slab.c 95.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts - 
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
 *  Several members in kmem_cache_t and struct slab never change, they
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
104
#include	<linux/string.h>
105
#include	<linux/nodemask.h>
I
Ingo Molnar 已提交
106
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

202
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
220 221 222 223 224 225
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
245 246 247
	struct rcu_head head;
	kmem_cache_t *cachep;
	void *addr;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
267 268 269 270 271 272 273
	spinlock_t lock;
	void *entry[0];		/*
				 * Must have this definition in here for the proper
				 * alignment of array_cache. Also simplifies accessing
				 * the entries.
				 * [0] is for gcc 2.95. It should really be [].
				 */
L
Linus Torvalds 已提交
274 275 276 277 278 279 280 281
};

/* bootstrap: The caches do not work without cpuarrays anymore,
 * but the cpuarrays are allocated from the generic caches...
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
282
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
283 284 285
};

/*
286
 * The slab lists for all objects.
L
Linus Torvalds 已提交
287 288
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
289 290 291 292 293 294 295 296 297 298
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned long next_reap;
	int free_touched;
	unsigned int free_limit;
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
L
Linus Torvalds 已提交
299 300
};

301 302 303 304 305 306 307 308 309 310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
311
 * This function must be completely optimized away if
312 313 314 315
 * a constant is passed to it. Mostly the same as
 * what is in linux/slab.h except it returns an
 * index.
 */
316
static __always_inline int index_of(const size_t size)
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
{
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
		{
			extern void __bad_size(void);
			__bad_size();
		}
332 333
	} else
		BUG();
334 335 336 337 338
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static inline void kmem_list3_init(struct kmem_list3 *parent)
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)	\
	do {	\
		INIT_LIST_HEAD(listp);		\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
	do {					\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
364 365 366 367 368 369

/*
 * kmem_cache_t
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
370

371
struct kmem_cache {
L
Linus Torvalds 已提交
372
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
373 374 375 376 377
	struct array_cache *array[NR_CPUS];
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
	unsigned int objsize;
378
/* 2) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
379 380 381 382
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	unsigned int flags;	/* constant flags */
	unsigned int num;	/* # of objs per slab */
	spinlock_t spinlock;
L
Linus Torvalds 已提交
383 384 385

/* 3) cache_grow/shrink */
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
386
	unsigned int gfporder;
L
Linus Torvalds 已提交
387 388

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
389
	gfp_t gfpflags;
L
Linus Torvalds 已提交
390

P
Pekka Enberg 已提交
391 392 393 394 395 396
	size_t colour;		/* cache colouring range */
	unsigned int colour_off;	/* colour offset */
	unsigned int colour_next;	/* cache colouring */
	kmem_cache_t *slabp_cache;
	unsigned int slab_size;
	unsigned int dflags;	/* dynamic flags */
L
Linus Torvalds 已提交
397 398

	/* constructor func */
P
Pekka Enberg 已提交
399
	void (*ctor) (void *, kmem_cache_t *, unsigned long);
L
Linus Torvalds 已提交
400 401

	/* de-constructor func */
P
Pekka Enberg 已提交
402
	void (*dtor) (void *, kmem_cache_t *, unsigned long);
L
Linus Torvalds 已提交
403 404

/* 4) cache creation/removal */
P
Pekka Enberg 已提交
405 406
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
407 408 409

/* 5) statistics */
#if STATS
P
Pekka Enberg 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
423 424
#endif
#if DEBUG
P
Pekka Enberg 已提交
425 426
	int dbghead;
	int reallen;
L
Linus Torvalds 已提交
427 428 429 430 431 432 433 434 435 436
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/* Optimization question: fewer reaps means less 
 * probability for unnessary cpucache drain/refill cycles.
 *
A
Adrian Bunk 已提交
437
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
454
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
L
Linus Torvalds 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
#define	STATS_SET_FREEABLE(x, i) \
				do { if ((x)->max_freeable < i) \
					(x)->max_freeable = i; \
				} while (0)

#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
473
#define	STATS_INC_NODEFREES(x)	do { } while (0)
L
Linus Torvalds 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#define	STATS_SET_FREEABLE(x, i) \
				do { } while (0)

#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

/* memory layout of objects:
 * 0		: objp
 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
 * 		redzone word.
 * cachep->dbghead: The real object.
 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
 */
static int obj_dbghead(kmem_cache_t *cachep)
{
	return cachep->dbghead;
}

static int obj_reallen(kmem_cache_t *cachep)
{
	return cachep->reallen;
}

static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
}

static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
P
Pekka Enberg 已提交
526 527 528
		return (unsigned long *)(objp + cachep->objsize -
					 2 * BYTES_PER_WORD);
	return (unsigned long *)(objp + cachep->objsize - BYTES_PER_WORD);
L
Linus Torvalds 已提交
529 530 531 532 533
}

static void **dbg_userword(kmem_cache_t *cachep, void *objp)
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
P
Pekka Enberg 已提交
534
	return (void **)(objp + cachep->objsize - BYTES_PER_WORD);
L
Linus Torvalds 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
}

#else

#define obj_dbghead(x)			0
#define obj_reallen(cachep)		(cachep->objsize)
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Maximum size of an obj (in 2^order pages)
 * and absolute limit for the gfp order.
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

569
/* Functions for storing/retrieving the cachep and or slab from the
L
Linus Torvalds 已提交
570 571 572
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

/* These are the default caches for kmalloc. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
611
	{NULL,}
L
Linus Torvalds 已提交
612 613 614 615
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
616
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
617
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
618
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
619 620 621

/* internal cache of cache description objs */
static kmem_cache_t cache_cache = {
P
Pekka Enberg 已提交
622 623 624 625 626 627 628
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
	.objsize = sizeof(kmem_cache_t),
	.flags = SLAB_NO_REAP,
	.spinlock = SPIN_LOCK_UNLOCKED,
	.name = "kmem_cache",
L
Linus Torvalds 已提交
629
#if DEBUG
P
Pekka Enberg 已提交
630
	.reallen = sizeof(kmem_cache_t),
L
Linus Torvalds 已提交
631 632 633 634
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
635
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static struct list_head cache_chain;

/*
 * vm_enough_memory() looks at this to determine how many
 * slab-allocated pages are possibly freeable under pressure
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
652 653
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
654 655 656 657 658
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

P
Pekka Enberg 已提交
659 660 661
static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
static void enable_cpucache(kmem_cache_t *cachep);
static void cache_reap(void *unused);
662
static int __node_shrink(kmem_cache_t *cachep, int node);
L
Linus Torvalds 已提交
663 664 665 666 667 668

static inline struct array_cache *ac_data(kmem_cache_t *cachep)
{
	return cachep->array[smp_processor_id()];
}

A
Al Viro 已提交
669
static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
L
Linus Torvalds 已提交
670 671 672 673 674
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
675 676 677
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
678
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
679 680 681 682 683
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
684
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
685 686 687 688 689 690 691 692
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Al Viro 已提交
693
kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
694 695 696 697 698
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

L
Linus Torvalds 已提交
699 700
/* Cal the num objs, wastage, and bytes left over for a given slab size. */
static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
P
Pekka Enberg 已提交
701
			   int flags, size_t *left_over, unsigned int *num)
L
Linus Torvalds 已提交
702 703
{
	int i;
P
Pekka Enberg 已提交
704
	size_t wastage = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
705 706 707 708 709 710 711 712
	size_t extra = 0;
	size_t base = 0;

	if (!(flags & CFLGS_OFF_SLAB)) {
		base = sizeof(struct slab);
		extra = sizeof(kmem_bufctl_t);
	}
	i = 0;
P
Pekka Enberg 已提交
713
	while (i * size + ALIGN(base + i * extra, align) <= wastage)
L
Linus Torvalds 已提交
714 715 716 717 718 719 720 721
		i++;
	if (i > 0)
		i--;

	if (i > SLAB_LIMIT)
		i = SLAB_LIMIT;

	*num = i;
P
Pekka Enberg 已提交
722 723
	wastage -= i * size;
	wastage -= ALIGN(base + i * extra, align);
L
Linus Torvalds 已提交
724 725 726 727 728 729 730 731
	*left_over = wastage;
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
732
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
	dump_stack();
}

/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

758
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
759
					    int batchcount)
L
Linus Torvalds 已提交
760
{
P
Pekka Enberg 已提交
761
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
762 763
	struct array_cache *nc = NULL;

764
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
765 766 767 768 769
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
770
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
771 772 773 774
	}
	return nc;
}

775 776 777 778
#ifdef CONFIG_NUMA
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
779
	int memsize = sizeof(void *) * MAX_NUMNODES;
780 781 782 783 784 785 786 787 788 789 790 791 792
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
793
				for (i--; i <= 0; i--)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
	int i;

	if (!ac_ptr)
		return;

	for_each_node(i)
P
Pekka Enberg 已提交
811
	    kfree(ac_ptr[i]);
812 813 814 815

	kfree(ac_ptr);
}

P
Pekka Enberg 已提交
816 817
static inline void __drain_alien_cache(kmem_cache_t *cachep,
				       struct array_cache *ac, int node)
818 819 820 821 822
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
823
		free_block(cachep, ac->entry, ac->avail, node);
824 825 826 827 828 829 830
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
{
P
Pekka Enberg 已提交
831
	int i = 0;
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
		ac = l3->alien[i];
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
#define alloc_alien_cache(node, limit) do { } while (0)
#define free_alien_cache(ac_ptr) do { } while (0)
#define drain_alien_cache(cachep, l3) do { } while (0)
#endif

L
Linus Torvalds 已提交
850
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
851
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
852 853
{
	long cpu = (long)hcpu;
P
Pekka Enberg 已提交
854
	kmem_cache_t *cachep;
855 856 857
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
858 859 860

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
861
		mutex_lock(&cache_chain_mutex);
862 863 864 865 866 867
		/* we need to do this right in the beginning since
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
868
		list_for_each_entry(cachep, &cache_chain, next) {
869 870 871 872 873 874
			/* setup the size64 kmemlist for cpu before we can
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
				if (!(l3 = kmalloc_node(memsize,
P
Pekka Enberg 已提交
875
							GFP_KERNEL, node)))
876 877 878
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
879
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
880 881 882

				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
883

884 885
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
P
Pekka Enberg 已提交
886 887
			    (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
888 889 890 891
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

		/* Now we can go ahead with allocating the shared array's
P
Pekka Enberg 已提交
892
		   & array cache's */
893
		list_for_each_entry(cachep, &cache_chain, next) {
894 895
			struct array_cache *nc;

896
			nc = alloc_arraycache(node, cachep->limit,
P
Pekka Enberg 已提交
897
					      cachep->batchcount);
L
Linus Torvalds 已提交
898 899 900 901
			if (!nc)
				goto bad;
			cachep->array[cpu] = nc;

902 903 904 905
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);
			if (!l3->shared) {
				if (!(nc = alloc_arraycache(node,
P
Pekka Enberg 已提交
906 907 908 909
							    cachep->shared *
							    cachep->batchcount,
							    0xbaadf00d)))
					goto bad;
910 911

				/* we are serialised from CPU_DEAD or
P
Pekka Enberg 已提交
912
				   CPU_UP_CANCELLED by the cpucontrol lock */
913 914
				l3->shared = nc;
			}
L
Linus Torvalds 已提交
915
		}
I
Ingo Molnar 已提交
916
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
917 918 919 920 921 922 923 924
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
925
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
926 927 928

		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
929
			cpumask_t mask;
L
Linus Torvalds 已提交
930

931
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
932 933 934 935
			spin_lock_irq(&cachep->spinlock);
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
936 937 938 939 940 941 942 943 944 945
			l3 = cachep->nodelists[node];

			if (!l3)
				goto unlock_cache;

			spin_lock(&l3->list_lock);

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
946
				free_block(cachep, nc->entry, nc->avail, node);
947 948

			if (!cpus_empty(mask)) {
P
Pekka Enberg 已提交
949 950 951
				spin_unlock(&l3->list_lock);
				goto unlock_cache;
			}
952 953 954

			if (l3->shared) {
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
955
					   l3->shared->avail, node);
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
				kfree(l3->shared);
				l3->shared = NULL;
			}
			if (l3->alien) {
				drain_alien_cache(cachep, l3);
				free_alien_cache(l3->alien);
				l3->alien = NULL;
			}

			/* free slabs belonging to this node */
			if (__node_shrink(cachep, node)) {
				cachep->nodelists[node] = NULL;
				spin_unlock(&l3->list_lock);
				kfree(l3);
			} else {
				spin_unlock(&l3->list_lock);
			}
P
Pekka Enberg 已提交
973
		      unlock_cache:
L
Linus Torvalds 已提交
974 975 976
			spin_unlock_irq(&cachep->spinlock);
			kfree(nc);
		}
I
Ingo Molnar 已提交
977
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
978 979 980 981
		break;
#endif
	}
	return NOTIFY_OK;
P
Pekka Enberg 已提交
982
      bad:
I
Ingo Molnar 已提交
983
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
984 985 986 987 988
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

989 990 991
/*
 * swap the static kmem_list3 with kmalloced memory
 */
P
Pekka Enberg 已提交
992
static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

L
Linus Torvalds 已提交
1007 1008 1009 1010 1011 1012 1013 1014
/* Initialisation.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1015 1016 1017 1018 1019 1020 1021
	int i;

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
	 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
	 *    structures of all caches, except cache_cache itself: cache_cache
	 *    is statically allocated.
1035 1036 1037
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1038
	 * 2) Create the first kmalloc cache.
1039 1040 1041 1042
	 *    The kmem_cache_t for the new cache is allocated normally.
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1043 1044
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1045 1046 1047
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052 1053 1054
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1055
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1056 1057 1058 1059

	cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());

	cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
P
Pekka Enberg 已提交
1060
		       &left_over, &cache_cache.num);
L
Linus Torvalds 已提交
1061 1062 1063
	if (!cache_cache.num)
		BUG();

P
Pekka Enberg 已提交
1064
	cache_cache.colour = left_over / cache_cache.colour_off;
L
Linus Torvalds 已提交
1065
	cache_cache.colour_next = 0;
P
Pekka Enberg 已提交
1066 1067
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1068 1069 1070 1071 1072

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

1073 1074 1075 1076 1077 1078
	/* Initialize the caches that provide memory for the array cache
	 * and the kmem_list3 structures first.
	 * Without this, further allocations will bug
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
P
Pekka Enberg 已提交
1079 1080 1081 1082
						      sizes[INDEX_AC].cs_size,
						      ARCH_KMALLOC_MINALIGN,
						      (ARCH_KMALLOC_FLAGS |
						       SLAB_PANIC), NULL, NULL);
1083 1084 1085

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
P
Pekka Enberg 已提交
1086 1087 1088 1089 1090
		    kmem_cache_create(names[INDEX_L3].name,
				      sizes[INDEX_L3].cs_size,
				      ARCH_KMALLOC_MINALIGN,
				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
				      NULL);
1091

L
Linus Torvalds 已提交
1092
	while (sizes->cs_size != ULONG_MAX) {
1093 1094
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1095 1096 1097
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1098 1099
		 * allow tighter packing of the smaller caches.
		 */
P
Pekka Enberg 已提交
1100
		if (!sizes->cs_cachep)
1101
			sizes->cs_cachep = kmem_cache_create(names->name,
P
Pekka Enberg 已提交
1102 1103 1104 1105 1106
							     sizes->cs_size,
							     ARCH_KMALLOC_MINALIGN,
							     (ARCH_KMALLOC_FLAGS
							      | SLAB_PANIC),
							     NULL, NULL);
L
Linus Torvalds 已提交
1107 1108 1109

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1110
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1111 1112 1113 1114
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
P
Pekka Enberg 已提交
1115 1116 1117 1118 1119 1120
							sizes->cs_size,
							ARCH_KMALLOC_MINALIGN,
							(ARCH_KMALLOC_FLAGS |
							 SLAB_CACHE_DMA |
							 SLAB_PANIC), NULL,
							NULL);
L
Linus Torvalds 已提交
1121 1122 1123 1124 1125 1126

		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1127
		void *ptr;
1128

L
Linus Torvalds 已提交
1129
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1130

L
Linus Torvalds 已提交
1131 1132
		local_irq_disable();
		BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1133
		memcpy(ptr, ac_data(&cache_cache),
P
Pekka Enberg 已提交
1134
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1135 1136
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1137

L
Linus Torvalds 已提交
1138
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1139

L
Linus Torvalds 已提交
1140
		local_irq_disable();
1141
		BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1142
		       != &initarray_generic.cache);
1143
		memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1144
		       sizeof(struct arraycache_init));
1145
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1146
		    ptr;
L
Linus Torvalds 已提交
1147 1148
		local_irq_enable();
	}
1149 1150 1151 1152 1153
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1154
			  numa_node_id());
1155 1156 1157

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1158
				  &initkmem_list3[SIZE_AC + node], node);
1159 1160 1161

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1162 1163
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1164 1165 1166
			}
		}
	}
L
Linus Torvalds 已提交
1167

1168
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1169 1170
	{
		kmem_cache_t *cachep;
I
Ingo Molnar 已提交
1171
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1172
		list_for_each_entry(cachep, &cache_chain, next)
P
Pekka Enberg 已提交
1173
		    enable_cpucache(cachep);
I
Ingo Molnar 已提交
1174
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	}

	/* Done! */
	g_cpucache_up = FULL;

	/* Register a cpu startup notifier callback
	 * that initializes ac_data for all new cpus
	 */
	register_cpu_notifier(&cpucache_notifier);

	/* The reap timers are started later, with a module init call:
	 * That part of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

	/* 
	 * Register the timers that return unneeded
	 * pages to gfp.
	 */
1198
	for_each_online_cpu(cpu)
P
Pekka Enberg 已提交
1199
	    start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	return 0;
}

__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
A
Al Viro 已提交
1213
static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1214 1215 1216 1217 1218 1219
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1220
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
		SetPageSlab(page);
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
static void kmem_freepages(kmem_cache_t *cachep, void *addr)
{
P
Pekka Enberg 已提交
1241
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
		if (!TestClearPageSlab(page))
			BUG();
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1254 1255
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1256 1257 1258 1259
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1260
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
L
Linus Torvalds 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	kmem_cache_t *cachep = slab_rcu->cachep;

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1272
			    unsigned long caller)
L
Linus Torvalds 已提交
1273 1274 1275
{
	int size = obj_reallen(cachep);

P
Pekka Enberg 已提交
1276
	addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)];
L
Linus Torvalds 已提交
1277

P
Pekka Enberg 已提交
1278
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1279 1280
		return;

P
Pekka Enberg 已提交
1281 1282 1283 1284
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1285 1286 1287 1288 1289 1290 1291
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1292
				*addr++ = svalue;
L
Linus Torvalds 已提交
1293 1294 1295 1296 1297 1298 1299
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1300
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1301 1302 1303 1304 1305 1306
}
#endif

static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
{
	int size = obj_reallen(cachep);
P
Pekka Enberg 已提交
1307
	addr = &((char *)addr)[obj_dbghead(cachep)];
L
Linus Torvalds 已提交
1308 1309

	memset(addr, val, size);
P
Pekka Enberg 已提交
1310
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1311 1312 1313 1314 1315 1316
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
P
Pekka Enberg 已提交
1317 1318
	for (i = 0; i < limit; i++) {
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	}
	printk("\n");
}
#endif

#if DEBUG

static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
P
Pekka Enberg 已提交
1333 1334
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1335 1336 1337 1338
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
P
Pekka Enberg 已提交
1339
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1340
		print_symbol("(%s)",
P
Pekka Enberg 已提交
1341
			     (unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1342 1343
		printk("\n");
	}
P
Pekka Enberg 已提交
1344
	realobj = (char *)objp + obj_dbghead(cachep);
L
Linus Torvalds 已提交
1345
	size = obj_reallen(cachep);
P
Pekka Enberg 已提交
1346
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1347 1348
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1349 1350
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		dump_line(realobj, i, limit);
	}
}

static void check_poison_obj(kmem_cache_t *cachep, void *objp)
{
	char *realobj;
	int size, i;
	int lines = 0;

P
Pekka Enberg 已提交
1361
	realobj = (char *)objp + obj_dbghead(cachep);
L
Linus Torvalds 已提交
1362 1363
	size = obj_reallen(cachep);

P
Pekka Enberg 已提交
1364
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1365
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1366
		if (i == size - 1)
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1373 1374 1375
				printk(KERN_ERR
				       "Slab corruption: start=%p, len=%d\n",
				       realobj, size);
L
Linus Torvalds 已提交
1376 1377 1378
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1379
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1380
			limit = 16;
P
Pekka Enberg 已提交
1381 1382
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1395
		struct slab *slabp = page_get_slab(virt_to_page(objp));
L
Linus Torvalds 已提交
1396 1397
		int objnr;

P
Pekka Enberg 已提交
1398
		objnr = (objp - slabp->s_mem) / cachep->objsize;
L
Linus Torvalds 已提交
1399
		if (objnr) {
P
Pekka Enberg 已提交
1400 1401
			objp = slabp->s_mem + (objnr - 1) * cachep->objsize;
			realobj = (char *)objp + obj_dbghead(cachep);
L
Linus Torvalds 已提交
1402
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1403
			       realobj, size);
L
Linus Torvalds 已提交
1404 1405
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1406 1407 1408
		if (objnr + 1 < cachep->num) {
			objp = slabp->s_mem + (objnr + 1) * cachep->objsize;
			realobj = (char *)objp + obj_dbghead(cachep);
L
Linus Torvalds 已提交
1409
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1410
			       realobj, size);
L
Linus Torvalds 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

/* Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
P
Pekka Enberg 已提交
1421
static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
{
	void *addr = slabp->s_mem - slabp->colouroff;

#if DEBUG
	int i;
	for (i = 0; i < cachep->num; i++) {
		void *objp = slabp->s_mem + cachep->objsize * i;

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
P
Pekka Enberg 已提交
1432 1433 1434 1435 1436
			if ((cachep->objsize % PAGE_SIZE) == 0
			    && OFF_SLAB(cachep))
				kernel_map_pages(virt_to_page(objp),
						 cachep->objsize / PAGE_SIZE,
						 1);
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1446
					   "was overwritten");
L
Linus Torvalds 已提交
1447 1448
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1449
					   "was overwritten");
L
Linus Torvalds 已提交
1450 1451
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
P
Pekka Enberg 已提交
1452
			(cachep->dtor) (objp + obj_dbghead(cachep), cachep, 0);
L
Linus Torvalds 已提交
1453 1454 1455 1456 1457
	}
#else
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
P
Pekka Enberg 已提交
1458 1459
			void *objp = slabp->s_mem + cachep->objsize * i;
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1460 1461 1462 1463 1464 1465 1466
		}
	}
#endif

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1467
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

1478 1479 1480 1481 1482 1483 1484
/* For setting up all the kmem_list3s for cache whose objsize is same
   as size of kmem_list3. */
static inline void set_up_list3s(kmem_cache_t *cachep, int index)
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1485
		cachep->nodelists[node] = &initkmem_list3[index + node];
1486
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1487 1488
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1489 1490 1491
	}
}

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/**
 * calculate_slab_order - calculate size (page order) of slabs and the number
 *                        of objects per slab.
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
					  size_t align, gfp_t flags)
{
	size_t left_over = 0;

P
Pekka Enberg 已提交
1505
	for (;; cachep->gfporder++) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		unsigned int num;
		size_t remainder;

		if (cachep->gfporder > MAX_GFP_ORDER) {
			cachep->num = 0;
			break;
		}

		cache_estimate(cachep->gfporder, size, align, flags,
			       &remainder, &num);
		if (!num)
			continue;
		/* More than offslab_limit objects will cause problems */
		if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
			break;

		cachep->num = num;
		left_over = remainder;

		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
		if (cachep->gfporder >= slab_break_gfp_order)
			break;

		if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
			/* Acceptable internal fragmentation */
			break;
	}
	return left_over;
}

L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting 
 * unloaded.
 * 
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
kmem_cache_t *
kmem_cache_create (const char *name, size_t size, size_t align,
	unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
	void (*dtor)(void*, kmem_cache_t *, unsigned long))
{
	size_t left_over, slab_size, ralign;
	kmem_cache_t *cachep = NULL;
1579
	struct list_head *p;
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
P
Pekka Enberg 已提交
1585 1586 1587 1588 1589 1590 1591
	    in_interrupt() ||
	    (size < BYTES_PER_WORD) ||
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
		printk(KERN_ERR "%s: Early error in slab %s\n",
		       __FUNCTION__, name);
		BUG();
	}
L
Linus Torvalds 已提交
1592

I
Ingo Molnar 已提交
1593
	mutex_lock(&cache_chain_mutex);
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	list_for_each(p, &cache_chain) {
		kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
P
Pekka Enberg 已提交
1611
			       pc->objsize);
1612 1613 1614
			continue;
		}

P
Pekka Enberg 已提交
1615
		if (!strcmp(pc->name, name)) {
1616 1617 1618 1619 1620 1621
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1622 1623 1624 1625 1626
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1627
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
P
Pekka Enberg 已提交
1637 1638 1639
	if ((size < 4096
	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1660 1661 1662
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	}

	/* calculate out the final buffer alignment: */
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Default alignment: as specified by the arch code.
		 * Except if an object is really small, then squeeze multiple
		 * objects into one cacheline.
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1673
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1682
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1688
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697
	}
	/* 4) Store it. Note that the debug code below can reduce
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
	cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
	if (!cachep)
1698
		goto oops;
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	memset(cachep, 0, sizeof(kmem_cache_t));

#if DEBUG
	cachep->reallen = size;

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
		cachep->dbghead += BYTES_PER_WORD;
P
Pekka Enberg 已提交
1710
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
1721 1722
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
	    && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
L
Linus Torvalds 已提交
1723 1724 1725 1726 1727 1728 1729
		cachep->dbghead += PAGE_SIZE - size;
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
1730
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

	if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		cachep->gfporder = 0;
		cache_estimate(cachep->gfporder, size, align, flags,
P
Pekka Enberg 已提交
1747
			       &left_over, &cachep->num);
1748 1749
	} else
		left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
1755
		goto oops;
L
Linus Torvalds 已提交
1756
	}
P
Pekka Enberg 已提交
1757 1758
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
1771 1772
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
1779
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
1780 1781 1782 1783 1784 1785 1786 1787 1788
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
	cachep->objsize = size;

	if (flags & CFLGS_OFF_SLAB)
1789
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
	} else {
		if (g_cpucache_up == NONE) {
			/* Note: the first kmem_cache_create must create
			 * the cache that's used by kmalloc(24), otherwise
			 * the creation of further caches will BUG().
			 */
1805
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1806
			    &initarray_generic.cache;
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

			/* If the cache that's used by
			 * kmalloc(sizeof(kmem_list3)) is the first cache,
			 * then we need to set up all its list3s, otherwise
			 * the creation of further caches will BUG().
			 */
			set_up_list3s(cachep, SIZE_AC);
			if (INDEX_AC == INDEX_L3)
				g_cpucache_up = PARTIAL_L3;
			else
				g_cpucache_up = PARTIAL_AC;
L
Linus Torvalds 已提交
1818
		} else {
1819
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1820
			    kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1821 1822 1823 1824 1825 1826 1827 1828 1829

			if (g_cpucache_up == PARTIAL_AC) {
				set_up_list3s(cachep, SIZE_L3);
				g_cpucache_up = PARTIAL_L3;
			} else {
				int node;
				for_each_online_node(node) {

					cachep->nodelists[node] =
P
Pekka Enberg 已提交
1830 1831 1832
					    kmalloc_node(sizeof
							 (struct kmem_list3),
							 GFP_KERNEL, node);
1833
					BUG_ON(!cachep->nodelists[node]);
P
Pekka Enberg 已提交
1834 1835
					kmem_list3_init(cachep->
							nodelists[node]);
1836 1837
				}
			}
L
Linus Torvalds 已提交
1838
		}
1839
		cachep->nodelists[numa_node_id()]->next_reap =
P
Pekka Enberg 已提交
1840 1841
		    jiffies + REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1842

L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848 1849
		BUG_ON(!ac_data(cachep));
		ac_data(cachep)->avail = 0;
		ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
		ac_data(cachep)->batchcount = 1;
		ac_data(cachep)->touched = 0;
		cachep->batchcount = 1;
		cachep->limit = BOOT_CPUCACHE_ENTRIES;
P
Pekka Enberg 已提交
1850
	}
L
Linus Torvalds 已提交
1851 1852 1853 1854

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
	unlock_cpu_hotplug();
P
Pekka Enberg 已提交
1855
      oops:
L
Linus Torvalds 已提交
1856 1857
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
1858
		      name);
I
Ingo Molnar 已提交
1859
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

static void check_spinlock_acquired(kmem_cache_t *cachep)
{
#ifdef CONFIG_SMP
	check_irq_off();
1879
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
1880 1881
#endif
}
1882 1883 1884 1885 1886 1887 1888 1889 1890

static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
1891 1892 1893 1894
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
1895
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900
#endif

/*
 * Waits for all CPUs to execute func().
 */
P
Pekka Enberg 已提交
1901
static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
{
	check_irq_on();
	preempt_disable();

	local_irq_disable();
	func(arg);
	local_irq_enable();

	if (smp_call_function(func, arg, 1, 1))
		BUG();

	preempt_enable();
}

P
Pekka Enberg 已提交
1916 1917
static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
				int force, int node);
L
Linus Torvalds 已提交
1918 1919 1920

static void do_drain(void *arg)
{
P
Pekka Enberg 已提交
1921
	kmem_cache_t *cachep = (kmem_cache_t *) arg;
L
Linus Torvalds 已提交
1922
	struct array_cache *ac;
1923
	int node = numa_node_id();
L
Linus Torvalds 已提交
1924 1925 1926

	check_irq_off();
	ac = ac_data(cachep);
1927 1928 1929
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934
	ac->avail = 0;
}

static void drain_cpu_caches(kmem_cache_t *cachep)
{
1935 1936 1937
	struct kmem_list3 *l3;
	int node;

L
Linus Torvalds 已提交
1938 1939 1940
	smp_call_function_all_cpus(do_drain, cachep);
	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
P
Pekka Enberg 已提交
1941
	for_each_online_node(node) {
1942 1943 1944 1945 1946 1947 1948 1949 1950
		l3 = cachep->nodelists[node];
		if (l3) {
			spin_lock(&l3->list_lock);
			drain_array_locked(cachep, l3->shared, 1, node);
			spin_unlock(&l3->list_lock);
			if (l3->alien)
				drain_alien_cache(cachep, l3);
		}
	}
L
Linus Torvalds 已提交
1951 1952 1953
	spin_unlock_irq(&cachep->spinlock);
}

1954
static int __node_shrink(kmem_cache_t *cachep, int node)
L
Linus Torvalds 已提交
1955 1956
{
	struct slab *slabp;
1957
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
1958 1959
	int ret;

1960
	for (;;) {
L
Linus Torvalds 已提交
1961 1962
		struct list_head *p;

1963 1964
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
1965 1966
			break;

1967
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
1968 1969 1970 1971 1972 1973
#if DEBUG
		if (slabp->inuse)
			BUG();
#endif
		list_del(&slabp->list);

1974 1975
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
1976
		slab_destroy(cachep, slabp);
1977
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
1978
	}
P
Pekka Enberg 已提交
1979
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
1980 1981 1982
	return ret;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static int __cache_shrink(kmem_cache_t *cachep)
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
int kmem_cache_shrink(kmem_cache_t *cachep)
{
	if (!cachep || in_interrupt())
		BUG();

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
 * Remove a kmem_cache_t object from the slab cache.
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
P
Pekka Enberg 已提交
2035
int kmem_cache_destroy(kmem_cache_t *cachep)
L
Linus Torvalds 已提交
2036 2037
{
	int i;
2038
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043 2044 2045 2046

	if (!cachep || in_interrupt())
		BUG();

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2047
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2048 2049 2050 2051
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2052
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2053 2054 2055

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2056
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2057
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2058
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2059 2060 2061 2062 2063
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2064
		synchronize_rcu();
L
Linus Torvalds 已提交
2065

2066
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2067
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2068 2069

	/* NUMA: free the list3 structures */
2070 2071 2072 2073 2074 2075 2076
	for_each_online_node(i) {
		if ((l3 = cachep->nodelists[i])) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085
	kmem_cache_free(&cache_cache, cachep);

	unlock_cpu_hotplug();

	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
P
Pekka Enberg 已提交
2086 2087
static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
				   int colour_off, gfp_t local_flags)
L
Linus Torvalds 已提交
2088 2089
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2090

L
Linus Torvalds 已提交
2091 2092 2093 2094 2095 2096
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2097
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2098 2099 2100 2101
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2102
	slabp->s_mem = objp + colour_off;
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107 2108

	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2109
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2110 2111 2112
}

static void cache_init_objs(kmem_cache_t *cachep,
P
Pekka Enberg 已提交
2113
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2114 2115 2116 2117
{
	int i;

	for (i = 0; i < cachep->num; i++) {
P
Pekka Enberg 已提交
2118
		void *objp = slabp->s_mem + cachep->objsize * i;
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
P
Pekka Enberg 已提交
2136 2137
			cachep->ctor(objp + obj_dbghead(cachep), cachep,
				     ctor_flags);
L
Linus Torvalds 已提交
2138 2139 2140 2141

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2142
					   " end of an object");
L
Linus Torvalds 已提交
2143 2144
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2145
					   " start of an object");
L
Linus Torvalds 已提交
2146
		}
P
Pekka Enberg 已提交
2147 2148 2149 2150
		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
		    && cachep->flags & SLAB_POISON)
			kernel_map_pages(virt_to_page(objp),
					 cachep->objsize / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2151 2152 2153 2154
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2155
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2156
	}
P
Pekka Enberg 已提交
2157
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2158 2159 2160
	slabp->free = 0;
}

A
Al Viro 已提交
2161
static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
{
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
}

static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
2181 2182
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2183 2184 2185 2186 2187 2188 2189 2190
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
A
Al Viro 已提交
2191
static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2192
{
P
Pekka Enberg 已提交
2193 2194 2195 2196 2197
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2198
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2199 2200

	/* Be lazy and only check for valid flags here,
P
Pekka Enberg 已提交
2201
	 * keeping it out of the critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2202
	 */
P
Pekka Enberg 已提交
2203
	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
L
Linus Torvalds 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

	/* About to mess with non-constant members - lock. */
	check_irq_off();
	spin_lock(&cachep->spinlock);

	/* Get colour for the slab, and cal the next value. */
	offset = cachep->colour_next;
	cachep->colour_next++;
	if (cachep->colour_next >= cachep->colour)
		cachep->colour_next = 0;
	offset *= cachep->colour_off;

	spin_unlock(&cachep->spinlock);

2230
	check_irq_off();
L
Linus Torvalds 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

2242 2243 2244
	/* Get mem for the objs.
	 * Attempt to allocate a physical page from 'nodeid',
	 */
L
Linus Torvalds 已提交
2245 2246 2247 2248 2249 2250 2251
	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

2252
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258 2259
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2260 2261
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2262 2263

	/* Make slab active. */
2264
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2265
	STATS_INC_GROWN(cachep);
2266 2267
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2268
	return 1;
P
Pekka Enberg 已提交
2269
      opps1:
L
Linus Torvalds 已提交
2270
	kmem_freepages(cachep, objp);
P
Pekka Enberg 已提交
2271
      failed:
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2291 2292
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2293 2294 2295
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2296 2297
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302
		BUG();
	}
}

static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
P
Pekka Enberg 已提交
2303
				   void *caller)
L
Linus Torvalds 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

	objp -= obj_dbghead(cachep);
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2313
	if (page_get_cache(page) != cachep) {
P
Pekka Enberg 已提交
2314 2315 2316
		printk(KERN_ERR
		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2317
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2318 2319
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2320 2321
		WARN_ON(1);
	}
2322
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2323 2324

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2334 2335 2336 2337 2338 2339 2340
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

P
Pekka Enberg 已提交
2341
	objnr = (objp - slabp->s_mem) / cachep->objsize;
L
Linus Torvalds 已提交
2342 2343

	BUG_ON(objnr >= cachep->num);
P
Pekka Enberg 已提交
2344
	BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize);
L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
P
Pekka Enberg 已提交
2351 2352
		cachep->ctor(objp + obj_dbghead(cachep),
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
P
Pekka Enberg 已提交
2358
		cachep->dtor(objp + obj_dbghead(cachep), cachep, 0);
L
Linus Torvalds 已提交
2359 2360 2361 2362 2363
	}
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2364 2365
			kernel_map_pages(virt_to_page(objp),
					 cachep->objsize / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2380

L
Linus Torvalds 已提交
2381 2382 2383 2384 2385 2386 2387
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
P
Pekka Enberg 已提交
2388 2389 2390 2391 2392 2393 2394 2395
	      bad:
		printk(KERN_ERR
		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
		       cachep->name, cachep->num, slabp, slabp->inuse);
		for (i = 0;
		     i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
		     i++) {
			if ((i % 16) == 0)
L
Linus Torvalds 已提交
2396
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2397
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

A
Al Viro 已提交
2409
static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2410 2411 2412 2413 2414 2415 2416
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
	ac = ac_data(cachep);
P
Pekka Enberg 已提交
2417
      retry:
L
Linus Torvalds 已提交
2418 2419 2420 2421 2422 2423 2424 2425
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/* if there was little recent activity on this
		 * cache, then perform only a partial refill.
		 * Otherwise we could generate refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2426 2427 2428 2429
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2430 2431 2432 2433 2434 2435 2436 2437

	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
		if (shared_array->avail) {
			if (batchcount > shared_array->avail)
				batchcount = shared_array->avail;
			shared_array->avail -= batchcount;
			ac->avail = batchcount;
2438
			memcpy(ac->entry,
P
Pekka Enberg 已提交
2439 2440
			       &(shared_array->entry[shared_array->avail]),
			       sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
			shared_array->touched = 1;
			goto alloc_done;
		}
	}
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			kmem_bufctl_t next;
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

			/* get obj pointer */
2467
			ac->entry[ac->avail++] = slabp->s_mem +
P
Pekka Enberg 已提交
2468
			    slabp->free * cachep->objsize;
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473

			slabp->inuse++;
			next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
			slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2474
			WARN_ON(numa_node_id() != slabp->nodeid);
L
Linus Torvalds 已提交
2475
#endif
P
Pekka Enberg 已提交
2476
			slabp->free = next;
L
Linus Torvalds 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

P
Pekka Enberg 已提交
2488
      must_grow:
L
Linus Torvalds 已提交
2489
	l3->free_objects -= ac->avail;
P
Pekka Enberg 已提交
2490
      alloc_done:
2491
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2492 2493 2494

	if (unlikely(!ac->avail)) {
		int x;
2495 2496
		x = cache_grow(cachep, flags, numa_node_id());

L
Linus Torvalds 已提交
2497 2498 2499 2500 2501
		// cache_grow can reenable interrupts, then ac could change.
		ac = ac_data(cachep);
		if (!x && ac->avail == 0)	// no objects in sight? abort
			return NULL;

P
Pekka Enberg 已提交
2502
		if (!ac->avail)	// objects refilled by interrupt?
L
Linus Torvalds 已提交
2503 2504 2505
			goto retry;
	}
	ac->touched = 1;
2506
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2507 2508 2509
}

static inline void
A
Al Viro 已提交
2510
cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2511 2512 2513 2514 2515 2516 2517 2518
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
P
Pekka Enberg 已提交
2519 2520
static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
					void *objp, void *caller)
L
Linus Torvalds 已提交
2521
{
P
Pekka Enberg 已提交
2522
	if (!objp)
L
Linus Torvalds 已提交
2523
		return objp;
P
Pekka Enberg 已提交
2524
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2525 2526
#ifdef CONFIG_DEBUG_PAGEALLOC
		if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2527 2528
			kernel_map_pages(virt_to_page(objp),
					 cachep->objsize / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2549 2550 2551 2552 2553 2554
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
	objp += obj_dbghead(cachep);
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2555
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2556 2557 2558 2559 2560

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2561
	}
L
Linus Torvalds 已提交
2562 2563 2564 2565 2566 2567
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Al Viro 已提交
2568
static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2569
{
P
Pekka Enberg 已提交
2570
	void *objp;
L
Linus Torvalds 已提交
2571 2572
	struct array_cache *ac;

2573
	check_irq_off();
L
Linus Torvalds 已提交
2574 2575 2576 2577
	ac = ac_data(cachep);
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2578
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2579 2580 2581 2582
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2583 2584 2585
	return objp;
}

A
Al Viro 已提交
2586
static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2587 2588
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2589
	void *objp;
2590 2591 2592 2593 2594

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2595
	local_irq_restore(save_flags);
2596
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
P
Pekka Enberg 已提交
2597
					    __builtin_return_address(0));
2598
	prefetchw(objp);
L
Linus Torvalds 已提交
2599 2600 2601
	return objp;
}

2602 2603 2604
#ifdef CONFIG_NUMA
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2605
 */
A
Al Viro 已提交
2606
static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2607 2608
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	kmem_bufctl_t next;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

      retry:
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

	/* get obj pointer */
	obj = slabp->s_mem + slabp->free * cachep->objsize;
	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
2642
#if DEBUG
P
Pekka Enberg 已提交
2643
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2644
#endif
P
Pekka Enberg 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	slabp->free = next;
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

	if (slabp->free == BUFCTL_END) {
		list_add(&slabp->list, &l3->slabs_full);
	} else {
		list_add(&slabp->list, &l3->slabs_partial);
	}
2656

P
Pekka Enberg 已提交
2657 2658
	spin_unlock(&l3->list_lock);
	goto done;
2659

P
Pekka Enberg 已提交
2660 2661 2662
      must_grow:
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2663

P
Pekka Enberg 已提交
2664 2665
	if (!x)
		return NULL;
2666

P
Pekka Enberg 已提交
2667 2668 2669
	goto retry;
      done:
	return obj;
2670 2671 2672 2673 2674 2675
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
P
Pekka Enberg 已提交
2676 2677
static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
		       int node)
L
Linus Torvalds 已提交
2678 2679
{
	int i;
2680
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2681 2682 2683 2684 2685 2686

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;
		unsigned int objnr;

2687
		slabp = page_get_slab(virt_to_page(objp));
2688
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2689 2690
		list_del(&slabp->list);
		objnr = (objp - slabp->s_mem) / cachep->objsize;
2691
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2692
		check_slabp(cachep, slabp);
2693

L
Linus Torvalds 已提交
2694
#if DEBUG
2695 2696 2697
		/* Verify that the slab belongs to the intended node */
		WARN_ON(slabp->nodeid != node);

L
Linus Torvalds 已提交
2698
		if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2699
			printk(KERN_ERR "slab: double free detected in cache "
P
Pekka Enberg 已提交
2700
			       "'%s', objp %p\n", cachep->name, objp);
L
Linus Torvalds 已提交
2701 2702 2703 2704 2705 2706 2707
			BUG();
		}
#endif
		slab_bufctl(slabp)[objnr] = slabp->free;
		slabp->free = objnr;
		STATS_DEC_ACTIVE(cachep);
		slabp->inuse--;
2708
		l3->free_objects++;
L
Linus Torvalds 已提交
2709 2710 2711 2712
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2713 2714
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2715 2716
				slab_destroy(cachep, slabp);
			} else {
2717
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2718 2719 2720 2721 2722 2723
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
2724
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730 2731
		}
	}
}

static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
{
	int batchcount;
2732
	struct kmem_list3 *l3;
2733
	int node = numa_node_id();
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
2740
	l3 = cachep->nodelists[node];
2741 2742 2743
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
2744
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
2745 2746 2747
		if (max) {
			if (batchcount > max)
				batchcount = max;
2748
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
2749
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

2755
	free_block(cachep, ac->entry, batchcount, node);
P
Pekka Enberg 已提交
2756
      free_done:
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761
#if STATS
	{
		int i = 0;
		struct list_head *p;

2762 2763
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
2775
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2776
	ac->avail -= batchcount;
2777
	memmove(ac->entry, &(ac->entry[batchcount]),
P
Pekka Enberg 已提交
2778
		sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
}

/*
 * __cache_free
 * Release an obj back to its cache. If the obj has a constructed
 * state, it must be in this state _before_ it is released.
 *
 * Called with disabled ints.
 */
static inline void __cache_free(kmem_cache_t *cachep, void *objp)
{
	struct array_cache *ac = ac_data(cachep);

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

2795 2796 2797 2798 2799 2800
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
2801
		slabp = page_get_slab(virt_to_page(objp));
2802 2803 2804
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
P
Pekka Enberg 已提交
2805 2806
			struct kmem_list3 *l3 =
			    cachep->nodelists[numa_node_id()];
2807 2808 2809 2810 2811 2812 2813

			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
2814
							    alien, nodeid);
2815 2816 2817 2818
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2819
					  list_lock);
2820
				free_block(cachep, &objp, 1, nodeid);
2821
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2822
					    list_lock);
2823 2824 2825 2826 2827
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
2828 2829
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
2830
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2831 2832 2833 2834
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
2835
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
A
Al Viro 已提交
2847
void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
{
	return __cache_alloc(cachep, flags);
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
{
P
Pekka Enberg 已提交
2869
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
2870
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
2871
	unsigned long align_mask = BYTES_PER_WORD - 1;
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
	unsigned long size = cachep->objsize;
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
2888
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
2889 2890
		goto out;
	return 1;
P
Pekka Enberg 已提交
2891
      out:
L
Linus Torvalds 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
2905 2906
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
2907
 */
A
Al Viro 已提交
2908
void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2909
{
2910 2911
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
2912

2913
	if (nodeid == -1)
2914
		return __cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2915

2916 2917
	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Fall back to __cache_alloc if we run into trouble */
P
Pekka Enberg 已提交
2918 2919 2920 2921
		printk(KERN_WARNING
		       "slab: not allocating in inactive node %d for cache %s\n",
		       nodeid, cachep->name);
		return __cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2922 2923
	}

2924 2925
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
2926 2927 2928 2929
	if (nodeid == numa_node_id())
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
2930
	local_irq_restore(save_flags);
P
Pekka Enberg 已提交
2931 2932 2933
	ptr =
	    cache_alloc_debugcheck_after(cachep, flags, ptr,
					 __builtin_return_address(0));
L
Linus Torvalds 已提交
2934

2935
	return ptr;
L
Linus Torvalds 已提交
2936 2937 2938
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
2939
void *kmalloc_node(size_t size, gfp_t flags, int node)
2940 2941 2942 2943 2944 2945 2946 2947 2948
{
	kmem_cache_t *cachep;

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
A
Al Viro 已提交
2972
void *__kmalloc(size_t size, gfp_t flags)
L
Linus Torvalds 已提交
2973 2974 2975
{
	kmem_cache_t *cachep;

2976 2977 2978 2979 2980 2981
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
2982 2983
	if (unlikely(cachep == NULL))
		return NULL;
L
Linus Torvalds 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	return __cache_alloc(cachep, flags);
}
EXPORT_SYMBOL(__kmalloc);

#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
2996
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
2997 2998
{
	int i;
P
Pekka Enberg 已提交
2999
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3000 3001 3002 3003

	if (!pdata)
		return NULL;

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
	for_each_cpu(i) {
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021 3022

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3023
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3024

P
Pekka Enberg 已提交
3025
      unwind_oom:
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
void kmem_cache_free(kmem_cache_t *cachep, void *objp)
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3059 3060
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
	kmem_cache_t *c;
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3073
	c = page_get_cache(virt_to_page(objp));
3074
	mutex_debug_check_no_locks_freed(objp, obj_reallen(c));
P
Pekka Enberg 已提交
3075
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3088
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3089 3090
{
	int i;
P
Pekka Enberg 已提交
3091
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3092

3093 3094 3095 3096
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
	for_each_cpu(i)
P
Pekka Enberg 已提交
3097
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

unsigned int kmem_cache_size(kmem_cache_t *cachep)
{
	return obj_reallen(cachep);
}
EXPORT_SYMBOL(kmem_cache_size);

3109 3110 3111 3112 3113 3114
const char *kmem_cache_name(kmem_cache_t *cachep)
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/*
 * This initializes kmem_list3 for all nodes.
 */
static int alloc_kmemlist(kmem_cache_t *cachep)
{
	int node;
	struct kmem_list3 *l3;
	int err = 0;

	for_each_online_node(node) {
		struct array_cache *nc = NULL, *new;
		struct array_cache **new_alien = NULL;
#ifdef CONFIG_NUMA
		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
			goto fail;
#endif
P
Pekka Enberg 已提交
3131 3132 3133
		if (!(new = alloc_arraycache(node, (cachep->shared *
						    cachep->batchcount),
					     0xbaadf00d)))
3134 3135 3136 3137 3138 3139
			goto fail;
		if ((l3 = cachep->nodelists[node])) {

			spin_lock_irq(&l3->list_lock);

			if ((nc = cachep->nodelists[node]->shared))
P
Pekka Enberg 已提交
3140
				free_block(cachep, nc->entry, nc->avail, node);
3141 3142 3143 3144 3145 3146

			l3->shared = new;
			if (!cachep->nodelists[node]->alien) {
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3147 3148
			l3->free_limit = (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
3149 3150 3151 3152 3153 3154
			spin_unlock_irq(&l3->list_lock);
			kfree(nc);
			free_alien_cache(new_alien);
			continue;
		}
		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
P
Pekka Enberg 已提交
3155
					GFP_KERNEL, node)))
3156 3157 3158 3159
			goto fail;

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
3160
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3161 3162
		l3->shared = new;
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3163 3164
		l3->free_limit = (1 + nr_cpus_node(node)) *
		    cachep->batchcount + cachep->num;
3165 3166 3167
		cachep->nodelists[node] = l3;
	}
	return err;
P
Pekka Enberg 已提交
3168
      fail:
3169 3170 3171 3172
	err = -ENOMEM;
	return err;
}

L
Linus Torvalds 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
struct ccupdate_struct {
	kmem_cache_t *cachep;
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
	struct array_cache *old;

	check_irq_off();
	old = ac_data(new->cachep);
3185

L
Linus Torvalds 已提交
3186 3187 3188 3189 3190
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
P
Pekka Enberg 已提交
3191
			    int shared)
L
Linus Torvalds 已提交
3192 3193
{
	struct ccupdate_struct new;
3194
	int i, err;
L
Linus Torvalds 已提交
3195

P
Pekka Enberg 已提交
3196
	memset(&new.new, 0, sizeof(new.new));
3197
	for_each_online_cpu(i) {
P
Pekka Enberg 已提交
3198 3199
		new.new[i] =
		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3200
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3201 3202
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3203
			return -ENOMEM;
L
Linus Torvalds 已提交
3204 3205 3206 3207 3208
		}
	}
	new.cachep = cachep;

	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3209

L
Linus Torvalds 已提交
3210 3211 3212 3213
	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3214
	cachep->shared = shared;
L
Linus Torvalds 已提交
3215 3216
	spin_unlock_irq(&cachep->spinlock);

3217
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3218 3219 3220
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3221
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3222
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3223
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3224 3225 3226
		kfree(ccold);
	}

3227 3228 3229
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3230
		       cachep->name, -err);
3231
		BUG();
L
Linus Torvalds 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	}
	return 0;
}

static void enable_cpucache(kmem_cache_t *cachep)
{
	int err;
	int limit, shared;

	/* The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and 
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
	if (cachep->objsize > 131072)
		limit = 1;
	else if (cachep->objsize > PAGE_SIZE)
		limit = 8;
	else if (cachep->objsize > 1024)
		limit = 24;
	else if (cachep->objsize > 256)
		limit = 54;
	else
		limit = 120;

	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
	if (cachep->objsize <= PAGE_SIZE)
		shared = 8;
#endif

#if DEBUG
	/* With debugging enabled, large batchcount lead to excessively
	 * long periods with disabled local interrupts. Limit the 
	 * batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3282
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3283 3284
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3285
		       cachep->name, -err);
L
Linus Torvalds 已提交
3286 3287
}

P
Pekka Enberg 已提交
3288 3289
static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
				int force, int node)
L
Linus Torvalds 已提交
3290 3291 3292
{
	int tofree;

3293
	check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3294 3295 3296
	if (ac->touched && !force) {
		ac->touched = 0;
	} else if (ac->avail) {
P
Pekka Enberg 已提交
3297
		tofree = force ? ac->avail : (ac->limit + 4) / 5;
L
Linus Torvalds 已提交
3298
		if (tofree > ac->avail) {
P
Pekka Enberg 已提交
3299
			tofree = (ac->avail + 1) / 2;
L
Linus Torvalds 已提交
3300
		}
3301
		free_block(cachep, ac->entry, tofree, node);
L
Linus Torvalds 已提交
3302
		ac->avail -= tofree;
3303
		memmove(ac->entry, &(ac->entry[tofree]),
P
Pekka Enberg 已提交
3304
			sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
3305 3306 3307 3308 3309
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3310
 * @unused: unused parameter
L
Linus Torvalds 已提交
3311 3312 3313 3314 3315 3316
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
I
Ingo Molnar 已提交
3317
 * If we cannot acquire the cache chain mutex then just give up - we'll
L
Linus Torvalds 已提交
3318 3319 3320 3321 3322
 * try again on the next iteration.
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3323
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3324

I
Ingo Molnar 已提交
3325
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3326
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3327 3328
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3329 3330 3331 3332 3333
		return;
	}

	list_for_each(walk, &cache_chain) {
		kmem_cache_t *searchp;
P
Pekka Enberg 已提交
3334
		struct list_head *p;
L
Linus Torvalds 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		int tofree;
		struct slab *slabp;

		searchp = list_entry(walk, kmem_cache_t, next);

		if (searchp->flags & SLAB_NO_REAP)
			goto next;

		check_irq_on();

3345 3346 3347 3348
		l3 = searchp->nodelists[numa_node_id()];
		if (l3->alien)
			drain_alien_cache(searchp, l3);
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3349

3350
		drain_array_locked(searchp, ac_data(searchp), 0,
P
Pekka Enberg 已提交
3351
				   numa_node_id());
L
Linus Torvalds 已提交
3352

3353
		if (time_after(l3->next_reap, jiffies))
L
Linus Torvalds 已提交
3354 3355
			goto next_unlock;

3356
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3357

3358 3359
		if (l3->shared)
			drain_array_locked(searchp, l3->shared, 0,
P
Pekka Enberg 已提交
3360
					   numa_node_id());
L
Linus Torvalds 已提交
3361

3362 3363
		if (l3->free_touched) {
			l3->free_touched = 0;
L
Linus Torvalds 已提交
3364 3365 3366
			goto next_unlock;
		}

P
Pekka Enberg 已提交
3367 3368 3369
		tofree =
		    (l3->free_limit + 5 * searchp->num -
		     1) / (5 * searchp->num);
L
Linus Torvalds 已提交
3370
		do {
3371 3372
			p = l3->slabs_free.next;
			if (p == &(l3->slabs_free))
L
Linus Torvalds 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
				break;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

			/* Safe to drop the lock. The slab is no longer
			 * linked to the cache.
			 * searchp cannot disappear, we hold
			 * cache_chain_lock
			 */
3385 3386
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3387
			slab_destroy(searchp, slabp);
3388
			spin_lock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3389 3390
		} while (--tofree > 0);
	      next_unlock:
3391
		spin_unlock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3392
	      next:
L
Linus Torvalds 已提交
3393 3394 3395
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3396
	mutex_unlock(&cache_chain_mutex);
3397
	drain_remote_pages();
L
Linus Torvalds 已提交
3398
	/* Setup the next iteration */
3399
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3400 3401 3402 3403
}

#ifdef CONFIG_PROC_FS

3404
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3405
{
3406 3407 3408 3409
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3410
#if STATS
3411
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3412
#else
3413
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3414
#endif
3415 3416 3417 3418
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3419
#if STATS
3420 3421 3422
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3423
#endif
3424 3425 3426 3427 3428 3429 3430 3431
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3432
	mutex_lock(&cache_chain_mutex);
3433 3434
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, kmem_cache_t, next);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	kmem_cache_t *cachep = p;
	++*pos;
	return cachep->next.next == &cache_chain ? NULL
P
Pekka Enberg 已提交
3449
	    : list_entry(cachep->next.next, kmem_cache_t, next);
L
Linus Torvalds 已提交
3450 3451 3452 3453
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3454
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3455 3456 3457 3458 3459 3460
}

static int s_show(struct seq_file *m, void *p)
{
	kmem_cache_t *cachep = p;
	struct list_head *q;
P
Pekka Enberg 已提交
3461 3462 3463 3464 3465
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3466
	const char *name;
L
Linus Torvalds 已提交
3467
	char *error = NULL;
3468 3469
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3470 3471 3472 3473 3474

	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
	active_objs = 0;
	num_slabs = 0;
3475 3476 3477 3478 3479 3480 3481
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock(&l3->list_lock);

P
Pekka Enberg 已提交
3482
		list_for_each(q, &l3->slabs_full) {
3483 3484 3485 3486 3487 3488
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3489
		list_for_each(q, &l3->slabs_partial) {
3490 3491 3492 3493 3494 3495 3496 3497
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3498
		list_for_each(q, &l3->slabs_free) {
3499 3500 3501 3502 3503 3504 3505 3506 3507
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
		shared_avail += l3->shared->avail;

		spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3508
	}
P
Pekka Enberg 已提交
3509 3510
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3511
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3512 3513
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3514
	name = cachep->name;
L
Linus Torvalds 已提交
3515 3516 3517 3518
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
P
Pekka Enberg 已提交
3519 3520
		   name, active_objs, num_objs, cachep->objsize,
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3521
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3522
		   cachep->limit, cachep->batchcount, cachep->shared);
3523
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3524
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3525
#if STATS
P
Pekka Enberg 已提交
3526
	{			/* list3 stats */
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531 3532 3533
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3534
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3535

3536
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
P
Pekka Enberg 已提交
3537
				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
L
Linus Torvalds 已提交
3538 3539 3540 3541 3542 3543 3544 3545 3546
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3547
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	}
#endif
	seq_putc(m, '\n');
	spin_unlock_irq(&cachep->spinlock);
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3570 3571 3572 3573
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3584 3585
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3586
{
P
Pekka Enberg 已提交
3587
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3588 3589
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3590

L
Linus Torvalds 已提交
3591 3592 3593 3594
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3595
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3606
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3607
	res = -EINVAL;
P
Pekka Enberg 已提交
3608
	list_for_each(p, &cache_chain) {
L
Linus Torvalds 已提交
3609 3610 3611 3612 3613
		kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);

		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 ||
			    batchcount < 1 ||
P
Pekka Enberg 已提交
3614
			    batchcount > limit || shared < 0) {
3615
				res = 0;
L
Linus Torvalds 已提交
3616
			} else {
3617
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3618
						       batchcount, shared);
L
Linus Torvalds 已提交
3619 3620 3621 3622
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3623
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3624 3625 3626 3627 3628 3629
	if (res >= 0)
		res = count;
	return res;
}
#endif

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
3642 3643
unsigned int ksize(const void *objp)
{
3644 3645
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
3646

3647
	return obj_reallen(page_get_cache(virt_to_page(objp)));
L
Linus Torvalds 已提交
3648
}