slab.c 114.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
186 187
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
188 189
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
206
	struct rcu_head head;
207
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
208
	void *addr;
L
Linus Torvalds 已提交
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
249
	spinlock_t lock;
250
	void *entry[];	/*
A
Andrew Morton 已提交
251 252 253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
254 255 256 257
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
258
			 */
L
Linus Torvalds 已提交
259 260
};

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
278 279 280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
281 282 283 284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
286 287
};

288 289 290
/*
 * Need this for bootstrapping a per node allocator.
 */
291
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
292
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
293
#define	CACHE_CACHE 0
294
#define	SIZE_AC MAX_NUMNODES
295
#define	SIZE_NODE (2 * MAX_NUMNODES)
296

297
static int drain_freelist(struct kmem_cache *cache,
298
			struct kmem_cache_node *n, int tofree);
299 300
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
301
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
302
static void cache_reap(struct work_struct *unused);
303

304 305
static int slab_early_init = 1;

306
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
307
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
308

309
static void kmem_cache_node_init(struct kmem_cache_node *parent)
310 311 312 313 314 315
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
316
	parent->colour_next = 0;
317 318 319 320 321
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
322 323 324
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
325
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
326 327
	} while (0)

A
Andrew Morton 已提交
328 329
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
330 331 332 333
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
334 335 336 337 338

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
339 340 341
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
342
 *
A
Adrian Bunk 已提交
343
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
344 345 346 347 348 349 350 351 352 353
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
354
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
355 356 357 358 359
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
360 361
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
362
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
363
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
364 365 366 367 368
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
369 370 371 372 373 374 375 376 377
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
378
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
379 380 381
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
382
#define	STATS_INC_NODEFREES(x)	do { } while (0)
383
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
384
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
385 386 387 388 389 390 391 392
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
393 394
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
395
 * 0		: objp
396
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
397 398
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
399
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
400
 * 		redzone word.
401
 * cachep->obj_offset: The real object.
402 403
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
404
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
405
 */
406
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
407
{
408
	return cachep->obj_offset;
L
Linus Torvalds 已提交
409 410
}

411
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
412 413
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
414 415
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
416 417
}

418
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
419 420 421
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
422
		return (unsigned long long *)(objp + cachep->size -
423
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
424
					      REDZONE_ALIGN);
425
	return (unsigned long long *) (objp + cachep->size -
426
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
427 428
}

429
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
430 431
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
432
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
433 434 435 436
}

#else

437
#define obj_offset(x)			0
438 439
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
440 441 442 443 444
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
445 446
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
447
 */
448 449 450
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
451
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
452

453 454
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
455
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
456
	return page->slab_cache;
457 458 459 460
}

static inline struct slab *virt_to_slab(const void *obj)
{
461
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
462 463 464

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
465 466
}

467 468 469
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
470
	return slab->s_mem + cache->size * idx;
471 472
}

473
/*
474 475 476
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
477 478 479 480
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
481
{
482 483
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
484 485
}

L
Linus Torvalds 已提交
486
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
487
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
488 489

/* internal cache of cache description objs */
490
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
491 492 493
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
494
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
495
	.name = "kmem_cache",
L
Linus Torvalds 已提交
496 497
};

498 499
#define BAD_ALIEN_MAGIC 0x01020304ul

500 501 502 503 504 505 506 507
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
508 509 510 511
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
512
 */
513 514 515
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

516 517 518 519 520 521 522 523
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
524
	struct kmem_cache_node *n;
525 526
	int r;

527 528
	n = cachep->node[q];
	if (!n)
529 530
		return;

531 532
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

561
static void init_node_lock_keys(int q)
562
{
563
	int i;
564

565
	if (slab_state < UP)
566 567
		return;

568
	for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
569
		struct kmem_cache_node *n;
570 571 572 573
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
574

575 576
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
577
			continue;
578

579
		slab_set_lock_classes(cache, &on_slab_l3_key,
580
				&on_slab_alc_key, q);
581 582
	}
}
583

584 585
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
586
	if (!cachep->node[q])
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

602 603 604 605 606 607 608
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
609
#else
610 611 612 613
static void init_node_lock_keys(int q)
{
}

614
static inline void init_lock_keys(void)
615 616
{
}
617

618 619 620 621 622 623 624 625
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

626 627 628 629 630 631 632
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
633 634
#endif

635
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
636

637
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
638 639 640 641
{
	return cachep->array[smp_processor_id()];
}

642
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
643
{
644 645
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
646

A
Andrew Morton 已提交
647 648 649
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
650 651 652 653 654 655 656
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
657

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
706 707
}

708
#if DEBUG
709
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
710

A
Andrew Morton 已提交
711 712
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
713 714
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
715
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
716
	dump_stack();
717
	add_taint(TAINT_BAD_PAGE);
L
Linus Torvalds 已提交
718
}
719
#endif
L
Linus Torvalds 已提交
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

737 738 739 740 741 742 743 744 745 746 747
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

748 749 750 751 752 753 754
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
755
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
756 757 758 759 760

static void init_reap_node(int cpu)
{
	int node;

761
	node = next_node(cpu_to_mem(cpu), node_online_map);
762
	if (node == MAX_NUMNODES)
763
		node = first_node(node_online_map);
764

765
	per_cpu(slab_reap_node, cpu) = node;
766 767 768 769
}

static void next_reap_node(void)
{
770
	int node = __this_cpu_read(slab_reap_node);
771 772 773 774

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
775
	__this_cpu_write(slab_reap_node, node);
776 777 778 779 780 781 782
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
783 784 785 786 787 788 789
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
790
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
791
{
792
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
793 794 795 796 797 798

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
799
	if (keventd_up() && reap_work->work.func == NULL) {
800
		init_reap_node(cpu);
801
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
802 803
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
804 805 806
	}
}

807
static struct array_cache *alloc_arraycache(int node, int entries,
808
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
809
{
P
Pekka Enberg 已提交
810
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
811 812
	struct array_cache *nc = NULL;

813
	nc = kmalloc_node(memsize, gfp, node);
814 815
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
816
	 * However, when such objects are allocated or transferred to another
817 818 819 820 821
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
822 823 824 825 826
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
827
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
828 829 830 831
	}
	return nc;
}

832 833 834 835 836 837 838 839 840 841 842
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
843
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
844 845 846 847 848 849
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

850 851
	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(slabp, &n->slabs_full, list)
852 853 854
		if (is_slab_pfmemalloc(slabp))
			goto out;

855
	list_for_each_entry(slabp, &n->slabs_partial, list)
856 857 858
		if (is_slab_pfmemalloc(slabp))
			goto out;

859
	list_for_each_entry(slabp, &n->slabs_free, list)
860 861 862 863 864
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
865
	spin_unlock_irqrestore(&n->list_lock, flags);
866 867
}

868
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
869 870 871 872 873 874 875
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
876
		struct kmem_cache_node *n;
877 878 879 880 881 882 883

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
884
		for (i = 0; i < ac->avail; i++) {
885 886 887 888 889 890 891 892 893 894 895 896 897
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
898 899
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
900
			struct slab *slabp = virt_to_slab(objp);
901
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
902 903 904 905 906 907 908 909 910 911 912 913 914
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
929 930 931 932
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
933
		struct page *page = virt_to_head_page(objp);
934 935 936 937
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

938 939 940 941 942 943 944 945 946
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

947 948 949
	ac->entry[ac->avail++] = objp;
}

950 951 952 953 954 955 956 957 958 959
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
960
	int nr = min3(from->avail, max, to->limit - to->avail);
961 962 963 964 965 966 967 968 969 970 971 972

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

973 974 975
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
976
#define reap_alien(cachep, n) do { } while (0)
977

978
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

998
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
999 1000 1001 1002 1003 1004 1005
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1006
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1007
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1008

1009
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1010 1011
{
	struct array_cache **ac_ptr;
1012
	int memsize = sizeof(void *) * nr_node_ids;
1013 1014 1015 1016
	int i;

	if (limit > 1)
		limit = 12;
1017
	ac_ptr = kzalloc_node(memsize, gfp, node);
1018 1019
	if (ac_ptr) {
		for_each_node(i) {
1020
			if (i == node || !node_online(i))
1021
				continue;
1022
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1023
			if (!ac_ptr[i]) {
1024
				for (i--; i >= 0; i--)
1025 1026 1027 1028 1029 1030 1031 1032 1033
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1034
static void free_alien_cache(struct array_cache **ac_ptr)
1035 1036 1037 1038 1039 1040
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1041
	    kfree(ac_ptr[i]);
1042 1043 1044
	kfree(ac_ptr);
}

1045
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1046
				struct array_cache *ac, int node)
1047
{
1048
	struct kmem_cache_node *n = cachep->node[node];
1049 1050

	if (ac->avail) {
1051
		spin_lock(&n->list_lock);
1052 1053 1054 1055 1056
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1057 1058
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1059

1060
		free_block(cachep, ac->entry, ac->avail, node);
1061
		ac->avail = 0;
1062
		spin_unlock(&n->list_lock);
1063 1064 1065
	}
}

1066 1067 1068
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1069
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1070
{
1071
	int node = __this_cpu_read(slab_reap_node);
1072

1073 1074
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1075 1076

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1077 1078 1079 1080 1081 1082
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1083 1084
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1085
{
P
Pekka Enberg 已提交
1086
	int i = 0;
1087 1088 1089 1090
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1091
		ac = alien[i];
1092 1093 1094 1095 1096 1097 1098
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1099

1100
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1101 1102 1103
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
1104
	struct kmem_cache_node *n;
1105
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1106 1107
	int node;

1108
	node = numa_mem_id();
1109 1110 1111 1112 1113

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1114
	if (likely(slabp->nodeid == node))
1115 1116
		return 0;

1117
	n = cachep->node[node];
1118
	STATS_INC_NODEFREES(cachep);
1119 1120
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1121
		spin_lock(&alien->lock);
1122 1123 1124 1125
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1126
		ac_put_obj(cachep, alien, objp);
1127 1128
		spin_unlock(&alien->lock);
	} else {
1129
		spin_lock(&(cachep->node[nodeid])->list_lock);
1130
		free_block(cachep, &objp, 1, nodeid);
1131
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1132 1133 1134
	}
	return 1;
}
1135 1136
#endif

1137
/*
1138
 * Allocates and initializes node for a node on each slab cache, used for
1139
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1140
 * will be allocated off-node since memory is not yet online for the new node.
1141
 * When hotplugging memory or a cpu, existing node are not replaced if
1142 1143
 * already in use.
 *
1144
 * Must hold slab_mutex.
1145
 */
1146
static int init_cache_node_node(int node)
1147 1148
{
	struct kmem_cache *cachep;
1149
	struct kmem_cache_node *n;
1150
	const int memsize = sizeof(struct kmem_cache_node);
1151

1152
	list_for_each_entry(cachep, &slab_caches, list) {
1153 1154 1155 1156 1157
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1158
		if (!cachep->node[node]) {
1159 1160
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1161
				return -ENOMEM;
1162 1163
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1164 1165 1166 1167
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1168
			 * go.  slab_mutex is sufficient
1169 1170
			 * protection here.
			 */
1171
			cachep->node[node] = n;
1172 1173
		}

1174 1175
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1176 1177
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1178
		spin_unlock_irq(&cachep->node[node]->list_lock);
1179 1180 1181 1182
	}
	return 0;
}

1183 1184 1185 1186 1187 1188
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1189 1190 1191
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
1192
	struct kmem_cache_node *n = NULL;
1193
	int node = cpu_to_mem(cpu);
1194
	const struct cpumask *mask = cpumask_of_node(node);
1195

1196
	list_for_each_entry(cachep, &slab_caches, list) {
1197 1198 1199 1200 1201 1202 1203
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1204
		n = cachep->node[node];
1205

1206
		if (!n)
1207 1208
			goto free_array_cache;

1209
		spin_lock_irq(&n->list_lock);
1210

1211 1212
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1213 1214 1215
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1216
		if (!cpumask_empty(mask)) {
1217
			spin_unlock_irq(&n->list_lock);
1218 1219 1220
			goto free_array_cache;
		}

1221
		shared = n->shared;
1222 1223 1224
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1225
			n->shared = NULL;
1226 1227
		}

1228 1229
		alien = n->alien;
		n->alien = NULL;
1230

1231
		spin_unlock_irq(&n->list_lock);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1246
	list_for_each_entry(cachep, &slab_caches, list) {
1247 1248
		n = cachep->node[node];
		if (!n)
1249
			continue;
1250
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1251 1252 1253 1254
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1255
{
1256
	struct kmem_cache *cachep;
1257
	struct kmem_cache_node *n = NULL;
1258
	int node = cpu_to_mem(cpu);
1259
	int err;
L
Linus Torvalds 已提交
1260

1261 1262 1263 1264
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1265
	 * kmem_cache_node and not this cpu's kmem_cache_node
1266
	 */
1267
	err = init_cache_node_node(node);
1268 1269
	if (err < 0)
		goto bad;
1270 1271 1272 1273 1274

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1275
	list_for_each_entry(cachep, &slab_caches, list) {
1276 1277 1278 1279 1280
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1281
					cachep->batchcount, GFP_KERNEL);
1282 1283 1284 1285 1286
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1287
				0xbaadf00d, GFP_KERNEL);
1288 1289
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1290
				goto bad;
1291
			}
1292 1293
		}
		if (use_alien_caches) {
1294
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1295 1296 1297
			if (!alien) {
				kfree(shared);
				kfree(nc);
1298
				goto bad;
1299
			}
1300 1301
		}
		cachep->array[cpu] = nc;
1302 1303
		n = cachep->node[node];
		BUG_ON(!n);
1304

1305 1306
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1307 1308 1309 1310
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1311
			n->shared = shared;
1312 1313
			shared = NULL;
		}
1314
#ifdef CONFIG_NUMA
1315 1316
		if (!n->alien) {
			n->alien = alien;
1317
			alien = NULL;
L
Linus Torvalds 已提交
1318
		}
1319
#endif
1320
		spin_unlock_irq(&n->list_lock);
1321 1322
		kfree(shared);
		free_alien_cache(alien);
1323 1324
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1325 1326 1327
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1328
	}
1329 1330
	init_node_lock_keys(node);

1331 1332
	return 0;
bad:
1333
	cpuup_canceled(cpu);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1346
		mutex_lock(&slab_mutex);
1347
		err = cpuup_prepare(cpu);
1348
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1349 1350
		break;
	case CPU_ONLINE:
1351
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1352 1353 1354
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1355
  	case CPU_DOWN_PREPARE:
1356
  	case CPU_DOWN_PREPARE_FROZEN:
1357
		/*
1358
		 * Shutdown cache reaper. Note that the slab_mutex is
1359 1360 1361 1362
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1363
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1364
		/* Now the cache_reaper is guaranteed to be not running. */
1365
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1366 1367
  		break;
  	case CPU_DOWN_FAILED:
1368
  	case CPU_DOWN_FAILED_FROZEN:
1369 1370
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1371
	case CPU_DEAD:
1372
	case CPU_DEAD_FROZEN:
1373 1374
		/*
		 * Even if all the cpus of a node are down, we don't free the
1375
		 * kmem_cache_node of any cache. This to avoid a race between
1376
		 * cpu_down, and a kmalloc allocation from another cpu for
1377
		 * memory from the node of the cpu going down.  The node
1378 1379 1380
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1381
		/* fall through */
1382
#endif
L
Linus Torvalds 已提交
1383
	case CPU_UP_CANCELED:
1384
	case CPU_UP_CANCELED_FROZEN:
1385
		mutex_lock(&slab_mutex);
1386
		cpuup_canceled(cpu);
1387
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1388 1389
		break;
	}
1390
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1391 1392
}

1393 1394 1395
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1396

1397 1398 1399 1400 1401 1402
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1403
 * Must hold slab_mutex.
1404
 */
1405
static int __meminit drain_cache_node_node(int node)
1406 1407 1408 1409
{
	struct kmem_cache *cachep;
	int ret = 0;

1410
	list_for_each_entry(cachep, &slab_caches, list) {
1411
		struct kmem_cache_node *n;
1412

1413 1414
		n = cachep->node[node];
		if (!n)
1415 1416
			continue;

1417
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1418

1419 1420
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1441
		mutex_lock(&slab_mutex);
1442
		ret = init_cache_node_node(nid);
1443
		mutex_unlock(&slab_mutex);
1444 1445
		break;
	case MEM_GOING_OFFLINE:
1446
		mutex_lock(&slab_mutex);
1447
		ret = drain_cache_node_node(nid);
1448
		mutex_unlock(&slab_mutex);
1449 1450 1451 1452 1453 1454 1455 1456
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1457
	return notifier_from_errno(ret);
1458 1459 1460
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1461
/*
1462
 * swap the static kmem_cache_node with kmalloced memory
1463
 */
1464
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1465
				int nodeid)
1466
{
1467
	struct kmem_cache_node *ptr;
1468

1469
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1470 1471
	BUG_ON(!ptr);

1472
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1473 1474 1475 1476 1477
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1478
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1479
	cachep->node[nodeid] = ptr;
1480 1481
}

1482
/*
1483 1484
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1485
 */
1486
static void __init set_up_node(struct kmem_cache *cachep, int index)
1487 1488 1489 1490
{
	int node;

	for_each_online_node(node) {
1491
		cachep->node[node] = &init_kmem_cache_node[index + node];
1492
		cachep->node[node]->next_reap = jiffies +
1493 1494 1495 1496 1497
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1498 1499
/*
 * The memory after the last cpu cache pointer is used for the
1500
 * the node pointer.
C
Christoph Lameter 已提交
1501
 */
1502
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1503
{
1504
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1505 1506
}

A
Andrew Morton 已提交
1507 1508 1509
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1510 1511 1512
 */
void __init kmem_cache_init(void)
{
1513 1514
	int i;

1515
	kmem_cache = &kmem_cache_boot;
1516
	setup_node_pointer(kmem_cache);
1517

1518
	if (num_possible_nodes() == 1)
1519 1520
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1521
	for (i = 0; i < NUM_INIT_LISTS; i++)
1522
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1523

1524
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1525 1526 1527

	/*
	 * Fragmentation resistance on low memory - only use bigger
1528 1529
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1530
	 */
1531
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1532
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1533 1534 1535

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1536 1537 1538
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1539
	 *    Initially an __init data area is used for the head array and the
1540
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1541
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1542
	 * 2) Create the first kmalloc cache.
1543
	 *    The struct kmem_cache for the new cache is allocated normally.
1544 1545 1546
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1547
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1548
	 *    kmalloc cache with kmalloc allocated arrays.
1549
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1550 1551
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1552 1553
	 */

1554
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1555

E
Eric Dumazet 已提交
1556
	/*
1557
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1558
	 */
1559 1560
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1561
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1562 1563
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1564 1565 1566

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1567 1568
	/*
	 * Initialize the caches that provide memory for the array cache and the
1569
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1570
	 * bug.
1571 1572
	 */

1573 1574
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1575

1576 1577 1578 1579
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1580

1581 1582
	slab_early_init = 0;

L
Linus Torvalds 已提交
1583 1584
	/* 4) Replace the bootstrap head arrays */
	{
1585
		struct array_cache *ptr;
1586

1587
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1588

1589
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1590
		       sizeof(struct arraycache_init));
1591 1592 1593 1594 1595
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1596
		kmem_cache->array[smp_processor_id()] = ptr;
1597

1598
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1599

1600
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1601
		       != &initarray_generic.cache);
1602
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1603
		       sizeof(struct arraycache_init));
1604 1605 1606 1607 1608
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1609
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1610
	}
1611
	/* 5) Replace the bootstrap kmem_cache_node */
1612
	{
P
Pekka Enberg 已提交
1613 1614
		int nid;

1615
		for_each_online_node(nid) {
1616
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1617

1618
			init_list(kmalloc_caches[INDEX_AC],
1619
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1620

1621 1622 1623
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1624 1625 1626
			}
		}
	}
L
Linus Torvalds 已提交
1627

1628
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1629 1630 1631 1632 1633 1634
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1635
	slab_state = UP;
P
Peter Zijlstra 已提交
1636

1637
	/* 6) resize the head arrays to their final sizes */
1638 1639
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1640 1641
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1642
	mutex_unlock(&slab_mutex);
1643

1644 1645 1646
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1647 1648 1649
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1650 1651 1652
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1653 1654 1655
	 */
	register_cpu_notifier(&cpucache_notifier);

1656 1657 1658
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1659
	 * node.
1660 1661 1662 1663
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1664 1665 1666
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1667 1668 1669 1670 1671 1672 1673
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1674 1675
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1676
	 */
1677
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1678
		start_cpu_timer(cpu);
1679 1680

	/* Done! */
1681
	slab_state = FULL;
L
Linus Torvalds 已提交
1682 1683 1684 1685
	return 0;
}
__initcall(cpucache_init);

1686 1687 1688
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1689
	struct kmem_cache_node *n;
1690 1691 1692 1693 1694 1695 1696 1697
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1698
		cachep->name, cachep->size, cachep->gfporder);
1699 1700 1701 1702 1703

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1704 1705
		n = cachep->node[node];
		if (!n)
1706 1707
			continue;

1708 1709
		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(slabp, &n->slabs_full, list) {
1710 1711 1712
			active_objs += cachep->num;
			active_slabs++;
		}
1713
		list_for_each_entry(slabp, &n->slabs_partial, list) {
1714 1715 1716
			active_objs += slabp->inuse;
			active_slabs++;
		}
1717
		list_for_each_entry(slabp, &n->slabs_free, list)
1718 1719
			num_slabs++;

1720 1721
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1732 1733 1734 1735 1736 1737 1738
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1739
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1740 1741
{
	struct page *page;
1742
	int nr_pages;
L
Linus Torvalds 已提交
1743 1744
	int i;

1745
#ifndef CONFIG_MMU
1746 1747 1748
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1749
	 */
1750
	flags |= __GFP_COMP;
1751
#endif
1752

1753
	flags |= cachep->allocflags;
1754 1755
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1756

L
Linus Torvalds 已提交
1757
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1758 1759 1760
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1761
		return NULL;
1762
	}
L
Linus Torvalds 已提交
1763

1764
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1765 1766 1767
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1768
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1769
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1770 1771 1772 1773 1774
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1775
	for (i = 0; i < nr_pages; i++) {
1776
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1777

1778 1779 1780
		if (page->pfmemalloc)
			SetPageSlabPfmemalloc(page + i);
	}
G
Glauber Costa 已提交
1781
	memcg_bind_pages(cachep, cachep->gfporder);
1782

1783 1784 1785 1786 1787 1788 1789 1790
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1791

1792
	return page_address(page);
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797
}

/*
 * Interface to system's page release.
 */
1798
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1799
{
P
Pekka Enberg 已提交
1800
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1801 1802 1803
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1804
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1805

1806 1807 1808 1809 1810 1811
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1812
	while (i--) {
N
Nick Piggin 已提交
1813
		BUG_ON(!PageSlab(page));
1814
		__ClearPageSlabPfmemalloc(page);
N
Nick Piggin 已提交
1815
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1816 1817
		page++;
	}
G
Glauber Costa 已提交
1818 1819

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1820 1821
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1822
	free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
L
Linus Torvalds 已提交
1823 1824 1825 1826
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1827
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1828
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1838
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1839
			    unsigned long caller)
L
Linus Torvalds 已提交
1840
{
1841
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1842

1843
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1844

P
Pekka Enberg 已提交
1845
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1846 1847
		return;

P
Pekka Enberg 已提交
1848 1849 1850 1851
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856 1857 1858
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1859
				*addr++ = svalue;
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864 1865 1866
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1867
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1868 1869 1870
}
#endif

1871
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1872
{
1873
	int size = cachep->object_size;
1874
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1875 1876

	memset(addr, val, size);
P
Pekka Enberg 已提交
1877
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1878 1879 1880 1881 1882
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1883 1884 1885
	unsigned char error = 0;
	int bad_count = 0;

1886
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1887 1888 1889 1890 1891 1892
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1893 1894
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1909 1910 1911 1912 1913
}
#endif

#if DEBUG

1914
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1915 1916 1917 1918 1919
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1920
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1921 1922
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1923 1924 1925 1926
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1927
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1928
		print_symbol("(%s)",
A
Andrew Morton 已提交
1929
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1930 1931
		printk("\n");
	}
1932
	realobj = (char *)objp + obj_offset(cachep);
1933
	size = cachep->object_size;
P
Pekka Enberg 已提交
1934
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1935 1936
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1937 1938
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1939 1940 1941 1942
		dump_line(realobj, i, limit);
	}
}

1943
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1944 1945 1946 1947 1948
{
	char *realobj;
	int size, i;
	int lines = 0;

1949
	realobj = (char *)objp + obj_offset(cachep);
1950
	size = cachep->object_size;
L
Linus Torvalds 已提交
1951

P
Pekka Enberg 已提交
1952
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1953
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1954
		if (i == size - 1)
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1961
				printk(KERN_ERR
1962 1963
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1964 1965 1966
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1967
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1968
			limit = 16;
P
Pekka Enberg 已提交
1969 1970
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1983
		struct slab *slabp = virt_to_slab(objp);
1984
		unsigned int objnr;
L
Linus Torvalds 已提交
1985

1986
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1987
		if (objnr) {
1988
			objp = index_to_obj(cachep, slabp, objnr - 1);
1989
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1990
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1991
			       realobj, size);
L
Linus Torvalds 已提交
1992 1993
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1994
		if (objnr + 1 < cachep->num) {
1995
			objp = index_to_obj(cachep, slabp, objnr + 1);
1996
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1997
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1998
			       realobj, size);
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

2005
#if DEBUG
R
Rabin Vincent 已提交
2006
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2007 2008 2009
{
	int i;
	for (i = 0; i < cachep->num; i++) {
2010
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2011 2012 2013

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2014
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
2015
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2016
				kernel_map_pages(virt_to_page(objp),
2017
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
2027
					   "was overwritten");
L
Linus Torvalds 已提交
2028 2029
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
2030
					   "was overwritten");
L
Linus Torvalds 已提交
2031 2032
		}
	}
2033
}
L
Linus Torvalds 已提交
2034
#else
R
Rabin Vincent 已提交
2035
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2036 2037
{
}
L
Linus Torvalds 已提交
2038 2039
#endif

2040 2041 2042 2043 2044
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2045
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2046 2047
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2048
 */
2049
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2050 2051 2052
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
2053
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2054 2055 2056
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
2057
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
2063 2064
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2065 2066 2067
	}
}

2068
/**
2069 2070 2071 2072 2073 2074 2075
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2076 2077 2078 2079 2080
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2081
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2082
			size_t size, size_t align, unsigned long flags)
2083
{
2084
	unsigned long offslab_limit;
2085
	size_t left_over = 0;
2086
	int gfporder;
2087

2088
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2089 2090 2091
		unsigned int num;
		size_t remainder;

2092
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2093 2094
		if (!num)
			continue;
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2108

2109
		/* Found something acceptable - save it away */
2110
		cachep->num = num;
2111
		cachep->gfporder = gfporder;
2112 2113
		left_over = remainder;

2114 2115 2116 2117 2118 2119 2120 2121
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2122 2123 2124 2125
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2126
		if (gfporder >= slab_max_order)
2127 2128
			break;

2129 2130 2131
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2132
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2133 2134 2135 2136 2137
			break;
	}
	return left_over;
}

2138
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2139
{
2140
	if (slab_state >= FULL)
2141
		return enable_cpucache(cachep, gfp);
2142

2143
	if (slab_state == DOWN) {
2144
		/*
2145
		 * Note: Creation of first cache (kmem_cache).
2146
		 * The setup_node is taken care
2147 2148 2149 2150 2151 2152 2153
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2154 2155 2156 2157 2158 2159
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2160 2161
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2162 2163
		 * otherwise the creation of further caches will BUG().
		 */
2164 2165 2166
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2167
		else
2168
			slab_state = PARTIAL_ARRAYCACHE;
2169
	} else {
2170
		/* Remaining boot caches */
2171
		cachep->array[smp_processor_id()] =
2172
			kmalloc(sizeof(struct arraycache_init), gfp);
2173

2174
		if (slab_state == PARTIAL_ARRAYCACHE) {
2175 2176
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2177 2178
		} else {
			int node;
2179
			for_each_online_node(node) {
2180
				cachep->node[node] =
2181
				    kmalloc_node(sizeof(struct kmem_cache_node),
2182
						gfp, node);
2183
				BUG_ON(!cachep->node[node]);
2184
				kmem_cache_node_init(cachep->node[node]);
2185 2186 2187
			}
		}
	}
2188
	cachep->node[numa_mem_id()]->next_reap =
2189 2190 2191 2192 2193 2194 2195 2196 2197
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2198
	return 0;
2199 2200
}

L
Linus Torvalds 已提交
2201
/**
2202
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2203
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2204 2205 2206 2207
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2208
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2222
int
2223
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2224 2225
{
	size_t left_over, slab_size, ralign;
2226
	gfp_t gfp;
2227
	int err;
2228
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2238 2239
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2240
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2248 2249
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2250 2251 2252
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2253 2254 2255
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2256 2257
	}

2258
	/*
D
David Woodhouse 已提交
2259 2260 2261
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2262
	 */
D
David Woodhouse 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2273

2274
	/* 3) caller mandated alignment */
2275 2276
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2277
	}
2278 2279
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2280
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2281
	/*
2282
	 * 4) Store it.
L
Linus Torvalds 已提交
2283
	 */
2284
	cachep->align = ralign;
L
Linus Torvalds 已提交
2285

2286 2287 2288 2289 2290
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2291
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2292 2293
#if DEBUG

2294 2295 2296 2297
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2298 2299
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2300 2301
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2302 2303
	}
	if (flags & SLAB_STORE_USER) {
2304
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2305 2306
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2307
		 */
D
David Woodhouse 已提交
2308 2309 2310 2311
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2312 2313
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2314
	if (size >= kmalloc_size(INDEX_NODE + 1)
2315 2316 2317
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2318 2319 2320 2321 2322
		size = PAGE_SIZE;
	}
#endif
#endif

2323 2324 2325
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2326 2327
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2328
	 */
2329 2330
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2331 2332 2333 2334 2335 2336
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2337
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2338

2339
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2340

2341
	if (!cachep->num)
2342
		return -E2BIG;
L
Linus Torvalds 已提交
2343

P
Pekka Enberg 已提交
2344
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2345
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2358 2359
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2360 2361 2362 2363 2364 2365 2366 2367 2368

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2369 2370 2371 2372
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2373 2374
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2375
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2376 2377
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2378
	cachep->allocflags = 0;
2379
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2380
		cachep->allocflags |= GFP_DMA;
2381
	cachep->size = size;
2382
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2383

2384
	if (flags & CFLGS_OFF_SLAB) {
2385
		cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2386 2387 2388 2389 2390 2391 2392
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2393
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2394
	}
L
Linus Torvalds 已提交
2395

2396 2397
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2398
		__kmem_cache_shutdown(cachep);
2399
		return err;
2400
	}
L
Linus Torvalds 已提交
2401

2402 2403 2404 2405 2406 2407 2408 2409
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2410 2411
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2412

2413
	return 0;
L
Linus Torvalds 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2427
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2428 2429 2430
{
#ifdef CONFIG_SMP
	check_irq_off();
2431
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2432 2433
#endif
}
2434

2435
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2436 2437 2438
{
#ifdef CONFIG_SMP
	check_irq_off();
2439
	assert_spin_locked(&cachep->node[node]->list_lock);
2440 2441 2442
#endif
}

L
Linus Torvalds 已提交
2443 2444 2445 2446
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2447
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2448 2449
#endif

2450
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2451 2452 2453
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2454 2455
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2456
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2457
	struct array_cache *ac;
2458
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2459 2460

	check_irq_off();
2461
	ac = cpu_cache_get(cachep);
2462
	spin_lock(&cachep->node[node]->list_lock);
2463
	free_block(cachep, ac->entry, ac->avail, node);
2464
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2465 2466 2467
	ac->avail = 0;
}

2468
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2469
{
2470
	struct kmem_cache_node *n;
2471 2472
	int node;

2473
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2474
	check_irq_on();
P
Pekka Enberg 已提交
2475
	for_each_online_node(node) {
2476 2477 2478
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2479 2480 2481
	}

	for_each_online_node(node) {
2482 2483 2484
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2485
	}
L
Linus Torvalds 已提交
2486 2487
}

2488 2489 2490 2491 2492 2493 2494
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2495
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2496
{
2497 2498
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2499 2500
	struct slab *slabp;

2501
	nr_freed = 0;
2502
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2503

2504 2505 2506 2507
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2508 2509
			goto out;
		}
L
Linus Torvalds 已提交
2510

2511
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2512
#if DEBUG
2513
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2514 2515
#endif
		list_del(&slabp->list);
2516 2517 2518 2519
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2520 2521
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2522 2523
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2524
	}
2525 2526
out:
	return nr_freed;
L
Linus Torvalds 已提交
2527 2528
}

2529
/* Called with slab_mutex held to protect against cpu hotplug */
2530
static int __cache_shrink(struct kmem_cache *cachep)
2531 2532
{
	int ret = 0, i = 0;
2533
	struct kmem_cache_node *n;
2534 2535 2536 2537 2538

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2539 2540
		n = cachep->node[i];
		if (!n)
2541 2542
			continue;

2543
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2544

2545 2546
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2547 2548 2549 2550
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2551 2552 2553 2554 2555 2556 2557
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2558
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2559
{
2560
	int ret;
2561
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2562

2563
	get_online_cpus();
2564
	mutex_lock(&slab_mutex);
2565
	ret = __cache_shrink(cachep);
2566
	mutex_unlock(&slab_mutex);
2567
	put_online_cpus();
2568
	return ret;
L
Linus Torvalds 已提交
2569 2570 2571
}
EXPORT_SYMBOL(kmem_cache_shrink);

2572
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2573
{
2574
	int i;
2575
	struct kmem_cache_node *n;
2576
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2577

2578 2579
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2580

2581 2582
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2583

2584
	/* NUMA: free the node structures */
2585
	for_each_online_node(i) {
2586 2587 2588 2589 2590
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2591 2592 2593
		}
	}
	return 0;
L
Linus Torvalds 已提交
2594 2595
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2607
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2608 2609
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2610 2611
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2612

L
Linus Torvalds 已提交
2613 2614
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2615
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2616
					      local_flags, nodeid);
2617 2618 2619 2620 2621 2622
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2623 2624
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2625 2626 2627
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2628
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2629 2630 2631 2632
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2633
	slabp->s_mem = objp + colour_off;
2634
	slabp->nodeid = nodeid;
2635
	slabp->free = 0;
L
Linus Torvalds 已提交
2636 2637 2638 2639 2640
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2641
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2642 2643
}

2644
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2645
			    struct slab *slabp)
L
Linus Torvalds 已提交
2646 2647 2648 2649
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2650
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2663 2664 2665
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2666 2667
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2668
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2669 2670 2671 2672

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2673
					   " end of an object");
L
Linus Torvalds 已提交
2674 2675
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2676
					   " start of an object");
L
Linus Torvalds 已提交
2677
		}
2678
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2679
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2680
			kernel_map_pages(virt_to_page(objp),
2681
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2682 2683
#else
		if (cachep->ctor)
2684
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2685
#endif
P
Pekka Enberg 已提交
2686
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2687
	}
P
Pekka Enberg 已提交
2688
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2689 2690
}

2691
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2692
{
2693 2694
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2695
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2696
		else
2697
			BUG_ON(cachep->allocflags & GFP_DMA);
2698
	}
L
Linus Torvalds 已提交
2699 2700
}

A
Andrew Morton 已提交
2701 2702
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2703
{
2704
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2718 2719
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2720
{
2721
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2722 2723 2724 2725 2726

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2727
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2728
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2729
				"'%s', objp %p\n", cachep->name, objp);
2730 2731 2732 2733 2734 2735 2736 2737
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2738 2739 2740
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2741
 * virtual address for kfree, ksize, and slab debugging.
2742 2743 2744
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2745
{
2746
	int nr_pages;
L
Linus Torvalds 已提交
2747 2748
	struct page *page;

2749
	page = virt_to_page(addr);
2750

2751
	nr_pages = 1;
2752
	if (likely(!PageCompound(page)))
2753 2754
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2755
	do {
C
Christoph Lameter 已提交
2756 2757
		page->slab_cache = cache;
		page->slab_page = slab;
L
Linus Torvalds 已提交
2758
		page++;
2759
	} while (--nr_pages);
L
Linus Torvalds 已提交
2760 2761 2762 2763 2764 2765
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2766 2767
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2768
{
P
Pekka Enberg 已提交
2769 2770 2771
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2772
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2773

A
Andrew Morton 已提交
2774 2775 2776
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2777
	 */
C
Christoph Lameter 已提交
2778 2779
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2780

2781
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2782
	check_irq_off();
2783 2784
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2785 2786

	/* Get colour for the slab, and cal the next value. */
2787 2788 2789 2790 2791
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2792

2793
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2806 2807 2808
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2809
	 */
2810
	if (!objp)
2811
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2812
	if (!objp)
L
Linus Torvalds 已提交
2813 2814 2815
		goto failed;

	/* Get slab management. */
2816
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2817
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2818
	if (!slabp)
L
Linus Torvalds 已提交
2819 2820
		goto opps1;

2821
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2822

C
Christoph Lameter 已提交
2823
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2824 2825 2826 2827

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2828
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2829 2830

	/* Make slab active. */
2831
	list_add_tail(&slabp->list, &(n->slabs_free));
L
Linus Torvalds 已提交
2832
	STATS_INC_GROWN(cachep);
2833 2834
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2835
	return 1;
A
Andrew Morton 已提交
2836
opps1:
L
Linus Torvalds 已提交
2837
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2838
failed:
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2855 2856
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2857 2858 2859
	}
}

2860 2861
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2862
	unsigned long long redzone1, redzone2;
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2878
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2879 2880 2881
			obj, redzone1, redzone2);
}

2882
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2883
				   unsigned long caller)
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2889 2890
	BUG_ON(virt_to_cache(objp) != cachep);

2891
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2892
	kfree_debugcheck(objp);
2893
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2894

C
Christoph Lameter 已提交
2895
	slabp = page->slab_page;
L
Linus Torvalds 已提交
2896 2897

	if (cachep->flags & SLAB_RED_ZONE) {
2898
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2899 2900 2901 2902
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2903
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2904

2905
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2906 2907

	BUG_ON(objnr >= cachep->num);
2908
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2909

2910 2911 2912
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2913 2914
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2915
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2916
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2917
			kernel_map_pages(virt_to_page(objp),
2918
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2929
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2930 2931 2932
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2933

L
Linus Torvalds 已提交
2934 2935 2936 2937 2938 2939 2940
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2941 2942
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
2943 2944 2945
			"cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse,
			print_tainted());
2946 2947 2948
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
			sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
			1);
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2958 2959
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2960 2961
{
	int batchcount;
2962
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2963
	struct array_cache *ac;
P
Pekka Enberg 已提交
2964 2965
	int node;

L
Linus Torvalds 已提交
2966
	check_irq_off();
2967
	node = numa_mem_id();
2968 2969 2970
	if (unlikely(force_refill))
		goto force_grow;
retry:
2971
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2972 2973
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2974 2975 2976 2977
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2978 2979 2980
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2981
	n = cachep->node[node];
2982

2983 2984
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2985

2986
	/* See if we can refill from the shared array */
2987 2988
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2989
		goto alloc_done;
2990
	}
2991

L
Linus Torvalds 已提交
2992 2993 2994 2995
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
2996 2997 2998 2999 3000
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005 3006
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3007 3008 3009 3010 3011 3012

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3013
		BUG_ON(slabp->inuse >= cachep->num);
3014

L
Linus Torvalds 已提交
3015 3016 3017 3018 3019
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3020 3021
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
3022 3023 3024 3025 3026 3027
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
3028
			list_add(&slabp->list, &n->slabs_full);
L
Linus Torvalds 已提交
3029
		else
3030
			list_add(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
3031 3032
	}

A
Andrew Morton 已提交
3033
must_grow:
3034
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
3035
alloc_done:
3036
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3037 3038 3039

	if (unlikely(!ac->avail)) {
		int x;
3040
force_grow:
3041
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3042

A
Andrew Morton 已提交
3043
		/* cache_grow can reenable interrupts, then ac could change. */
3044
		ac = cpu_cache_get(cachep);
3045
		node = numa_mem_id();
3046 3047 3048

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
3049 3050
			return NULL;

A
Andrew Morton 已提交
3051
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3052 3053 3054
			goto retry;
	}
	ac->touched = 1;
3055 3056

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
3057 3058
}

A
Andrew Morton 已提交
3059 3060
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067 3068
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3069
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3070
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
3071
{
P
Pekka Enberg 已提交
3072
	if (!objp)
L
Linus Torvalds 已提交
3073
		return objp;
P
Pekka Enberg 已提交
3074
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3075
#ifdef CONFIG_DEBUG_PAGEALLOC
3076
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3077
			kernel_map_pages(virt_to_page(objp),
3078
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3079 3080 3081 3082 3083 3084 3085 3086
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3087
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3088 3089

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3090 3091 3092 3093
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3094
			printk(KERN_ERR
3095
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3096 3097
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3098 3099 3100 3101
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3102 3103 3104 3105 3106
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

C
Christoph Lameter 已提交
3107
		slabp = virt_to_head_page(objp)->slab_page;
3108
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3109 3110 3111
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3112
	objp += obj_offset(cachep);
3113
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3114
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3115 3116
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3117
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3118
		       objp, (int)ARCH_SLAB_MINALIGN);
3119
	}
L
Linus Torvalds 已提交
3120 3121 3122 3123 3124 3125
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3126
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3127
{
3128
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3129
		return false;
3130

3131
	return should_failslab(cachep->object_size, flags, cachep->flags);
3132 3133
}

3134
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3135
{
P
Pekka Enberg 已提交
3136
	void *objp;
L
Linus Torvalds 已提交
3137
	struct array_cache *ac;
3138
	bool force_refill = false;
L
Linus Torvalds 已提交
3139

3140
	check_irq_off();
3141

3142
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3143 3144
	if (likely(ac->avail)) {
		ac->touched = 1;
3145 3146
		objp = ac_get_obj(cachep, ac, flags, false);

3147
		/*
3148 3149
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3150
		 */
3151 3152 3153 3154 3155
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3156
	}
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3167 3168 3169 3170 3171
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3172 3173
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3174 3175 3176
	return objp;
}

3177
#ifdef CONFIG_NUMA
3178
/*
3179
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3180 3181 3182 3183 3184 3185 3186 3187
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3188
	if (in_interrupt() || (flags & __GFP_THISNODE))
3189
		return NULL;
3190
	nid_alloc = nid_here = numa_mem_id();
3191
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3192
		nid_alloc = cpuset_slab_spread_node();
3193
	else if (current->mempolicy)
3194
		nid_alloc = slab_node();
3195
	if (nid_alloc != nid_here)
3196
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3197 3198 3199
	return NULL;
}

3200 3201
/*
 * Fallback function if there was no memory available and no objects on a
3202
 * certain node and fall back is permitted. First we scan all the
3203
 * available node for available objects. If that fails then we
3204 3205 3206
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3207
 */
3208
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3209
{
3210 3211
	struct zonelist *zonelist;
	gfp_t local_flags;
3212
	struct zoneref *z;
3213 3214
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3215
	void *obj = NULL;
3216
	int nid;
3217
	unsigned int cpuset_mems_cookie;
3218 3219 3220 3221

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3222
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3223

3224 3225
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3226
	zonelist = node_zonelist(slab_node(), flags);
3227

3228 3229 3230 3231 3232
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3233 3234
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3235

3236
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3237 3238
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3239 3240
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3241 3242 3243
				if (obj)
					break;
		}
3244 3245
	}

3246
	if (!obj) {
3247 3248 3249 3250 3251 3252
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3253 3254 3255
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3256
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3257 3258
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3275
				/* cache_grow already freed obj */
3276 3277 3278
				obj = NULL;
			}
		}
3279
	}
3280 3281 3282

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3283 3284 3285
	return obj;
}

3286 3287
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3288
 */
3289
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3290
				int nodeid)
3291 3292
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3293
	struct slab *slabp;
3294
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3295 3296 3297
	void *obj;
	int x;

3298
	VM_BUG_ON(nodeid > num_online_nodes());
3299 3300
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3301

A
Andrew Morton 已提交
3302
retry:
3303
	check_irq_off();
3304 3305 3306 3307 3308 3309
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3323
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3324
	check_slabp(cachep, slabp);
3325
	n->free_objects--;
P
Pekka Enberg 已提交
3326 3327 3328
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3329
	if (slabp->free == BUFCTL_END)
3330
		list_add(&slabp->list, &n->slabs_full);
A
Andrew Morton 已提交
3331
	else
3332
		list_add(&slabp->list, &n->slabs_partial);
3333

3334
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3335
	goto done;
3336

A
Andrew Morton 已提交
3337
must_grow:
3338
	spin_unlock(&n->list_lock);
3339
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3340 3341
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3342

3343
	return fallback_alloc(cachep, flags);
3344

A
Andrew Morton 已提交
3345
done:
P
Pekka Enberg 已提交
3346
	return obj;
3347
}
3348 3349

static __always_inline void *
3350
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3351
		   unsigned long caller)
3352 3353 3354
{
	unsigned long save_flags;
	void *ptr;
3355
	int slab_node = numa_mem_id();
3356

3357
	flags &= gfp_allowed_mask;
3358

3359 3360
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3361
	if (slab_should_failslab(cachep, flags))
3362 3363
		return NULL;

3364 3365
	cachep = memcg_kmem_get_cache(cachep, flags);

3366 3367 3368
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3369
	if (nodeid == NUMA_NO_NODE)
3370
		nodeid = slab_node;
3371

3372
	if (unlikely(!cachep->node[nodeid])) {
3373 3374 3375 3376 3377
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3378
	if (nodeid == slab_node) {
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3394
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3395
				 flags);
3396

P
Pekka Enberg 已提交
3397
	if (likely(ptr))
3398
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3399

3400
	if (unlikely((flags & __GFP_ZERO) && ptr))
3401
		memset(ptr, 0, cachep->object_size);
3402

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3422 3423
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3439
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3440 3441 3442 3443
{
	unsigned long save_flags;
	void *objp;

3444
	flags &= gfp_allowed_mask;
3445

3446 3447
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3448
	if (slab_should_failslab(cachep, flags))
3449 3450
		return NULL;

3451 3452
	cachep = memcg_kmem_get_cache(cachep, flags);

3453 3454 3455 3456 3457
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3458
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3459
				 flags);
3460 3461
	prefetchw(objp);

P
Pekka Enberg 已提交
3462
	if (likely(objp))
3463
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3464

3465
	if (unlikely((flags & __GFP_ZERO) && objp))
3466
		memset(objp, 0, cachep->object_size);
3467

3468 3469
	return objp;
}
3470 3471 3472 3473

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3474
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3475
		       int node)
L
Linus Torvalds 已提交
3476 3477
{
	int i;
3478
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3479 3480

	for (i = 0; i < nr_objects; i++) {
3481
		void *objp;
L
Linus Torvalds 已提交
3482 3483
		struct slab *slabp;

3484 3485 3486
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3487
		slabp = virt_to_slab(objp);
3488
		n = cachep->node[node];
L
Linus Torvalds 已提交
3489
		list_del(&slabp->list);
3490
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3491
		check_slabp(cachep, slabp);
3492
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3493
		STATS_DEC_ACTIVE(cachep);
3494
		n->free_objects++;
L
Linus Torvalds 已提交
3495 3496 3497 3498
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3499 3500
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3501 3502 3503 3504 3505 3506
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3507 3508
				slab_destroy(cachep, slabp);
			} else {
3509
				list_add(&slabp->list, &n->slabs_free);
L
Linus Torvalds 已提交
3510 3511 3512 3513 3514 3515
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3516
			list_add_tail(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
3517 3518 3519 3520
		}
	}
}

3521
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3522 3523
{
	int batchcount;
3524
	struct kmem_cache_node *n;
3525
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3532 3533 3534 3535
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3536
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3537 3538 3539
		if (max) {
			if (batchcount > max)
				batchcount = max;
3540
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3541
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3547
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3548
free_done:
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553
#if STATS
	{
		int i = 0;
		struct list_head *p;

3554 3555
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
L
Linus Torvalds 已提交
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3567
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3568
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3569
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3570 3571 3572
}

/*
A
Andrew Morton 已提交
3573 3574
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3575
 */
3576
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3577
				unsigned long caller)
L
Linus Torvalds 已提交
3578
{
3579
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3580 3581

	check_irq_off();
3582
	kmemleak_free_recursive(objp, cachep->flags);
3583
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3584

3585
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3586

3587 3588 3589 3590 3591 3592 3593
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3594
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3595 3596
		return;

L
Linus Torvalds 已提交
3597 3598 3599 3600 3601 3602
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3603

3604
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3615
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3616
{
3617
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3618

3619
	trace_kmem_cache_alloc(_RET_IP_, ret,
3620
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3621 3622

	return ret;
L
Linus Torvalds 已提交
3623 3624 3625
}
EXPORT_SYMBOL(kmem_cache_alloc);

3626
#ifdef CONFIG_TRACING
3627
void *
3628
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3629
{
3630 3631
	void *ret;

3632
	ret = slab_alloc(cachep, flags, _RET_IP_);
3633 3634

	trace_kmalloc(_RET_IP_, ret,
3635
		      size, cachep->size, flags);
3636
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3637
}
3638
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3639 3640
#endif

L
Linus Torvalds 已提交
3641
#ifdef CONFIG_NUMA
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3653 3654
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3655
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3656

3657
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3658
				    cachep->object_size, cachep->size,
3659
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3660 3661

	return ret;
3662
}
L
Linus Torvalds 已提交
3663 3664
EXPORT_SYMBOL(kmem_cache_alloc_node);

3665
#ifdef CONFIG_TRACING
3666
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3667
				  gfp_t flags,
3668 3669
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3670
{
3671 3672
	void *ret;

3673
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3674

3675
	trace_kmalloc_node(_RET_IP_, ret,
3676
			   size, cachep->size,
3677 3678
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3679
}
3680
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3681 3682
#endif

3683
static __always_inline void *
3684
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3685
{
3686
	struct kmem_cache *cachep;
3687

3688
	cachep = kmalloc_slab(size, flags);
3689 3690
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3691
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3692
}
3693

3694
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3695 3696
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3697
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3698
}
3699
EXPORT_SYMBOL(__kmalloc_node);
3700 3701

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3702
		int node, unsigned long caller)
3703
{
3704
	return __do_kmalloc_node(size, flags, node, caller);
3705 3706 3707 3708 3709
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3710
	return __do_kmalloc_node(size, flags, node, 0);
3711 3712
}
EXPORT_SYMBOL(__kmalloc_node);
3713
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3714
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3715 3716

/**
3717
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3718
 * @size: how many bytes of memory are required.
3719
 * @flags: the type of memory to allocate (see kmalloc).
3720
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3721
 */
3722
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723
					  unsigned long caller)
L
Linus Torvalds 已提交
3724
{
3725
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3726
	void *ret;
L
Linus Torvalds 已提交
3727

3728 3729 3730 3731 3732
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
3733
	cachep = kmalloc_slab(size, flags);
3734 3735
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3736
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3737

3738
	trace_kmalloc(caller, ret,
3739
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3740 3741

	return ret;
3742 3743 3744
}


3745
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3746 3747
void *__kmalloc(size_t size, gfp_t flags)
{
3748
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3749 3750 3751
}
EXPORT_SYMBOL(__kmalloc);

3752
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3753
{
3754
	return __do_kmalloc(size, flags, caller);
3755 3756
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3757 3758 3759 3760

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3761
	return __do_kmalloc(size, flags, 0);
3762 3763
}
EXPORT_SYMBOL(__kmalloc);
3764 3765
#endif

L
Linus Torvalds 已提交
3766 3767 3768 3769 3770 3771 3772 3773
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3774
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3775 3776
{
	unsigned long flags;
3777 3778 3779
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3780 3781

	local_irq_save(flags);
3782
	debug_check_no_locks_freed(objp, cachep->object_size);
3783
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3784
		debug_check_no_obj_freed(objp, cachep->object_size);
3785
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3786
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3787

3788
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793 3794 3795
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3796 3797
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3798 3799 3800 3801 3802
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3803
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3804 3805
	unsigned long flags;

3806 3807
	trace_kfree(_RET_IP_, objp);

3808
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3809 3810 3811
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3812
	c = virt_to_cache(objp);
3813 3814 3815
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3816
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3817 3818 3819 3820
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3821
/*
3822
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3823
 */
3824
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3825 3826
{
	int node;
3827
	struct kmem_cache_node *n;
3828
	struct array_cache *new_shared;
3829
	struct array_cache **new_alien = NULL;
3830

3831
	for_each_online_node(node) {
3832

3833
                if (use_alien_caches) {
3834
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3835 3836 3837
                        if (!new_alien)
                                goto fail;
                }
3838

3839 3840 3841
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3842
				cachep->shared*cachep->batchcount,
3843
					0xbaadf00d, gfp);
3844 3845 3846 3847
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3848
		}
3849

3850 3851 3852
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3853

3854
			spin_lock_irq(&n->list_lock);
3855

3856
			if (shared)
3857 3858
				free_block(cachep, shared->entry,
						shared->avail, node);
3859

3860 3861 3862
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3863 3864
				new_alien = NULL;
			}
3865
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3866
					cachep->batchcount + cachep->num;
3867
			spin_unlock_irq(&n->list_lock);
3868
			kfree(shared);
3869 3870 3871
			free_alien_cache(new_alien);
			continue;
		}
3872 3873
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3874 3875
			free_alien_cache(new_alien);
			kfree(new_shared);
3876
			goto fail;
3877
		}
3878

3879 3880
		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3881
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3882 3883 3884
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3885
					cachep->batchcount + cachep->num;
3886
		cachep->node[node] = n;
3887
	}
3888
	return 0;
3889

A
Andrew Morton 已提交
3890
fail:
3891
	if (!cachep->list.next) {
3892 3893 3894
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3895
			if (cachep->node[node]) {
3896
				n = cachep->node[node];
3897

3898 3899 3900
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3901
				cachep->node[node] = NULL;
3902 3903 3904 3905
			}
			node--;
		}
	}
3906
	return -ENOMEM;
3907 3908
}

L
Linus Torvalds 已提交
3909
struct ccupdate_struct {
3910
	struct kmem_cache *cachep;
3911
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3912 3913 3914 3915
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3916
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3917 3918 3919
	struct array_cache *old;

	check_irq_off();
3920
	old = cpu_cache_get(new->cachep);
3921

L
Linus Torvalds 已提交
3922 3923 3924 3925
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3926
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3927
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3928
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3929
{
3930
	struct ccupdate_struct *new;
3931
	int i;
L
Linus Torvalds 已提交
3932

3933 3934
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3935 3936 3937
	if (!new)
		return -ENOMEM;

3938
	for_each_online_cpu(i) {
3939
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3940
						batchcount, gfp);
3941
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3942
			for (i--; i >= 0; i--)
3943 3944
				kfree(new->new[i]);
			kfree(new);
3945
			return -ENOMEM;
L
Linus Torvalds 已提交
3946 3947
		}
	}
3948
	new->cachep = cachep;
L
Linus Torvalds 已提交
3949

3950
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3951

L
Linus Torvalds 已提交
3952 3953 3954
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3955
	cachep->shared = shared;
L
Linus Torvalds 已提交
3956

3957
	for_each_online_cpu(i) {
3958
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3959 3960
		if (!ccold)
			continue;
3961
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3962
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3963
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3964 3965
		kfree(ccold);
	}
3966
	kfree(new);
3967
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3968 3969
}

G
Glauber Costa 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3985
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3996
/* Called with slab_mutex held always */
3997
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3998 3999
{
	int err;
G
Glauber Costa 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
4010

G
Glauber Costa 已提交
4011 4012
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
4013 4014
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4015 4016
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4017
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4018 4019 4020 4021
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4022
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
4023
		limit = 1;
4024
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
4025
		limit = 8;
4026
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
4027
		limit = 24;
4028
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
4029 4030 4031 4032
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4033 4034
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4035 4036 4037 4038 4039 4040 4041 4042
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4043
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4044 4045 4046
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4047 4048 4049
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4050 4051 4052 4053
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
4054 4055 4056
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
4057 4058
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4059
		       cachep->name, -err);
4060
	return err;
L
Linus Torvalds 已提交
4061 4062
}

4063
/*
4064 4065
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4066
 * if drain_array() is used on the shared array.
4067
 */
4068
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4069
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4070 4071 4072
{
	int tofree;

4073 4074
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4075 4076
	if (ac->touched && !force) {
		ac->touched = 0;
4077
	} else {
4078
		spin_lock_irq(&n->list_lock);
4079 4080 4081 4082 4083 4084 4085 4086 4087
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4088
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4089 4090 4091 4092 4093
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4094
 * @w: work descriptor
L
Linus Torvalds 已提交
4095 4096 4097 4098 4099 4100
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4101 4102
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4103
 */
4104
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4105
{
4106
	struct kmem_cache *searchp;
4107
	struct kmem_cache_node *n;
4108
	int node = numa_mem_id();
4109
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4110

4111
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4112
		/* Give up. Setup the next iteration. */
4113
		goto out;
L
Linus Torvalds 已提交
4114

4115
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4116 4117
		check_irq_on();

4118
		/*
4119
		 * We only take the node lock if absolutely necessary and we
4120 4121 4122
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4123
		n = searchp->node[node];
4124

4125
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4126

4127
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4128

4129 4130 4131 4132
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4133
		if (time_after(n->next_reap, jiffies))
4134
			goto next;
L
Linus Torvalds 已提交
4135

4136
		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4137

4138
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4139

4140 4141
		if (n->free_touched)
			n->free_touched = 0;
4142 4143
		else {
			int freed;
L
Linus Torvalds 已提交
4144

4145
			freed = drain_freelist(searchp, n, (n->free_limit +
4146 4147 4148
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4149
next:
L
Linus Torvalds 已提交
4150 4151 4152
		cond_resched();
	}
	check_irq_on();
4153
	mutex_unlock(&slab_mutex);
4154
	next_reap_node();
4155
out:
A
Andrew Morton 已提交
4156
	/* Set up the next iteration */
4157
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4158 4159
}

4160
#ifdef CONFIG_SLABINFO
4161
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4162
{
P
Pekka Enberg 已提交
4163 4164 4165 4166 4167
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4168
	const char *name;
L
Linus Torvalds 已提交
4169
	char *error = NULL;
4170
	int node;
4171
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4172 4173 4174

	active_objs = 0;
	num_slabs = 0;
4175
	for_each_online_node(node) {
4176 4177
		n = cachep->node[node];
		if (!n)
4178 4179
			continue;

4180
		check_irq_on();
4181
		spin_lock_irq(&n->list_lock);
4182

4183
		list_for_each_entry(slabp, &n->slabs_full, list) {
4184 4185 4186 4187 4188
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4189
		list_for_each_entry(slabp, &n->slabs_partial, list) {
4190 4191 4192 4193 4194 4195 4196
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4197
		list_for_each_entry(slabp, &n->slabs_free, list) {
4198 4199 4200 4201
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
4202 4203 4204
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4205

4206
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4207
	}
P
Pekka Enberg 已提交
4208 4209
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4210
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4211 4212
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4213
	name = cachep->name;
L
Linus Torvalds 已提交
4214 4215 4216
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4231
#if STATS
4232
	{			/* node stats */
L
Linus Torvalds 已提交
4233 4234 4235 4236 4237 4238 4239
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4240
		unsigned long node_frees = cachep->node_frees;
4241
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4242

J
Joe Perches 已提交
4243 4244 4245 4246 4247
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4257
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4270
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4271
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4272
{
P
Pekka Enberg 已提交
4273
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4274
	int limit, batchcount, shared, res;
4275
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4276

L
Linus Torvalds 已提交
4277 4278 4279 4280
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4281
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4292
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4293
	res = -EINVAL;
4294
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4295
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4296 4297
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4298
				res = 0;
L
Linus Torvalds 已提交
4299
			} else {
4300
				res = do_tune_cpucache(cachep, limit,
4301 4302
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4303 4304 4305 4306
			}
			break;
		}
	}
4307
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4308 4309 4310 4311
	if (res >= 0)
		res = count;
	return res;
}
4312 4313 4314 4315 4316

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4317 4318
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
4357
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4369
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4370

4371
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4372
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4373
		if (modname[0])
4374 4375 4376 4377 4378 4379 4380 4381 4382
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4383
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4384
	struct slab *slabp;
4385
	struct kmem_cache_node *n;
4386
	const char *name;
4387
	unsigned long *x = m->private;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4398
	x[1] = 0;
4399 4400

	for_each_online_node(node) {
4401 4402
		n = cachep->node[node];
		if (!n)
4403 4404 4405
			continue;

		check_irq_on();
4406
		spin_lock_irq(&n->list_lock);
4407

4408
		list_for_each_entry(slabp, &n->slabs_full, list)
4409
			handle_slab(x, cachep, slabp);
4410
		list_for_each_entry(slabp, &n->slabs_partial, list)
4411
			handle_slab(x, cachep, slabp);
4412
		spin_unlock_irq(&n->list_lock);
4413 4414
	}
	name = cachep->name;
4415
	if (x[0] == x[1]) {
4416
		/* Increase the buffer size */
4417
		mutex_unlock(&slab_mutex);
4418
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4419 4420
		if (!m->private) {
			/* Too bad, we are really out */
4421
			m->private = x;
4422
			mutex_lock(&slab_mutex);
4423 4424
			return -ENOMEM;
		}
4425 4426
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4427
		mutex_lock(&slab_mutex);
4428 4429 4430 4431
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4432 4433 4434
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4435 4436
		seq_putc(m, '\n');
	}
4437

4438 4439 4440
	return 0;
}

4441
static const struct seq_operations slabstats_op = {
4442 4443 4444 4445 4446
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4477
#endif
4478 4479 4480
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4481 4482
#endif

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4495
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4496
{
4497 4498
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4499
		return 0;
L
Linus Torvalds 已提交
4500

4501
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4502
}
K
Kirill A. Shutemov 已提交
4503
EXPORT_SYMBOL(ksize);