slab.c 115.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
178 179
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
183 184
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
392
	struct kmem_list3 *nodelists[MAX_NUMNODES];
393

A
Andrew Morton 已提交
394 395
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
396

397
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
398
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
399
	unsigned int gfporder;
L
Linus Torvalds 已提交
400 401

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
402
	gfp_t gfpflags;
L
Linus Torvalds 已提交
403

A
Andrew Morton 已提交
404
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
405
	unsigned int colour_off;	/* colour offset */
406
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
407
	unsigned int slab_size;
A
Andrew Morton 已提交
408
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
409 410

	/* constructor func */
411
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
412 413

	/* de-constructor func */
414
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
415

416
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
417 418
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
419

420
/* 6) statistics */
L
Linus Torvalds 已提交
421
#if STATS
P
Pekka Enberg 已提交
422 423 424 425 426 427 428 429 430
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
431
	unsigned long node_overflow;
P
Pekka Enberg 已提交
432 433 434 435
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
436 437
#endif
#if DEBUG
438 439 440 441 442 443 444 445
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
446 447 448 449 450 451 452
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
453 454 455
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
456
 *
A
Adrian Bunk 已提交
457
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
458 459 460 461 462 463 464 465 466 467
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
468
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
469 470 471 472 473
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
474 475
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
476
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
477
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
478 479 480 481 482
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
483 484 485 486 487 488 489 490 491
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
492
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
493 494 495
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
496
#define	STATS_INC_NODEFREES(x)	do { } while (0)
497
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
498
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
499 500 501 502 503 504 505 506
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
507 508
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
509
 * 0		: objp
510
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
511 512
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
513
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
514
 * 		redzone word.
515 516
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
517 518
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
519
 */
520
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
521
{
522
	return cachep->obj_offset;
L
Linus Torvalds 已提交
523 524
}

525
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
526
{
527
	return cachep->obj_size;
L
Linus Torvalds 已提交
528 529
}

530
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
534 535
}

536
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
537 538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
540
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
541
					 2 * BYTES_PER_WORD);
542
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
543 544
}

545
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
546 547
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
549 550 551 552
}

#else

553 554
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
555 556 557 558 559 560 561
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
562 563
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
583 584 585 586
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
587
 */
588 589 590 591 592 593 594
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
595 596
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
597
	BUG_ON(!PageSlab(page));
598 599 600 601 602 603 604 605 606 607
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
608 609
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
610
	BUG_ON(!PageSlab(page));
611 612
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
613

614 615 616 617 618 619 620 621 622 623 624 625
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

626 627 628 629 630 631
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

632 633 634 635 636 637 638 639
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
640
{
641 642
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
643 644
}

A
Andrew Morton 已提交
645 646 647
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
665
	{NULL,}
L
Linus Torvalds 已提交
666 667 668 669
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
670
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
671
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
672
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
673 674

/* internal cache of cache description objs */
675
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
676 677 678
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
679
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
680
	.name = "kmem_cache",
L
Linus Torvalds 已提交
681
#if DEBUG
682
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
683 684 685
#endif
};

686 687
#define BAD_ALIEN_MAGIC 0x01020304ul

688 689 690 691 692 693 694 695
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
696 697 698 699
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
700
 */
701 702 703 704
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
705 706 707

{
	int q;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
735 736 737
	}
}
#else
738
static inline void init_lock_keys(void)
739 740 741 742
{
}
#endif

743 744 745 746
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
747
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
748 749 750 751 752 753 754 755
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
756 757
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
758 759 760
	FULL
} g_cpucache_up;

761 762 763 764 765 766 767 768
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

769
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
770

771
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
772 773 774 775
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
776 777
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
778 779 780 781 782
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
783 784 785
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
786
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
787 788 789 790 791
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
792
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
793 794 795
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
796
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
797 798
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
799
#endif
L
Linus Torvalds 已提交
800 801 802
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
803
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
804 805 806 807
{
	return __find_general_cachep(size, gfpflags);
}

808
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
809
{
810 811
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
812

A
Andrew Morton 已提交
813 814 815
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
816 817 818 819 820 821 822
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
872 873 874 875
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
876 877
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
878 879
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
880
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
881 882 883
	dump_stack();
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
915
		node = first_node(node_online_map);
916

917
	per_cpu(reap_node, cpu) = node;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
941 942 943 944 945 946 947 948 949
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
950
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
951 952 953 954 955 956

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
957
	if (keventd_up() && reap_work->work.func == NULL) {
958
		init_reap_node(cpu);
959
		INIT_DELAYED_WORK(reap_work, cache_reap);
960 961
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
962 963 964
	}
}

965
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
966
					    int batchcount)
L
Linus Torvalds 已提交
967
{
P
Pekka Enberg 已提交
968
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
969 970
	struct array_cache *nc = NULL;

971
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
972 973 974 975 976
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
977
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
978 979 980 981
	}
	return nc;
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1031
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1032 1033 1034 1035 1036 1037 1038
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1039
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1040
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1041

P
Pekka Enberg 已提交
1042
static struct array_cache **alloc_alien_cache(int node, int limit)
1043 1044
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
1045
	int memsize = sizeof(void *) * MAX_NUMNODES;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1059
				for (i--; i <= 0; i--)
1060 1061 1062 1063 1064 1065 1066 1067 1068
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1069
static void free_alien_cache(struct array_cache **ac_ptr)
1070 1071 1072 1073 1074 1075
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1076
	    kfree(ac_ptr[i]);
1077 1078 1079
	kfree(ac_ptr);
}

1080
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1081
				struct array_cache *ac, int node)
1082 1083 1084 1085 1086
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1087 1088 1089 1090 1091
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1092 1093
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1094

1095
		free_block(cachep, ac->entry, ac->avail, node);
1096 1097 1098 1099 1100
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1101 1102 1103 1104 1105 1106 1107 1108 1109
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1110 1111

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1112 1113 1114 1115 1116 1117
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1118 1119
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1120
{
P
Pekka Enberg 已提交
1121
	int i = 0;
1122 1123 1124 1125
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1126
		ac = alien[i];
1127 1128 1129 1130 1131 1132 1133
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1134

1135
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1136 1137 1138 1139 1140
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1141 1142 1143
	int node;

	node = numa_node_id();
1144 1145 1146 1147 1148

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1149
	if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1150 1151
		return 0;

P
Pekka Enberg 已提交
1152
	l3 = cachep->nodelists[node];
1153 1154 1155
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1156
		spin_lock(&alien->lock);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1170 1171
#endif

1172
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1173
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1174 1175
{
	long cpu = (long)hcpu;
1176
	struct kmem_cache *cachep;
1177 1178 1179
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1180 1181 1182

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1183
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1184 1185
		/*
		 * We need to do this right in the beginning since
1186 1187 1188 1189 1190
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1191
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1192 1193
			/*
			 * Set up the size64 kmemlist for cpu before we can
1194 1195 1196 1197
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1198 1199
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1200 1201 1202
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1203
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1204

1205 1206 1207 1208 1209
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1210 1211
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1212

1213 1214
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1215 1216
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1217 1218 1219
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1220 1221 1222 1223
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1224
		list_for_each_entry(cachep, &cache_chain, next) {
1225
			struct array_cache *nc;
1226
			struct array_cache *shared;
1227
			struct array_cache **alien = NULL;
1228

1229
			nc = alloc_arraycache(node, cachep->limit,
1230
						cachep->batchcount);
L
Linus Torvalds 已提交
1231 1232
			if (!nc)
				goto bad;
1233 1234 1235 1236 1237
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1238

1239 1240 1241 1242 1243
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1244
			cachep->array[cpu] = nc;
1245 1246 1247
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1248 1249 1250 1251 1252 1253 1254 1255
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1256
			}
1257 1258 1259 1260 1261 1262 1263 1264 1265
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1266 1267 1268
		}
		break;
	case CPU_ONLINE:
1269
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1270 1271 1272
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1273 1274 1275 1276 1277 1278
	case CPU_DOWN_PREPARE:
		mutex_lock(&cache_chain_mutex);
		break;
	case CPU_DOWN_FAILED:
		mutex_unlock(&cache_chain_mutex);
		break;
L
Linus Torvalds 已提交
1279
	case CPU_DEAD:
1280 1281 1282 1283 1284 1285 1286 1287
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1288
		/* fall thru */
1289
#endif
L
Linus Torvalds 已提交
1290 1291 1292
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1293 1294
			struct array_cache *shared;
			struct array_cache **alien;
1295
			cpumask_t mask;
L
Linus Torvalds 已提交
1296

1297
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1298 1299 1300
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1301 1302 1303
			l3 = cachep->nodelists[node];

			if (!l3)
1304
				goto free_array_cache;
1305

1306
			spin_lock_irq(&l3->list_lock);
1307 1308 1309 1310

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1311
				free_block(cachep, nc->entry, nc->avail, node);
1312 1313

			if (!cpus_empty(mask)) {
1314
				spin_unlock_irq(&l3->list_lock);
1315
				goto free_array_cache;
P
Pekka Enberg 已提交
1316
			}
1317

1318 1319
			shared = l3->shared;
			if (shared) {
1320
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1321
					   l3->shared->avail, node);
1322 1323 1324
				l3->shared = NULL;
			}

1325 1326 1327 1328 1329 1330 1331 1332 1333
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1334
			}
1335
free_array_cache:
L
Linus Torvalds 已提交
1336 1337
			kfree(nc);
		}
1338 1339 1340 1341 1342 1343 1344 1345 1346
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1347
			drain_freelist(cachep, l3, l3->free_objects);
1348
		}
I
Ingo Molnar 已提交
1349
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1350 1351 1352
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1353
bad:
L
Linus Torvalds 已提交
1354 1355 1356
	return NOTIFY_BAD;
}

1357 1358 1359
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1360

1361 1362 1363
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1364 1365
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1366 1367 1368 1369 1370 1371 1372 1373
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1374 1375 1376 1377 1378
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1379 1380 1381 1382 1383
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1384 1385 1386
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1393
	int i;
1394
	int order;
P
Pekka Enberg 已提交
1395
	int node;
1396 1397 1398 1399 1400 1401

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1412 1413 1414
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1415 1416 1417
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1418
	 * 2) Create the first kmalloc cache.
1419
	 *    The struct kmem_cache for the new cache is allocated normally.
1420 1421 1422
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1423 1424
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1425 1426 1427
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1428 1429
	 */

P
Pekka Enberg 已提交
1430 1431
	node = numa_node_id();

L
Linus Torvalds 已提交
1432 1433 1434 1435 1436
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1437
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1438

A
Andrew Morton 已提交
1439 1440
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1441 1442
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1443

1444 1445 1446 1447 1448 1449
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1450
	BUG_ON(!cache_cache.num);
1451
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1452 1453 1454
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1460 1461 1462 1463
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1464 1465 1466
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1467 1468 1469 1470
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1471

A
Andrew Morton 已提交
1472
	if (INDEX_AC != INDEX_L3) {
1473
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1474 1475 1476 1477 1478 1479
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1480

1481 1482
	slab_early_init = 0;

L
Linus Torvalds 已提交
1483
	while (sizes->cs_size != ULONG_MAX) {
1484 1485
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1486 1487 1488
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1489 1490
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1491
		if (!sizes->cs_cachep) {
1492
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1493 1494 1495 1496 1497
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1498 1499 1500
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1501 1502 1503 1504 1505
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1506
#endif
L
Linus Torvalds 已提交
1507 1508 1509 1510 1511
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1512
		struct array_cache *ptr;
1513

L
Linus Torvalds 已提交
1514
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1515

L
Linus Torvalds 已提交
1516
		local_irq_disable();
1517 1518
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1519
		       sizeof(struct arraycache_init));
1520 1521 1522 1523 1524
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1525 1526
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1527

L
Linus Torvalds 已提交
1528
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1529

L
Linus Torvalds 已提交
1530
		local_irq_disable();
1531
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1532
		       != &initarray_generic.cache);
1533
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1534
		       sizeof(struct arraycache_init));
1535 1536 1537 1538 1539
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1540
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1541
		    ptr;
L
Linus Torvalds 已提交
1542 1543
		local_irq_enable();
	}
1544 1545
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1546 1547
		int nid;

1548
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1549
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1550

P
Pekka Enberg 已提交
1551
		for_each_online_node(nid) {
1552
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1553
				  &initkmem_list3[SIZE_AC + nid], nid);
1554 1555 1556

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1557
					  &initkmem_list3[SIZE_L3 + nid], nid);
1558 1559 1560
			}
		}
	}
L
Linus Torvalds 已提交
1561

1562
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1563
	{
1564
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1565
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1566
		list_for_each_entry(cachep, &cache_chain, next)
1567 1568
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1569
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1570 1571
	}

1572 1573 1574 1575
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1576 1577 1578
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1579 1580 1581
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1582 1583 1584
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1585 1586 1587
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592 1593 1594
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1595 1596
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1597
	 */
1598
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1599
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1611
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1612 1613
{
	struct page *page;
1614
	int nr_pages;
L
Linus Torvalds 已提交
1615 1616
	int i;

1617
#ifndef CONFIG_MMU
1618 1619 1620
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1621
	 */
1622
	flags |= __GFP_COMP;
1623
#endif
1624

1625
	flags |= cachep->gfpflags;
1626 1627

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1628 1629 1630
	if (!page)
		return NULL;

1631
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1632
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1633 1634 1635 1636 1637
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1638 1639 1640
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645
}

/*
 * Interface to system's page release.
 */
1646
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1647
{
P
Pekka Enberg 已提交
1648
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1649 1650 1651
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1652 1653 1654 1655 1656 1657
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1658
	while (i--) {
N
Nick Piggin 已提交
1659 1660
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1670
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1671
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1681
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1682
			    unsigned long caller)
L
Linus Torvalds 已提交
1683
{
1684
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1685

1686
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1687

P
Pekka Enberg 已提交
1688
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1689 1690
		return;

P
Pekka Enberg 已提交
1691 1692 1693 1694
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700 1701
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1702
				*addr++ = svalue;
L
Linus Torvalds 已提交
1703 1704 1705 1706 1707 1708 1709
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1710
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1711 1712 1713
}
#endif

1714
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1715
{
1716 1717
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1718 1719

	memset(addr, val, size);
P
Pekka Enberg 已提交
1720
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1726 1727 1728
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1729
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1730 1731 1732 1733 1734
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1735
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1736
	}
L
Linus Torvalds 已提交
1737
	printk("\n");
D
Dave Jones 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1752 1753 1754 1755 1756
}
#endif

#if DEBUG

1757
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1764 1765
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1766 1767 1768 1769
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1770
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1771
		print_symbol("(%s)",
A
Andrew Morton 已提交
1772
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1773 1774
		printk("\n");
	}
1775 1776
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1777
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1778 1779
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1780 1781
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1782 1783 1784 1785
		dump_line(realobj, i, limit);
	}
}

1786
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791
{
	char *realobj;
	int size, i;
	int lines = 0;

1792 1793
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1794

P
Pekka Enberg 已提交
1795
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1796
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1797
		if (i == size - 1)
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1804
				printk(KERN_ERR
A
Andrew Morton 已提交
1805 1806
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1807 1808 1809
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1810
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1811
			limit = 16;
P
Pekka Enberg 已提交
1812 1813
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1826
		struct slab *slabp = virt_to_slab(objp);
1827
		unsigned int objnr;
L
Linus Torvalds 已提交
1828

1829
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1830
		if (objnr) {
1831
			objp = index_to_obj(cachep, slabp, objnr - 1);
1832
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1833
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1834
			       realobj, size);
L
Linus Torvalds 已提交
1835 1836
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1837
		if (objnr + 1 < cachep->num) {
1838
			objp = index_to_obj(cachep, slabp, objnr + 1);
1839
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1840
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1841
			       realobj, size);
L
Linus Torvalds 已提交
1842 1843 1844 1845 1846 1847
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1848 1849
#if DEBUG
/**
1850 1851 1852 1853 1854 1855
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1856
 */
1857
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1858 1859 1860
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1861
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1862 1863 1864

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1865 1866
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1867
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1868
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1878
					   "was overwritten");
L
Linus Torvalds 已提交
1879 1880
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1881
					   "was overwritten");
L
Linus Torvalds 已提交
1882 1883
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1884
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1885
	}
1886
}
L
Linus Torvalds 已提交
1887
#else
1888
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1889
{
L
Linus Torvalds 已提交
1890 1891 1892
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1893
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1894
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1895 1896
		}
	}
1897
}
L
Linus Torvalds 已提交
1898 1899
#endif

1900 1901 1902 1903 1904
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1905
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1906 1907
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1908
 */
1909
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1910 1911 1912 1913
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1914 1915 1916
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1917
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1918 1919 1920 1921 1922
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1923 1924
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1925 1926 1927
	}
}

A
Andrew Morton 已提交
1928 1929 1930 1931
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1932
static void set_up_list3s(struct kmem_cache *cachep, int index)
1933 1934 1935 1936
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1937
		cachep->nodelists[node] = &initkmem_list3[index + node];
1938
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1939 1940
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1941 1942 1943
	}
}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1965
/**
1966 1967 1968 1969 1970 1971 1972
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1973 1974 1975 1976 1977
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1978
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1979
			size_t size, size_t align, unsigned long flags)
1980
{
1981
	unsigned long offslab_limit;
1982
	size_t left_over = 0;
1983
	int gfporder;
1984

A
Andrew Morton 已提交
1985
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1986 1987 1988
		unsigned int num;
		size_t remainder;

1989
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1990 1991
		if (!num)
			continue;
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2005

2006
		/* Found something acceptable - save it away */
2007
		cachep->num = num;
2008
		cachep->gfporder = gfporder;
2009 2010
		left_over = remainder;

2011 2012 2013 2014 2015 2016 2017 2018
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2019 2020 2021 2022
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2023
		if (gfporder >= slab_break_gfp_order)
2024 2025
			break;

2026 2027 2028
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2029
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2030 2031 2032 2033 2034
			break;
	}
	return left_over;
}

2035
static int setup_cpu_cache(struct kmem_cache *cachep)
2036
{
2037 2038 2039
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2086
	return 0;
2087 2088
}

L
Linus Torvalds 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2104 2105
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2118
struct kmem_cache *
L
Linus Torvalds 已提交
2119
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2120 2121
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2122
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2123 2124
{
	size_t left_over, slab_size, ralign;
2125
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2126 2127 2128 2129

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2130
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2131
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2132 2133
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2134 2135
		BUG();
	}
L
Linus Torvalds 已提交
2136

2137
	/*
2138 2139
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2140
	 */
I
Ingo Molnar 已提交
2141
	mutex_lock(&cache_chain_mutex);
2142

2143
	list_for_each_entry(pc, &cache_chain, next) {
2144 2145 2146 2147 2148 2149 2150 2151
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2152
		res = probe_kernel_address(pc->name, tmp);
2153 2154
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2155
			       pc->buffer_size);
2156 2157 2158
			continue;
		}

P
Pekka Enberg 已提交
2159
		if (!strcmp(pc->name, name)) {
2160 2161 2162 2163 2164 2165
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2166 2167 2168 2169 2170
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2171
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2181
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2182
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2193 2194
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2195
	 */
2196
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2197

A
Andrew Morton 已提交
2198 2199
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2200 2201 2202
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2203 2204 2205
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2206 2207
	}

A
Andrew Morton 已提交
2208 2209
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2210 2211
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2212 2213 2214 2215
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2216 2217
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2218
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2219 2220 2221 2222
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2223 2224 2225 2226 2227 2228 2229 2230 2231

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

2232
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2233 2234 2235
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2236
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2237 2238 2239
	if (ralign < align) {
		ralign = align;
	}
2240 2241 2242
	/* disable debug if necessary */
	if (ralign > BYTES_PER_WORD)
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2243
	/*
2244
	 * 4) Store it.
L
Linus Torvalds 已提交
2245 2246 2247 2248
	 */
	align = ralign;

	/* Get cache's description obj. */
2249
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2250
	if (!cachep)
2251
		goto oops;
L
Linus Torvalds 已提交
2252 2253

#if DEBUG
2254
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2255

2256 2257 2258 2259
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2260 2261
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2262
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2263
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2264 2265
	}
	if (flags & SLAB_STORE_USER) {
2266 2267
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2268 2269 2270 2271
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2272
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2273 2274
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279
		size = PAGE_SIZE;
	}
#endif
#endif

2280 2281 2282 2283 2284 2285
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292 2293
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2294
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2300
		goto oops;
L
Linus Torvalds 已提交
2301
	}
P
Pekka Enberg 已提交
2302 2303
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2316 2317
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2318 2319 2320 2321 2322 2323
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2324
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2325 2326 2327
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2328
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2329
		cachep->gfpflags |= GFP_DMA;
2330
	cachep->buffer_size = size;
2331
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2332

2333
	if (flags & CFLGS_OFF_SLAB) {
2334
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2335 2336 2337 2338 2339 2340 2341 2342 2343
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2344 2345 2346 2347
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2348 2349 2350 2351 2352
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2353 2354 2355

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2356
oops:
L
Linus Torvalds 已提交
2357 2358
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2359
		      name);
I
Ingo Molnar 已提交
2360
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2376
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2377 2378 2379
{
#ifdef CONFIG_SMP
	check_irq_off();
2380
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2381 2382
#endif
}
2383

2384
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2385 2386 2387 2388 2389 2390 2391
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2392 2393 2394 2395
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2396
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2397 2398
#endif

2399 2400 2401 2402
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2403 2404
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2405
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2406
	struct array_cache *ac;
2407
	int node = numa_node_id();
L
Linus Torvalds 已提交
2408 2409

	check_irq_off();
2410
	ac = cpu_cache_get(cachep);
2411 2412 2413
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2414 2415 2416
	ac->avail = 0;
}

2417
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2418
{
2419 2420 2421
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2422
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2423
	check_irq_on();
P
Pekka Enberg 已提交
2424
	for_each_online_node(node) {
2425
		l3 = cachep->nodelists[node];
2426 2427 2428 2429 2430 2431 2432
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2433
			drain_array(cachep, l3, l3->shared, 1, node);
2434
	}
L
Linus Torvalds 已提交
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2445
{
2446 2447
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2448 2449
	struct slab *slabp;

2450 2451
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2452

2453
		spin_lock_irq(&l3->list_lock);
2454
		p = l3->slabs_free.prev;
2455 2456 2457 2458
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2459

2460
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2461
#if DEBUG
2462
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2463 2464
#endif
		list_del(&slabp->list);
2465 2466 2467 2468 2469
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2470
		spin_unlock_irq(&l3->list_lock);
2471 2472
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2473
	}
2474 2475
out:
	return nr_freed;
L
Linus Torvalds 已提交
2476 2477
}

2478
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2479
static int __cache_shrink(struct kmem_cache *cachep)
2480 2481 2482 2483 2484 2485 2486 2487 2488
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2489 2490 2491 2492 2493 2494 2495
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2496 2497 2498 2499
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505 2506
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2507
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2508
{
2509
	int ret;
2510
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2511

2512 2513 2514 2515
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2516 2517 2518 2519 2520 2521 2522
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2523
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2535
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2536
{
2537
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2538 2539

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2540
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2541 2542 2543 2544 2545 2546
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2547
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2548
		mutex_unlock(&cache_chain_mutex);
2549
		return;
L
Linus Torvalds 已提交
2550 2551 2552
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2553
		synchronize_rcu();
L
Linus Torvalds 已提交
2554

2555
	__kmem_cache_destroy(cachep);
2556
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2557 2558 2559
}
EXPORT_SYMBOL(kmem_cache_destroy);

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2571
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2572 2573
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2574 2575
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2576

L
Linus Torvalds 已提交
2577 2578
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2579
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2580
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2581 2582 2583
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2584
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2585 2586 2587 2588
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2589
	slabp->s_mem = objp + colour_off;
2590
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2591 2592 2593 2594 2595
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2596
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2597 2598
}

2599
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2600
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2601 2602 2603 2604
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2605
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2618 2619 2620
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2621 2622
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2623
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2624
				     ctor_flags);
L
Linus Torvalds 已提交
2625 2626 2627 2628

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2629
					   " end of an object");
L
Linus Torvalds 已提交
2630 2631
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2632
					   " start of an object");
L
Linus Torvalds 已提交
2633
		}
A
Andrew Morton 已提交
2634 2635
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2636
			kernel_map_pages(virt_to_page(objp),
2637
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2638 2639 2640 2641
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2642
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2643
	}
P
Pekka Enberg 已提交
2644
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2645 2646 2647
	slabp->free = 0;
}

2648
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2649
{
2650 2651 2652 2653 2654 2655
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2656 2657
}

A
Andrew Morton 已提交
2658 2659
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2660
{
2661
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2675 2676
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2677
{
2678
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2679 2680 2681 2682 2683

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2684
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2685
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2686
				"'%s', objp %p\n", cachep->name, objp);
2687 2688 2689 2690 2691 2692 2693 2694
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2695 2696 2697 2698 2699 2700 2701
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2702
{
2703
	int nr_pages;
L
Linus Torvalds 已提交
2704 2705
	struct page *page;

2706
	page = virt_to_page(addr);
2707

2708
	nr_pages = 1;
2709
	if (likely(!PageCompound(page)))
2710 2711
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2712
	do {
2713 2714
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2715
		page++;
2716
	} while (--nr_pages);
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721 2722
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2723 2724
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2725
{
P
Pekka Enberg 已提交
2726 2727 2728 2729
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2730
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2731

A
Andrew Morton 已提交
2732 2733 2734
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2735
	 */
C
Christoph Lameter 已提交
2736
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2737
	if (flags & __GFP_NO_GROW)
L
Linus Torvalds 已提交
2738 2739 2740
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2741
	local_flags = (flags & GFP_LEVEL_MASK);
L
Linus Torvalds 已提交
2742 2743 2744 2745 2746 2747 2748
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2749
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2750
	check_irq_off();
2751 2752
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2753 2754

	/* Get colour for the slab, and cal the next value. */
2755 2756 2757 2758 2759
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2760

2761
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2774 2775 2776
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2777
	 */
2778 2779
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2780
	if (!objp)
L
Linus Torvalds 已提交
2781 2782 2783
		goto failed;

	/* Get slab management. */
2784 2785
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2786
	if (!slabp)
L
Linus Torvalds 已提交
2787 2788
		goto opps1;

2789
	slabp->nodeid = nodeid;
2790
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795 2796

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2797
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2798 2799

	/* Make slab active. */
2800
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2801
	STATS_INC_GROWN(cachep);
2802 2803
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2804
	return 1;
A
Andrew Morton 已提交
2805
opps1:
L
Linus Torvalds 已提交
2806
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2807
failed:
L
Linus Torvalds 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2825 2826
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2827 2828 2829
	}
}

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2852
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2853
				   void *caller)
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2859
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2860 2861 2862
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2863
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2864 2865

	if (cachep->flags & SLAB_RED_ZONE) {
2866
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2873
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2874 2875

	BUG_ON(objnr >= cachep->num);
2876
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2877 2878

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2879 2880 2881 2882
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2883
		 */
2884
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2885
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2891
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2892
	}
2893 2894 2895
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2896 2897
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2898
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2899
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2900
			kernel_map_pages(virt_to_page(objp),
2901
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2912
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2913 2914 2915
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2916

L
Linus Torvalds 已提交
2917 2918 2919 2920 2921 2922 2923
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2924 2925 2926 2927
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2928
		for (i = 0;
2929
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2930
		     i++) {
A
Andrew Morton 已提交
2931
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2932
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2933
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2945
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2946 2947 2948 2949
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2950 2951 2952
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2953 2954

	check_irq_off();
2955
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2956
retry:
L
Linus Torvalds 已提交
2957 2958
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2959 2960 2961 2962
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2963 2964 2965
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2966
	l3 = cachep->nodelists[node];
2967 2968 2969

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2970

2971 2972 2973 2974
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2995
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2996
							    node);
L
Linus Torvalds 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3008
must_grow:
L
Linus Torvalds 已提交
3009
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3010
alloc_done:
3011
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3012 3013 3014

	if (unlikely(!ac->avail)) {
		int x;
3015
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3016

A
Andrew Morton 已提交
3017
		/* cache_grow can reenable interrupts, then ac could change. */
3018
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3019
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3020 3021
			return NULL;

A
Andrew Morton 已提交
3022
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3023 3024 3025
			goto retry;
	}
	ac->touched = 1;
3026
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3027 3028
}

A
Andrew Morton 已提交
3029 3030
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3031 3032 3033 3034 3035 3036 3037 3038
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3039 3040
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3041
{
P
Pekka Enberg 已提交
3042
	if (!objp)
L
Linus Torvalds 已提交
3043
		return objp;
P
Pekka Enberg 已提交
3044
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3045
#ifdef CONFIG_DEBUG_PAGEALLOC
3046
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3047
			kernel_map_pages(virt_to_page(objp),
3048
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3060 3061 3062 3063
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3064
			printk(KERN_ERR
A
Andrew Morton 已提交
3065 3066 3067
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3068 3069 3070 3071
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3082
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3083
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3084
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3085 3086 3087 3088 3089

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3090
	}
3091 3092 3093 3094 3095 3096
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101 3102
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3116
	.ignore_gfp_wait = 1,
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

       	err = init_fault_attr_dentries(&failslab.attr, "failslab");
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3176
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3177
{
P
Pekka Enberg 已提交
3178
	void *objp;
L
Linus Torvalds 已提交
3179 3180
	struct array_cache *ac;

3181
	check_irq_off();
3182 3183 3184 3185

	if (should_failslab(cachep, flags))
		return NULL;

3186
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3187 3188 3189
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3190
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3191 3192 3193 3194
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3195 3196 3197
	return objp;
}

3198
#ifdef CONFIG_NUMA
3199
/*
3200
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3201 3202 3203 3204 3205 3206 3207 3208
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3209
	if (in_interrupt() || (flags & __GFP_THISNODE))
3210 3211 3212 3213 3214 3215 3216
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3217
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3218 3219 3220
	return NULL;
}

3221 3222
/*
 * Fallback function if there was no memory available and no objects on a
3223 3224 3225 3226 3227
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3228
 */
3229
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3230
{
3231 3232
	struct zonelist *zonelist;
	gfp_t local_flags;
3233 3234
	struct zone **z;
	void *obj = NULL;
3235
	int nid;
3236 3237 3238 3239 3240 3241 3242

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3243

3244 3245 3246 3247 3248
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3249
	for (z = zonelist->zones; *z && !obj; z++) {
3250
		nid = zone_to_nid(*z);
3251

3252
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3253 3254 3255 3256 3257 3258
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3259
	if (!obj && !(flags & __GFP_NO_GROW)) {
3260 3261 3262 3263 3264 3265
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3266 3267 3268
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3269
		obj = kmem_getpages(cache, flags, -1);
3270 3271
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3288
				/* cache_grow already freed obj */
3289 3290 3291
				obj = NULL;
			}
		}
3292
	}
3293 3294 3295
	return obj;
}

3296 3297
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3298
 */
3299
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3300
				int nodeid)
3301 3302
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3303 3304 3305 3306 3307 3308 3309 3310
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3311
retry:
3312
	check_irq_off();
P
Pekka Enberg 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3332
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3333 3334 3335 3336 3337
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3338
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3339
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3340
	else
P
Pekka Enberg 已提交
3341
		list_add(&slabp->list, &l3->slabs_partial);
3342

P
Pekka Enberg 已提交
3343 3344
	spin_unlock(&l3->list_lock);
	goto done;
3345

A
Andrew Morton 已提交
3346
must_grow:
P
Pekka Enberg 已提交
3347
	spin_unlock(&l3->list_lock);
3348
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3349 3350
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3351

3352
	return fallback_alloc(cachep, flags);
3353

A
Andrew Morton 已提交
3354
done:
P
Pekka Enberg 已提交
3355
	return obj;
3356
}
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3456 3457 3458 3459

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3460
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3461
		       int node)
L
Linus Torvalds 已提交
3462 3463
{
	int i;
3464
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3470
		slabp = virt_to_slab(objp);
3471
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3472
		list_del(&slabp->list);
3473
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3474
		check_slabp(cachep, slabp);
3475
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3476
		STATS_DEC_ACTIVE(cachep);
3477
		l3->free_objects++;
L
Linus Torvalds 已提交
3478 3479 3480 3481
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3482 3483
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3484 3485 3486 3487 3488 3489
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3490 3491
				slab_destroy(cachep, slabp);
			} else {
3492
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3493 3494 3495 3496 3497 3498
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3499
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3500 3501 3502 3503
		}
	}
}

3504
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3505 3506
{
	int batchcount;
3507
	struct kmem_list3 *l3;
3508
	int node = numa_node_id();
L
Linus Torvalds 已提交
3509 3510 3511 3512 3513 3514

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3515
	l3 = cachep->nodelists[node];
3516
	spin_lock(&l3->list_lock);
3517 3518
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3519
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3520 3521 3522
		if (max) {
			if (batchcount > max)
				batchcount = max;
3523
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3524
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3530
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3531
free_done:
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536
#if STATS
	{
		int i = 0;
		struct list_head *p;

3537 3538
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3550
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3551
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3552
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3553 3554 3555
}

/*
A
Andrew Morton 已提交
3556 3557
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3558
 */
3559
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3560
{
3561
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3562 3563 3564 3565

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3566
	if (cache_free_alien(cachep, objp))
3567 3568
		return;

L
Linus Torvalds 已提交
3569 3570
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3571
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3572 3573 3574 3575
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3576
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3588
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3589
{
3590
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3591 3592 3593
}
EXPORT_SYMBOL(kmem_cache_alloc);

3594
/**
3595
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3625
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3626
{
P
Pekka Enberg 已提交
3627
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3628
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3629
	unsigned long align_mask = BYTES_PER_WORD - 1;
3630
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3646
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3647 3648
		goto out;
	return 1;
A
Andrew Morton 已提交
3649
out:
L
Linus Torvalds 已提交
3650 3651 3652 3653
	return 0;
}

#ifdef CONFIG_NUMA
3654 3655 3656 3657 3658
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3659 3660
EXPORT_SYMBOL(kmem_cache_alloc_node);

3661 3662
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3663
{
3664
	struct kmem_cache *cachep;
3665 3666 3667 3668 3669 3670

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3671 3672 3673 3674 3675 3676 3677

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3678
EXPORT_SYMBOL(__kmalloc_node);
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3694 3695

/**
3696
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3697
 * @size: how many bytes of memory are required.
3698
 * @flags: the type of memory to allocate (see kmalloc).
3699
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3700
 */
3701 3702
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3703
{
3704
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3705

3706 3707 3708 3709 3710 3711
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3712 3713
	if (unlikely(cachep == NULL))
		return NULL;
3714 3715 3716 3717
	return __cache_alloc(cachep, flags, caller);
}


3718
#ifdef CONFIG_DEBUG_SLAB
3719 3720
void *__kmalloc(size_t size, gfp_t flags)
{
3721
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3722 3723 3724
}
EXPORT_SYMBOL(__kmalloc);

3725 3726 3727 3728 3729
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3730 3731 3732 3733 3734 3735 3736

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3737 3738
#endif

L
Linus Torvalds 已提交
3739 3740 3741 3742 3743 3744 3745 3746
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3747
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3748 3749 3750
{
	unsigned long flags;

3751 3752
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3753
	local_irq_save(flags);
3754
	debug_check_no_locks_freed(objp, obj_size(cachep));
3755
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3756 3757 3758 3759 3760 3761 3762 3763
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3764 3765
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3766 3767 3768 3769 3770
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3771
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3772 3773 3774 3775 3776 3777
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3778
	c = virt_to_cache(objp);
3779
	debug_check_no_locks_freed(objp, obj_size(c));
3780
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3781 3782 3783 3784
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3785
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3786
{
3787
	return obj_size(cachep);
L
Linus Torvalds 已提交
3788 3789 3790
}
EXPORT_SYMBOL(kmem_cache_size);

3791
const char *kmem_cache_name(struct kmem_cache *cachep)
3792 3793 3794 3795 3796
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3797
/*
3798
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3799
 */
3800
static int alloc_kmemlist(struct kmem_cache *cachep)
3801 3802 3803
{
	int node;
	struct kmem_list3 *l3;
3804
	struct array_cache *new_shared;
3805
	struct array_cache **new_alien = NULL;
3806 3807

	for_each_online_node(node) {
3808

3809 3810 3811 3812 3813
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3814

3815 3816
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3817
					0xbaadf00d);
3818 3819
		if (!new_shared) {
			free_alien_cache(new_alien);
3820
			goto fail;
3821
		}
3822

A
Andrew Morton 已提交
3823 3824
		l3 = cachep->nodelists[node];
		if (l3) {
3825 3826
			struct array_cache *shared = l3->shared;

3827 3828
			spin_lock_irq(&l3->list_lock);

3829
			if (shared)
3830 3831
				free_block(cachep, shared->entry,
						shared->avail, node);
3832

3833 3834
			l3->shared = new_shared;
			if (!l3->alien) {
3835 3836 3837
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3838
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3839
					cachep->batchcount + cachep->num;
3840
			spin_unlock_irq(&l3->list_lock);
3841
			kfree(shared);
3842 3843 3844
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3845
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3846 3847 3848
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3849
			goto fail;
3850
		}
3851 3852 3853

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3854
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3855
		l3->shared = new_shared;
3856
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3857
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3858
					cachep->batchcount + cachep->num;
3859 3860
		cachep->nodelists[node] = l3;
	}
3861
	return 0;
3862

A
Andrew Morton 已提交
3863
fail:
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3879
	return -ENOMEM;
3880 3881
}

L
Linus Torvalds 已提交
3882
struct ccupdate_struct {
3883
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3884 3885 3886 3887 3888
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3889
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3890 3891 3892
	struct array_cache *old;

	check_irq_off();
3893
	old = cpu_cache_get(new->cachep);
3894

L
Linus Torvalds 已提交
3895 3896 3897 3898
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3899
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3900 3901
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3902
{
3903
	struct ccupdate_struct *new;
3904
	int i;
L
Linus Torvalds 已提交
3905

3906 3907 3908 3909
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3910
	for_each_online_cpu(i) {
3911
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3912
						batchcount);
3913
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3914
			for (i--; i >= 0; i--)
3915 3916
				kfree(new->new[i]);
			kfree(new);
3917
			return -ENOMEM;
L
Linus Torvalds 已提交
3918 3919
		}
	}
3920
	new->cachep = cachep;
L
Linus Torvalds 已提交
3921

3922
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3923

L
Linus Torvalds 已提交
3924 3925 3926
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3927
	cachep->shared = shared;
L
Linus Torvalds 已提交
3928

3929
	for_each_online_cpu(i) {
3930
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3931 3932
		if (!ccold)
			continue;
3933
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3934
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3935
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3936 3937
		kfree(ccold);
	}
3938
	kfree(new);
3939
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3940 3941
}

3942
/* Called with cache_chain_mutex held always */
3943
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3944 3945 3946 3947
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3948 3949
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3950 3951
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3952
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3953 3954 3955 3956
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3957
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3958
		limit = 1;
3959
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3960
		limit = 8;
3961
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3962
		limit = 24;
3963
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3964 3965 3966 3967
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3968 3969
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3979
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3980 3981 3982 3983
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3984 3985 3986
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3987 3988 3989 3990
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3991
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3992 3993
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3994
		       cachep->name, -err);
3995
	return err;
L
Linus Torvalds 已提交
3996 3997
}

3998 3999
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4000 4001
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4002 4003 4004
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4005 4006 4007
{
	int tofree;

4008 4009
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4010 4011
	if (ac->touched && !force) {
		ac->touched = 0;
4012
	} else {
4013
		spin_lock_irq(&l3->list_lock);
4014 4015 4016 4017 4018 4019 4020 4021 4022
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4023
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4029
 * @unused: unused parameter
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4036 4037
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4038
 */
4039
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4040
{
4041
	struct kmem_cache *searchp;
4042
	struct kmem_list3 *l3;
4043
	int node = numa_node_id();
4044 4045
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4046

4047
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4048
		/* Give up. Setup the next iteration. */
4049
		goto out;
L
Linus Torvalds 已提交
4050

4051
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4052 4053
		check_irq_on();

4054 4055 4056 4057 4058
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4059
		l3 = searchp->nodelists[node];
4060

4061
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4062

4063
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4064

4065 4066 4067 4068
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4069
		if (time_after(l3->next_reap, jiffies))
4070
			goto next;
L
Linus Torvalds 已提交
4071

4072
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4073

4074
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4075

4076
		if (l3->free_touched)
4077
			l3->free_touched = 0;
4078 4079
		else {
			int freed;
L
Linus Torvalds 已提交
4080

4081 4082 4083 4084
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4085
next:
L
Linus Torvalds 已提交
4086 4087 4088
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4089
	mutex_unlock(&cache_chain_mutex);
4090
	next_reap_node();
4091
	refresh_cpu_vm_stats(smp_processor_id());
4092
out:
A
Andrew Morton 已提交
4093
	/* Set up the next iteration */
4094
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4095 4096 4097 4098
}

#ifdef CONFIG_PROC_FS

4099
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4100
{
4101 4102 4103 4104
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4105
#if STATS
4106
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4107
#else
4108
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4109
#endif
4110 4111 4112 4113
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4114
#if STATS
4115
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4116
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4117
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4118
#endif
4119 4120 4121 4122 4123 4124 4125 4126
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4127
	mutex_lock(&cache_chain_mutex);
4128 4129
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4130 4131 4132 4133 4134 4135
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4136
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4137 4138 4139 4140
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4141
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4142
	++*pos;
A
Andrew Morton 已提交
4143 4144
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4145 4146 4147 4148
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4149
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4150 4151 4152 4153
}

static int s_show(struct seq_file *m, void *p)
{
4154
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4155 4156 4157 4158 4159
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4160
	const char *name;
L
Linus Torvalds 已提交
4161
	char *error = NULL;
4162 4163
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4164 4165 4166

	active_objs = 0;
	num_slabs = 0;
4167 4168 4169 4170 4171
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4172 4173
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4174

4175
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4176 4177 4178 4179 4180
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4181
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4182 4183 4184 4185 4186 4187 4188
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4189
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4190 4191 4192 4193 4194
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4195 4196
		if (l3->shared)
			shared_avail += l3->shared->avail;
4197

4198
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4199
	}
P
Pekka Enberg 已提交
4200 4201
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4202
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4203 4204
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4205
	name = cachep->name;
L
Linus Torvalds 已提交
4206 4207 4208 4209
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4210
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4211
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4212
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4213
		   cachep->limit, cachep->batchcount, cachep->shared);
4214
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4215
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4216
#if STATS
P
Pekka Enberg 已提交
4217
	{			/* list3 stats */
L
Linus Torvalds 已提交
4218 4219 4220 4221 4222 4223 4224
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4225
		unsigned long node_frees = cachep->node_frees;
4226
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4227

4228
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4229
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4230
				reaped, errors, max_freeable, node_allocs,
4231
				node_frees, overflows);
L
Linus Torvalds 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4241
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4262
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4263 4264 4265 4266
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4277 4278
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4279
{
P
Pekka Enberg 已提交
4280
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4281
	int limit, batchcount, shared, res;
4282
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4283

L
Linus Torvalds 已提交
4284 4285 4286 4287
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4288
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4299
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4300
	res = -EINVAL;
4301
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4302
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4303 4304
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4305
				res = 0;
L
Linus Torvalds 已提交
4306
			} else {
4307
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4308
						       batchcount, shared);
L
Linus Torvalds 已提交
4309 4310 4311 4312
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4313
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4314 4315 4316 4317
	if (res >= 0)
		res = count;
	return res;
}
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4427
		list_for_each_entry(slabp, &l3->slabs_full, list)
4428
			handle_slab(n, cachep, slabp);
4429
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4456

4457 4458 4459
	return 0;
}

4460
const struct seq_operations slabstats_op = {
4461 4462 4463 4464 4465 4466
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4467 4468
#endif

4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4481 4482
unsigned int ksize(const void *objp)
{
4483 4484
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4485

4486
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4487
}