = 0;
		struct list_head *p;

3210 3211
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3223
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3224
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3225
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3226 3227 3228
}

/*
A
Andrew Morton 已提交
3229 3230
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3231
 */
3232
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3233
{
3234
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3235 3236 3237 3238

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3239
	if (cache_free_alien(cachep, objp))
3240 3241
		return;

L
Linus Torvalds 已提交
3242 3243
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3244
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3245 3246 3247 3248
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3249
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3261
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3262
{
3263
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3264 3265 3266
}
EXPORT_SYMBOL(kmem_cache_alloc);

3267
/**
3268
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3298
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3299
{
P
Pekka Enberg 已提交
3300
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3301
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3302
	unsigned long align_mask = BYTES_PER_WORD - 1;
3303
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3319
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3320 3321
		goto out;
	return 1;
A
Andrew Morton 已提交
3322
out:
L
Linus Torvalds 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3336 3337
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3338
 */
3339
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3340
{
3341 3342
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3343

3344 3345
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3346 3347

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3348
			!cachep->nodelists[nodeid])
3349 3350 3351
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3352
	local_irq_restore(save_flags);
3353 3354 3355

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3356

3357
	return ptr;
L
Linus Torvalds 已提交
3358 3359 3360
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

3361
void *__kmalloc_node(size_t size, gfp_t flags, int node)
3362
{
3363
	struct kmem_cache *cachep;
3364 3365 3366 3367 3368 3369

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3370
EXPORT_SYMBOL(__kmalloc_node);
L
Linus Torvalds 已提交
3371 3372 3373
#endif

/**
3374
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3375
 * @size: how many bytes of memory are required.
3376
 * @flags: the type of memory to allocate (see kmalloc).
3377
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3378
 */
3379 3380
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3381
{
3382
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3383

3384 3385 3386 3387 3388 3389
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3390 3391
	if (unlikely(cachep == NULL))
		return NULL;
3392 3393 3394 3395 3396 3397
	return __cache_alloc(cachep, flags, caller);
}


void *__kmalloc(size_t size, gfp_t flags)
{
3398
#ifndef CONFIG_DEBUG_SLAB
3399
	return __do_kmalloc(size, flags, NULL);
3400 3401 3402
#else
	return __do_kmalloc(size, flags, __builtin_return_address(0));
#endif
L
Linus Torvalds 已提交
3403 3404 3405
}
EXPORT_SYMBOL(__kmalloc);

3406
#ifdef CONFIG_DEBUG_SLAB
3407 3408 3409 3410 3411 3412 3413
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#endif

L
Linus Torvalds 已提交
3414 3415
#ifdef CONFIG_SMP
/**
3416 3417 3418
 * percpu_depopulate - depopulate per-cpu data for given cpu
 * @__pdata: per-cpu data to depopulate
 * @cpu: depopulate per-cpu data for this cpu
L
Linus Torvalds 已提交
3419
 *
3420 3421
 * Depopulating per-cpu data for a cpu going offline would be a typical
 * use case. You need to register a cpu hotplug handler for that purpose.
L
Linus Torvalds 已提交
3422
 */
3423
void percpu_depopulate(void *__pdata, int cpu)
L
Linus Torvalds 已提交
3424
{
3425 3426 3427 3428 3429 3430 3431
	struct percpu_data *pdata = __percpu_disguise(__pdata);
	if (pdata->ptrs[cpu]) {
		kfree(pdata->ptrs[cpu]);
		pdata->ptrs[cpu] = NULL;
	}
}
EXPORT_SYMBOL_GPL(percpu_depopulate);
L
Linus Torvalds 已提交
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
/**
 * percpu_depopulate_mask - depopulate per-cpu data for some cpu's
 * @__pdata: per-cpu data to depopulate
 * @mask: depopulate per-cpu data for cpu's selected through mask bits
 */
void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
{
	int cpu;
	for_each_cpu_mask(cpu, *mask)
		percpu_depopulate(__pdata, cpu);
}
EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
L
Linus Torvalds 已提交
3445

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
/**
 * percpu_populate - populate per-cpu data for given cpu
 * @__pdata: per-cpu data to populate further
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @cpu: populate per-data for this cpu
 *
 * Populating per-cpu data for a cpu coming online would be a typical
 * use case. You need to register a cpu hotplug handler for that purpose.
 * Per-cpu object is populated with zeroed buffer.
 */
void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
{
	struct percpu_data *pdata = __percpu_disguise(__pdata);
	int node = cpu_to_node(cpu);
3461

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	BUG_ON(pdata->ptrs[cpu]);
	if (node_online(node)) {
		/* FIXME: kzalloc_node(size, gfp, node) */
		pdata->ptrs[cpu] = kmalloc_node(size, gfp, node);
		if (pdata->ptrs[cpu])
			memset(pdata->ptrs[cpu], 0, size);
	} else
		pdata->ptrs[cpu] = kzalloc(size, gfp);
	return pdata->ptrs[cpu];
}
EXPORT_SYMBOL_GPL(percpu_populate);
L
Linus Torvalds 已提交
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
/**
 * percpu_populate_mask - populate per-cpu data for more cpu's
 * @__pdata: per-cpu data to populate further
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @mask: populate per-cpu data for cpu's selected through mask bits
 *
 * Per-cpu objects are populated with zeroed buffers.
 */
int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
			   cpumask_t *mask)
{
	cpumask_t populated = CPU_MASK_NONE;
	int cpu;
L
Linus Torvalds 已提交
3488

3489 3490 3491 3492 3493 3494 3495 3496 3497
	for_each_cpu_mask(cpu, *mask)
		if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
			__percpu_depopulate_mask(__pdata, &populated);
			return -ENOMEM;
		} else
			cpu_set(cpu, populated);
	return 0;
}
EXPORT_SYMBOL_GPL(__percpu_populate_mask);
L
Linus Torvalds 已提交
3498

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
/**
 * percpu_alloc_mask - initial setup of per-cpu data
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @mask: populate per-data for cpu's selected through mask bits
 *
 * Populating per-cpu data for all online cpu's would be a typical use case,
 * which is simplified by the percpu_alloc() wrapper.
 * Per-cpu objects are populated with zeroed buffers.
 */
void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
{
	void *pdata = kzalloc(sizeof(struct percpu_data), gfp);
	void *__pdata = __percpu_disguise(pdata);

	if (unlikely(!pdata))
		return NULL;
	if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask)))
		return __pdata;
L
Linus Torvalds 已提交
3518 3519 3520
	kfree(pdata);
	return NULL;
}
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
EXPORT_SYMBOL_GPL(__percpu_alloc_mask);

/**
 * percpu_free - final cleanup of per-cpu data
 * @__pdata: object to clean up
 *
 * We simply clean up any per-cpu object left. No need for the client to
 * track and specify through a bis mask which per-cpu objects are to free.
 */
void percpu_free(void *__pdata)
{
	__percpu_depopulate_mask(__pdata, &cpu_possible_map);
	kfree(__percpu_disguise(__pdata));
}
EXPORT_SYMBOL_GPL(percpu_free);
#endif	/* CONFIG_SMP */
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3546
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3547 3548 3549
{
	unsigned long flags;

3550 3551
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3552
	local_irq_save(flags);
3553
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559 3560 3561
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3562 3563
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3564 3565 3566 3567 3568
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3569
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3570 3571 3572 3573 3574 3575
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3576
	c = virt_to_cache(objp);
3577
	debug_check_no_locks_freed(objp, obj_size(c));
3578
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3579 3580 3581 3582
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3583
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3584
{
3585
	return obj_size(cachep);
L
Linus Torvalds 已提交
3586 3587 3588
}
EXPORT_SYMBOL(kmem_cache_size);

3589
const char *kmem_cache_name(struct kmem_cache *cachep)
3590 3591 3592 3593 3594
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3595
/*
3596
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3597
 */
3598
static int alloc_kmemlist(struct kmem_cache *cachep)
3599 3600 3601
{
	int node;
	struct kmem_list3 *l3;
3602 3603
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3604 3605

	for_each_online_node(node) {
3606

A
Andrew Morton 已提交
3607 3608
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3609
			goto fail;
3610

3611 3612
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3613
					0xbaadf00d);
3614 3615
		if (!new_shared) {
			free_alien_cache(new_alien);
3616
			goto fail;
3617
		}
3618

A
Andrew Morton 已提交
3619 3620
		l3 = cachep->nodelists[node];
		if (l3) {
3621 3622
			struct array_cache *shared = l3->shared;

3623 3624
			spin_lock_irq(&l3->list_lock);

3625
			if (shared)
3626 3627
				free_block(cachep, shared->entry,
						shared->avail, node);
3628

3629 3630
			l3->shared = new_shared;
			if (!l3->alien) {
3631 3632 3633
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3634
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3635
					cachep->batchcount + cachep->num;
3636
			spin_unlock_irq(&l3->list_lock);
3637
			kfree(shared);
3638 3639 3640
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3641
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3642 3643 3644
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3645
			goto fail;
3646
		}
3647 3648 3649

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3650
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3651
		l3->shared = new_shared;
3652
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3653
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3654
					cachep->batchcount + cachep->num;
3655 3656
		cachep->nodelists[node] = l3;
	}
3657
	return 0;
3658

A
Andrew Morton 已提交
3659
fail:
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3675
	return -ENOMEM;
3676 3677
}

L
Linus Torvalds 已提交
3678
struct ccupdate_struct {
3679
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3680 3681 3682 3683 3684
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3685
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3686 3687 3688
	struct array_cache *old;

	check_irq_off();
3689
	old = cpu_cache_get(new->cachep);
3690

L
Linus Torvalds 已提交
3691 3692 3693 3694
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3695
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3696 3697
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3698 3699
{
	struct ccupdate_struct new;
3700
	int i;
L
Linus Torvalds 已提交
3701

P
Pekka Enberg 已提交
3702
	memset(&new.new, 0, sizeof(new.new));
3703
	for_each_online_cpu(i) {
A
Andrew Morton 已提交
3704 3705
		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
						batchcount);
3706
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3707 3708
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3709
			return -ENOMEM;
L
Linus Torvalds 已提交
3710 3711 3712 3713
		}
	}
	new.cachep = cachep;

A
Andrew Morton 已提交
3714
	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3715

L
Linus Torvalds 已提交
3716 3717 3718
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3719
	cachep->shared = shared;
L
Linus Torvalds 已提交
3720

3721
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3722 3723 3724
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3725
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3726
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3727
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3728 3729 3730
		kfree(ccold);
	}

3731
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3732 3733
}

3734
/* Called with cache_chain_mutex held always */
3735
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3736 3737 3738 3739
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3740 3741
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3742 3743
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3744
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3745 3746 3747 3748
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3749
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3750
		limit = 1;
3751
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3752
		limit = 8;
3753
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3754
		limit = 24;
3755
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3756 3757 3758 3759
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3760 3761
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3762 3763 3764 3765 3766 3767 3768 3769 3770
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3771
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3772 3773 3774 3775
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3776 3777 3778
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3779 3780 3781 3782
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3783
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3784 3785
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3786
		       cachep->name, -err);
3787
	return err;
L
Linus Torvalds 已提交
3788 3789
}

3790 3791
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3792 3793
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3794 3795 3796
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3797 3798 3799
{
	int tofree;

3800 3801
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3802 3803
	if (ac->touched && !force) {
		ac->touched = 0;
3804
	} else {
3805
		spin_lock_irq(&l3->list_lock);
3806 3807 3808 3809 3810 3811 3812 3813 3814
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3815
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3816 3817 3818 3819 3820
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3821
 * @unused: unused parameter
L
Linus Torvalds 已提交
3822 3823 3824 3825 3826 3827
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3828 3829
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3830 3831 3832
 */
static void cache_reap(void *unused)
{
3833
	struct kmem_cache *searchp;
3834
	struct kmem_list3 *l3;
3835
	int node = numa_node_id();
L
Linus Torvalds 已提交
3836

I
Ingo Molnar 已提交
3837
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3838
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3839 3840
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3841 3842 3843
		return;
	}

3844
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
3845 3846
		check_irq_on();

3847 3848 3849 3850 3851
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3852
		l3 = searchp->nodelists[node];
3853

3854
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3855

3856
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3857

3858 3859 3860 3861
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3862
		if (time_after(l3->next_reap, jiffies))
3863
			goto next;
L
Linus Torvalds 已提交
3864

3865
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3866

3867
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3868

3869
		if (l3->free_touched)
3870
			l3->free_touched = 0;
3871 3872
		else {
			int freed;
L
Linus Torvalds 已提交
3873

3874 3875 3876 3877
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3878
next:
L
Linus Torvalds 已提交
3879 3880 3881
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3882
	mutex_unlock(&cache_chain_mutex);
3883
	next_reap_node();
3884
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
3885
	/* Set up the next iteration */
3886
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3887 3888 3889 3890
}

#ifdef CONFIG_PROC_FS

3891
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3892
{
3893 3894 3895 3896
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3897
#if STATS
3898
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3899
#else
3900
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3901
#endif
3902 3903 3904 3905
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3906
#if STATS
3907
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3908
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3909
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3910
#endif
3911 3912 3913 3914 3915 3916 3917 3918
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3919
	mutex_lock(&cache_chain_mutex);
3920 3921
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926 3927
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3928
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3929 3930 3931 3932
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3933
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3934
	++*pos;
A
Andrew Morton 已提交
3935 3936
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3937 3938 3939 3940
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3941
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3942 3943 3944 3945
}

static int s_show(struct seq_file *m, void *p)
{
3946
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
3947 3948 3949 3950 3951
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3952
	const char *name;
L
Linus Torvalds 已提交
3953
	char *error = NULL;
3954 3955
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3956 3957 3958

	active_objs = 0;
	num_slabs = 0;
3959 3960 3961 3962 3963
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3964 3965
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3966

3967
		list_for_each_entry(slabp, &l3->slabs_full, list) {
3968 3969 3970 3971 3972
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3973
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3974 3975 3976 3977 3978 3979 3980
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
3981
		list_for_each_entry(slabp, &l3->slabs_free, list) {
3982 3983 3984 3985 3986
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3987 3988
		if (l3->shared)
			shared_avail += l3->shared->avail;
3989

3990
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3991
	}
P
Pekka Enberg 已提交
3992 3993
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3994
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3995 3996
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3997
	name = cachep->name;
L
Linus Torvalds 已提交
3998 3999 4000 4001
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4002
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4003
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4004
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4005
		   cachep->limit, cachep->batchcount, cachep->shared);
4006
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4007
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4008
#if STATS
P
Pekka Enberg 已提交
4009
	{			/* list3 stats */
L
Linus Torvalds 已提交
4010 4011 4012 4013 4014 4015 4016
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4017
		unsigned long node_frees = cachep->node_frees;
4018
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4019

4020
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4021
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4022
				reaped, errors, max_freeable, node_allocs,
4023
				node_frees, overflows);
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4033
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4055 4056 4057 4058
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4069 4070
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4071
{
P
Pekka Enberg 已提交
4072
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4073
	int limit, batchcount, shared, res;
4074
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4075

L
Linus Torvalds 已提交
4076 4077 4078 4079
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4080
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4091
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4092
	res = -EINVAL;
4093
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4094
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4095 4096
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4097
				res = 0;
L
Linus Torvalds 已提交
4098
			} else {
4099
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4100
						       batchcount, shared);
L
Linus Torvalds 已提交
4101 4102 4103 4104
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4105
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4106 4107 4108 4109
	if (res >= 0)
		res = count;
	return res;
}
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4219
		list_for_each_entry(slabp, &l3->slabs_full, list)
4220
			handle_slab(n, cachep, slabp);
4221
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4258 4259
#endif

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4272 4273
unsigned int ksize(const void *objp)
{
4274 4275
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4276

4277
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4278
}