slab.c 111.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

171 172 173 174 175 176
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
194
	spinlock_t lock;
195
	void *entry[];	/*
A
Andrew Morton 已提交
196 197 198
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
199 200 201 202
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
203
			 */
L
Linus Torvalds 已提交
204 205
};

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
223 224 225
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
226 227 228 229
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
230
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
231 232
};

233 234 235
/*
 * Need this for bootstrapping a per node allocator.
 */
236
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
238
#define	CACHE_CACHE 0
239
#define	SIZE_AC MAX_NUMNODES
240
#define	SIZE_NODE (2 * MAX_NUMNODES)
241

242
static int drain_freelist(struct kmem_cache *cache,
243
			struct kmem_cache_node *n, int tofree);
244 245
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
246
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
247
static void cache_reap(struct work_struct *unused);
248

249 250
static int slab_early_init = 1;

251
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
253

254
static void kmem_cache_node_init(struct kmem_cache_node *parent)
255 256 257 258 259 260
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
261
	parent->colour_next = 0;
262 263 264 265 266
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
267 268 269
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
270
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
271 272
	} while (0)

A
Andrew Morton 已提交
273 274
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
275 276 277 278
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
279 280 281 282 283

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
284 285 286
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
287
 *
A
Adrian Bunk 已提交
288
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
289 290
 * which could lock up otherwise freeable slabs.
 */
291 292
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
L
Linus Torvalds 已提交
293 294 295 296 297 298

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
299
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
300 301 302 303 304
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
305 306
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
307
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
308
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
309 310 311 312 313
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321 322
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
323
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
324 325 326
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
327
#define	STATS_INC_NODEFREES(x)	do { } while (0)
328
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
329
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
330 331 332 333 334 335 336 337
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
338 339
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
340
 * 0		: objp
341
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
342 343
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
344
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
345
 * 		redzone word.
346
 * cachep->obj_offset: The real object.
347 348
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
349
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
350
 */
351
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
352
{
353
	return cachep->obj_offset;
L
Linus Torvalds 已提交
354 355
}

356
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
357 358
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
359 360
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
361 362
}

363
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
364 365 366
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
367
		return (unsigned long long *)(objp + cachep->size -
368
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
369
					      REDZONE_ALIGN);
370
	return (unsigned long long *) (objp + cachep->size -
371
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
372 373
}

374
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
375 376
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
377
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
378 379 380 381
}

#else

382
#define obj_offset(x)			0
383 384
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
385 386 387 388 389
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
390 391
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
392
 */
393 394 395
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
396
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
397

398 399
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
400
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
401
	return page->slab_cache;
402 403
}

404
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
405 406
				 unsigned int idx)
{
407
	return page->s_mem + cache->size * idx;
408 409
}

410
/*
411 412 413
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
414 415 416
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
417
					const struct page *page, void *obj)
418
{
419
	u32 offset = (obj - page->s_mem);
420
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
421 422
}

L
Linus Torvalds 已提交
423
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
424
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
425 426

/* internal cache of cache description objs */
427
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
428 429 430
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
431
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
432
	.name = "kmem_cache",
L
Linus Torvalds 已提交
433 434
};

435 436
#define BAD_ALIEN_MAGIC 0x01020304ul

437 438 439 440 441 442 443 444
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
445 446 447 448
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
449
 */
450 451 452
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

453 454 455 456 457 458 459 460
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
461
	struct kmem_cache_node *n;
462 463
	int r;

464 465
	n = cachep->node[q];
	if (!n)
466 467
		return;

468 469
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

498
static void init_node_lock_keys(int q)
499
{
500
	int i;
501

502
	if (slab_state < UP)
503 504
		return;

C
Christoph Lameter 已提交
505
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
506
		struct kmem_cache_node *n;
507 508 509 510
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
511

512 513
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
514
			continue;
515

516
		slab_set_lock_classes(cache, &on_slab_l3_key,
517
				&on_slab_alc_key, q);
518 519
	}
}
520

521 522
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
523
	if (!cachep->node[q])
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

539 540 541 542 543 544 545
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
546
#else
547 548 549 550
static void init_node_lock_keys(int q)
{
}

551
static inline void init_lock_keys(void)
552 553
{
}
554

555 556 557 558 559 560 561 562
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

563 564 565 566 567 568 569
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
570 571
#endif

572
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
573

574
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
575 576 577 578
{
	return cachep->array[smp_processor_id()];
}

579 580
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
L
Linus Torvalds 已提交
581
{
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	int nr_objs;
	size_t freelist_size;

	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
	nr_objs = slab_size / (buffer_size + idx_size);

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
	freelist_size = slab_size - nr_objs * buffer_size;
	if (freelist_size < ALIGN(nr_objs * idx_size, align))
		nr_objs--;

	return nr_objs;
604
}
L
Linus Torvalds 已提交
605

A
Andrew Morton 已提交
606 607 608
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
609 610 611 612 613 614 615
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
616

617 618 619 620 621
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
622
	 * - One unsigned int for each object
623 624 625 626 627 628 629 630 631 632 633 634 635
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
636
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
637 638
					sizeof(freelist_idx_t), align);
		mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
639 640 641
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
642 643
}

644
#if DEBUG
645
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
646

A
Andrew Morton 已提交
647 648
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
649 650
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
651
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
652
	dump_stack();
653
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
654
}
655
#endif
L
Linus Torvalds 已提交
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

673 674 675 676 677 678 679 680 681 682 683
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

684 685 686 687 688 689 690
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
691
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
692 693 694 695 696

static void init_reap_node(int cpu)
{
	int node;

697
	node = next_node(cpu_to_mem(cpu), node_online_map);
698
	if (node == MAX_NUMNODES)
699
		node = first_node(node_online_map);
700

701
	per_cpu(slab_reap_node, cpu) = node;
702 703 704 705
}

static void next_reap_node(void)
{
706
	int node = __this_cpu_read(slab_reap_node);
707 708 709 710

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
711
	__this_cpu_write(slab_reap_node, node);
712 713 714 715 716 717 718
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
719 720 721 722 723 724 725
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
726
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
727
{
728
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
729 730 731 732 733 734

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
735
	if (keventd_up() && reap_work->work.func == NULL) {
736
		init_reap_node(cpu);
737
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
738 739
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
740 741 742
	}
}

743
static struct array_cache *alloc_arraycache(int node, int entries,
744
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
745
{
P
Pekka Enberg 已提交
746
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
747 748
	struct array_cache *nc = NULL;

749
	nc = kmalloc_node(memsize, gfp, node);
750 751
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
752
	 * However, when such objects are allocated or transferred to another
753 754 755 756 757
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
758 759 760 761 762
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
763
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
764 765 766 767
	}
	return nc;
}

768
static inline bool is_slab_pfmemalloc(struct page *page)
769 770 771 772 773 774 775 776
{
	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
777
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
778
	struct page *page;
779 780 781 782 783
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

784
	spin_lock_irqsave(&n->list_lock, flags);
785 786
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
787 788
			goto out;

789 790
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
791 792
			goto out;

793 794
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
795 796 797 798
			goto out;

	pfmemalloc_active = false;
out:
799
	spin_unlock_irqrestore(&n->list_lock, flags);
800 801
}

802
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
803 804 805 806 807 808 809
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
810
		struct kmem_cache_node *n;
811 812 813 814 815 816 817

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
818
		for (i = 0; i < ac->avail; i++) {
819 820 821 822 823 824 825 826 827 828 829 830 831
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
832 833
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
834
			struct page *page = virt_to_head_page(objp);
835
			ClearPageSlabPfmemalloc(page);
836 837 838 839 840 841 842 843 844 845 846 847 848
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
863 864 865 866
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
867
		struct page *page = virt_to_head_page(objp);
868 869 870 871
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

872 873 874 875 876 877 878 879 880
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

881 882 883
	ac->entry[ac->avail++] = objp;
}

884 885 886 887 888 889 890 891 892 893
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
894
	int nr = min3(from->avail, max, to->limit - to->avail);
895 896 897 898 899 900 901 902 903 904 905 906

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

907 908 909
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
910
#define reap_alien(cachep, n) do { } while (0)
911

912
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

932
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
933 934 935 936 937 938 939
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

940
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
941
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
942

943
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
944 945
{
	struct array_cache **ac_ptr;
946
	int memsize = sizeof(void *) * nr_node_ids;
947 948 949 950
	int i;

	if (limit > 1)
		limit = 12;
951
	ac_ptr = kzalloc_node(memsize, gfp, node);
952 953
	if (ac_ptr) {
		for_each_node(i) {
954
			if (i == node || !node_online(i))
955
				continue;
956
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
957
			if (!ac_ptr[i]) {
958
				for (i--; i >= 0; i--)
959 960 961 962 963 964 965 966 967
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
968
static void free_alien_cache(struct array_cache **ac_ptr)
969 970 971 972 973 974
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
975
	    kfree(ac_ptr[i]);
976 977 978
	kfree(ac_ptr);
}

979
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
980
				struct array_cache *ac, int node)
981
{
982
	struct kmem_cache_node *n = cachep->node[node];
983 984

	if (ac->avail) {
985
		spin_lock(&n->list_lock);
986 987 988 989 990
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
991 992
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
993

994
		free_block(cachep, ac->entry, ac->avail, node);
995
		ac->avail = 0;
996
		spin_unlock(&n->list_lock);
997 998 999
	}
}

1000 1001 1002
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1003
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1004
{
1005
	int node = __this_cpu_read(slab_reap_node);
1006

1007 1008
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1009 1010

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1011 1012 1013 1014 1015 1016
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1017 1018
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1019
{
P
Pekka Enberg 已提交
1020
	int i = 0;
1021 1022 1023 1024
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1025
		ac = alien[i];
1026 1027 1028 1029 1030 1031 1032
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1033

1034
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1035
{
J
Joonsoo Kim 已提交
1036
	int nodeid = page_to_nid(virt_to_page(objp));
1037
	struct kmem_cache_node *n;
1038
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1039 1040
	int node;

1041
	node = numa_mem_id();
1042 1043 1044 1045 1046

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1047
	if (likely(nodeid == node))
1048 1049
		return 0;

1050
	n = cachep->node[node];
1051
	STATS_INC_NODEFREES(cachep);
1052 1053
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1054
		spin_lock(&alien->lock);
1055 1056 1057 1058
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1059
		ac_put_obj(cachep, alien, objp);
1060 1061
		spin_unlock(&alien->lock);
	} else {
1062
		spin_lock(&(cachep->node[nodeid])->list_lock);
1063
		free_block(cachep, &objp, 1, nodeid);
1064
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1065 1066 1067
	}
	return 1;
}
1068 1069
#endif

1070
/*
1071
 * Allocates and initializes node for a node on each slab cache, used for
1072
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1073
 * will be allocated off-node since memory is not yet online for the new node.
1074
 * When hotplugging memory or a cpu, existing node are not replaced if
1075 1076
 * already in use.
 *
1077
 * Must hold slab_mutex.
1078
 */
1079
static int init_cache_node_node(int node)
1080 1081
{
	struct kmem_cache *cachep;
1082
	struct kmem_cache_node *n;
1083
	const int memsize = sizeof(struct kmem_cache_node);
1084

1085
	list_for_each_entry(cachep, &slab_caches, list) {
1086
		/*
1087
		 * Set up the kmem_cache_node for cpu before we can
1088 1089 1090
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1091
		if (!cachep->node[node]) {
1092 1093
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1094
				return -ENOMEM;
1095
			kmem_cache_node_init(n);
1096 1097
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1098 1099

			/*
1100 1101
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
1102 1103
			 * protection here.
			 */
1104
			cachep->node[node] = n;
1105 1106
		}

1107 1108
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1109 1110
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1111
		spin_unlock_irq(&cachep->node[node]->list_lock);
1112 1113 1114 1115
	}
	return 0;
}

1116 1117 1118 1119 1120 1121
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1122
static void cpuup_canceled(long cpu)
1123 1124
{
	struct kmem_cache *cachep;
1125
	struct kmem_cache_node *n = NULL;
1126
	int node = cpu_to_mem(cpu);
1127
	const struct cpumask *mask = cpumask_of_node(node);
1128

1129
	list_for_each_entry(cachep, &slab_caches, list) {
1130 1131 1132 1133 1134 1135 1136
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1137
		n = cachep->node[node];
1138

1139
		if (!n)
1140 1141
			goto free_array_cache;

1142
		spin_lock_irq(&n->list_lock);
1143

1144 1145
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1146 1147 1148
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1149
		if (!cpumask_empty(mask)) {
1150
			spin_unlock_irq(&n->list_lock);
1151 1152 1153
			goto free_array_cache;
		}

1154
		shared = n->shared;
1155 1156 1157
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1158
			n->shared = NULL;
1159 1160
		}

1161 1162
		alien = n->alien;
		n->alien = NULL;
1163

1164
		spin_unlock_irq(&n->list_lock);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1179
	list_for_each_entry(cachep, &slab_caches, list) {
1180 1181
		n = cachep->node[node];
		if (!n)
1182
			continue;
1183
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1184 1185 1186
	}
}

1187
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1188
{
1189
	struct kmem_cache *cachep;
1190
	struct kmem_cache_node *n = NULL;
1191
	int node = cpu_to_mem(cpu);
1192
	int err;
L
Linus Torvalds 已提交
1193

1194 1195 1196 1197
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1198
	 * kmem_cache_node and not this cpu's kmem_cache_node
1199
	 */
1200
	err = init_cache_node_node(node);
1201 1202
	if (err < 0)
		goto bad;
1203 1204 1205 1206 1207

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1208
	list_for_each_entry(cachep, &slab_caches, list) {
1209 1210 1211 1212 1213
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1214
					cachep->batchcount, GFP_KERNEL);
1215 1216 1217 1218 1219
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1220
				0xbaadf00d, GFP_KERNEL);
1221 1222
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1223
				goto bad;
1224
			}
1225 1226
		}
		if (use_alien_caches) {
1227
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1228 1229 1230
			if (!alien) {
				kfree(shared);
				kfree(nc);
1231
				goto bad;
1232
			}
1233 1234
		}
		cachep->array[cpu] = nc;
1235 1236
		n = cachep->node[node];
		BUG_ON(!n);
1237

1238 1239
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1240 1241 1242 1243
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1244
			n->shared = shared;
1245 1246
			shared = NULL;
		}
1247
#ifdef CONFIG_NUMA
1248 1249
		if (!n->alien) {
			n->alien = alien;
1250
			alien = NULL;
L
Linus Torvalds 已提交
1251
		}
1252
#endif
1253
		spin_unlock_irq(&n->list_lock);
1254 1255
		kfree(shared);
		free_alien_cache(alien);
1256 1257
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1258 1259 1260
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1261
	}
1262 1263
	init_node_lock_keys(node);

1264 1265
	return 0;
bad:
1266
	cpuup_canceled(cpu);
1267 1268 1269
	return -ENOMEM;
}

1270
static int cpuup_callback(struct notifier_block *nfb,
1271 1272 1273 1274 1275 1276 1277 1278
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1279
		mutex_lock(&slab_mutex);
1280
		err = cpuup_prepare(cpu);
1281
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1282 1283
		break;
	case CPU_ONLINE:
1284
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1285 1286 1287
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1288
  	case CPU_DOWN_PREPARE:
1289
  	case CPU_DOWN_PREPARE_FROZEN:
1290
		/*
1291
		 * Shutdown cache reaper. Note that the slab_mutex is
1292 1293 1294 1295
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1296
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1297
		/* Now the cache_reaper is guaranteed to be not running. */
1298
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1299 1300
  		break;
  	case CPU_DOWN_FAILED:
1301
  	case CPU_DOWN_FAILED_FROZEN:
1302 1303
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1304
	case CPU_DEAD:
1305
	case CPU_DEAD_FROZEN:
1306 1307
		/*
		 * Even if all the cpus of a node are down, we don't free the
1308
		 * kmem_cache_node of any cache. This to avoid a race between
1309
		 * cpu_down, and a kmalloc allocation from another cpu for
1310
		 * memory from the node of the cpu going down.  The node
1311 1312 1313
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1314
		/* fall through */
1315
#endif
L
Linus Torvalds 已提交
1316
	case CPU_UP_CANCELED:
1317
	case CPU_UP_CANCELED_FROZEN:
1318
		mutex_lock(&slab_mutex);
1319
		cpuup_canceled(cpu);
1320
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1321 1322
		break;
	}
1323
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1324 1325
}

1326
static struct notifier_block cpucache_notifier = {
1327 1328
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1329

1330 1331 1332 1333 1334 1335
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1336
 * Must hold slab_mutex.
1337
 */
1338
static int __meminit drain_cache_node_node(int node)
1339 1340 1341 1342
{
	struct kmem_cache *cachep;
	int ret = 0;

1343
	list_for_each_entry(cachep, &slab_caches, list) {
1344
		struct kmem_cache_node *n;
1345

1346 1347
		n = cachep->node[node];
		if (!n)
1348 1349
			continue;

1350
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1351

1352 1353
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1374
		mutex_lock(&slab_mutex);
1375
		ret = init_cache_node_node(nid);
1376
		mutex_unlock(&slab_mutex);
1377 1378
		break;
	case MEM_GOING_OFFLINE:
1379
		mutex_lock(&slab_mutex);
1380
		ret = drain_cache_node_node(nid);
1381
		mutex_unlock(&slab_mutex);
1382 1383 1384 1385 1386 1387 1388 1389
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1390
	return notifier_from_errno(ret);
1391 1392 1393
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1394
/*
1395
 * swap the static kmem_cache_node with kmalloced memory
1396
 */
1397
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1398
				int nodeid)
1399
{
1400
	struct kmem_cache_node *ptr;
1401

1402
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1403 1404
	BUG_ON(!ptr);

1405
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1406 1407 1408 1409 1410
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1411
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412
	cachep->node[nodeid] = ptr;
1413 1414
}

1415
/*
1416 1417
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1418
 */
1419
static void __init set_up_node(struct kmem_cache *cachep, int index)
1420 1421 1422 1423
{
	int node;

	for_each_online_node(node) {
1424
		cachep->node[node] = &init_kmem_cache_node[index + node];
1425
		cachep->node[node]->next_reap = jiffies +
1426 1427
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1428 1429 1430
	}
}

C
Christoph Lameter 已提交
1431 1432
/*
 * The memory after the last cpu cache pointer is used for the
1433
 * the node pointer.
C
Christoph Lameter 已提交
1434
 */
1435
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1436
{
1437
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1438 1439
}

A
Andrew Morton 已提交
1440 1441 1442
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1443 1444 1445
 */
void __init kmem_cache_init(void)
{
1446 1447
	int i;

1448 1449
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1450
	kmem_cache = &kmem_cache_boot;
1451
	setup_node_pointer(kmem_cache);
1452

1453
	if (num_possible_nodes() == 1)
1454 1455
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1456
	for (i = 0; i < NUM_INIT_LISTS; i++)
1457
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1458

1459
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1460 1461 1462

	/*
	 * Fragmentation resistance on low memory - only use bigger
1463 1464
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1465
	 */
1466
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1467
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1468 1469 1470

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1471 1472 1473
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1474
	 *    Initially an __init data area is used for the head array and the
1475
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1476
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1477
	 * 2) Create the first kmalloc cache.
1478
	 *    The struct kmem_cache for the new cache is allocated normally.
1479 1480 1481
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1482
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1483
	 *    kmalloc cache with kmalloc allocated arrays.
1484
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1485 1486
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1487 1488
	 */

1489
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1490

E
Eric Dumazet 已提交
1491
	/*
1492
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1493
	 */
1494 1495
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1496
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1497 1498
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1499 1500 1501

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1502 1503
	/*
	 * Initialize the caches that provide memory for the array cache and the
1504
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1505
	 * bug.
1506 1507
	 */

1508 1509
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1510

1511 1512 1513 1514
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1515

1516 1517
	slab_early_init = 0;

L
Linus Torvalds 已提交
1518 1519
	/* 4) Replace the bootstrap head arrays */
	{
1520
		struct array_cache *ptr;
1521

1522
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1523

1524
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1525
		       sizeof(struct arraycache_init));
1526 1527 1528 1529 1530
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1531
		kmem_cache->array[smp_processor_id()] = ptr;
1532

1533
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1534

1535
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1536
		       != &initarray_generic.cache);
1537
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1538
		       sizeof(struct arraycache_init));
1539 1540 1541 1542 1543
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1544
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1545
	}
1546
	/* 5) Replace the bootstrap kmem_cache_node */
1547
	{
P
Pekka Enberg 已提交
1548 1549
		int nid;

1550
		for_each_online_node(nid) {
1551
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1552

1553
			init_list(kmalloc_caches[INDEX_AC],
1554
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1555

1556 1557 1558
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1559 1560 1561
			}
		}
	}
L
Linus Torvalds 已提交
1562

1563
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1564 1565 1566 1567 1568 1569
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1570
	slab_state = UP;
P
Peter Zijlstra 已提交
1571

1572
	/* 6) resize the head arrays to their final sizes */
1573 1574
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1575 1576
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1577
	mutex_unlock(&slab_mutex);
1578

1579 1580 1581
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1582 1583 1584
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1585 1586 1587
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1588 1589 1590
	 */
	register_cpu_notifier(&cpucache_notifier);

1591 1592 1593
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1594
	 * node.
1595 1596 1597 1598
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1599 1600 1601
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1609 1610
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1611
	 */
1612
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1613
		start_cpu_timer(cpu);
1614 1615

	/* Done! */
1616
	slab_state = FULL;
L
Linus Torvalds 已提交
1617 1618 1619 1620
	return 0;
}
__initcall(cpucache_init);

1621 1622 1623
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1624
#if DEBUG
1625
	struct kmem_cache_node *n;
1626
	struct page *page;
1627 1628
	unsigned long flags;
	int node;
1629 1630 1631 1632 1633
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1634 1635 1636 1637 1638

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1639
		cachep->name, cachep->size, cachep->gfporder);
1640 1641 1642 1643 1644

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1645 1646
		n = cachep->node[node];
		if (!n)
1647 1648
			continue;

1649
		spin_lock_irqsave(&n->list_lock, flags);
1650
		list_for_each_entry(page, &n->slabs_full, lru) {
1651 1652 1653
			active_objs += cachep->num;
			active_slabs++;
		}
1654 1655
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1656 1657
			active_slabs++;
		}
1658
		list_for_each_entry(page, &n->slabs_free, lru)
1659 1660
			num_slabs++;

1661 1662
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1663 1664 1665 1666 1667 1668 1669 1670

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
1671
#endif
1672 1673
}

L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1681 1682
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1683 1684
{
	struct page *page;
1685
	int nr_pages;
1686

1687
	flags |= cachep->allocflags;
1688 1689
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1690

1691 1692 1693
	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
		return NULL;

L
Linus Torvalds 已提交
1694
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1695
	if (!page) {
1696
		memcg_uncharge_slab(cachep, cachep->gfporder);
1697
		slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1698
		return NULL;
1699
	}
L
Linus Torvalds 已提交
1700

1701
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1702 1703 1704
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1705
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1706
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1707 1708 1709 1710 1711
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1712 1713 1714
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
G
Glauber Costa 已提交
1715
	memcg_bind_pages(cachep, cachep->gfporder);
1716

1717 1718 1719 1720 1721 1722 1723 1724
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1725

1726
	return page;
L
Linus Torvalds 已提交
1727 1728 1729 1730 1731
}

/*
 * Interface to system's page release.
 */
1732
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1733
{
1734
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1735

1736
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1737

1738 1739 1740 1741 1742 1743
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1744

1745
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1746
	__ClearPageSlabPfmemalloc(page);
1747
	__ClearPageSlab(page);
1748 1749
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1750 1751

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1752 1753
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1754 1755
	__free_pages(page, cachep->gfporder);
	memcg_uncharge_slab(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1756 1757 1758 1759
}

static void kmem_rcu_free(struct rcu_head *head)
{
1760 1761
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1762

1763 1764 1765 1766
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1767 1768 1769 1770 1771
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1772
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1773
			    unsigned long caller)
L
Linus Torvalds 已提交
1774
{
1775
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1776

1777
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1778

P
Pekka Enberg 已提交
1779
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1780 1781
		return;

P
Pekka Enberg 已提交
1782 1783 1784 1785
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790 1791 1792
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1793
				*addr++ = svalue;
L
Linus Torvalds 已提交
1794 1795 1796 1797 1798 1799 1800
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1801
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1802 1803 1804
}
#endif

1805
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1806
{
1807
	int size = cachep->object_size;
1808
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1809 1810

	memset(addr, val, size);
P
Pekka Enberg 已提交
1811
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1817 1818 1819
	unsigned char error = 0;
	int bad_count = 0;

1820
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1821 1822 1823 1824 1825 1826
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1827 1828
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847
}
#endif

#if DEBUG

1848
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1854
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1855 1856
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1857 1858 1859
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1860 1861 1862
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1863
	}
1864
	realobj = (char *)objp + obj_offset(cachep);
1865
	size = cachep->object_size;
P
Pekka Enberg 已提交
1866
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1867 1868
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1869 1870
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1871 1872 1873 1874
		dump_line(realobj, i, limit);
	}
}

1875
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880
{
	char *realobj;
	int size, i;
	int lines = 0;

1881
	realobj = (char *)objp + obj_offset(cachep);
1882
	size = cachep->object_size;
L
Linus Torvalds 已提交
1883

P
Pekka Enberg 已提交
1884
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1885
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1886
		if (i == size - 1)
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891 1892
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1893
				printk(KERN_ERR
1894 1895
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1896 1897 1898
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1899
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1900
			limit = 16;
P
Pekka Enberg 已提交
1901 1902
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1915
		struct page *page = virt_to_head_page(objp);
1916
		unsigned int objnr;
L
Linus Torvalds 已提交
1917

1918
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1919
		if (objnr) {
1920
			objp = index_to_obj(cachep, page, objnr - 1);
1921
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1922
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1923
			       realobj, size);
L
Linus Torvalds 已提交
1924 1925
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1926
		if (objnr + 1 < cachep->num) {
1927
			objp = index_to_obj(cachep, page, objnr + 1);
1928
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1929
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1930
			       realobj, size);
L
Linus Torvalds 已提交
1931 1932 1933 1934 1935 1936
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1937
#if DEBUG
1938 1939
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1940 1941 1942
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1943
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1944 1945 1946

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1947
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1948
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1949
				kernel_map_pages(virt_to_page(objp),
1950
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1960
					   "was overwritten");
L
Linus Torvalds 已提交
1961 1962
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1963
					   "was overwritten");
L
Linus Torvalds 已提交
1964 1965
		}
	}
1966
}
L
Linus Torvalds 已提交
1967
#else
1968 1969
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1970 1971
{
}
L
Linus Torvalds 已提交
1972 1973
#endif

1974 1975 1976
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1977
 * @page: page pointer being destroyed
1978
 *
1979
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1980 1981
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1982
 */
1983
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1984
{
1985
	void *freelist;
1986

1987 1988
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
1989
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
2000 2001

	} else {
2002
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
2003
	}
2004 2005

	/*
2006
	 * From now on, we don't use freelist
2007 2008 2009
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
2010
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
2011 2012
}

2013
/**
2014 2015 2016 2017 2018 2019 2020
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2021 2022 2023 2024 2025
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2026
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2027
			size_t size, size_t align, unsigned long flags)
2028
{
2029
	unsigned long offslab_limit;
2030
	size_t left_over = 0;
2031
	int gfporder;
2032

2033
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2034 2035 2036
		unsigned int num;
		size_t remainder;

2037
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2038 2039
		if (!num)
			continue;
2040

2041 2042 2043 2044
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

2045 2046 2047 2048 2049 2050
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
2051
			offslab_limit = size;
2052
			offslab_limit /= sizeof(freelist_idx_t);
2053 2054 2055 2056

 			if (num > offslab_limit)
				break;
		}
2057

2058
		/* Found something acceptable - save it away */
2059
		cachep->num = num;
2060
		cachep->gfporder = gfporder;
2061 2062
		left_over = remainder;

2063 2064 2065 2066 2067 2068 2069 2070
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2071 2072 2073 2074
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2075
		if (gfporder >= slab_max_order)
2076 2077
			break;

2078 2079 2080
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2081
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2082 2083 2084 2085 2086
			break;
	}
	return left_over;
}

2087
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2088
{
2089
	if (slab_state >= FULL)
2090
		return enable_cpucache(cachep, gfp);
2091

2092
	if (slab_state == DOWN) {
2093
		/*
2094
		 * Note: Creation of first cache (kmem_cache).
2095
		 * The setup_node is taken care
2096 2097 2098 2099 2100 2101 2102
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2103 2104 2105 2106 2107 2108
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2109 2110
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2111 2112
		 * otherwise the creation of further caches will BUG().
		 */
2113 2114 2115
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2116
		else
2117
			slab_state = PARTIAL_ARRAYCACHE;
2118
	} else {
2119
		/* Remaining boot caches */
2120
		cachep->array[smp_processor_id()] =
2121
			kmalloc(sizeof(struct arraycache_init), gfp);
2122

2123
		if (slab_state == PARTIAL_ARRAYCACHE) {
2124 2125
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2126 2127
		} else {
			int node;
2128
			for_each_online_node(node) {
2129
				cachep->node[node] =
2130
				    kmalloc_node(sizeof(struct kmem_cache_node),
2131
						gfp, node);
2132
				BUG_ON(!cachep->node[node]);
2133
				kmem_cache_node_init(cachep->node[node]);
2134 2135 2136
			}
		}
	}
2137
	cachep->node[numa_mem_id()]->next_reap =
2138 2139
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2140 2141 2142 2143 2144 2145 2146

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2147
	return 0;
2148 2149
}

L
Linus Torvalds 已提交
2150
/**
2151
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2152
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2153 2154 2155 2156
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2157
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2171
int
2172
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2173
{
2174
	size_t left_over, freelist_size, ralign;
2175
	gfp_t gfp;
2176
	int err;
2177
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2187 2188
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2189
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2190 2191 2192 2193 2194 2195 2196
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2197 2198
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2199 2200 2201
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2202 2203 2204
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2205 2206
	}

2207
	/*
D
David Woodhouse 已提交
2208 2209 2210
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2211
	 */
D
David Woodhouse 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2222

2223
	/* 3) caller mandated alignment */
2224 2225
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2226
	}
2227 2228
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2229
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2230
	/*
2231
	 * 4) Store it.
L
Linus Torvalds 已提交
2232
	 */
2233
	cachep->align = ralign;
L
Linus Torvalds 已提交
2234

2235 2236 2237 2238 2239
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2240
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2241 2242
#if DEBUG

2243 2244 2245 2246
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2247 2248
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2249 2250
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2251 2252
	}
	if (flags & SLAB_STORE_USER) {
2253
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2254 2255
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2256
		 */
D
David Woodhouse 已提交
2257 2258 2259 2260
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2261 2262
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2263
	if (size >= kmalloc_size(INDEX_NODE + 1)
2264 2265 2266
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2267 2268 2269 2270 2271
		size = PAGE_SIZE;
	}
#endif
#endif

2272 2273 2274
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2275 2276
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2277
	 */
2278
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2279
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2280 2281 2282 2283 2284 2285
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2286
	size = ALIGN(size, cachep->align);
2287 2288 2289 2290 2291 2292
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
L
Linus Torvalds 已提交
2293

2294
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2295

2296
	if (!cachep->num)
2297
		return -E2BIG;
L
Linus Torvalds 已提交
2298

2299
	freelist_size =
2300
		ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2306
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2307
		flags &= ~CFLGS_OFF_SLAB;
2308
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2309 2310 2311 2312
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2313
		freelist_size = cachep->num * sizeof(freelist_idx_t);
2314 2315 2316 2317 2318 2319 2320 2321 2322

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2323 2324 2325 2326
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2327 2328
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2329
	cachep->colour = left_over / cachep->colour_off;
2330
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2331
	cachep->flags = flags;
2332
	cachep->allocflags = __GFP_COMP;
2333
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2334
		cachep->allocflags |= GFP_DMA;
2335
	cachep->size = size;
2336
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2337

2338
	if (flags & CFLGS_OFF_SLAB) {
2339
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2340
		/*
2341
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2342
		 * But since we go off slab only for object size greater than
2343 2344
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
2345 2346
		 * But leave a BUG_ON for some lucky dude.
		 */
2347
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2348
	}
L
Linus Torvalds 已提交
2349

2350 2351
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2352
		__kmem_cache_shutdown(cachep);
2353
		return err;
2354
	}
L
Linus Torvalds 已提交
2355

2356 2357 2358 2359 2360 2361 2362 2363
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2364 2365
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2366

2367
	return 0;
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2381
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2382 2383 2384
{
#ifdef CONFIG_SMP
	check_irq_off();
2385
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2386 2387
#endif
}
2388

2389
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2390 2391 2392
{
#ifdef CONFIG_SMP
	check_irq_off();
2393
	assert_spin_locked(&cachep->node[node]->list_lock);
2394 2395 2396
#endif
}

L
Linus Torvalds 已提交
2397 2398 2399 2400
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2401
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2402 2403
#endif

2404
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2405 2406 2407
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2408 2409
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2410
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2411
	struct array_cache *ac;
2412
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2413 2414

	check_irq_off();
2415
	ac = cpu_cache_get(cachep);
2416
	spin_lock(&cachep->node[node]->list_lock);
2417
	free_block(cachep, ac->entry, ac->avail, node);
2418
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2419 2420 2421
	ac->avail = 0;
}

2422
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2423
{
2424
	struct kmem_cache_node *n;
2425 2426
	int node;

2427
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2428
	check_irq_on();
P
Pekka Enberg 已提交
2429
	for_each_online_node(node) {
2430 2431 2432
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2433 2434 2435
	}

	for_each_online_node(node) {
2436 2437 2438
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2439
	}
L
Linus Torvalds 已提交
2440 2441
}

2442 2443 2444 2445 2446 2447 2448
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2449
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2450
{
2451 2452
	struct list_head *p;
	int nr_freed;
2453
	struct page *page;
L
Linus Torvalds 已提交
2454

2455
	nr_freed = 0;
2456
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2457

2458 2459 2460 2461
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2462 2463
			goto out;
		}
L
Linus Torvalds 已提交
2464

2465
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2466
#if DEBUG
2467
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2468
#endif
2469
		list_del(&page->lru);
2470 2471 2472 2473
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2474 2475
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2476
		slab_destroy(cache, page);
2477
		nr_freed++;
L
Linus Torvalds 已提交
2478
	}
2479 2480
out:
	return nr_freed;
L
Linus Torvalds 已提交
2481 2482
}

2483
/* Called with slab_mutex held to protect against cpu hotplug */
2484
static int __cache_shrink(struct kmem_cache *cachep)
2485 2486
{
	int ret = 0, i = 0;
2487
	struct kmem_cache_node *n;
2488 2489 2490 2491 2492

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2493 2494
		n = cachep->node[i];
		if (!n)
2495 2496
			continue;

2497
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2498

2499 2500
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2501 2502 2503 2504
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510 2511
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2512
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2513
{
2514
	int ret;
2515
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2516

2517
	get_online_cpus();
2518
	mutex_lock(&slab_mutex);
2519
	ret = __cache_shrink(cachep);
2520
	mutex_unlock(&slab_mutex);
2521
	put_online_cpus();
2522
	return ret;
L
Linus Torvalds 已提交
2523 2524 2525
}
EXPORT_SYMBOL(kmem_cache_shrink);

2526
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2527
{
2528
	int i;
2529
	struct kmem_cache_node *n;
2530
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2531

2532 2533
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2534

2535 2536
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2537

2538
	/* NUMA: free the node structures */
2539
	for_each_online_node(i) {
2540 2541 2542 2543 2544
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2545 2546 2547
		}
	}
	return 0;
L
Linus Torvalds 已提交
2548 2549
}

2550 2551
/*
 * Get the memory for a slab management obj.
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2563
 */
2564
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2565 2566
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2567
{
2568
	void *freelist;
2569
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2570

L
Linus Torvalds 已提交
2571 2572
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2573
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2574
					      local_flags, nodeid);
2575
		if (!freelist)
L
Linus Torvalds 已提交
2576 2577
			return NULL;
	} else {
2578 2579
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2580
	}
2581 2582 2583
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2584 2585
}

2586
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
L
Linus Torvalds 已提交
2587
{
2588
	return ((freelist_idx_t *)page->freelist)[idx];
2589 2590 2591
}

static inline void set_free_obj(struct page *page,
2592
					unsigned int idx, freelist_idx_t val)
2593
{
2594
	((freelist_idx_t *)(page->freelist))[idx] = val;
L
Linus Torvalds 已提交
2595 2596
}

2597
static void cache_init_objs(struct kmem_cache *cachep,
2598
			    struct page *page)
L
Linus Torvalds 已提交
2599 2600 2601 2602
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2603
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2616 2617 2618
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2619 2620
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2621
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2622 2623 2624 2625

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2626
					   " end of an object");
L
Linus Torvalds 已提交
2627 2628
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2629
					   " start of an object");
L
Linus Torvalds 已提交
2630
		}
2631
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2632
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2633
			kernel_map_pages(virt_to_page(objp),
2634
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2635 2636
#else
		if (cachep->ctor)
2637
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2638
#endif
2639
		set_free_obj(page, i, i);
L
Linus Torvalds 已提交
2640 2641 2642
	}
}

2643
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2644
{
2645 2646
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2647
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2648
		else
2649
			BUG_ON(cachep->allocflags & GFP_DMA);
2650
	}
L
Linus Torvalds 已提交
2651 2652
}

2653
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2654
				int nodeid)
2655
{
2656
	void *objp;
2657

2658
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2659
	page->active++;
2660
#if DEBUG
J
Joonsoo Kim 已提交
2661
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2662 2663 2664 2665 2666
#endif

	return objp;
}

2667
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2668
				void *objp, int nodeid)
2669
{
2670
	unsigned int objnr = obj_to_index(cachep, page, objp);
2671
#if DEBUG
J
Joonsoo Kim 已提交
2672
	unsigned int i;
2673

2674
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2675
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2676

2677
	/* Verify double free bug */
2678
	for (i = page->active; i < cachep->num; i++) {
2679
		if (get_free_obj(page, i) == objnr) {
2680 2681 2682 2683
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2684 2685
	}
#endif
2686
	page->active--;
2687
	set_free_obj(page, page->active, objnr);
2688 2689
}

2690 2691 2692
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2693
 * virtual address for kfree, ksize, and slab debugging.
2694
 */
2695
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2696
			   void *freelist)
L
Linus Torvalds 已提交
2697
{
2698
	page->slab_cache = cache;
2699
	page->freelist = freelist;
L
Linus Torvalds 已提交
2700 2701 2702 2703 2704 2705
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2706
static int cache_grow(struct kmem_cache *cachep,
2707
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2708
{
2709
	void *freelist;
P
Pekka Enberg 已提交
2710 2711
	size_t offset;
	gfp_t local_flags;
2712
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2713

A
Andrew Morton 已提交
2714 2715 2716
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2717
	 */
C
Christoph Lameter 已提交
2718 2719
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2720

2721
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2722
	check_irq_off();
2723 2724
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2725 2726

	/* Get colour for the slab, and cal the next value. */
2727 2728 2729 2730 2731
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2732

2733
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2746 2747 2748
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2749
	 */
2750 2751 2752
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2753 2754 2755
		goto failed;

	/* Get slab management. */
2756
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2757
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2758
	if (!freelist)
L
Linus Torvalds 已提交
2759 2760
		goto opps1;

2761
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2762

2763
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2764 2765 2766 2767

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2768
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2769 2770

	/* Make slab active. */
2771
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2772
	STATS_INC_GROWN(cachep);
2773 2774
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2775
	return 1;
A
Andrew Morton 已提交
2776
opps1:
2777
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2778
failed:
L
Linus Torvalds 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2795 2796
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2797 2798 2799
	}
}

2800 2801
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2802
	unsigned long long redzone1, redzone2;
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2818
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2819 2820 2821
			obj, redzone1, redzone2);
}

2822
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2823
				   unsigned long caller)
L
Linus Torvalds 已提交
2824 2825
{
	unsigned int objnr;
2826
	struct page *page;
L
Linus Torvalds 已提交
2827

2828 2829
	BUG_ON(virt_to_cache(objp) != cachep);

2830
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2831
	kfree_debugcheck(objp);
2832
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2833 2834

	if (cachep->flags & SLAB_RED_ZONE) {
2835
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2836 2837 2838 2839
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2840
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2841

2842
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2843 2844

	BUG_ON(objnr >= cachep->num);
2845
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2846 2847 2848

	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2849
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2850
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2851
			kernel_map_pages(virt_to_page(objp),
2852
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2868 2869
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2870 2871
{
	int batchcount;
2872
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2873
	struct array_cache *ac;
P
Pekka Enberg 已提交
2874 2875
	int node;

L
Linus Torvalds 已提交
2876
	check_irq_off();
2877
	node = numa_mem_id();
2878 2879 2880
	if (unlikely(force_refill))
		goto force_grow;
retry:
2881
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2882 2883
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2884 2885 2886 2887
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2888 2889 2890
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2891
	n = cachep->node[node];
2892

2893 2894
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2895

2896
	/* See if we can refill from the shared array */
2897 2898
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2899
		goto alloc_done;
2900
	}
2901

L
Linus Torvalds 已提交
2902 2903
	while (batchcount > 0) {
		struct list_head *entry;
2904
		struct page *page;
L
Linus Torvalds 已提交
2905
		/* Get slab alloc is to come from. */
2906 2907 2908 2909 2910
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2911 2912 2913
				goto must_grow;
		}

2914
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2915
		check_spinlock_acquired(cachep);
2916 2917 2918 2919 2920 2921

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2922
		BUG_ON(page->active >= cachep->num);
2923

2924
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2925 2926 2927 2928
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2929
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2930
									node));
L
Linus Torvalds 已提交
2931 2932 2933
		}

		/* move slabp to correct slabp list: */
2934 2935
		list_del(&page->lru);
		if (page->active == cachep->num)
2936
			list_add(&page->lru, &n->slabs_full);
L
Linus Torvalds 已提交
2937
		else
2938
			list_add(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
2939 2940
	}

A
Andrew Morton 已提交
2941
must_grow:
2942
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2943
alloc_done:
2944
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2945 2946 2947

	if (unlikely(!ac->avail)) {
		int x;
2948
force_grow:
2949
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2950

A
Andrew Morton 已提交
2951
		/* cache_grow can reenable interrupts, then ac could change. */
2952
		ac = cpu_cache_get(cachep);
2953
		node = numa_mem_id();
2954 2955 2956

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2957 2958
			return NULL;

A
Andrew Morton 已提交
2959
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2960 2961 2962
			goto retry;
	}
	ac->touched = 1;
2963 2964

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2965 2966
}

A
Andrew Morton 已提交
2967 2968
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2969 2970 2971 2972 2973 2974 2975 2976
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2977
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2978
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2979
{
P
Pekka Enberg 已提交
2980
	if (!objp)
L
Linus Torvalds 已提交
2981
		return objp;
P
Pekka Enberg 已提交
2982
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2983
#ifdef CONFIG_DEBUG_PAGEALLOC
2984
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2985
			kernel_map_pages(virt_to_page(objp),
2986
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2987 2988 2989 2990 2991 2992 2993 2994
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2995
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2996 2997

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2998 2999 3000 3001
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3002
			printk(KERN_ERR
3003
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3004 3005
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3006 3007 3008 3009
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3010
	objp += obj_offset(cachep);
3011
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3012
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3013 3014
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3015
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3016
		       objp, (int)ARCH_SLAB_MINALIGN);
3017
	}
L
Linus Torvalds 已提交
3018 3019 3020 3021 3022 3023
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3024
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3025
{
3026
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3027
		return false;
3028

3029
	return should_failslab(cachep->object_size, flags, cachep->flags);
3030 3031
}

3032
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3033
{
P
Pekka Enberg 已提交
3034
	void *objp;
L
Linus Torvalds 已提交
3035
	struct array_cache *ac;
3036
	bool force_refill = false;
L
Linus Torvalds 已提交
3037

3038
	check_irq_off();
3039

3040
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3041 3042
	if (likely(ac->avail)) {
		ac->touched = 1;
3043 3044
		objp = ac_get_obj(cachep, ac, flags, false);

3045
		/*
3046 3047
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3048
		 */
3049 3050 3051 3052 3053
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3054
	}
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3065 3066 3067 3068 3069
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3070 3071
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3072 3073 3074
	return objp;
}

3075
#ifdef CONFIG_NUMA
3076
/*
3077
 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3078 3079 3080 3081 3082 3083 3084 3085
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3086
	if (in_interrupt() || (flags & __GFP_THISNODE))
3087
		return NULL;
3088
	nid_alloc = nid_here = numa_mem_id();
3089
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3090
		nid_alloc = cpuset_slab_spread_node();
3091
	else if (current->mempolicy)
3092
		nid_alloc = mempolicy_slab_node();
3093
	if (nid_alloc != nid_here)
3094
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3095 3096 3097
	return NULL;
}

3098 3099
/*
 * Fallback function if there was no memory available and no objects on a
3100
 * certain node and fall back is permitted. First we scan all the
3101
 * available node for available objects. If that fails then we
3102 3103 3104
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3105
 */
3106
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3107
{
3108 3109
	struct zonelist *zonelist;
	gfp_t local_flags;
3110
	struct zoneref *z;
3111 3112
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3113
	void *obj = NULL;
3114
	int nid;
3115
	unsigned int cpuset_mems_cookie;
3116 3117 3118 3119

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3120
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3121

3122
retry_cpuset:
3123
	cpuset_mems_cookie = read_mems_allowed_begin();
3124
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3125

3126 3127 3128 3129 3130
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3131 3132
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3133

3134
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3135 3136
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3137 3138
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3139 3140 3141
				if (obj)
					break;
		}
3142 3143
	}

3144
	if (!obj) {
3145 3146 3147 3148 3149 3150
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3151 3152
		struct page *page;

3153 3154 3155
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3156
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3157 3158
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3159
		if (page) {
3160 3161 3162
			/*
			 * Insert into the appropriate per node queues
			 */
3163 3164
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3175
				/* cache_grow already freed obj */
3176 3177 3178
				obj = NULL;
			}
		}
3179
	}
3180

3181
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3182
		goto retry_cpuset;
3183 3184 3185
	return obj;
}

3186 3187
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3188
 */
3189
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3190
				int nodeid)
3191 3192
{
	struct list_head *entry;
3193
	struct page *page;
3194
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3195 3196 3197
	void *obj;
	int x;

3198
	VM_BUG_ON(nodeid > num_online_nodes());
3199 3200
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3201

A
Andrew Morton 已提交
3202
retry:
3203
	check_irq_off();
3204 3205 3206 3207 3208 3209
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3210 3211 3212
			goto must_grow;
	}

3213
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3214 3215 3216 3217 3218 3219
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3220
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3221

3222
	obj = slab_get_obj(cachep, page, nodeid);
3223
	n->free_objects--;
P
Pekka Enberg 已提交
3224
	/* move slabp to correct slabp list: */
3225
	list_del(&page->lru);
P
Pekka Enberg 已提交
3226

3227 3228
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3229
	else
3230
		list_add(&page->lru, &n->slabs_partial);
3231

3232
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3233
	goto done;
3234

A
Andrew Morton 已提交
3235
must_grow:
3236
	spin_unlock(&n->list_lock);
3237
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3238 3239
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3240

3241
	return fallback_alloc(cachep, flags);
3242

A
Andrew Morton 已提交
3243
done:
P
Pekka Enberg 已提交
3244
	return obj;
3245
}
3246 3247

static __always_inline void *
3248
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3249
		   unsigned long caller)
3250 3251 3252
{
	unsigned long save_flags;
	void *ptr;
3253
	int slab_node = numa_mem_id();
3254

3255
	flags &= gfp_allowed_mask;
3256

3257 3258
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3259
	if (slab_should_failslab(cachep, flags))
3260 3261
		return NULL;

3262 3263
	cachep = memcg_kmem_get_cache(cachep, flags);

3264 3265 3266
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3267
	if (nodeid == NUMA_NO_NODE)
3268
		nodeid = slab_node;
3269

3270
	if (unlikely(!cachep->node[nodeid])) {
3271 3272 3273 3274 3275
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3276
	if (nodeid == slab_node) {
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3292
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3293
				 flags);
3294

3295
	if (likely(ptr)) {
3296
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3297 3298 3299
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}
3300

3301 3302 3303 3304 3305 3306 3307 3308
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3309
	if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3320 3321
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3337
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3338 3339 3340 3341
{
	unsigned long save_flags;
	void *objp;

3342
	flags &= gfp_allowed_mask;
3343

3344 3345
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3346
	if (slab_should_failslab(cachep, flags))
3347 3348
		return NULL;

3349 3350
	cachep = memcg_kmem_get_cache(cachep, flags);

3351 3352 3353 3354 3355
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3356
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3357
				 flags);
3358 3359
	prefetchw(objp);

3360
	if (likely(objp)) {
3361
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3362 3363 3364
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}
3365

3366 3367
	return objp;
}
3368 3369

/*
3370
 * Caller needs to acquire correct kmem_cache_node's list_lock
3371
 */
3372
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3373
		       int node)
L
Linus Torvalds 已提交
3374 3375
{
	int i;
3376
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3377 3378

	for (i = 0; i < nr_objects; i++) {
3379
		void *objp;
3380
		struct page *page;
L
Linus Torvalds 已提交
3381

3382 3383 3384
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3385
		page = virt_to_head_page(objp);
3386
		n = cachep->node[node];
3387
		list_del(&page->lru);
3388
		check_spinlock_acquired_node(cachep, node);
3389
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3390
		STATS_DEC_ACTIVE(cachep);
3391
		n->free_objects++;
L
Linus Torvalds 已提交
3392 3393

		/* fixup slab chains */
3394
		if (page->active == 0) {
3395 3396
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3397 3398 3399 3400 3401 3402
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
3403
				slab_destroy(cachep, page);
L
Linus Torvalds 已提交
3404
			} else {
3405
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3406 3407 3408 3409 3410 3411
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3412
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3413 3414 3415 3416
		}
	}
}

3417
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3418 3419
{
	int batchcount;
3420
	struct kmem_cache_node *n;
3421
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3422 3423 3424 3425 3426 3427

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3428 3429 3430 3431
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3432
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3433 3434 3435
		if (max) {
			if (batchcount > max)
				batchcount = max;
3436
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3437
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3438 3439 3440 3441 3442
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3443
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3444
free_done:
L
Linus Torvalds 已提交
3445 3446 3447 3448 3449
#if STATS
	{
		int i = 0;
		struct list_head *p;

3450 3451
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3452
			struct page *page;
L
Linus Torvalds 已提交
3453

3454 3455
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3456 3457 3458 3459 3460 3461 3462

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3463
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3464
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3465
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3466 3467 3468
}

/*
A
Andrew Morton 已提交
3469 3470
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3471
 */
3472
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3473
				unsigned long caller)
L
Linus Torvalds 已提交
3474
{
3475
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3476 3477

	check_irq_off();
3478
	kmemleak_free_recursive(objp, cachep->flags);
3479
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3480

3481
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3482

3483 3484 3485 3486 3487 3488 3489
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3490
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3491 3492
		return;

L
Linus Torvalds 已提交
3493 3494 3495 3496 3497 3498
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3499

3500
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3511
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3512
{
3513
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3514

3515
	trace_kmem_cache_alloc(_RET_IP_, ret,
3516
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3517 3518

	return ret;
L
Linus Torvalds 已提交
3519 3520 3521
}
EXPORT_SYMBOL(kmem_cache_alloc);

3522
#ifdef CONFIG_TRACING
3523
void *
3524
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3525
{
3526 3527
	void *ret;

3528
	ret = slab_alloc(cachep, flags, _RET_IP_);
3529 3530

	trace_kmalloc(_RET_IP_, ret,
3531
		      size, cachep->size, flags);
3532
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3533
}
3534
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3535 3536
#endif

L
Linus Torvalds 已提交
3537
#ifdef CONFIG_NUMA
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3549 3550
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3551
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3552

3553
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3554
				    cachep->object_size, cachep->size,
3555
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3556 3557

	return ret;
3558
}
L
Linus Torvalds 已提交
3559 3560
EXPORT_SYMBOL(kmem_cache_alloc_node);

3561
#ifdef CONFIG_TRACING
3562
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3563
				  gfp_t flags,
3564 3565
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3566
{
3567 3568
	void *ret;

3569
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3570

3571
	trace_kmalloc_node(_RET_IP_, ret,
3572
			   size, cachep->size,
3573 3574
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3575
}
3576
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3577 3578
#endif

3579
static __always_inline void *
3580
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3581
{
3582
	struct kmem_cache *cachep;
3583

3584
	cachep = kmalloc_slab(size, flags);
3585 3586
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3587
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3588
}
3589

3590
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3591 3592
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3593
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3594
}
3595
EXPORT_SYMBOL(__kmalloc_node);
3596 3597

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3598
		int node, unsigned long caller)
3599
{
3600
	return __do_kmalloc_node(size, flags, node, caller);
3601 3602 3603 3604 3605
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3606
	return __do_kmalloc_node(size, flags, node, 0);
3607 3608
}
EXPORT_SYMBOL(__kmalloc_node);
3609
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3610
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3611 3612

/**
3613
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3614
 * @size: how many bytes of memory are required.
3615
 * @flags: the type of memory to allocate (see kmalloc).
3616
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3617
 */
3618
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3619
					  unsigned long caller)
L
Linus Torvalds 已提交
3620
{
3621
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3622
	void *ret;
L
Linus Torvalds 已提交
3623

3624
	cachep = kmalloc_slab(size, flags);
3625 3626
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3627
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3628

3629
	trace_kmalloc(caller, ret,
3630
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3631 3632

	return ret;
3633 3634 3635
}


3636
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3637 3638
void *__kmalloc(size_t size, gfp_t flags)
{
3639
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3640 3641 3642
}
EXPORT_SYMBOL(__kmalloc);

3643
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3644
{
3645
	return __do_kmalloc(size, flags, caller);
3646 3647
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3648 3649 3650 3651

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3652
	return __do_kmalloc(size, flags, 0);
3653 3654
}
EXPORT_SYMBOL(__kmalloc);
3655 3656
#endif

L
Linus Torvalds 已提交
3657 3658 3659 3660 3661 3662 3663 3664
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3665
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3666 3667
{
	unsigned long flags;
3668 3669 3670
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3671 3672

	local_irq_save(flags);
3673
	debug_check_no_locks_freed(objp, cachep->object_size);
3674
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3675
		debug_check_no_obj_freed(objp, cachep->object_size);
3676
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3677
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3678

3679
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3680 3681 3682 3683 3684 3685 3686
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3687 3688
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3689 3690 3691 3692 3693
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3694
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3695 3696
	unsigned long flags;

3697 3698
	trace_kfree(_RET_IP_, objp);

3699
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3700 3701 3702
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3703
	c = virt_to_cache(objp);
3704 3705 3706
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3707
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3708 3709 3710 3711
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3712
/*
3713
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3714
 */
3715
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3716 3717
{
	int node;
3718
	struct kmem_cache_node *n;
3719
	struct array_cache *new_shared;
3720
	struct array_cache **new_alien = NULL;
3721

3722
	for_each_online_node(node) {
3723

3724
                if (use_alien_caches) {
3725
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3726 3727 3728
                        if (!new_alien)
                                goto fail;
                }
3729

3730 3731 3732
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3733
				cachep->shared*cachep->batchcount,
3734
					0xbaadf00d, gfp);
3735 3736 3737 3738
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3739
		}
3740

3741 3742 3743
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3744

3745
			spin_lock_irq(&n->list_lock);
3746

3747
			if (shared)
3748 3749
				free_block(cachep, shared->entry,
						shared->avail, node);
3750

3751 3752 3753
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3754 3755
				new_alien = NULL;
			}
3756
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3757
					cachep->batchcount + cachep->num;
3758
			spin_unlock_irq(&n->list_lock);
3759
			kfree(shared);
3760 3761 3762
			free_alien_cache(new_alien);
			continue;
		}
3763 3764
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3765 3766
			free_alien_cache(new_alien);
			kfree(new_shared);
3767
			goto fail;
3768
		}
3769

3770
		kmem_cache_node_init(n);
3771 3772
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3773 3774 3775
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3776
					cachep->batchcount + cachep->num;
3777
		cachep->node[node] = n;
3778
	}
3779
	return 0;
3780

A
Andrew Morton 已提交
3781
fail:
3782
	if (!cachep->list.next) {
3783 3784 3785
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3786
			if (cachep->node[node]) {
3787
				n = cachep->node[node];
3788

3789 3790 3791
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3792
				cachep->node[node] = NULL;
3793 3794 3795 3796
			}
			node--;
		}
	}
3797
	return -ENOMEM;
3798 3799
}

L
Linus Torvalds 已提交
3800
struct ccupdate_struct {
3801
	struct kmem_cache *cachep;
3802
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3803 3804 3805 3806
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3807
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3808 3809 3810
	struct array_cache *old;

	check_irq_off();
3811
	old = cpu_cache_get(new->cachep);
3812

L
Linus Torvalds 已提交
3813 3814 3815 3816
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3817
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3818
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3819
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3820
{
3821
	struct ccupdate_struct *new;
3822
	int i;
L
Linus Torvalds 已提交
3823

3824 3825
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3826 3827 3828
	if (!new)
		return -ENOMEM;

3829
	for_each_online_cpu(i) {
3830
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3831
						batchcount, gfp);
3832
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3833
			for (i--; i >= 0; i--)
3834 3835
				kfree(new->new[i]);
			kfree(new);
3836
			return -ENOMEM;
L
Linus Torvalds 已提交
3837 3838
		}
	}
3839
	new->cachep = cachep;
L
Linus Torvalds 已提交
3840

3841
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3842

L
Linus Torvalds 已提交
3843 3844 3845
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3846
	cachep->shared = shared;
L
Linus Torvalds 已提交
3847

3848
	for_each_online_cpu(i) {
3849
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3850 3851
		if (!ccold)
			continue;
3852
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3853
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3854
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3855 3856
		kfree(ccold);
	}
3857
	kfree(new);
3858
	return alloc_kmem_cache_node(cachep, gfp);
L
Linus Torvalds 已提交
3859 3860
}

G
Glauber Costa 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3876
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3877
	for_each_memcg_cache_index(i) {
3878
		c = cache_from_memcg_idx(cachep, i);
G
Glauber Costa 已提交
3879 3880 3881 3882 3883 3884 3885 3886
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3887
/* Called with slab_mutex held always */
3888
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3889 3890
{
	int err;
G
Glauber Costa 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3901

G
Glauber Costa 已提交
3902 3903
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3904 3905
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3906 3907
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3908
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3909 3910 3911 3912
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3913
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3914
		limit = 1;
3915
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3916
		limit = 8;
3917
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3918
		limit = 24;
3919
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3920 3921 3922 3923
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3924 3925
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3934
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3935 3936 3937
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3938 3939 3940
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3941 3942 3943 3944
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3945 3946 3947
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3948 3949
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3950
		       cachep->name, -err);
3951
	return err;
L
Linus Torvalds 已提交
3952 3953
}

3954
/*
3955 3956
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3957
 * if drain_array() is used on the shared array.
3958
 */
3959
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3960
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3961 3962 3963
{
	int tofree;

3964 3965
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3966 3967
	if (ac->touched && !force) {
		ac->touched = 0;
3968
	} else {
3969
		spin_lock_irq(&n->list_lock);
3970 3971 3972 3973 3974 3975 3976 3977 3978
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3979
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3980 3981 3982 3983 3984
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3985
 * @w: work descriptor
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3992 3993
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3994
 */
3995
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3996
{
3997
	struct kmem_cache *searchp;
3998
	struct kmem_cache_node *n;
3999
	int node = numa_mem_id();
4000
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4001

4002
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4003
		/* Give up. Setup the next iteration. */
4004
		goto out;
L
Linus Torvalds 已提交
4005

4006
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4007 4008
		check_irq_on();

4009
		/*
4010
		 * We only take the node lock if absolutely necessary and we
4011 4012 4013
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4014
		n = searchp->node[node];
4015

4016
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4017

4018
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4019

4020 4021 4022 4023
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4024
		if (time_after(n->next_reap, jiffies))
4025
			goto next;
L
Linus Torvalds 已提交
4026

4027
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
L
Linus Torvalds 已提交
4028

4029
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4030

4031 4032
		if (n->free_touched)
			n->free_touched = 0;
4033 4034
		else {
			int freed;
L
Linus Torvalds 已提交
4035

4036
			freed = drain_freelist(searchp, n, (n->free_limit +
4037 4038 4039
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4040
next:
L
Linus Torvalds 已提交
4041 4042 4043
		cond_resched();
	}
	check_irq_on();
4044
	mutex_unlock(&slab_mutex);
4045
	next_reap_node();
4046
out:
A
Andrew Morton 已提交
4047
	/* Set up the next iteration */
4048
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
L
Linus Torvalds 已提交
4049 4050
}

4051
#ifdef CONFIG_SLABINFO
4052
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4053
{
4054
	struct page *page;
P
Pekka Enberg 已提交
4055 4056 4057 4058
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4059
	const char *name;
L
Linus Torvalds 已提交
4060
	char *error = NULL;
4061
	int node;
4062
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4063 4064 4065

	active_objs = 0;
	num_slabs = 0;
4066
	for_each_online_node(node) {
4067 4068
		n = cachep->node[node];
		if (!n)
4069 4070
			continue;

4071
		check_irq_on();
4072
		spin_lock_irq(&n->list_lock);
4073

4074 4075
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4076 4077 4078 4079
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4080 4081
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4082
				error = "slabs_partial accounting error";
4083
			if (!page->active && !error)
4084
				error = "slabs_partial accounting error";
4085
			active_objs += page->active;
4086 4087
			active_slabs++;
		}
4088 4089
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4090
				error = "slabs_free accounting error";
4091 4092
			num_slabs++;
		}
4093 4094 4095
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4096

4097
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4098
	}
P
Pekka Enberg 已提交
4099 4100
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4101
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4102 4103
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4104
	name = cachep->name;
L
Linus Torvalds 已提交
4105 4106 4107
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4122
#if STATS
4123
	{			/* node stats */
L
Linus Torvalds 已提交
4124 4125 4126 4127 4128 4129 4130
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4131
		unsigned long node_frees = cachep->node_frees;
4132
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4133

J
Joe Perches 已提交
4134 4135 4136 4137 4138
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4148
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4161
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4162
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4163
{
P
Pekka Enberg 已提交
4164
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4165
	int limit, batchcount, shared, res;
4166
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4167

L
Linus Torvalds 已提交
4168 4169 4170 4171
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4172
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4183
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4184
	res = -EINVAL;
4185
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4186
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4187 4188
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4189
				res = 0;
L
Linus Torvalds 已提交
4190
			} else {
4191
				res = do_tune_cpucache(cachep, limit,
4192 4193
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4194 4195 4196 4197
			}
			break;
		}
	}
4198
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4199 4200 4201 4202
	if (res >= 0)
		res = count;
	return res;
}
4203 4204 4205 4206 4207

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4208 4209
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4242 4243
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4244 4245
{
	void *p;
4246 4247
	int i, j;

4248 4249
	if (n[0] == n[1])
		return;
4250
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4251 4252
		bool active = true;

4253
		for (j = page->active; j < c->num; j++) {
4254
			/* Skip freed item */
4255
			if (get_free_obj(page, j) == i) {
4256 4257 4258 4259 4260
				active = false;
				break;
			}
		}
		if (!active)
4261
			continue;
4262

4263 4264 4265 4266 4267 4268 4269 4270 4271
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4272
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4273

4274
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4275
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4276
		if (modname[0])
4277 4278 4279 4280 4281 4282 4283 4284 4285
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4286
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4287
	struct page *page;
4288
	struct kmem_cache_node *n;
4289
	const char *name;
4290
	unsigned long *x = m->private;
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4301
	x[1] = 0;
4302 4303

	for_each_online_node(node) {
4304 4305
		n = cachep->node[node];
		if (!n)
4306 4307 4308
			continue;

		check_irq_on();
4309
		spin_lock_irq(&n->list_lock);
4310

4311 4312 4313 4314
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4315
		spin_unlock_irq(&n->list_lock);
4316 4317
	}
	name = cachep->name;
4318
	if (x[0] == x[1]) {
4319
		/* Increase the buffer size */
4320
		mutex_unlock(&slab_mutex);
4321
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4322 4323
		if (!m->private) {
			/* Too bad, we are really out */
4324
			m->private = x;
4325
			mutex_lock(&slab_mutex);
4326 4327
			return -ENOMEM;
		}
4328 4329
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4330
		mutex_lock(&slab_mutex);
4331 4332 4333 4334
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4335 4336 4337
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4338 4339
		seq_putc(m, '\n');
	}
4340

4341 4342 4343
	return 0;
}

4344
static const struct seq_operations slabstats_op = {
4345
	.start = leaks_start,
4346 4347
	.next = slab_next,
	.stop = slab_stop,
4348 4349
	.show = leaks_show,
};
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4380
#endif
4381 4382 4383
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4384 4385
#endif

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4398
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4399
{
4400 4401
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4402
		return 0;
L
Linus Torvalds 已提交
4403

4404
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4405
}
K
Kirill A. Shutemov 已提交
4406
EXPORT_SYMBOL(ksize);