slab.c 117.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
L
Linus Torvalds 已提交
118 119 120 121 122 123

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
124
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
145
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
146 147 148 149 150 151 152

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
153 154 155
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
156
 */
157
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
177
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
178
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179
			 SLAB_CACHE_DMA | \
180
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
181
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
183
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
184
#else
185
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
186
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
187
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
188
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
189
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

211
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
212 213
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
214 215
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
216 217 218 219 220 221 222 223 224

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
225 226 227 228 229 230
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
250
	struct rcu_head head;
251
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
252
	void *addr;
L
Linus Torvalds 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
272
	spinlock_t lock;
273
	void *entry[];	/*
A
Andrew Morton 已提交
274 275 276 277
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
278 279
};

A
Andrew Morton 已提交
280 281 282
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
283 284 285 286
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
287
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
288 289 290
};

/*
291
 * The slab lists for all objects.
L
Linus Torvalds 已提交
292 293
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
294 295 296 297 298
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
299
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
300 301 302
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
303 304
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
305 306
};

307 308 309
/*
 * Need this for bootstrapping a per node allocator.
 */
310
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
311 312
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
313 314
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
315

316 317 318 319
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
320
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
321
static void cache_reap(struct work_struct *unused);
322

323
/*
A
Andrew Morton 已提交
324 325
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
326
 */
327
static __always_inline int index_of(const size_t size)
328
{
329 330
	extern void __bad_size(void);

331 332 333 334 335 336 337 338
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
339
#include <linux/kmalloc_sizes.h>
340
#undef CACHE
341
		__bad_size();
342
	} else
343
		__bad_size();
344 345 346
	return 0;
}

347 348
static int slab_early_init = 1;

349 350
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
351

P
Pekka Enberg 已提交
352
static void kmem_list3_init(struct kmem_list3 *parent)
353 354 355 356 357 358
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
359
	parent->colour_next = 0;
360 361 362 363 364
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
365 366 367 368
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
369 370
	} while (0)

A
Andrew Morton 已提交
371 372
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
373 374 375 376
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
377 378 379 380 381

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
382 383 384
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
385
 *
A
Adrian Bunk 已提交
386
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
387 388 389 390 391 392 393 394 395 396
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
397
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
398 399 400 401 402
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
403 404
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
405
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
406
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
407 408 409 410 411
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
412 413 414 415 416 417 418 419 420
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
421
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
422 423 424
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
425
#define	STATS_INC_NODEFREES(x)	do { } while (0)
426
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
427
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
428 429 430 431 432 433 434 435
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
436 437
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
438
 * 0		: objp
439
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
440 441
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
442
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
443
 * 		redzone word.
444 445
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
446 447
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
448
 */
449
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
450
{
451
	return cachep->obj_offset;
L
Linus Torvalds 已提交
452 453
}

454
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
455
{
456
	return cachep->obj_size;
L
Linus Torvalds 已提交
457 458
}

459
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
460 461
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
462 463
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
464 465
}

466
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
467 468 469
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
470 471
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
472
					      REDZONE_ALIGN);
473 474
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
475 476
}

477
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
478 479
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
480
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
481 482 483 484
}

#else

485 486
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
487 488
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
489 490 491 492
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

493
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
494 495 496 497 498 499 500
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
508 509 510 511
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
512
 */
513 514 515 516 517 518 519
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
520
	page = compound_head(page);
521
	BUG_ON(!PageSlab(page));
522 523 524 525 526 527 528 529 530 531
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
532
	BUG_ON(!PageSlab(page));
533 534
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
535

536 537
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
538
	struct page *page = virt_to_head_page(obj);
539 540 541 542 543
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
544
	struct page *page = virt_to_head_page(obj);
545 546 547
	return page_get_slab(page);
}

548 549 550 551 552 553
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

554 555 556 557 558 559 560 561
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
562
{
563 564
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
565 566
}

A
Andrew Morton 已提交
567 568 569
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
587
	{NULL,}
L
Linus Torvalds 已提交
588 589 590 591
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
592
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
593
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
594
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
595 596

/* internal cache of cache description objs */
597
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
598 599 600
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
601
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
602
	.name = "kmem_cache",
L
Linus Torvalds 已提交
603 604
};

605 606
#define BAD_ALIEN_MAGIC 0x01020304ul

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

627 628 629 630 631 632 633 634
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
635 636 637 638
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
639
 */
640 641 642
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

643
static void init_node_lock_keys(int q)
644
{
645 646
	struct cache_sizes *s = malloc_sizes;

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
			return;
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
			return;
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
673
		}
674 675
	}
}
676 677 678 679 680 681 682 683

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
684
#else
685 686 687 688
static void init_node_lock_keys(int q)
{
}

689
static inline void init_lock_keys(void)
690 691 692 693
{
}
#endif

694
/*
695
 * Guard access to the cache-chain.
696
 */
I
Ingo Molnar 已提交
697
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
698 699
static struct list_head cache_chain;

700
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
701

702
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
703 704 705 706
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
707 708
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
709 710 711 712 713
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
714 715 716
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
717
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
718
#endif
719 720 721
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
722 723 724 725
	while (size > csizep->cs_size)
		csizep++;

	/*
726
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
727 728 729
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
730
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
731 732
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
733
#endif
L
Linus Torvalds 已提交
734 735 736
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
737
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
738 739 740 741
{
	return __find_general_cachep(size, gfpflags);
}

742
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
743
{
744 745
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
746

A
Andrew Morton 已提交
747 748 749
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
750 751 752 753 754 755 756
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
806 807
}

808
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
809

A
Andrew Morton 已提交
810 811
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
812 813
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
814
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
815 816 817
	dump_stack();
}

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

834 835 836 837 838 839 840
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
841
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
842 843 844 845 846 847 848

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
849
		node = first_node(node_online_map);
850

851
	per_cpu(slab_reap_node, cpu) = node;
852 853 854 855
}

static void next_reap_node(void)
{
856
	int node = __get_cpu_var(slab_reap_node);
857 858 859 860

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
861
	__get_cpu_var(slab_reap_node) = node;
862 863 864 865 866 867 868
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
869 870 871 872 873 874 875
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
876
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
877
{
878
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
879 880 881 882 883 884

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
885
	if (keventd_up() && reap_work->work.func == NULL) {
886
		init_reap_node(cpu);
887
		INIT_DELAYED_WORK(reap_work, cache_reap);
888 889
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
890 891 892
	}
}

893
static struct array_cache *alloc_arraycache(int node, int entries,
894
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
895
{
P
Pekka Enberg 已提交
896
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
897 898
	struct array_cache *nc = NULL;

899
	nc = kmalloc_node(memsize, gfp, node);
900 901 902 903 904 905 906 907
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transfered to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
908 909 910 911 912
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
913
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
914 915 916 917
	}
	return nc;
}

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

942 943 944 945 946
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

947
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

967
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
968 969 970 971 972 973 974
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

975
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
976
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
977

978
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
979 980
{
	struct array_cache **ac_ptr;
981
	int memsize = sizeof(void *) * nr_node_ids;
982 983 984 985
	int i;

	if (limit > 1)
		limit = 12;
986
	ac_ptr = kmalloc_node(memsize, gfp, node);
987 988 989 990 991 992
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
993
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
994
			if (!ac_ptr[i]) {
995
				for (i--; i >= 0; i--)
996 997 998 999 1000 1001 1002 1003 1004
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1005
static void free_alien_cache(struct array_cache **ac_ptr)
1006 1007 1008 1009 1010 1011
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1012
	    kfree(ac_ptr[i]);
1013 1014 1015
	kfree(ac_ptr);
}

1016
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1017
				struct array_cache *ac, int node)
1018 1019 1020 1021 1022
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1023 1024 1025 1026 1027
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1028 1029
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1030

1031
		free_block(cachep, ac->entry, ac->avail, node);
1032 1033 1034 1035 1036
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1037 1038 1039 1040 1041
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1042
	int node = __get_cpu_var(slab_reap_node);
1043 1044 1045

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1046 1047

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1048 1049 1050 1051 1052 1053
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1054 1055
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1056
{
P
Pekka Enberg 已提交
1057
	int i = 0;
1058 1059 1060 1061
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1062
		ac = alien[i];
1063 1064 1065 1066 1067 1068 1069
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1070

1071
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1072 1073 1074 1075 1076
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1077 1078 1079
	int node;

	node = numa_node_id();
1080 1081 1082 1083 1084

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1085
	if (likely(slabp->nodeid == node))
1086 1087
		return 0;

P
Pekka Enberg 已提交
1088
	l3 = cachep->nodelists[node];
1089 1090 1091
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1092
		spin_lock(&alien->lock);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1106 1107
#endif

1108 1109 1110 1111 1112
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1113
	const struct cpumask *mask = cpumask_of_node(node);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1135
		if (!cpumask_empty(mask)) {
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1174
{
1175
	struct kmem_cache *cachep;
1176 1177
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1178
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1179

1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1188
		/*
1189 1190 1191
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1192
		 */
1193 1194 1195 1196 1197 1198 1199
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1200

A
Andrew Morton 已提交
1201
			/*
1202 1203 1204
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1205
			 */
1206
			cachep->nodelists[node] = l3;
1207 1208
		}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1226
					cachep->batchcount, GFP_KERNEL);
1227 1228 1229 1230 1231
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1232
				0xbaadf00d, GFP_KERNEL);
1233 1234
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1235
				goto bad;
1236
			}
1237 1238
		}
		if (use_alien_caches) {
1239
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1240 1241 1242
			if (!alien) {
				kfree(shared);
				kfree(nc);
1243
				goto bad;
1244
			}
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1259
#ifdef CONFIG_NUMA
1260 1261 1262
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1263
		}
1264 1265 1266 1267 1268
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
1269 1270
	init_node_lock_keys(node);

1271 1272
	return 0;
bad:
1273
	cpuup_canceled(cpu);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1286
		mutex_lock(&cache_chain_mutex);
1287
		err = cpuup_prepare(cpu);
1288
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1289 1290
		break;
	case CPU_ONLINE:
1291
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1292 1293 1294
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1295
  	case CPU_DOWN_PREPARE:
1296
  	case CPU_DOWN_PREPARE_FROZEN:
1297 1298 1299 1300 1301 1302
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1303
		cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1304
		/* Now the cache_reaper is guaranteed to be not running. */
1305
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1306 1307
  		break;
  	case CPU_DOWN_FAILED:
1308
  	case CPU_DOWN_FAILED_FROZEN:
1309 1310
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1311
	case CPU_DEAD:
1312
	case CPU_DEAD_FROZEN:
1313 1314 1315 1316 1317 1318 1319 1320
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1321
		/* fall through */
1322
#endif
L
Linus Torvalds 已提交
1323
	case CPU_UP_CANCELED:
1324
	case CPU_UP_CANCELED_FROZEN:
1325
		mutex_lock(&cache_chain_mutex);
1326
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1327
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1328 1329
		break;
	}
1330
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1331 1332
}

1333 1334 1335
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1336

1337 1338 1339
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1340 1341
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1342 1343 1344
{
	struct kmem_list3 *ptr;

1345
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1346 1347 1348
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1349 1350 1351 1352 1353
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1354 1355 1356 1357
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1374 1375 1376
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1377 1378 1379 1380 1381 1382
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1383
	int i;
1384
	int order;
P
Pekka Enberg 已提交
1385
	int node;
1386

1387
	if (num_possible_nodes() == 1)
1388 1389
		use_alien_caches = 0;

1390 1391 1392 1393 1394
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1395
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1401
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1402 1403 1404 1405
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1406 1407 1408
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1409 1410 1411
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1412
	 * 2) Create the first kmalloc cache.
1413
	 *    The struct kmem_cache for the new cache is allocated normally.
1414 1415 1416
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1417 1418
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1419 1420 1421
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1422 1423
	 */

P
Pekka Enberg 已提交
1424 1425
	node = numa_node_id();

L
Linus Torvalds 已提交
1426 1427 1428 1429 1430
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1431
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1432

E
Eric Dumazet 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1442 1443
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1444 1445
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1446

1447 1448 1449 1450 1451 1452
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1453
	BUG_ON(!cache_cache.num);
1454
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1455 1456 1457
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1458 1459 1460 1461 1462

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1463 1464 1465 1466
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1467 1468 1469
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1470 1471 1472
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1473
					NULL);
1474

A
Andrew Morton 已提交
1475
	if (INDEX_AC != INDEX_L3) {
1476
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1477 1478 1479 1480
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1481
				NULL);
A
Andrew Morton 已提交
1482
	}
1483

1484 1485
	slab_early_init = 0;

L
Linus Torvalds 已提交
1486
	while (sizes->cs_size != ULONG_MAX) {
1487 1488
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1489 1490 1491
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1492 1493
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1494
		if (!sizes->cs_cachep) {
1495
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1496 1497 1498
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1499
					NULL);
A
Andrew Morton 已提交
1500
		}
1501 1502 1503
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1504 1505 1506 1507
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1508
					NULL);
1509
#endif
L
Linus Torvalds 已提交
1510 1511 1512 1513 1514
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1515
		struct array_cache *ptr;
1516

1517
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1518

1519 1520
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1521
		       sizeof(struct arraycache_init));
1522 1523 1524 1525 1526
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1527
		cache_cache.array[smp_processor_id()] = ptr;
1528

1529
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1530

1531
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1532
		       != &initarray_generic.cache);
1533
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1534
		       sizeof(struct arraycache_init));
1535 1536 1537 1538 1539
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1540
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1541
		    ptr;
L
Linus Torvalds 已提交
1542
	}
1543 1544
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1545 1546
		int nid;

1547
		for_each_online_node(nid) {
1548
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1549

1550
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1551
				  &initkmem_list3[SIZE_AC + nid], nid);
1552 1553 1554

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1555
					  &initkmem_list3[SIZE_L3 + nid], nid);
1556 1557 1558
			}
		}
	}
L
Linus Torvalds 已提交
1559

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1573

L
Linus Torvalds 已提交
1574 1575 1576
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1577 1578 1579
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1580 1581 1582
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1583 1584 1585
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1586 1587 1588
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1589 1590 1591 1592 1593 1594 1595
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1596 1597
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1598
	 */
1599
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1600
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1612
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1613 1614
{
	struct page *page;
1615
	int nr_pages;
L
Linus Torvalds 已提交
1616 1617
	int i;

1618
#ifndef CONFIG_MMU
1619 1620 1621
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1622
	 */
1623
	flags |= __GFP_COMP;
1624
#endif
1625

1626
	flags |= cachep->gfpflags;
1627 1628
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1629

L
Linus Torvalds 已提交
1630
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1631 1632 1633
	if (!page)
		return NULL;

1634
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1635
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1636 1637 1638 1639 1640
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1641 1642
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1643

1644 1645 1646 1647 1648 1649 1650 1651
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1652

1653
	return page_address(page);
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658
}

/*
 * Interface to system's page release.
 */
1659
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1660
{
P
Pekka Enberg 已提交
1661
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1662 1663 1664
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1665
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1666

1667 1668 1669 1670 1671 1672
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1673
	while (i--) {
N
Nick Piggin 已提交
1674 1675
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1685
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1686
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1696
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1697
			    unsigned long caller)
L
Linus Torvalds 已提交
1698
{
1699
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1700

1701
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1702

P
Pekka Enberg 已提交
1703
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1704 1705
		return;

P
Pekka Enberg 已提交
1706 1707 1708 1709
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1710 1711 1712 1713 1714 1715 1716
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1717
				*addr++ = svalue;
L
Linus Torvalds 已提交
1718 1719 1720 1721 1722 1723 1724
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1725
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1726 1727 1728
}
#endif

1729
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1730
{
1731 1732
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1733 1734

	memset(addr, val, size);
P
Pekka Enberg 已提交
1735
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1741 1742 1743
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1744
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1745 1746 1747 1748 1749
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1750
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1751
	}
L
Linus Torvalds 已提交
1752
	printk("\n");
D
Dave Jones 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1767 1768 1769 1770 1771
}
#endif

#if DEBUG

1772
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1778
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1779 1780
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1781 1782 1783 1784
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1785
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1786
		print_symbol("(%s)",
A
Andrew Morton 已提交
1787
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1788 1789
		printk("\n");
	}
1790 1791
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1792
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1793 1794
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1795 1796
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1797 1798 1799 1800
		dump_line(realobj, i, limit);
	}
}

1801
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806
{
	char *realobj;
	int size, i;
	int lines = 0;

1807 1808
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1809

P
Pekka Enberg 已提交
1810
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1811
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1812
		if (i == size - 1)
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817 1818
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1819
				printk(KERN_ERR
1820 1821
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1822 1823 1824
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1825
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1826
			limit = 16;
P
Pekka Enberg 已提交
1827 1828
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1841
		struct slab *slabp = virt_to_slab(objp);
1842
		unsigned int objnr;
L
Linus Torvalds 已提交
1843

1844
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1845
		if (objnr) {
1846
			objp = index_to_obj(cachep, slabp, objnr - 1);
1847
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1848
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1849
			       realobj, size);
L
Linus Torvalds 已提交
1850 1851
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1852
		if (objnr + 1 < cachep->num) {
1853
			objp = index_to_obj(cachep, slabp, objnr + 1);
1854
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1855
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1856
			       realobj, size);
L
Linus Torvalds 已提交
1857 1858 1859 1860 1861 1862
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1863
#if DEBUG
R
Rabin Vincent 已提交
1864
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1865 1866 1867
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1868
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1869 1870 1871

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1872 1873
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1874
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1875
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1885
					   "was overwritten");
L
Linus Torvalds 已提交
1886 1887
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1888
					   "was overwritten");
L
Linus Torvalds 已提交
1889 1890
		}
	}
1891
}
L
Linus Torvalds 已提交
1892
#else
R
Rabin Vincent 已提交
1893
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1894 1895
{
}
L
Linus Torvalds 已提交
1896 1897
#endif

1898 1899 1900 1901 1902
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1903
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1904 1905
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1906
 */
1907
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1908 1909 1910
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1911
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1912 1913 1914
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1915
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1921 1922
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1923 1924 1925
	}
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1947
/**
1948 1949 1950 1951 1952 1953 1954
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1955 1956 1957 1958 1959
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1960
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1961
			size_t size, size_t align, unsigned long flags)
1962
{
1963
	unsigned long offslab_limit;
1964
	size_t left_over = 0;
1965
	int gfporder;
1966

1967
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1968 1969 1970
		unsigned int num;
		size_t remainder;

1971
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1972 1973
		if (!num)
			continue;
1974

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1987

1988
		/* Found something acceptable - save it away */
1989
		cachep->num = num;
1990
		cachep->gfporder = gfporder;
1991 1992
		left_over = remainder;

1993 1994 1995 1996 1997 1998 1999 2000
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2001 2002 2003 2004
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2005
		if (gfporder >= slab_break_gfp_order)
2006 2007
			break;

2008 2009 2010
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2011
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2012 2013 2014 2015 2016
			break;
	}
	return left_over;
}

2017
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2018
{
2019
	if (g_cpucache_up == FULL)
2020
		return enable_cpucache(cachep, gfp);
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2042
			kmalloc(sizeof(struct arraycache_init), gfp);
2043 2044 2045 2046 2047 2048

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2049
			for_each_online_node(node) {
2050 2051
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2052
						gfp, node);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2068
	return 0;
2069 2070
}

L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2081
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2082 2083
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2084
 * the module calling this has to destroy the cache before getting unloaded.
2085 2086
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
A
Andrew Morton 已提交
2087
 *
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2100
struct kmem_cache *
L
Linus Torvalds 已提交
2101
kmem_cache_create (const char *name, size_t size, size_t align,
2102
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2103 2104
{
	size_t left_over, slab_size, ralign;
2105
	struct kmem_cache *cachep = NULL, *pc;
2106
	gfp_t gfp;
L
Linus Torvalds 已提交
2107 2108 2109 2110

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2111
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2112
	    size > KMALLOC_MAX_SIZE) {
2113
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2114
				name);
P
Pekka Enberg 已提交
2115 2116
		BUG();
	}
L
Linus Torvalds 已提交
2117

2118
	/*
2119
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2120
	 * cpu_online_mask as well.  Please see cpuup_callback
2121
	 */
2122 2123 2124 2125
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2126

2127
	list_for_each_entry(pc, &cache_chain, next) {
2128 2129 2130 2131 2132 2133 2134 2135
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2136
		res = probe_kernel_address(pc->name, tmp);
2137
		if (res) {
2138 2139
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2140
			       pc->buffer_size);
2141 2142 2143
			continue;
		}

P
Pekka Enberg 已提交
2144
		if (!strcmp(pc->name, name)) {
2145 2146
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2147 2148 2149 2150 2151
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2161 2162
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2163
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168 2169 2170
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2171 2172
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2173
	 */
2174
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2175

A
Andrew Morton 已提交
2176 2177
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2178 2179 2180
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2181 2182 2183
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2184 2185
	}

A
Andrew Morton 已提交
2186 2187
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2188 2189
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2190 2191 2192 2193
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2194 2195
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2196
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2197 2198 2199 2200
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2201 2202

	/*
D
David Woodhouse 已提交
2203 2204 2205
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2206
	 */
D
David Woodhouse 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2217

2218
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2219 2220 2221
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2222
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2223 2224 2225
	if (ralign < align) {
		ralign = align;
	}
2226
	/* disable debug if necessary */
2227
	if (ralign > __alignof__(unsigned long long))
2228
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2229
	/*
2230
	 * 4) Store it.
L
Linus Torvalds 已提交
2231 2232 2233
	 */
	align = ralign;

2234 2235 2236 2237 2238
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2239
	/* Get cache's description obj. */
2240
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2241
	if (!cachep)
2242
		goto oops;
L
Linus Torvalds 已提交
2243 2244

#if DEBUG
2245
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2246

2247 2248 2249 2250
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2251 2252
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2253 2254
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2255 2256
	}
	if (flags & SLAB_STORE_USER) {
2257
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2258 2259
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2260
		 */
D
David Woodhouse 已提交
2261 2262 2263 2264
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2265 2266
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2267
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2268 2269
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274
		size = PAGE_SIZE;
	}
#endif
#endif

2275 2276 2277
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2278 2279
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2280
	 */
2281 2282
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289 2290
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2291
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2292 2293

	if (!cachep->num) {
2294 2295
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2296 2297
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2298
		goto oops;
L
Linus Torvalds 已提交
2299
	}
P
Pekka Enberg 已提交
2300 2301
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2314 2315
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2316 2317 2318 2319 2320 2321 2322 2323 2324

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2325 2326 2327 2328 2329 2330
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2331
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2332 2333 2334
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2335
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2336
		cachep->gfpflags |= GFP_DMA;
2337
	cachep->buffer_size = size;
2338
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2339

2340
	if (flags & CFLGS_OFF_SLAB) {
2341
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2342 2343 2344 2345 2346 2347 2348
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2349
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2350
	}
L
Linus Torvalds 已提交
2351 2352 2353
	cachep->ctor = ctor;
	cachep->name = name;

2354
	if (setup_cpu_cache(cachep, gfp)) {
2355 2356 2357 2358
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2359 2360 2361

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2362
oops:
L
Linus Torvalds 已提交
2363 2364
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2365
		      name);
2366 2367 2368 2369
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2385
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2386 2387 2388
{
#ifdef CONFIG_SMP
	check_irq_off();
2389
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2390 2391
#endif
}
2392

2393
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2394 2395 2396 2397 2398 2399 2400
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2401 2402 2403 2404
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2405
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2406 2407
#endif

2408 2409 2410 2411
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2412 2413
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2414
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2415
	struct array_cache *ac;
2416
	int node = numa_node_id();
L
Linus Torvalds 已提交
2417 2418

	check_irq_off();
2419
	ac = cpu_cache_get(cachep);
2420 2421 2422
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2423 2424 2425
	ac->avail = 0;
}

2426
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2427
{
2428 2429 2430
	struct kmem_list3 *l3;
	int node;

2431
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2432
	check_irq_on();
P
Pekka Enberg 已提交
2433
	for_each_online_node(node) {
2434
		l3 = cachep->nodelists[node];
2435 2436 2437 2438 2439 2440 2441
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2442
			drain_array(cachep, l3, l3->shared, 1, node);
2443
	}
L
Linus Torvalds 已提交
2444 2445
}

2446 2447 2448 2449 2450 2451 2452 2453
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2454
{
2455 2456
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2457 2458
	struct slab *slabp;

2459 2460
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2461

2462
		spin_lock_irq(&l3->list_lock);
2463
		p = l3->slabs_free.prev;
2464 2465 2466 2467
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2468

2469
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2470
#if DEBUG
2471
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2472 2473
#endif
		list_del(&slabp->list);
2474 2475 2476 2477 2478
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2479
		spin_unlock_irq(&l3->list_lock);
2480 2481
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2482
	}
2483 2484
out:
	return nr_freed;
L
Linus Torvalds 已提交
2485 2486
}

2487
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2488
static int __cache_shrink(struct kmem_cache *cachep)
2489 2490 2491 2492 2493 2494 2495 2496 2497
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2498 2499 2500 2501 2502 2503 2504
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2505 2506 2507 2508
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2509 2510 2511 2512 2513 2514 2515
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2516
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2517
{
2518
	int ret;
2519
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2520

2521
	get_online_cpus();
2522 2523 2524
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2525
	put_online_cpus();
2526
	return ret;
L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532 2533
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2534
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2546
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2547
{
2548
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2549 2550

	/* Find the cache in the chain of caches. */
2551
	get_online_cpus();
I
Ingo Molnar 已提交
2552
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2559
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2560
		mutex_unlock(&cache_chain_mutex);
2561
		put_online_cpus();
2562
		return;
L
Linus Torvalds 已提交
2563 2564 2565
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2566
		rcu_barrier();
L
Linus Torvalds 已提交
2567

2568
	__kmem_cache_destroy(cachep);
2569
	mutex_unlock(&cache_chain_mutex);
2570
	put_online_cpus();
L
Linus Torvalds 已提交
2571 2572 2573
}
EXPORT_SYMBOL(kmem_cache_destroy);

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2585
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2586 2587
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2588 2589
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2590

L
Linus Torvalds 已提交
2591 2592
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2593
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2594
					      local_flags, nodeid);
2595 2596 2597 2598 2599 2600
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2601 2602
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2603 2604 2605
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2606
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2607 2608 2609 2610
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2611
	slabp->s_mem = objp + colour_off;
2612
	slabp->nodeid = nodeid;
2613
	slabp->free = 0;
L
Linus Torvalds 已提交
2614 2615 2616 2617 2618
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2619
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2620 2621
}

2622
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2623
			    struct slab *slabp)
L
Linus Torvalds 已提交
2624 2625 2626 2627
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2628
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2641 2642 2643
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2644 2645
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2646
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2647 2648 2649 2650

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2651
					   " end of an object");
L
Linus Torvalds 已提交
2652 2653
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2654
					   " start of an object");
L
Linus Torvalds 已提交
2655
		}
A
Andrew Morton 已提交
2656 2657
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2658
			kernel_map_pages(virt_to_page(objp),
2659
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2660 2661
#else
		if (cachep->ctor)
2662
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2663
#endif
P
Pekka Enberg 已提交
2664
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2665
	}
P
Pekka Enberg 已提交
2666
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2667 2668
}

2669
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2670
{
2671 2672 2673 2674 2675 2676
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2677 2678
}

A
Andrew Morton 已提交
2679 2680
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2681
{
2682
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2696 2697
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2698
{
2699
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2700 2701 2702 2703 2704

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2705
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2706
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2707
				"'%s', objp %p\n", cachep->name, objp);
2708 2709 2710 2711 2712 2713 2714 2715
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2716 2717 2718 2719 2720 2721 2722
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2723
{
2724
	int nr_pages;
L
Linus Torvalds 已提交
2725 2726
	struct page *page;

2727
	page = virt_to_page(addr);
2728

2729
	nr_pages = 1;
2730
	if (likely(!PageCompound(page)))
2731 2732
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2733
	do {
2734 2735
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2736
		page++;
2737
	} while (--nr_pages);
L
Linus Torvalds 已提交
2738 2739 2740 2741 2742 2743
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2744 2745
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2746
{
P
Pekka Enberg 已提交
2747 2748 2749
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2750
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2751

A
Andrew Morton 已提交
2752 2753 2754
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2755
	 */
C
Christoph Lameter 已提交
2756 2757
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2758

2759
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2760
	check_irq_off();
2761 2762
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2763 2764

	/* Get colour for the slab, and cal the next value. */
2765 2766 2767 2768 2769
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2770

2771
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2784 2785 2786
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2787
	 */
2788
	if (!objp)
2789
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2790
	if (!objp)
L
Linus Torvalds 已提交
2791 2792 2793
		goto failed;

	/* Get slab management. */
2794
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2795
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2796
	if (!slabp)
L
Linus Torvalds 已提交
2797 2798
		goto opps1;

2799
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2800

C
Christoph Lameter 已提交
2801
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2802 2803 2804 2805

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2806
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2807 2808

	/* Make slab active. */
2809
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2810
	STATS_INC_GROWN(cachep);
2811 2812
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2813
	return 1;
A
Andrew Morton 已提交
2814
opps1:
L
Linus Torvalds 已提交
2815
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2816
failed:
L
Linus Torvalds 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2833 2834
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2835 2836 2837
	}
}

2838 2839
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2840
	unsigned long long redzone1, redzone2;
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2856
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2857 2858 2859
			obj, redzone1, redzone2);
}

2860
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2861
				   void *caller)
L
Linus Torvalds 已提交
2862 2863 2864 2865 2866
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2867 2868
	BUG_ON(virt_to_cache(objp) != cachep);

2869
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2870
	kfree_debugcheck(objp);
2871
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2872

2873
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2874 2875

	if (cachep->flags & SLAB_RED_ZONE) {
2876
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881 2882
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2883
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2884 2885

	BUG_ON(objnr >= cachep->num);
2886
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2887

2888 2889 2890
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2891 2892
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2893
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2894
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2895
			kernel_map_pages(virt_to_page(objp),
2896
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2907
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2908 2909 2910
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2911

L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2919 2920 2921 2922
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2923
		for (i = 0;
2924
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2925
		     i++) {
A
Andrew Morton 已提交
2926
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2927
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2928
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2940
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2941 2942 2943 2944
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2945 2946
	int node;

2947
retry:
L
Linus Torvalds 已提交
2948
	check_irq_off();
2949
	node = numa_node_id();
2950
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2951 2952
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2953 2954 2955 2956
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2957 2958 2959
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2960
	l3 = cachep->nodelists[node];
2961 2962 2963

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2964

2965 2966 2967 2968
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2984 2985 2986 2987 2988 2989

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2990
		BUG_ON(slabp->inuse >= cachep->num);
2991

L
Linus Torvalds 已提交
2992 2993 2994 2995 2996
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2997
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2998
							    node);
L
Linus Torvalds 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3010
must_grow:
L
Linus Torvalds 已提交
3011
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3012
alloc_done:
3013
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3014 3015 3016

	if (unlikely(!ac->avail)) {
		int x;
3017
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3018

A
Andrew Morton 已提交
3019
		/* cache_grow can reenable interrupts, then ac could change. */
3020
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3021
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3022 3023
			return NULL;

A
Andrew Morton 已提交
3024
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3025 3026 3027
			goto retry;
	}
	ac->touched = 1;
3028
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3029 3030
}

A
Andrew Morton 已提交
3031 3032
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3033 3034 3035 3036 3037 3038 3039 3040
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3041 3042
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3043
{
P
Pekka Enberg 已提交
3044
	if (!objp)
L
Linus Torvalds 已提交
3045
		return objp;
P
Pekka Enberg 已提交
3046
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3047
#ifdef CONFIG_DEBUG_PAGEALLOC
3048
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3049
			kernel_map_pages(virt_to_page(objp),
3050
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3062 3063 3064 3065
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3066
			printk(KERN_ERR
3067
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3068 3069
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3070 3071 3072 3073
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3074 3075 3076 3077 3078
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3079
		slabp = page_get_slab(virt_to_head_page(objp));
3080 3081 3082 3083
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3084
	objp += obj_offset(cachep);
3085
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3086
		cachep->ctor(objp);
3087 3088 3089 3090 3091 3092
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3099
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3100 3101
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3102
		return false;
3103

A
Akinobu Mita 已提交
3104
	return should_failslab(obj_size(cachep), flags);
3105 3106
}

3107
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3108
{
P
Pekka Enberg 已提交
3109
	void *objp;
L
Linus Torvalds 已提交
3110 3111
	struct array_cache *ac;

3112
	check_irq_off();
3113

3114
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3115 3116 3117
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3118
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3119 3120 3121
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3122 3123 3124 3125 3126
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3127
	}
3128 3129 3130 3131 3132
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3133 3134
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3135 3136 3137
	return objp;
}

3138
#ifdef CONFIG_NUMA
3139
/*
3140
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3141 3142 3143 3144 3145 3146 3147 3148
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3149
	if (in_interrupt() || (flags & __GFP_THISNODE))
3150 3151 3152 3153 3154 3155 3156
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3157
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3158 3159 3160
	return NULL;
}

3161 3162
/*
 * Fallback function if there was no memory available and no objects on a
3163 3164 3165 3166 3167
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3168
 */
3169
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3170
{
3171 3172
	struct zonelist *zonelist;
	gfp_t local_flags;
3173
	struct zoneref *z;
3174 3175
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3176
	void *obj = NULL;
3177
	int nid;
3178 3179 3180 3181

	if (flags & __GFP_THISNODE)
		return NULL;

3182
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3183
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3184

3185 3186 3187 3188 3189
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3190 3191
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3192

3193
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3194
			cache->nodelists[nid] &&
3195
			cache->nodelists[nid]->free_objects) {
3196 3197
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3198 3199 3200
				if (obj)
					break;
		}
3201 3202
	}

3203
	if (!obj) {
3204 3205 3206 3207 3208 3209
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3210 3211 3212
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3213
		obj = kmem_getpages(cache, local_flags, numa_node_id());
3214 3215
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3232
				/* cache_grow already freed obj */
3233 3234 3235
				obj = NULL;
			}
		}
3236
	}
3237 3238 3239
	return obj;
}

3240 3241
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3242
 */
3243
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3244
				int nodeid)
3245 3246
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3247 3248 3249 3250 3251 3252 3253 3254
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3255
retry:
3256
	check_irq_off();
P
Pekka Enberg 已提交
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3276
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3277 3278 3279 3280 3281
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3282
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3283
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3284
	else
P
Pekka Enberg 已提交
3285
		list_add(&slabp->list, &l3->slabs_partial);
3286

P
Pekka Enberg 已提交
3287 3288
	spin_unlock(&l3->list_lock);
	goto done;
3289

A
Andrew Morton 已提交
3290
must_grow:
P
Pekka Enberg 已提交
3291
	spin_unlock(&l3->list_lock);
3292
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3293 3294
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3295

3296
	return fallback_alloc(cachep, flags);
3297

A
Andrew Morton 已提交
3298
done:
P
Pekka Enberg 已提交
3299
	return obj;
3300
}
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3321
	flags &= gfp_allowed_mask;
3322

3323 3324
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3325
	if (slab_should_failslab(cachep, flags))
3326 3327
		return NULL;

3328 3329 3330
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

3331
	if (nodeid == -1)
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3356 3357
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3358

P
Pekka Enberg 已提交
3359 3360 3361
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3362 3363 3364
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3406
	flags &= gfp_allowed_mask;
3407

3408 3409
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3410
	if (slab_should_failslab(cachep, flags))
3411 3412
		return NULL;

3413 3414 3415 3416 3417
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3418 3419
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3420 3421
	prefetchw(objp);

P
Pekka Enberg 已提交
3422 3423 3424
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3425 3426 3427
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3428 3429
	return objp;
}
3430 3431 3432 3433

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3434
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3435
		       int node)
L
Linus Torvalds 已提交
3436 3437
{
	int i;
3438
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3439 3440 3441 3442 3443

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3444
		slabp = virt_to_slab(objp);
3445
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3446
		list_del(&slabp->list);
3447
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3448
		check_slabp(cachep, slabp);
3449
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3450
		STATS_DEC_ACTIVE(cachep);
3451
		l3->free_objects++;
L
Linus Torvalds 已提交
3452 3453 3454 3455
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3456 3457
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3458 3459 3460 3461 3462 3463
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3464 3465
				slab_destroy(cachep, slabp);
			} else {
3466
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3467 3468 3469 3470 3471 3472
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3473
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3474 3475 3476 3477
		}
	}
}

3478
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3479 3480
{
	int batchcount;
3481
	struct kmem_list3 *l3;
3482
	int node = numa_node_id();
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3489
	l3 = cachep->nodelists[node];
3490
	spin_lock(&l3->list_lock);
3491 3492
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3493
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3494 3495 3496
		if (max) {
			if (batchcount > max)
				batchcount = max;
3497
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3498
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3499 3500 3501 3502 3503
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3504
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3505
free_done:
L
Linus Torvalds 已提交
3506 3507 3508 3509 3510
#if STATS
	{
		int i = 0;
		struct list_head *p;

3511 3512
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3524
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3525
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3526
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3527 3528 3529
}

/*
A
Andrew Morton 已提交
3530 3531
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3532
 */
3533
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3534
{
3535
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3536 3537

	check_irq_off();
3538
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3539 3540
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

P
Pekka Enberg 已提交
3541 3542
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3543 3544 3545 3546 3547 3548 3549
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3550
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3551 3552
		return;

L
Linus Torvalds 已提交
3553 3554
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3555
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3556 3557 3558 3559
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3560
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3572
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3573
{
E
Eduard - Gabriel Munteanu 已提交
3574 3575
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3576 3577
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3578 3579

	return ret;
L
Linus Torvalds 已提交
3580 3581 3582
}
EXPORT_SYMBOL(kmem_cache_alloc);

3583
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
3584 3585 3586 3587 3588 3589 3590
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3591
/**
3592
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3593 3594 3595
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3596
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3597 3598 3599 3600 3601 3602 3603
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3604
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3605
{
P
Pekka Enberg 已提交
3606
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3607
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3608
	unsigned long align_mask = BYTES_PER_WORD - 1;
3609
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3625
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3626 3627
		goto out;
	return 1;
A
Andrew Morton 已提交
3628
out:
L
Linus Torvalds 已提交
3629 3630 3631 3632
	return 0;
}

#ifdef CONFIG_NUMA
3633 3634
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3635 3636 3637
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3638 3639 3640
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3641 3642

	return ret;
3643
}
L
Linus Torvalds 已提交
3644 3645
EXPORT_SYMBOL(kmem_cache_alloc_node);

3646
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3657 3658
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3659
{
3660
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3661
	void *ret;
3662 3663

	cachep = kmem_find_general_cachep(size, flags);
3664 3665
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3666 3667
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

3668 3669
	trace_kmalloc_node((unsigned long) caller, ret,
			   size, cachep->buffer_size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3670 3671

	return ret;
3672
}
3673

3674
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3675 3676 3677 3678 3679
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3680
EXPORT_SYMBOL(__kmalloc_node);
3681 3682

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3683
		int node, unsigned long caller)
3684
{
3685
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3686 3687 3688 3689 3690 3691 3692 3693
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3694
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3695
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3696 3697

/**
3698
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3699
 * @size: how many bytes of memory are required.
3700
 * @flags: the type of memory to allocate (see kmalloc).
3701
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3702
 */
3703 3704
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3705
{
3706
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3707
	void *ret;
L
Linus Torvalds 已提交
3708

3709 3710 3711 3712 3713 3714
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3715 3716
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3717 3718
	ret = __cache_alloc(cachep, flags, caller);

3719 3720
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3721 3722

	return ret;
3723 3724 3725
}


3726
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3727 3728
void *__kmalloc(size_t size, gfp_t flags)
{
3729
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3730 3731 3732
}
EXPORT_SYMBOL(__kmalloc);

3733
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3734
{
3735
	return __do_kmalloc(size, flags, (void *)caller);
3736 3737
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3738 3739 3740 3741 3742 3743 3744

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3745 3746
#endif

L
Linus Torvalds 已提交
3747 3748 3749 3750 3751 3752 3753 3754
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3755
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3756 3757 3758 3759
{
	unsigned long flags;

	local_irq_save(flags);
3760
	debug_check_no_locks_freed(objp, obj_size(cachep));
3761 3762
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3763
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3764
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3765

3766
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3767 3768 3769 3770 3771 3772 3773
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3774 3775
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3776 3777 3778 3779 3780
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3781
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3782 3783
	unsigned long flags;

3784 3785
	trace_kfree(_RET_IP_, objp);

3786
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3787 3788 3789
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3790
	c = virt_to_cache(objp);
3791
	debug_check_no_locks_freed(objp, obj_size(c));
3792
	debug_check_no_obj_freed(objp, obj_size(c));
3793
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3794 3795 3796 3797
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3798
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3799
{
3800
	return obj_size(cachep);
L
Linus Torvalds 已提交
3801 3802 3803
}
EXPORT_SYMBOL(kmem_cache_size);

3804
const char *kmem_cache_name(struct kmem_cache *cachep)
3805 3806 3807 3808 3809
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3810
/*
S
Simon Arlott 已提交
3811
 * This initializes kmem_list3 or resizes various caches for all nodes.
3812
 */
3813
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3814 3815 3816
{
	int node;
	struct kmem_list3 *l3;
3817
	struct array_cache *new_shared;
3818
	struct array_cache **new_alien = NULL;
3819

3820
	for_each_online_node(node) {
3821

3822
                if (use_alien_caches) {
3823
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3824 3825 3826
                        if (!new_alien)
                                goto fail;
                }
3827

3828 3829 3830
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3831
				cachep->shared*cachep->batchcount,
3832
					0xbaadf00d, gfp);
3833 3834 3835 3836
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3837
		}
3838

A
Andrew Morton 已提交
3839 3840
		l3 = cachep->nodelists[node];
		if (l3) {
3841 3842
			struct array_cache *shared = l3->shared;

3843 3844
			spin_lock_irq(&l3->list_lock);

3845
			if (shared)
3846 3847
				free_block(cachep, shared->entry,
						shared->avail, node);
3848

3849 3850
			l3->shared = new_shared;
			if (!l3->alien) {
3851 3852 3853
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3854
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3855
					cachep->batchcount + cachep->num;
3856
			spin_unlock_irq(&l3->list_lock);
3857
			kfree(shared);
3858 3859 3860
			free_alien_cache(new_alien);
			continue;
		}
3861
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3862 3863 3864
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3865
			goto fail;
3866
		}
3867 3868 3869

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3870
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3871
		l3->shared = new_shared;
3872
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3873
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3874
					cachep->batchcount + cachep->num;
3875 3876
		cachep->nodelists[node] = l3;
	}
3877
	return 0;
3878

A
Andrew Morton 已提交
3879
fail:
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3895
	return -ENOMEM;
3896 3897
}

L
Linus Torvalds 已提交
3898
struct ccupdate_struct {
3899
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3900 3901 3902 3903 3904
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3905
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3906 3907 3908
	struct array_cache *old;

	check_irq_off();
3909
	old = cpu_cache_get(new->cachep);
3910

L
Linus Torvalds 已提交
3911 3912 3913 3914
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3915
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3916
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3917
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3918
{
3919
	struct ccupdate_struct *new;
3920
	int i;
L
Linus Torvalds 已提交
3921

3922
	new = kzalloc(sizeof(*new), gfp);
3923 3924 3925
	if (!new)
		return -ENOMEM;

3926
	for_each_online_cpu(i) {
3927
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3928
						batchcount, gfp);
3929
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3930
			for (i--; i >= 0; i--)
3931 3932
				kfree(new->new[i]);
			kfree(new);
3933
			return -ENOMEM;
L
Linus Torvalds 已提交
3934 3935
		}
	}
3936
	new->cachep = cachep;
L
Linus Torvalds 已提交
3937

3938
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3939

L
Linus Torvalds 已提交
3940 3941 3942
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3943
	cachep->shared = shared;
L
Linus Torvalds 已提交
3944

3945
	for_each_online_cpu(i) {
3946
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3947 3948
		if (!ccold)
			continue;
3949
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3950
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3951
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3952 3953
		kfree(ccold);
	}
3954
	kfree(new);
3955
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3956 3957
}

3958
/* Called with cache_chain_mutex held always */
3959
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3960 3961 3962 3963
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3964 3965
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3966 3967
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3968
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3969 3970 3971 3972
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3973
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3974
		limit = 1;
3975
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3976
		limit = 8;
3977
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3978
		limit = 24;
3979
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3980 3981 3982 3983
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3984 3985
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991 3992 3993
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3994
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3995 3996 3997
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3998 3999 4000
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4001 4002 4003 4004
	 */
	if (limit > 32)
		limit = 32;
#endif
4005
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4006 4007
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4008
		       cachep->name, -err);
4009
	return err;
L
Linus Torvalds 已提交
4010 4011
}

4012 4013
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4014 4015
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4016 4017 4018
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4019 4020 4021
{
	int tofree;

4022 4023
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4024 4025
	if (ac->touched && !force) {
		ac->touched = 0;
4026
	} else {
4027
		spin_lock_irq(&l3->list_lock);
4028 4029 4030 4031 4032 4033 4034 4035 4036
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4037
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4038 4039 4040 4041 4042
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4043
 * @w: work descriptor
L
Linus Torvalds 已提交
4044 4045 4046 4047 4048 4049
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4050 4051
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4052
 */
4053
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4054
{
4055
	struct kmem_cache *searchp;
4056
	struct kmem_list3 *l3;
4057
	int node = numa_node_id();
4058
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4059

4060
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4061
		/* Give up. Setup the next iteration. */
4062
		goto out;
L
Linus Torvalds 已提交
4063

4064
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4065 4066
		check_irq_on();

4067 4068 4069 4070 4071
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4072
		l3 = searchp->nodelists[node];
4073

4074
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4075

4076
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4077

4078 4079 4080 4081
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4082
		if (time_after(l3->next_reap, jiffies))
4083
			goto next;
L
Linus Torvalds 已提交
4084

4085
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4086

4087
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4088

4089
		if (l3->free_touched)
4090
			l3->free_touched = 0;
4091 4092
		else {
			int freed;
L
Linus Torvalds 已提交
4093

4094 4095 4096 4097
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4098
next:
L
Linus Torvalds 已提交
4099 4100 4101
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4102
	mutex_unlock(&cache_chain_mutex);
4103
	next_reap_node();
4104
out:
A
Andrew Morton 已提交
4105
	/* Set up the next iteration */
4106
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4107 4108
}

4109
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4110

4111
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4112
{
4113 4114 4115 4116
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4117
#if STATS
4118
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4119
#else
4120
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4121
#endif
4122 4123 4124 4125
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4126
#if STATS
4127
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4128
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4129
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4130
#endif
4131 4132 4133 4134 4135 4136 4137
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4138
	mutex_lock(&cache_chain_mutex);
4139 4140
	if (!n)
		print_slabinfo_header(m);
4141 4142

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4143 4144 4145 4146
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4147
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4148 4149 4150 4151
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4152
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4153 4154 4155 4156
}

static int s_show(struct seq_file *m, void *p)
{
4157
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4158 4159 4160 4161 4162
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4163
	const char *name;
L
Linus Torvalds 已提交
4164
	char *error = NULL;
4165 4166
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4167 4168 4169

	active_objs = 0;
	num_slabs = 0;
4170 4171 4172 4173 4174
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4175 4176
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4177

4178
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4179 4180 4181 4182 4183
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4184
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4185 4186 4187 4188 4189 4190 4191
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4192
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4193 4194 4195 4196 4197
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4198 4199
		if (l3->shared)
			shared_avail += l3->shared->avail;
4200

4201
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4202
	}
P
Pekka Enberg 已提交
4203 4204
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4205
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4206 4207
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4208
	name = cachep->name;
L
Linus Torvalds 已提交
4209 4210 4211 4212
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4213
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4214
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4215
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4216
		   cachep->limit, cachep->batchcount, cachep->shared);
4217
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4218
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4219
#if STATS
P
Pekka Enberg 已提交
4220
	{			/* list3 stats */
L
Linus Torvalds 已提交
4221 4222 4223 4224 4225 4226 4227
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4228
		unsigned long node_frees = cachep->node_frees;
4229
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4230

4231
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4232
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4233
				reaped, errors, max_freeable, node_allocs,
4234
				node_frees, overflows);
L
Linus Torvalds 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4244
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4265
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4266 4267 4268 4269
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4280 4281
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4282
{
P
Pekka Enberg 已提交
4283
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4284
	int limit, batchcount, shared, res;
4285
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4286

L
Linus Torvalds 已提交
4287 4288 4289 4290
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4291
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4302
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4303
	res = -EINVAL;
4304
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4305
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4306 4307
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4308
				res = 0;
L
Linus Torvalds 已提交
4309
			} else {
4310
				res = do_tune_cpucache(cachep, limit,
4311 4312
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4313 4314 4315 4316
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4317
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4318 4319 4320 4321
	if (res >= 0)
		res = count;
	return res;
}
4322

4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4336 4337 4338 4339 4340
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4341
	return seq_list_start(&cache_chain, *pos);
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4392
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4393

4394
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4395
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4396
		if (modname[0])
4397 4398 4399 4400 4401 4402 4403 4404 4405
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4406
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4431
		list_for_each_entry(slabp, &l3->slabs_full, list)
4432
			handle_slab(n, cachep, slabp);
4433
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4460

4461 4462 4463
	return 0;
}

4464
static const struct seq_operations slabstats_op = {
4465 4466 4467 4468 4469
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4498
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4499 4500
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4501
#endif
4502 4503 4504
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4505 4506
#endif

4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4519
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4520
{
4521 4522
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4523
		return 0;
L
Linus Torvalds 已提交
4524

4525
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4526
}
K
Kirill A. Shutemov 已提交
4527
EXPORT_SYMBOL(ksize);