slab.c 116.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
186 187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
206
	struct rcu_head head;
207
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
208
	void *addr;
L
Linus Torvalds 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
A
Andrew Morton 已提交
251 252 253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
254 255 256 257
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
258
			 */
L
Linus Torvalds 已提交
259 260
};

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
278 279 280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
281 282 283 284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
286 287 288
};

/*
289
 * The slab lists for all objects.
L
Linus Torvalds 已提交
290 291
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
301 302
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
303 304
};

305 306 307
/*
 * Need this for bootstrapping a per node allocator.
 */
308
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310
#define	CACHE_CACHE 0
311 312
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
313

314 315 316 317
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
318
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
319
static void cache_reap(struct work_struct *unused);
320

321
/*
A
Andrew Morton 已提交
322 323
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
324
 */
325
static __always_inline int index_of(const size_t size)
326
{
327 328
	extern void __bad_size(void);

329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
337
#include <linux/kmalloc_sizes.h>
338
#undef CACHE
339
		__bad_size();
340
	} else
341
		__bad_size();
342 343 344
	return 0;
}

345 346
static int slab_early_init = 1;

347 348
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
349

P
Pekka Enberg 已提交
350
static void kmem_list3_init(struct kmem_list3 *parent)
351 352 353 354 355 356
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
357
	parent->colour_next = 0;
358 359 360 361 362
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
363 364 365 366
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
367 368
	} while (0)

A
Andrew Morton 已提交
369 370
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
371 372 373 374
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
375 376 377 378 379

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
380 381 382
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
383
 *
A
Adrian Bunk 已提交
384
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
385 386 387 388 389 390 391 392 393 394
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
395
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
396 397 398 399 400
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
401 402
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
403
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
404
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
405 406 407 408 409
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
410 411 412 413 414 415 416 417 418
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
419
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
420 421 422
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
423
#define	STATS_INC_NODEFREES(x)	do { } while (0)
424
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
425
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
434 435
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
436
 * 0		: objp
437
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
438 439
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
440
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
441
 * 		redzone word.
442
 * cachep->obj_offset: The real object.
443 444
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
445
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
446
 */
447
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
448
{
449
	return cachep->obj_offset;
L
Linus Torvalds 已提交
450 451
}

452
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
453 454
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
455 456
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
457 458
}

459
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
460 461 462
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
463
		return (unsigned long long *)(objp + cachep->size -
464
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
465
					      REDZONE_ALIGN);
466
	return (unsigned long long *) (objp + cachep->size -
467
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
468 469
}

470
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
471 472
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
473
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
474 475 476 477
}

#else

478
#define obj_offset(x)			0
479 480
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
481 482 483 484 485
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
486 487
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
488
 */
489 490 491
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
492
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
493

494 495
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
496
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
497
	return page->slab_cache;
498 499 500 501
}

static inline struct slab *virt_to_slab(const void *obj)
{
502
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
503 504 505

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
506 507
}

508 509 510
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
511
	return slab->s_mem + cache->size * idx;
512 513
}

514
/*
515 516 517
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
518 519 520 521
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
522
{
523 524
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
525 526
}

A
Andrew Morton 已提交
527 528 529
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
547
	{NULL,}
L
Linus Torvalds 已提交
548 549 550 551
#undef CACHE
};

static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
552
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
553 554

/* internal cache of cache description objs */
555
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
556 557 558
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
559
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
560
	.name = "kmem_cache",
L
Linus Torvalds 已提交
561 562
};

563 564
#define BAD_ALIEN_MAGIC 0x01020304ul

565 566 567 568 569 570 571 572
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
573 574 575 576
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
577
 */
578 579 580
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
	struct kmem_list3 *l3;
	int r;

	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	lockdep_set_class(&l3->list_lock, l3_key);
	alc = l3->alien;
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

626
static void init_node_lock_keys(int q)
627
{
628 629
	struct cache_sizes *s = malloc_sizes;

630
	if (slab_state < UP)
631 632 633 634 635 636 637
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct kmem_list3 *l3;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
638
			continue;
639 640 641

		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
				&on_slab_alc_key, q);
642 643
	}
}
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
	struct kmem_list3 *l3;
	l3 = cachep->nodelists[q];
	if (!l3)
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

665 666 667 668 669 670 671
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
672
#else
673 674 675 676
static void init_node_lock_keys(int q)
{
}

677
static inline void init_lock_keys(void)
678 679
{
}
680

681 682 683 684 685 686 687 688
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

689 690 691 692 693 694 695
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
696 697
#endif

698
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
699

700
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
701 702 703 704
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
705 706
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
707 708 709 710 711
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
712 713 714
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
715
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
716
#endif
717 718 719
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
720 721 722 723
	while (size > csizep->cs_size)
		csizep++;

	/*
724
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
725 726 727
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
728
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
729 730
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
731
#endif
L
Linus Torvalds 已提交
732 733 734
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
735
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
736 737 738 739
{
	return __find_general_cachep(size, gfpflags);
}

740
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
741
{
742 743
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
744

A
Andrew Morton 已提交
745 746 747
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
748 749 750 751 752 753 754
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
804 805
}

806
#if DEBUG
807
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
808

A
Andrew Morton 已提交
809 810
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
811 812
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
813
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
814
	dump_stack();
815
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
816
}
817
#endif
L
Linus Torvalds 已提交
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

835 836 837 838 839 840 841 842 843 844 845
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

846 847 848 849 850 851 852
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
853
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
854 855 856 857 858

static void init_reap_node(int cpu)
{
	int node;

859
	node = next_node(cpu_to_mem(cpu), node_online_map);
860
	if (node == MAX_NUMNODES)
861
		node = first_node(node_online_map);
862

863
	per_cpu(slab_reap_node, cpu) = node;
864 865 866 867
}

static void next_reap_node(void)
{
868
	int node = __this_cpu_read(slab_reap_node);
869 870 871 872

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
873
	__this_cpu_write(slab_reap_node, node);
874 875 876 877 878 879 880
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
881 882 883 884 885 886 887
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
888
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
889
{
890
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
891 892 893 894 895 896

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
897
	if (keventd_up() && reap_work->work.func == NULL) {
898
		init_reap_node(cpu);
899
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
900 901
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
902 903 904
	}
}

905
static struct array_cache *alloc_arraycache(int node, int entries,
906
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
907
{
P
Pekka Enberg 已提交
908
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
909 910
	struct array_cache *nc = NULL;

911
	nc = kmalloc_node(memsize, gfp, node);
912 913
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
914
	 * However, when such objects are allocated or transferred to another
915 916 917 918 919
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
920 921 922 923 924
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
925
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
926 927 928 929
	}
	return nc;
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
	struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

	spin_lock_irqsave(&l3->list_lock, flags);
	list_for_each_entry(slabp, &l3->slabs_full, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_partial, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	list_for_each_entry(slabp, &l3->slabs_free, list)
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
	spin_unlock_irqrestore(&l3->list_lock, flags);
}

966
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
		struct kmem_list3 *l3;

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
982
		for (i = 0; i < ac->avail; i++) {
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
		l3 = cachep->nodelists[numa_mem_id()];
		if (!list_empty(&l3->slabs_free) && force_refill) {
			struct slab *slabp = virt_to_slab(objp);
999
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1027 1028 1029 1030
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
1031
		struct page *page = virt_to_head_page(objp);
1032 1033 1034 1035
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

1036 1037 1038 1039 1040 1041 1042 1043 1044
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

1045 1046 1047
	ac->entry[ac->avail++] = objp;
}

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
1058
	int nr = min3(from->avail, max, to->limit - to->avail);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

1071 1072 1073 1074 1075
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

1076
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1096
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1097 1098 1099 1100 1101 1102 1103
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1104
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1105
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1106

1107
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1108 1109
{
	struct array_cache **ac_ptr;
1110
	int memsize = sizeof(void *) * nr_node_ids;
1111 1112 1113 1114
	int i;

	if (limit > 1)
		limit = 12;
1115
	ac_ptr = kzalloc_node(memsize, gfp, node);
1116 1117
	if (ac_ptr) {
		for_each_node(i) {
1118
			if (i == node || !node_online(i))
1119
				continue;
1120
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1121
			if (!ac_ptr[i]) {
1122
				for (i--; i >= 0; i--)
1123 1124 1125 1126 1127 1128 1129 1130 1131
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1132
static void free_alien_cache(struct array_cache **ac_ptr)
1133 1134 1135 1136 1137 1138
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1139
	    kfree(ac_ptr[i]);
1140 1141 1142
	kfree(ac_ptr);
}

1143
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1144
				struct array_cache *ac, int node)
1145 1146 1147 1148 1149
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1150 1151 1152 1153 1154
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1155 1156
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1157

1158
		free_block(cachep, ac->entry, ac->avail, node);
1159 1160 1161 1162 1163
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1164 1165 1166 1167 1168
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1169
	int node = __this_cpu_read(slab_reap_node);
1170 1171 1172

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1173 1174

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1175 1176 1177 1178 1179 1180
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1181 1182
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1183
{
P
Pekka Enberg 已提交
1184
	int i = 0;
1185 1186 1187 1188
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1189
		ac = alien[i];
1190 1191 1192 1193 1194 1195 1196
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1197

1198
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1199 1200 1201 1202 1203
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1204 1205
	int node;

1206
	node = numa_mem_id();
1207 1208 1209 1210 1211

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1212
	if (likely(slabp->nodeid == node))
1213 1214
		return 0;

P
Pekka Enberg 已提交
1215
	l3 = cachep->nodelists[node];
1216 1217 1218
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1219
		spin_lock(&alien->lock);
1220 1221 1222 1223
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1224
		ac_put_obj(cachep, alien, objp);
1225 1226 1227 1228 1229 1230 1231 1232
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1233 1234
#endif

1235 1236 1237 1238 1239 1240 1241
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
1242
 * Must hold slab_mutex.
1243 1244 1245 1246 1247 1248 1249
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

1250
	list_for_each_entry(cachep, &slab_caches, list) {
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1266
			 * go.  slab_mutex is sufficient
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1281 1282 1283 1284
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1285
	int node = cpu_to_mem(cpu);
1286
	const struct cpumask *mask = cpumask_of_node(node);
1287

1288
	list_for_each_entry(cachep, &slab_caches, list) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1308
		if (!cpumask_empty(mask)) {
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1338
	list_for_each_entry(cachep, &slab_caches, list) {
1339 1340 1341 1342 1343 1344 1345 1346
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1347
{
1348
	struct kmem_cache *cachep;
1349
	struct kmem_list3 *l3 = NULL;
1350
	int node = cpu_to_mem(cpu);
1351
	int err;
L
Linus Torvalds 已提交
1352

1353 1354 1355 1356 1357 1358
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1359 1360 1361
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1362 1363 1364 1365 1366

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1367
	list_for_each_entry(cachep, &slab_caches, list) {
1368 1369 1370 1371 1372
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1373
					cachep->batchcount, GFP_KERNEL);
1374 1375 1376 1377 1378
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1379
				0xbaadf00d, GFP_KERNEL);
1380 1381
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1382
				goto bad;
1383
			}
1384 1385
		}
		if (use_alien_caches) {
1386
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1387 1388 1389
			if (!alien) {
				kfree(shared);
				kfree(nc);
1390
				goto bad;
1391
			}
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1406
#ifdef CONFIG_NUMA
1407 1408 1409
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1410
		}
1411 1412 1413 1414
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
1415 1416
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1417 1418 1419
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1420
	}
1421 1422
	init_node_lock_keys(node);

1423 1424
	return 0;
bad:
1425
	cpuup_canceled(cpu);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1438
		mutex_lock(&slab_mutex);
1439
		err = cpuup_prepare(cpu);
1440
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1441 1442
		break;
	case CPU_ONLINE:
1443
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1444 1445 1446
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1447
  	case CPU_DOWN_PREPARE:
1448
  	case CPU_DOWN_PREPARE_FROZEN:
1449
		/*
1450
		 * Shutdown cache reaper. Note that the slab_mutex is
1451 1452 1453 1454
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1455
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1456
		/* Now the cache_reaper is guaranteed to be not running. */
1457
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1458 1459
  		break;
  	case CPU_DOWN_FAILED:
1460
  	case CPU_DOWN_FAILED_FROZEN:
1461 1462
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1463
	case CPU_DEAD:
1464
	case CPU_DEAD_FROZEN:
1465 1466 1467 1468 1469 1470 1471 1472
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1473
		/* fall through */
1474
#endif
L
Linus Torvalds 已提交
1475
	case CPU_UP_CANCELED:
1476
	case CPU_UP_CANCELED_FROZEN:
1477
		mutex_lock(&slab_mutex);
1478
		cpuup_canceled(cpu);
1479
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1480 1481
		break;
	}
1482
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1483 1484
}

1485 1486 1487
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1488

1489 1490 1491 1492 1493 1494
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1495
 * Must hold slab_mutex.
1496 1497 1498 1499 1500 1501
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

1502
	list_for_each_entry(cachep, &slab_caches, list) {
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1533
		mutex_lock(&slab_mutex);
1534
		ret = init_cache_nodelists_node(nid);
1535
		mutex_unlock(&slab_mutex);
1536 1537
		break;
	case MEM_GOING_OFFLINE:
1538
		mutex_lock(&slab_mutex);
1539
		ret = drain_cache_nodelists_node(nid);
1540
		mutex_unlock(&slab_mutex);
1541 1542 1543 1544 1545 1546 1547 1548
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1549
	return notifier_from_errno(ret);
1550 1551 1552
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1553 1554 1555
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1556 1557
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1558 1559 1560
{
	struct kmem_list3 *ptr;

1561
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1562 1563 1564
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1565 1566 1567 1568 1569
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1570 1571 1572 1573
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598
/*
 * The memory after the last cpu cache pointer is used for the
 * the nodelists pointer.
 */
static void setup_nodelists_pointer(struct kmem_cache *cachep)
{
	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
}

A
Andrew Morton 已提交
1599 1600 1601
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606
 */
void __init kmem_cache_init(void)
{
	struct cache_sizes *sizes;
	struct cache_names *names;
1607 1608
	int i;

1609
	kmem_cache = &kmem_cache_boot;
C
Christoph Lameter 已提交
1610
	setup_nodelists_pointer(kmem_cache);
1611

1612
	if (num_possible_nodes() == 1)
1613 1614
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1615
	for (i = 0; i < NUM_INIT_LISTS; i++)
1616
		kmem_list3_init(&initkmem_list3[i]);
C
Christoph Lameter 已提交
1617

1618
	set_up_list3s(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1619 1620 1621

	/*
	 * Fragmentation resistance on low memory - only use bigger
1622 1623
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1624
	 */
1625
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1626
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1627 1628 1629

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1630 1631 1632
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1633 1634 1635
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1636
	 * 2) Create the first kmalloc cache.
1637
	 *    The struct kmem_cache for the new cache is allocated normally.
1638 1639 1640
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1641
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1642
	 *    kmalloc cache with kmalloc allocated arrays.
1643
	 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1644 1645
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1646 1647
	 */

1648
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1649

E
Eric Dumazet 已提交
1650
	/*
1651
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1652
	 */
1653 1654 1655 1656 1657
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
				  nr_node_ids * sizeof(struct kmem_list3 *),
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1658 1659 1660 1661 1662

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1663 1664 1665 1666
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1667 1668
	 */

1669 1670 1671 1672 1673 1674 1675
	sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
					sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
			create_kmalloc_cache(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
1676

1677 1678
	slab_early_init = 0;

L
Linus Torvalds 已提交
1679
	while (sizes->cs_size != ULONG_MAX) {
1680 1681
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1682 1683 1684
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1685 1686
		 * allow tighter packing of the smaller caches.
		 */
1687 1688 1689 1690
		if (!sizes->cs_cachep)
			sizes->cs_cachep = create_kmalloc_cache(names->name,
					sizes->cs_size, ARCH_KMALLOC_FLAGS);

1691
#ifdef CONFIG_ZONE_DMA
1692 1693 1694
		sizes->cs_dmacachep = create_kmalloc_cache(
			names->name_dma, sizes->cs_size,
			SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1695
#endif
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1701
		struct array_cache *ptr;
1702

1703
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1704

1705
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1706
		       sizeof(struct arraycache_init));
1707 1708 1709 1710 1711
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1712
		kmem_cache->array[smp_processor_id()] = ptr;
1713

1714
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1715

1716
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1717
		       != &initarray_generic.cache);
1718
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1719
		       sizeof(struct arraycache_init));
1720 1721 1722 1723 1724
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1725
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1726
		    ptr;
L
Linus Torvalds 已提交
1727
	}
1728 1729
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1730 1731
		int nid;

1732
		for_each_online_node(nid) {
1733
			init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1734

1735
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1736
				  &initkmem_list3[SIZE_AC + nid], nid);
1737 1738 1739

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1740
					  &initkmem_list3[SIZE_L3 + nid], nid);
1741 1742 1743
			}
		}
	}
L
Linus Torvalds 已提交
1744

1745
	slab_state = UP;
1746 1747 1748 1749 1750 1751
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1752
	slab_state = UP;
P
Peter Zijlstra 已提交
1753

1754
	/* 6) resize the head arrays to their final sizes */
1755 1756
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1757 1758
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1759
	mutex_unlock(&slab_mutex);
1760

1761 1762 1763
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1764 1765 1766
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1767 1768 1769
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1770 1771 1772
	 */
	register_cpu_notifier(&cpucache_notifier);

1773 1774 1775 1776 1777 1778 1779 1780
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1781 1782 1783
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788 1789 1790
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1791 1792
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1793
	 */
1794
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1795
		start_cpu_timer(cpu);
1796 1797

	/* Done! */
1798
	slab_state = FULL;
L
Linus Torvalds 已提交
1799 1800 1801 1802
	return 0;
}
__initcall(cpucache_init);

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
	struct kmem_list3 *l3;
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1815
		cachep->name, cachep->size, cachep->gfporder);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock_irqsave(&l3->list_lock, flags);
		list_for_each_entry(slabp, &l3->slabs_full, list) {
			active_objs += cachep->num;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
			active_objs += slabp->inuse;
			active_slabs++;
		}
		list_for_each_entry(slabp, &l3->slabs_free, list)
			num_slabs++;

		free_objects += l3->free_objects;
		spin_unlock_irqrestore(&l3->list_lock, flags);

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854 1855
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1856
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1857 1858
{
	struct page *page;
1859
	int nr_pages;
L
Linus Torvalds 已提交
1860 1861
	int i;

1862
#ifndef CONFIG_MMU
1863 1864 1865
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1866
	 */
1867
	flags |= __GFP_COMP;
1868
#endif
1869

1870
	flags |= cachep->allocflags;
1871 1872
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1873

L
Linus Torvalds 已提交
1874
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1875 1876 1877
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1878
		return NULL;
1879
	}
L
Linus Torvalds 已提交
1880

1881
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1882 1883 1884
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1885
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1886
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1887 1888 1889 1890 1891
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1892
	for (i = 0; i < nr_pages; i++) {
1893
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1894

1895 1896 1897 1898
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}

1899 1900 1901 1902 1903 1904 1905 1906
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1907

1908
	return page_address(page);
L
Linus Torvalds 已提交
1909 1910 1911 1912 1913
}

/*
 * Interface to system's page release.
 */
1914
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1915
{
P
Pekka Enberg 已提交
1916
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1917 1918 1919
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1920
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1921

1922 1923 1924 1925 1926 1927
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1928
	while (i--) {
N
Nick Piggin 已提交
1929
		BUG_ON(!PageSlab(page));
1930
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1931
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1941
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1942
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1952
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1953
			    unsigned long caller)
L
Linus Torvalds 已提交
1954
{
1955
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1956

1957
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1958

P
Pekka Enberg 已提交
1959
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1960 1961
		return;

P
Pekka Enberg 已提交
1962 1963 1964 1965
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1966 1967 1968 1969 1970 1971 1972
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1973
				*addr++ = svalue;
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979 1980
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1981
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1982 1983 1984
}
#endif

1985
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1986
{
1987
	int size = cachep->object_size;
1988
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1989 1990

	memset(addr, val, size);
P
Pekka Enberg 已提交
1991
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1992 1993 1994 1995 1996
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1997 1998 1999
	unsigned char error = 0;
	int bad_count = 0;

2000
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
2001 2002 2003 2004 2005 2006
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
2007 2008
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
2023 2024 2025 2026 2027
}
#endif

#if DEBUG

2028
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
2034
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
2035 2036
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2037 2038 2039 2040
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
2041
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2042
		print_symbol("(%s)",
A
Andrew Morton 已提交
2043
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
2044 2045
		printk("\n");
	}
2046
	realobj = (char *)objp + obj_offset(cachep);
2047
	size = cachep->object_size;
P
Pekka Enberg 已提交
2048
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
2049 2050
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
2051 2052
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
2053 2054 2055 2056
		dump_line(realobj, i, limit);
	}
}

2057
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062
{
	char *realobj;
	int size, i;
	int lines = 0;

2063
	realobj = (char *)objp + obj_offset(cachep);
2064
	size = cachep->object_size;
L
Linus Torvalds 已提交
2065

P
Pekka Enberg 已提交
2066
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
2067
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
2068
		if (i == size - 1)
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
2075
				printk(KERN_ERR
2076 2077
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
2078 2079 2080
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
2081
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
2082
			limit = 16;
P
Pekka Enberg 已提交
2083 2084
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
2097
		struct slab *slabp = virt_to_slab(objp);
2098
		unsigned int objnr;
L
Linus Torvalds 已提交
2099

2100
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2101
		if (objnr) {
2102
			objp = index_to_obj(cachep, slabp, objnr - 1);
2103
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2104
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2105
			       realobj, size);
L
Linus Torvalds 已提交
2106 2107
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
2108
		if (objnr + 1 < cachep->num) {
2109
			objp = index_to_obj(cachep, slabp, objnr + 1);
2110
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
2111
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
2112
			       realobj, size);
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2119
#if DEBUG
R
Rabin Vincent 已提交
2120
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2121 2122 2123
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2124
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2125 2126 2127

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2128
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2129
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2130
				kernel_map_pages(virt_to_page(objp),
2131
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2141
					   "was overwritten");
L
Linus Torvalds 已提交
2142 2143
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2144
					   "was overwritten");
L
Linus Torvalds 已提交
2145 2146
		}
	}
2147
}
L
Linus Torvalds 已提交
2148
#else
R
Rabin Vincent 已提交
2149
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2150 2151
{
}
L
Linus Torvalds 已提交
2152 2153
#endif

2154 2155 2156 2157 2158
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2159
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2160 2161
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2162
 */
2163
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2164 2165 2166
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2167
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2168 2169 2170
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2171
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2172 2173 2174 2175 2176
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2177 2178
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2179 2180 2181
	}
}

2182
/**
2183 2184 2185 2186 2187 2188 2189
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2190 2191 2192 2193 2194
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2195
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2196
			size_t size, size_t align, unsigned long flags)
2197
{
2198
	unsigned long offslab_limit;
2199
	size_t left_over = 0;
2200
	int gfporder;
2201

2202
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2203 2204 2205
		unsigned int num;
		size_t remainder;

2206
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2207 2208
		if (!num)
			continue;
2209

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2222

2223
		/* Found something acceptable - save it away */
2224
		cachep->num = num;
2225
		cachep->gfporder = gfporder;
2226 2227
		left_over = remainder;

2228 2229 2230 2231 2232 2233 2234 2235
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2236 2237 2238 2239
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2240
		if (gfporder >= slab_max_order)
2241 2242
			break;

2243 2244 2245
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2246
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2247 2248 2249 2250 2251
			break;
	}
	return left_over;
}

2252
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2253
{
2254
	if (slab_state >= FULL)
2255
		return enable_cpucache(cachep, gfp);
2256

2257
	if (slab_state == DOWN) {
2258
		/*
2259 2260 2261 2262 2263 2264 2265 2266 2267
		 * Note: Creation of first cache (kmem_cache).
		 * The setup_list3s is taken care
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2268 2269 2270 2271 2272 2273 2274
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2275
		 * the second cache, then we need to set up all its list3s,
2276 2277 2278 2279
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
2280
			slab_state = PARTIAL_L3;
2281
		else
2282
			slab_state = PARTIAL_ARRAYCACHE;
2283
	} else {
2284
		/* Remaining boot caches */
2285
		cachep->array[smp_processor_id()] =
2286
			kmalloc(sizeof(struct arraycache_init), gfp);
2287

2288
		if (slab_state == PARTIAL_ARRAYCACHE) {
2289
			set_up_list3s(cachep, SIZE_L3);
2290
			slab_state = PARTIAL_L3;
2291 2292
		} else {
			int node;
2293
			for_each_online_node(node) {
2294 2295
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2296
						gfp, node);
2297 2298 2299 2300 2301
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2302
	cachep->nodelists[numa_mem_id()]->next_reap =
2303 2304 2305 2306 2307 2308 2309 2310 2311
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2312
	return 0;
2313 2314
}

L
Linus Torvalds 已提交
2315
/**
2316
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2317
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2318 2319 2320 2321
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2322
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2336
int
2337
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2338 2339
{
	size_t left_over, slab_size, ralign;
2340
	gfp_t gfp;
2341
	int err;
2342
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2352 2353
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2354
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2355 2356 2357 2358 2359 2360 2361
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2362 2363
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2364 2365 2366
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2367 2368 2369
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2370 2371
	}

2372
	/*
D
David Woodhouse 已提交
2373 2374 2375
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2376
	 */
D
David Woodhouse 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2387

2388
	/* 3) caller mandated alignment */
2389 2390
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2391
	}
2392 2393
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2394
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2395
	/*
2396
	 * 4) Store it.
L
Linus Torvalds 已提交
2397
	 */
2398
	cachep->align = ralign;
L
Linus Torvalds 已提交
2399

2400 2401 2402 2403 2404
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

C
Christoph Lameter 已提交
2405
	setup_nodelists_pointer(cachep);
L
Linus Torvalds 已提交
2406 2407
#if DEBUG

2408 2409 2410 2411
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2412 2413
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2414 2415
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2416 2417
	}
	if (flags & SLAB_STORE_USER) {
2418
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2419 2420
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2421
		 */
D
David Woodhouse 已提交
2422 2423 2424 2425
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2426 2427
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2428
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2429 2430 2431
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2432 2433 2434 2435 2436
		size = PAGE_SIZE;
	}
#endif
#endif

2437 2438 2439
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2440 2441
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2442
	 */
2443 2444
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2451
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2452

2453
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2454

2455
	if (!cachep->num)
2456
		return -E2BIG;
L
Linus Torvalds 已提交
2457

P
Pekka Enberg 已提交
2458
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2459
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2472 2473
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2474 2475 2476 2477 2478 2479 2480 2481 2482

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2483 2484 2485 2486
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2487 2488
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2489
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2490 2491
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2492
	cachep->allocflags = 0;
2493
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2494
		cachep->allocflags |= GFP_DMA;
2495
	cachep->size = size;
2496
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2497

2498
	if (flags & CFLGS_OFF_SLAB) {
2499
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2500 2501 2502 2503 2504 2505 2506
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2507
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2508
	}
L
Linus Torvalds 已提交
2509

2510 2511
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2512
		__kmem_cache_shutdown(cachep);
2513
		return err;
2514
	}
L
Linus Torvalds 已提交
2515

2516 2517 2518 2519 2520 2521 2522 2523
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2524 2525
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2526

2527
	return 0;
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2541
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2542 2543 2544
{
#ifdef CONFIG_SMP
	check_irq_off();
2545
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2546 2547
#endif
}
2548

2549
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2550 2551 2552 2553 2554 2555 2556
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2557 2558 2559 2560
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2561
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2562 2563
#endif

2564 2565 2566 2567
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2568 2569
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2570
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2571
	struct array_cache *ac;
2572
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2573 2574

	check_irq_off();
2575
	ac = cpu_cache_get(cachep);
2576 2577 2578
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2579 2580 2581
	ac->avail = 0;
}

2582
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2583
{
2584 2585 2586
	struct kmem_list3 *l3;
	int node;

2587
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2588
	check_irq_on();
P
Pekka Enberg 已提交
2589
	for_each_online_node(node) {
2590
		l3 = cachep->nodelists[node];
2591 2592 2593 2594 2595 2596 2597
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2598
			drain_array(cachep, l3, l3->shared, 1, node);
2599
	}
L
Linus Torvalds 已提交
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2610
{
2611 2612
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2613 2614
	struct slab *slabp;

2615 2616
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2617

2618
		spin_lock_irq(&l3->list_lock);
2619
		p = l3->slabs_free.prev;
2620 2621 2622 2623
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2624

2625
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2626
#if DEBUG
2627
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2628 2629
#endif
		list_del(&slabp->list);
2630 2631 2632 2633 2634
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2635
		spin_unlock_irq(&l3->list_lock);
2636 2637
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2638
	}
2639 2640
out:
	return nr_freed;
L
Linus Torvalds 已提交
2641 2642
}

2643
/* Called with slab_mutex held to protect against cpu hotplug */
2644
static int __cache_shrink(struct kmem_cache *cachep)
2645 2646 2647 2648 2649 2650 2651 2652 2653
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2654 2655 2656 2657 2658 2659 2660
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2661 2662 2663 2664
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670 2671
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2672
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2673
{
2674
	int ret;
2675
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2676

2677
	get_online_cpus();
2678
	mutex_lock(&slab_mutex);
2679
	ret = __cache_shrink(cachep);
2680
	mutex_unlock(&slab_mutex);
2681
	put_online_cpus();
2682
	return ret;
L
Linus Torvalds 已提交
2683 2684 2685
}
EXPORT_SYMBOL(kmem_cache_shrink);

2686
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2687
{
2688 2689 2690
	int i;
	struct kmem_list3 *l3;
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2691

2692 2693
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2694

2695 2696
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	return 0;
L
Linus Torvalds 已提交
2708 2709
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2721
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2722 2723
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2724 2725
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2726

L
Linus Torvalds 已提交
2727 2728
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2729
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2730
					      local_flags, nodeid);
2731 2732 2733 2734 2735 2736
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2737 2738
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2739 2740 2741
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2742
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2743 2744 2745 2746
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2747
	slabp->s_mem = objp + colour_off;
2748
	slabp->nodeid = nodeid;
2749
	slabp->free = 0;
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2755
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2756 2757
}

2758
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2759
			    struct slab *slabp)
L
Linus Torvalds 已提交
2760 2761 2762 2763
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2764
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2777 2778 2779
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2780 2781
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2782
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2783 2784 2785 2786

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2787
					   " end of an object");
L
Linus Torvalds 已提交
2788 2789
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2790
					   " start of an object");
L
Linus Torvalds 已提交
2791
		}
2792
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2793
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2794
			kernel_map_pages(virt_to_page(objp),
2795
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2796 2797
#else
		if (cachep->ctor)
2798
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2799
#endif
P
Pekka Enberg 已提交
2800
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2801
	}
P
Pekka Enberg 已提交
2802
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2803 2804
}

2805
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2806
{
2807 2808
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2809
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2810
		else
2811
			BUG_ON(cachep->allocflags & GFP_DMA);
2812
	}
L
Linus Torvalds 已提交
2813 2814
}

A
Andrew Morton 已提交
2815 2816
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2817
{
2818
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2832 2833
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2834
{
2835
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2836 2837 2838 2839 2840

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2841
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2842
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2843
				"'%s', objp %p\n", cachep->name, objp);
2844 2845 2846 2847 2848 2849 2850 2851
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2852 2853 2854
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2855
 * virtual address for kfree, ksize, and slab debugging.
2856 2857 2858
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2859
{
2860
	int nr_pages;
L
Linus Torvalds 已提交
2861 2862
	struct page *page;

2863
	page = virt_to_page(addr);
2864

2865
	nr_pages = 1;
2866
	if (likely(!PageCompound(page)))
2867 2868
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2869
	do {
C
Christoph Lameter 已提交
2870 2871
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2872
		page++;
2873
	} while (--nr_pages);
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878 2879
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2880 2881
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2882
{
P
Pekka Enberg 已提交
2883 2884 2885
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2886
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2887

A
Andrew Morton 已提交
2888 2889 2890
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2891
	 */
C
Christoph Lameter 已提交
2892 2893
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2894

2895
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2896
	check_irq_off();
2897 2898
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2899 2900

	/* Get colour for the slab, and cal the next value. */
2901 2902 2903 2904 2905
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2906

2907
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2920 2921 2922
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2923
	 */
2924
	if (!objp)
2925
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2926
	if (!objp)
L
Linus Torvalds 已提交
2927 2928 2929
		goto failed;

	/* Get slab management. */
2930
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2931
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2932
	if (!slabp)
L
Linus Torvalds 已提交
2933 2934
		goto opps1;

2935
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2936

C
Christoph Lameter 已提交
2937
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2938 2939 2940 2941

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2942
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2943 2944

	/* Make slab active. */
2945
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2946
	STATS_INC_GROWN(cachep);
2947 2948
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2949
	return 1;
A
Andrew Morton 已提交
2950
opps1:
L
Linus Torvalds 已提交
2951
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2952
failed:
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2969 2970
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2971 2972 2973
	}
}

2974 2975
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2976
	unsigned long long redzone1, redzone2;
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2992
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2993 2994 2995
			obj, redzone1, redzone2);
}

2996
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2997
				   unsigned long caller)
L
Linus Torvalds 已提交
2998 2999 3000 3001 3002
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

3003 3004
	BUG_ON(virt_to_cache(objp) != cachep);

3005
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
3006
	kfree_debugcheck(objp);
3007
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
3008

C
Christoph Lameter 已提交
3009
	slabp = page->slab_page;
L
Linus Torvalds 已提交
3010 3011

	if (cachep->flags & SLAB_RED_ZONE) {
3012
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
3013 3014 3015 3016
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
3017
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3018

3019
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
3020 3021

	BUG_ON(objnr >= cachep->num);
3022
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
3023

3024 3025 3026
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
3027 3028
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
3029
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3030
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
3031
			kernel_map_pages(virt_to_page(objp),
3032
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

3043
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
3044 3045 3046
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
3047

L
Linus Torvalds 已提交
3048 3049 3050 3051 3052 3053 3054
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
3055 3056
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
3057 3058 3059
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
3060 3061 3062
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3072 3073
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
3074 3075 3076 3077
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3078 3079
	int node;

L
Linus Torvalds 已提交
3080
	check_irq_off();
3081
	node = numa_mem_id();
3082 3083 3084
	if (unlikely(force_refill))
		goto force_grow;
retry:
3085
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3086 3087
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3088 3089 3090 3091
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3092 3093 3094
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3095
	l3 = cachep->nodelists[node];
3096 3097 3098

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3099

3100
	/* See if we can refill from the shared array */
3101 3102
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3103
		goto alloc_done;
3104
	}
3105

L
Linus Torvalds 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3121 3122 3123 3124 3125 3126

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3127
		BUG_ON(slabp->inuse >= cachep->num);
3128

L
Linus Torvalds 已提交
3129 3130 3131 3132 3133
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3134 3135
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3147
must_grow:
L
Linus Torvalds 已提交
3148
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3149
alloc_done:
3150
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3151 3152 3153

	if (unlikely(!ac->avail)) {
		int x;
3154
force_grow:
3155
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3156

A
Andrew Morton 已提交
3157
		/* cache_grow can reenable interrupts, then ac could change. */
3158
		ac = cpu_cache_get(cachep);
3159
		node = numa_mem_id();
3160 3161 3162

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3163 3164
			return NULL;

A
Andrew Morton 已提交
3165
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3166 3167 3168
			goto retry;
	}
	ac->touched = 1;
3169 3170

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3171 3172
}

A
Andrew Morton 已提交
3173 3174
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180 3181 3182
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3183
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3184
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3185
{
P
Pekka Enberg 已提交
3186
	if (!objp)
L
Linus Torvalds 已提交
3187
		return objp;
P
Pekka Enberg 已提交
3188
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3189
#ifdef CONFIG_DEBUG_PAGEALLOC
3190
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3191
			kernel_map_pages(virt_to_page(objp),
3192
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3193 3194 3195 3196 3197 3198 3199 3200
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3201
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3202 3203

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3204 3205 3206 3207
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3208
			printk(KERN_ERR
3209
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3210 3211
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3212 3213 3214 3215
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3216 3217 3218 3219 3220
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3221
		slabp = virt_to_head_page(objp)->slab_page;
3222
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3223 3224 3225
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3226
	objp += obj_offset(cachep);
3227
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3228
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3229 3230
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3231
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3232
		       objp, (int)ARCH_SLAB_MINALIGN);
3233
	}
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238 3239
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3240
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3241
{
3242
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3243
		return false;
3244

3245
	return should_failslab(cachep->object_size, flags, cachep->flags);
3246 3247
}

3248
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3249
{
P
Pekka Enberg 已提交
3250
	void *objp;
L
Linus Torvalds 已提交
3251
	struct array_cache *ac;
3252
	bool force_refill = false;
L
Linus Torvalds 已提交
3253

3254
	check_irq_off();
3255

3256
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3257 3258
	if (likely(ac->avail)) {
		ac->touched = 1;
3259 3260
		objp = ac_get_obj(cachep, ac, flags, false);

3261
		/*
3262 3263
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3264
		 */
3265 3266 3267 3268 3269
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3270
	}
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3281 3282 3283 3284 3285
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3286 3287
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3288 3289 3290
	return objp;
}

3291
#ifdef CONFIG_NUMA
3292
/*
3293
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3294 3295 3296 3297 3298 3299 3300 3301
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3302
	if (in_interrupt() || (flags & __GFP_THISNODE))
3303
		return NULL;
3304
	nid_alloc = nid_here = numa_mem_id();
3305
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3306
		nid_alloc = cpuset_slab_spread_node();
3307
	else if (current->mempolicy)
3308
		nid_alloc = slab_node();
3309
	if (nid_alloc != nid_here)
3310
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3311 3312 3313
	return NULL;
}

3314 3315
/*
 * Fallback function if there was no memory available and no objects on a
3316 3317 3318 3319 3320
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3321
 */
3322
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3323
{
3324 3325
	struct zonelist *zonelist;
	gfp_t local_flags;
3326
	struct zoneref *z;
3327 3328
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3329
	void *obj = NULL;
3330
	int nid;
3331
	unsigned int cpuset_mems_cookie;
3332 3333 3334 3335

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3336
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3337

3338 3339
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3340
	zonelist = node_zonelist(slab_node(), flags);
3341

3342 3343 3344 3345 3346
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3347 3348
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3349

3350
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3351
			cache->nodelists[nid] &&
3352
			cache->nodelists[nid]->free_objects) {
3353 3354
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3355 3356 3357
				if (obj)
					break;
		}
3358 3359
	}

3360
	if (!obj) {
3361 3362 3363 3364 3365 3366
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3367 3368 3369
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3370
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3371 3372
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3389
				/* cache_grow already freed obj */
3390 3391 3392
				obj = NULL;
			}
		}
3393
	}
3394 3395 3396

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3397 3398 3399
	return obj;
}

3400 3401
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3402
 */
3403
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3404
				int nodeid)
3405 3406
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3407 3408 3409 3410 3411 3412 3413 3414
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3415
retry:
3416
	check_irq_off();
P
Pekka Enberg 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3436
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3437 3438 3439 3440 3441
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3442
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3443
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3444
	else
P
Pekka Enberg 已提交
3445
		list_add(&slabp->list, &l3->slabs_partial);
3446

P
Pekka Enberg 已提交
3447 3448
	spin_unlock(&l3->list_lock);
	goto done;
3449

A
Andrew Morton 已提交
3450
must_grow:
P
Pekka Enberg 已提交
3451
	spin_unlock(&l3->list_lock);
3452
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3453 3454
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3455

3456
	return fallback_alloc(cachep, flags);
3457

A
Andrew Morton 已提交
3458
done:
P
Pekka Enberg 已提交
3459
	return obj;
3460
}
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
3475
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3476
		   unsigned long caller)
3477 3478 3479
{
	unsigned long save_flags;
	void *ptr;
3480
	int slab_node = numa_mem_id();
3481

3482
	flags &= gfp_allowed_mask;
3483

3484 3485
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3486
	if (slab_should_failslab(cachep, flags))
3487 3488
		return NULL;

3489 3490 3491
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3492
	if (nodeid == NUMA_NO_NODE)
3493
		nodeid = slab_node;
3494 3495 3496 3497 3498 3499 3500

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3501
	if (nodeid == slab_node) {
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3517
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3518
				 flags);
3519

P
Pekka Enberg 已提交
3520
	if (likely(ptr))
3521
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3522

3523
	if (unlikely((flags & __GFP_ZERO) && ptr))
3524
		memset(ptr, 0, cachep->object_size);
3525

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3545 3546
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3562
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3563 3564 3565 3566
{
	unsigned long save_flags;
	void *objp;

3567
	flags &= gfp_allowed_mask;
3568

3569 3570
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3571
	if (slab_should_failslab(cachep, flags))
3572 3573
		return NULL;

3574 3575 3576 3577 3578
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3579
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3580
				 flags);
3581 3582
	prefetchw(objp);

P
Pekka Enberg 已提交
3583
	if (likely(objp))
3584
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3585

3586
	if (unlikely((flags & __GFP_ZERO) && objp))
3587
		memset(objp, 0, cachep->object_size);
3588

3589 3590
	return objp;
}
3591 3592 3593 3594

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3595
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3596
		       int node)
L
Linus Torvalds 已提交
3597 3598
{
	int i;
3599
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3600 3601

	for (i = 0; i < nr_objects; i++) {
3602
		void *objp;
L
Linus Torvalds 已提交
3603 3604
		struct slab *slabp;

3605 3606 3607
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3608
		slabp = virt_to_slab(objp);
3609
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3610
		list_del(&slabp->list);
3611
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3612
		check_slabp(cachep, slabp);
3613
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3614
		STATS_DEC_ACTIVE(cachep);
3615
		l3->free_objects++;
L
Linus Torvalds 已提交
3616 3617 3618 3619
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3620 3621
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3622 3623 3624 3625 3626 3627
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3628 3629
				slab_destroy(cachep, slabp);
			} else {
3630
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3631 3632 3633 3634 3635 3636
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3637
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3638 3639 3640 3641
		}
	}
}

3642
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3643 3644
{
	int batchcount;
3645
	struct kmem_list3 *l3;
3646
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3647 3648 3649 3650 3651 3652

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3653
	l3 = cachep->nodelists[node];
3654
	spin_lock(&l3->list_lock);
3655 3656
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3657
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3658 3659 3660
		if (max) {
			if (batchcount > max)
				batchcount = max;
3661
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3662
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3663 3664 3665 3666 3667
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3668
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3669
free_done:
L
Linus Torvalds 已提交
3670 3671 3672 3673 3674
#if STATS
	{
		int i = 0;
		struct list_head *p;

3675 3676
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3688
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3689
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3690
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3691 3692 3693
}

/*
A
Andrew Morton 已提交
3694 3695
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3696
 */
3697
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3698
				unsigned long caller)
L
Linus Torvalds 已提交
3699
{
3700
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3701 3702

	check_irq_off();
3703
	kmemleak_free_recursive(objp, cachep->flags);
3704
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3705

3706
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3707

3708 3709 3710 3711 3712 3713 3714
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3715
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3716 3717
		return;

L
Linus Torvalds 已提交
3718 3719 3720 3721 3722 3723
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3724

3725
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3736
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3737
{
3738
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3739

3740
	trace_kmem_cache_alloc(_RET_IP_, ret,
3741
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3742 3743

	return ret;
L
Linus Torvalds 已提交
3744 3745 3746
}
EXPORT_SYMBOL(kmem_cache_alloc);

3747
#ifdef CONFIG_TRACING
3748
void *
3749
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3750
{
3751 3752
	void *ret;

3753
	ret = slab_alloc(cachep, flags, _RET_IP_);
3754 3755

	trace_kmalloc(_RET_IP_, ret,
3756
		      size, cachep->size, flags);
3757
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3758
}
3759
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3760 3761
#endif

L
Linus Torvalds 已提交
3762
#ifdef CONFIG_NUMA
3763 3764
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3765
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3766

3767
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3768
				    cachep->object_size, cachep->size,
3769
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3770 3771

	return ret;
3772
}
L
Linus Torvalds 已提交
3773 3774
EXPORT_SYMBOL(kmem_cache_alloc_node);

3775
#ifdef CONFIG_TRACING
3776
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3777
				  gfp_t flags,
3778 3779
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3780
{
3781 3782
	void *ret;

3783
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3784

3785
	trace_kmalloc_node(_RET_IP_, ret,
3786
			   size, cachep->size,
3787 3788
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3789
}
3790
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3791 3792
#endif

3793
static __always_inline void *
3794
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3795
{
3796
	struct kmem_cache *cachep;
3797 3798

	cachep = kmem_find_general_cachep(size, flags);
3799 3800
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3801
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3802
}
3803

3804
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3805 3806
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3807
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3808
}
3809
EXPORT_SYMBOL(__kmalloc_node);
3810 3811

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3812
		int node, unsigned long caller)
3813
{
3814
	return __do_kmalloc_node(size, flags, node, caller);
3815 3816 3817 3818 3819
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3820
	return __do_kmalloc_node(size, flags, node, 0);
3821 3822
}
EXPORT_SYMBOL(__kmalloc_node);
3823
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3824
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3825 3826

/**
3827
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3828
 * @size: how many bytes of memory are required.
3829
 * @flags: the type of memory to allocate (see kmalloc).
3830
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3831
 */
3832
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3833
					  unsigned long caller)
L
Linus Torvalds 已提交
3834
{
3835
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3836
	void *ret;
L
Linus Torvalds 已提交
3837

3838 3839 3840 3841 3842 3843
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3844 3845
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3846
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3847

3848
	trace_kmalloc(caller, ret,
3849
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3850 3851

	return ret;
3852 3853 3854
}


3855
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3856 3857
void *__kmalloc(size_t size, gfp_t flags)
{
3858
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3859 3860 3861
}
EXPORT_SYMBOL(__kmalloc);

3862
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3863
{
3864
	return __do_kmalloc(size, flags, caller);
3865 3866
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3867 3868 3869 3870

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3871
	return __do_kmalloc(size, flags, 0);
3872 3873
}
EXPORT_SYMBOL(__kmalloc);
3874 3875
#endif

L
Linus Torvalds 已提交
3876 3877 3878 3879 3880 3881 3882 3883
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3884
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3885 3886
{
	unsigned long flags;
3887 3888 3889
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3890 3891

	local_irq_save(flags);
3892
	debug_check_no_locks_freed(objp, cachep->object_size);
3893
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3894
		debug_check_no_obj_freed(objp, cachep->object_size);
3895
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3896
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3897

3898
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3899 3900 3901 3902 3903 3904 3905
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3906 3907
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3908 3909 3910 3911 3912
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3913
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3914 3915
	unsigned long flags;

3916 3917
	trace_kfree(_RET_IP_, objp);

3918
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3919 3920 3921
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3922
	c = virt_to_cache(objp);
3923 3924 3925
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3926
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3927 3928 3929 3930
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3931
/*
S
Simon Arlott 已提交
3932
 * This initializes kmem_list3 or resizes various caches for all nodes.
3933
 */
3934
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3935 3936 3937
{
	int node;
	struct kmem_list3 *l3;
3938
	struct array_cache *new_shared;
3939
	struct array_cache **new_alien = NULL;
3940

3941
	for_each_online_node(node) {
3942

3943
                if (use_alien_caches) {
3944
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3945 3946 3947
                        if (!new_alien)
                                goto fail;
                }
3948

3949 3950 3951
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3952
				cachep->shared*cachep->batchcount,
3953
					0xbaadf00d, gfp);
3954 3955 3956 3957
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3958
		}
3959

A
Andrew Morton 已提交
3960 3961
		l3 = cachep->nodelists[node];
		if (l3) {
3962 3963
			struct array_cache *shared = l3->shared;

3964 3965
			spin_lock_irq(&l3->list_lock);

3966
			if (shared)
3967 3968
				free_block(cachep, shared->entry,
						shared->avail, node);
3969

3970 3971
			l3->shared = new_shared;
			if (!l3->alien) {
3972 3973 3974
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3975
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3976
					cachep->batchcount + cachep->num;
3977
			spin_unlock_irq(&l3->list_lock);
3978
			kfree(shared);
3979 3980 3981
			free_alien_cache(new_alien);
			continue;
		}
3982
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3983 3984 3985
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3986
			goto fail;
3987
		}
3988 3989 3990

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3991
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3992
		l3->shared = new_shared;
3993
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3994
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3995
					cachep->batchcount + cachep->num;
3996 3997
		cachep->nodelists[node] = l3;
	}
3998
	return 0;
3999

A
Andrew Morton 已提交
4000
fail:
4001
	if (!cachep->list.next) {
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
4016
	return -ENOMEM;
4017 4018
}

L
Linus Torvalds 已提交
4019
struct ccupdate_struct {
4020
	struct kmem_cache *cachep;
4021
	struct array_cache *new[0];
L
Linus Torvalds 已提交
4022 4023 4024 4025
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
4026
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
4027 4028 4029
	struct array_cache *old;

	check_irq_off();
4030
	old = cpu_cache_get(new->cachep);
4031

L
Linus Torvalds 已提交
4032 4033 4034 4035
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

4036
/* Always called with the slab_mutex held */
A
Andrew Morton 已提交
4037
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4038
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
4039
{
4040
	struct ccupdate_struct *new;
4041
	int i;
L
Linus Torvalds 已提交
4042

4043 4044
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
4045 4046 4047
	if (!new)
		return -ENOMEM;

4048
	for_each_online_cpu(i) {
4049
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4050
						batchcount, gfp);
4051
		if (!new->new[i]) {
P
Pekka Enberg 已提交
4052
			for (i--; i >= 0; i--)
4053 4054
				kfree(new->new[i]);
			kfree(new);
4055
			return -ENOMEM;
L
Linus Torvalds 已提交
4056 4057
		}
	}
4058
	new->cachep = cachep;
L
Linus Torvalds 已提交
4059

4060
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4061

L
Linus Torvalds 已提交
4062 4063 4064
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
4065
	cachep->shared = shared;
L
Linus Torvalds 已提交
4066

4067
	for_each_online_cpu(i) {
4068
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4069 4070
		if (!ccold)
			continue;
4071 4072 4073
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
4074 4075
		kfree(ccold);
	}
4076
	kfree(new);
4077
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
4078 4079
}

4080
/* Called with slab_mutex held always */
4081
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
4082 4083 4084 4085
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4086 4087
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4088 4089
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4090
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4091 4092 4093 4094
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4095
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4096
		limit = 1;
4097
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4098
		limit = 8;
4099
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4100
		limit = 24;
4101
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4102 4103 4104 4105
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4106 4107
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4108 4109 4110 4111 4112 4113 4114 4115
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4116
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4117 4118 4119
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4120 4121 4122
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4123 4124 4125 4126
	 */
	if (limit > 32)
		limit = 32;
#endif
4127
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4128 4129
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4130
		       cachep->name, -err);
4131
	return err;
L
Linus Torvalds 已提交
4132 4133
}

4134 4135
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4136 4137
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4138
 */
4139
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4140
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4141 4142 4143
{
	int tofree;

4144 4145
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4146 4147
	if (ac->touched && !force) {
		ac->touched = 0;
4148
	} else {
4149
		spin_lock_irq(&l3->list_lock);
4150 4151 4152 4153 4154 4155 4156 4157 4158
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4159
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4160 4161 4162 4163 4164
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4165
 * @w: work descriptor
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4172 4173
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4174
 */
4175
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4176
{
4177
	struct kmem_cache *searchp;
4178
	struct kmem_list3 *l3;
4179
	int node = numa_mem_id();
4180
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4181

4182
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4183
		/* Give up. Setup the next iteration. */
4184
		goto out;
L
Linus Torvalds 已提交
4185

4186
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4187 4188
		check_irq_on();

4189 4190 4191 4192 4193
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4194
		l3 = searchp->nodelists[node];
4195

4196
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4197

4198
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4199

4200 4201 4202 4203
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4204
		if (time_after(l3->next_reap, jiffies))
4205
			goto next;
L
Linus Torvalds 已提交
4206

4207
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4208

4209
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4210

4211
		if (l3->free_touched)
4212
			l3->free_touched = 0;
4213 4214
		else {
			int freed;
L
Linus Torvalds 已提交
4215

4216 4217 4218 4219
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4220
next:
L
Linus Torvalds 已提交
4221 4222 4223
		cond_resched();
	}
	check_irq_on();
4224
	mutex_unlock(&slab_mutex);
4225
	next_reap_node();
4226
out:
A
Andrew Morton 已提交
4227
	/* Set up the next iteration */
4228
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4229 4230
}

4231
#ifdef CONFIG_SLABINFO
4232
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4233
{
P
Pekka Enberg 已提交
4234 4235 4236 4237 4238
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4239
	const char *name;
L
Linus Torvalds 已提交
4240
	char *error = NULL;
4241 4242
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4243 4244 4245

	active_objs = 0;
	num_slabs = 0;
4246 4247 4248 4249 4250
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4251 4252
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4253

4254
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4255 4256 4257 4258 4259
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4260
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4261 4262 4263 4264 4265 4266 4267
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4268
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4269 4270 4271 4272 4273
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4274 4275
		if (l3->shared)
			shared_avail += l3->shared->avail;
4276

4277
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4278
	}
P
Pekka Enberg 已提交
4279 4280
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4281
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4282 4283
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4284
	name = cachep->name;
L
Linus Torvalds 已提交
4285 4286 4287
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4302
#if STATS
P
Pekka Enberg 已提交
4303
	{			/* list3 stats */
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308 4309 4310
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4311
		unsigned long node_frees = cachep->node_frees;
4312
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4313

J
Joe Perches 已提交
4314 4315 4316 4317 4318
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4319 4320 4321 4322 4323 4324 4325 4326 4327
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4328
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4341
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4342
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4343
{
P
Pekka Enberg 已提交
4344
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4345
	int limit, batchcount, shared, res;
4346
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4347

L
Linus Torvalds 已提交
4348 4349 4350 4351
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4352
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4363
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4364
	res = -EINVAL;
4365
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4366
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4367 4368
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4369
				res = 0;
L
Linus Torvalds 已提交
4370
			} else {
4371
				res = do_tune_cpucache(cachep, limit,
4372 4373
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4374 4375 4376 4377
			}
			break;
		}
	}
4378
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4379 4380 4381 4382
	if (res >= 0)
		res = count;
	return res;
}
4383 4384 4385 4386 4387

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4388 4389
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4428
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4440
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4441

4442
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4443
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4444
		if (modname[0])
4445 4446 4447 4448 4449 4450 4451 4452 4453
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4454
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4479
		list_for_each_entry(slabp, &l3->slabs_full, list)
4480
			handle_slab(n, cachep, slabp);
4481
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4482 4483 4484 4485 4486 4487
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
4488
		mutex_unlock(&slab_mutex);
4489 4490 4491 4492
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
4493
			mutex_lock(&slab_mutex);
4494 4495 4496 4497
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
4498
		mutex_lock(&slab_mutex);
4499 4500 4501 4502 4503 4504 4505 4506 4507
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4508

4509 4510 4511
	return 0;
}

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

4522
static const struct seq_operations slabstats_op = {
4523 4524 4525 4526 4527
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4558
#endif
4559 4560 4561
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4562 4563
#endif

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4576
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4577
{
4578 4579
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4580
		return 0;
L
Linus Torvalds 已提交
4581

4582
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4583
}
K
Kirill A. Shutemov 已提交
4584
EXPORT_SYMBOL(ksize);