slab.c 111.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

185
typedef unsigned int kmem_bufctl_t;
186
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
187

188 189 190 191 192 193 194 195
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
196 197 198 199 200
	struct {
		struct list_head list;
		void *s_mem;		/* including colour offset */
		unsigned int inuse;	/* num of objs active in slab */
		kmem_bufctl_t free;
201 202 203
	};
};

L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
221
	spinlock_t lock;
222
	void *entry[];	/*
A
Andrew Morton 已提交
223 224 225
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
226 227 228 229
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
230
			 */
L
Linus Torvalds 已提交
231 232
};

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
250 251 252
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
253 254 255 256
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
257
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
258 259
};

260 261 262
/*
 * Need this for bootstrapping a per node allocator.
 */
263
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
264
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
265
#define	CACHE_CACHE 0
266
#define	SIZE_AC MAX_NUMNODES
267
#define	SIZE_NODE (2 * MAX_NUMNODES)
268

269
static int drain_freelist(struct kmem_cache *cache,
270
			struct kmem_cache_node *n, int tofree);
271 272
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
273
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
274
static void cache_reap(struct work_struct *unused);
275

276 277
static int slab_early_init = 1;

278
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
279
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
280

281
static void kmem_cache_node_init(struct kmem_cache_node *parent)
282 283 284 285 286 287
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
288
	parent->colour_next = 0;
289 290 291 292 293
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
294 295 296
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
297
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
298 299
	} while (0)

A
Andrew Morton 已提交
300 301
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
302 303 304 305
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
306 307 308 309 310

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
311 312 313
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
314
 *
A
Adrian Bunk 已提交
315
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
316 317 318 319 320 321 322 323 324 325
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
326
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
327 328 329 330 331
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
332 333
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
334
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
335
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
336 337 338 339 340
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
341 342 343 344 345 346 347 348 349
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
350
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
351 352 353
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
354
#define	STATS_INC_NODEFREES(x)	do { } while (0)
355
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
356
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
357 358 359 360 361 362 363 364
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
365 366
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
367
 * 0		: objp
368
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
369 370
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
371
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
372
 * 		redzone word.
373
 * cachep->obj_offset: The real object.
374 375
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
376
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
377
 */
378
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
379
{
380
	return cachep->obj_offset;
L
Linus Torvalds 已提交
381 382
}

383
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
384 385
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
386 387
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
388 389
}

390
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
391 392 393
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
394
		return (unsigned long long *)(objp + cachep->size -
395
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
396
					      REDZONE_ALIGN);
397
	return (unsigned long long *) (objp + cachep->size -
398
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
399 400
}

401
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
402 403
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
404
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
405 406 407 408
}

#else

409
#define obj_offset(x)			0
410 411
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
412 413 414 415 416
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
417 418
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
419
 */
420 421 422
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
423
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
424

425 426
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
427
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
428
	return page->slab_cache;
429 430 431 432
}

static inline struct slab *virt_to_slab(const void *obj)
{
433
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
434 435 436

	VM_BUG_ON(!PageSlab(page));
	return page->slab_page;
437 438
}

439 440 441
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
442
	return slab->s_mem + cache->size * idx;
443 444
}

445
/*
446 447 448
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
449 450 451 452
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
453
{
454 455
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
456 457
}

L
Linus Torvalds 已提交
458
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
459
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
460 461

/* internal cache of cache description objs */
462
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
463 464 465
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
466
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
467
	.name = "kmem_cache",
L
Linus Torvalds 已提交
468 469
};

470 471
#define BAD_ALIEN_MAGIC 0x01020304ul

472 473 474 475 476 477 478 479
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
480 481 482 483
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
484
 */
485 486 487
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

488 489 490 491 492 493 494 495
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
496
	struct kmem_cache_node *n;
497 498
	int r;

499 500
	n = cachep->node[q];
	if (!n)
501 502
		return;

503 504
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

533
static void init_node_lock_keys(int q)
534
{
535
	int i;
536

537
	if (slab_state < UP)
538 539
		return;

C
Christoph Lameter 已提交
540
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
541
		struct kmem_cache_node *n;
542 543 544 545
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
546

547 548
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
549
			continue;
550

551
		slab_set_lock_classes(cache, &on_slab_l3_key,
552
				&on_slab_alc_key, q);
553 554
	}
}
555

556 557
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
558
	if (!cachep->node[q])
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

574 575 576 577 578 579 580
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
581
#else
582 583 584 585
static void init_node_lock_keys(int q)
{
}

586
static inline void init_lock_keys(void)
587 588
{
}
589

590 591 592 593 594 595 596 597
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

598 599 600 601 602 603 604
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
605 606
#endif

607
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
608

609
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
610 611 612 613
{
	return cachep->array[smp_processor_id()];
}

614
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
615
{
616 617
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
618

A
Andrew Morton 已提交
619 620 621
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
622 623 624 625 626 627 628
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
678 679
}

680
#if DEBUG
681
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
682

A
Andrew Morton 已提交
683 684
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
685 686
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
687
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
688
	dump_stack();
689
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
690
}
691
#endif
L
Linus Torvalds 已提交
692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

709 710 711 712 713 714 715 716 717 718 719
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

720 721 722 723 724 725 726
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
727
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
728 729 730 731 732

static void init_reap_node(int cpu)
{
	int node;

733
	node = next_node(cpu_to_mem(cpu), node_online_map);
734
	if (node == MAX_NUMNODES)
735
		node = first_node(node_online_map);
736

737
	per_cpu(slab_reap_node, cpu) = node;
738 739 740 741
}

static void next_reap_node(void)
{
742
	int node = __this_cpu_read(slab_reap_node);
743 744 745 746

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
747
	__this_cpu_write(slab_reap_node, node);
748 749 750 751 752 753 754
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
755 756 757 758 759 760 761
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
762
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
763
{
764
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
765 766 767 768 769 770

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
771
	if (keventd_up() && reap_work->work.func == NULL) {
772
		init_reap_node(cpu);
773
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
774 775
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
776 777 778
	}
}

779
static struct array_cache *alloc_arraycache(int node, int entries,
780
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
781
{
P
Pekka Enberg 已提交
782
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
783 784
	struct array_cache *nc = NULL;

785
	nc = kmalloc_node(memsize, gfp, node);
786 787
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
788
	 * However, when such objects are allocated or transferred to another
789 790 791 792 793
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
794 795 796 797 798
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
799
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
800 801 802 803
	}
	return nc;
}

804 805 806 807 808 809 810 811 812 813 814
static inline bool is_slab_pfmemalloc(struct slab *slabp)
{
	struct page *page = virt_to_page(slabp->s_mem);

	return PageSlabPfmemalloc(page);
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
815
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
816 817 818 819 820 821
	struct slab *slabp;
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

822 823
	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(slabp, &n->slabs_full, list)
824 825 826
		if (is_slab_pfmemalloc(slabp))
			goto out;

827
	list_for_each_entry(slabp, &n->slabs_partial, list)
828 829 830
		if (is_slab_pfmemalloc(slabp))
			goto out;

831
	list_for_each_entry(slabp, &n->slabs_free, list)
832 833 834 835 836
		if (is_slab_pfmemalloc(slabp))
			goto out;

	pfmemalloc_active = false;
out:
837
	spin_unlock_irqrestore(&n->list_lock, flags);
838 839
}

840
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
841 842 843 844 845 846 847
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
848
		struct kmem_cache_node *n;
849 850 851 852 853 854 855

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
856
		for (i = 0; i < ac->avail; i++) {
857 858 859 860 861 862 863 864 865 866 867 868 869
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
870 871
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
872
			struct slab *slabp = virt_to_slab(objp);
873
			ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
874 875 876 877 878 879 880 881 882 883 884 885 886
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
901 902 903 904
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
J
Joonsoo Kim 已提交
905 906
		struct slab *slabp = virt_to_slab(objp);
		struct page *page = virt_to_head_page(slabp->s_mem);
907 908 909 910
		if (PageSlabPfmemalloc(page))
			set_obj_pfmemalloc(&objp);
	}

911 912 913 914 915 916 917 918 919
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

920 921 922
	ac->entry[ac->avail++] = objp;
}

923 924 925 926 927 928 929 930 931 932
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
933
	int nr = min3(from->avail, max, to->limit - to->avail);
934 935 936 937 938 939 940 941 942 943 944 945

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

946 947 948
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
949
#define reap_alien(cachep, n) do { } while (0)
950

951
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

971
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
972 973 974 975 976 977 978
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

979
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
980
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
981

982
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
983 984
{
	struct array_cache **ac_ptr;
985
	int memsize = sizeof(void *) * nr_node_ids;
986 987 988 989
	int i;

	if (limit > 1)
		limit = 12;
990
	ac_ptr = kzalloc_node(memsize, gfp, node);
991 992
	if (ac_ptr) {
		for_each_node(i) {
993
			if (i == node || !node_online(i))
994
				continue;
995
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
996
			if (!ac_ptr[i]) {
997
				for (i--; i >= 0; i--)
998 999 1000 1001 1002 1003 1004 1005 1006
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1007
static void free_alien_cache(struct array_cache **ac_ptr)
1008 1009 1010 1011 1012 1013
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1014
	    kfree(ac_ptr[i]);
1015 1016 1017
	kfree(ac_ptr);
}

1018
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1019
				struct array_cache *ac, int node)
1020
{
1021
	struct kmem_cache_node *n = cachep->node[node];
1022 1023

	if (ac->avail) {
1024
		spin_lock(&n->list_lock);
1025 1026 1027 1028 1029
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1030 1031
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
1032

1033
		free_block(cachep, ac->entry, ac->avail, node);
1034
		ac->avail = 0;
1035
		spin_unlock(&n->list_lock);
1036 1037 1038
	}
}

1039 1040 1041
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
1042
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1043
{
1044
	int node = __this_cpu_read(slab_reap_node);
1045

1046 1047
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
1048 1049

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1050 1051 1052 1053 1054 1055
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1056 1057
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1058
{
P
Pekka Enberg 已提交
1059
	int i = 0;
1060 1061 1062 1063
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1064
		ac = alien[i];
1065 1066 1067 1068 1069 1070 1071
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1072

1073
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1074
{
J
Joonsoo Kim 已提交
1075
	int nodeid = page_to_nid(virt_to_page(objp));
1076
	struct kmem_cache_node *n;
1077
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1078 1079
	int node;

1080
	node = numa_mem_id();
1081 1082 1083 1084 1085

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1086
	if (likely(nodeid == node))
1087 1088
		return 0;

1089
	n = cachep->node[node];
1090
	STATS_INC_NODEFREES(cachep);
1091 1092
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1093
		spin_lock(&alien->lock);
1094 1095 1096 1097
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1098
		ac_put_obj(cachep, alien, objp);
1099 1100
		spin_unlock(&alien->lock);
	} else {
1101
		spin_lock(&(cachep->node[nodeid])->list_lock);
1102
		free_block(cachep, &objp, 1, nodeid);
1103
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1104 1105 1106
	}
	return 1;
}
1107 1108
#endif

1109
/*
1110
 * Allocates and initializes node for a node on each slab cache, used for
1111
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1112
 * will be allocated off-node since memory is not yet online for the new node.
1113
 * When hotplugging memory or a cpu, existing node are not replaced if
1114 1115
 * already in use.
 *
1116
 * Must hold slab_mutex.
1117
 */
1118
static int init_cache_node_node(int node)
1119 1120
{
	struct kmem_cache *cachep;
1121
	struct kmem_cache_node *n;
1122
	const int memsize = sizeof(struct kmem_cache_node);
1123

1124
	list_for_each_entry(cachep, &slab_caches, list) {
1125 1126 1127 1128 1129
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1130
		if (!cachep->node[node]) {
1131 1132
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1133
				return -ENOMEM;
1134 1135
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1136 1137 1138 1139
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1140
			 * go.  slab_mutex is sufficient
1141 1142
			 * protection here.
			 */
1143
			cachep->node[node] = n;
1144 1145
		}

1146 1147
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1148 1149
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1150
		spin_unlock_irq(&cachep->node[node]->list_lock);
1151 1152 1153 1154
	}
	return 0;
}

1155 1156 1157 1158 1159 1160
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1161
static void cpuup_canceled(long cpu)
1162 1163
{
	struct kmem_cache *cachep;
1164
	struct kmem_cache_node *n = NULL;
1165
	int node = cpu_to_mem(cpu);
1166
	const struct cpumask *mask = cpumask_of_node(node);
1167

1168
	list_for_each_entry(cachep, &slab_caches, list) {
1169 1170 1171 1172 1173 1174 1175
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1176
		n = cachep->node[node];
1177

1178
		if (!n)
1179 1180
			goto free_array_cache;

1181
		spin_lock_irq(&n->list_lock);
1182

1183 1184
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1185 1186 1187
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1188
		if (!cpumask_empty(mask)) {
1189
			spin_unlock_irq(&n->list_lock);
1190 1191 1192
			goto free_array_cache;
		}

1193
		shared = n->shared;
1194 1195 1196
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1197
			n->shared = NULL;
1198 1199
		}

1200 1201
		alien = n->alien;
		n->alien = NULL;
1202

1203
		spin_unlock_irq(&n->list_lock);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1218
	list_for_each_entry(cachep, &slab_caches, list) {
1219 1220
		n = cachep->node[node];
		if (!n)
1221
			continue;
1222
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1223 1224 1225
	}
}

1226
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1227
{
1228
	struct kmem_cache *cachep;
1229
	struct kmem_cache_node *n = NULL;
1230
	int node = cpu_to_mem(cpu);
1231
	int err;
L
Linus Torvalds 已提交
1232

1233 1234 1235 1236
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1237
	 * kmem_cache_node and not this cpu's kmem_cache_node
1238
	 */
1239
	err = init_cache_node_node(node);
1240 1241
	if (err < 0)
		goto bad;
1242 1243 1244 1245 1246

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1247
	list_for_each_entry(cachep, &slab_caches, list) {
1248 1249 1250 1251 1252
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1253
					cachep->batchcount, GFP_KERNEL);
1254 1255 1256 1257 1258
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1259
				0xbaadf00d, GFP_KERNEL);
1260 1261
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1262
				goto bad;
1263
			}
1264 1265
		}
		if (use_alien_caches) {
1266
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1267 1268 1269
			if (!alien) {
				kfree(shared);
				kfree(nc);
1270
				goto bad;
1271
			}
1272 1273
		}
		cachep->array[cpu] = nc;
1274 1275
		n = cachep->node[node];
		BUG_ON(!n);
1276

1277 1278
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1279 1280 1281 1282
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1283
			n->shared = shared;
1284 1285
			shared = NULL;
		}
1286
#ifdef CONFIG_NUMA
1287 1288
		if (!n->alien) {
			n->alien = alien;
1289
			alien = NULL;
L
Linus Torvalds 已提交
1290
		}
1291
#endif
1292
		spin_unlock_irq(&n->list_lock);
1293 1294
		kfree(shared);
		free_alien_cache(alien);
1295 1296
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1297 1298 1299
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1300
	}
1301 1302
	init_node_lock_keys(node);

1303 1304
	return 0;
bad:
1305
	cpuup_canceled(cpu);
1306 1307 1308
	return -ENOMEM;
}

1309
static int cpuup_callback(struct notifier_block *nfb,
1310 1311 1312 1313 1314 1315 1316 1317
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1318
		mutex_lock(&slab_mutex);
1319
		err = cpuup_prepare(cpu);
1320
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1321 1322
		break;
	case CPU_ONLINE:
1323
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1324 1325 1326
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1327
  	case CPU_DOWN_PREPARE:
1328
  	case CPU_DOWN_PREPARE_FROZEN:
1329
		/*
1330
		 * Shutdown cache reaper. Note that the slab_mutex is
1331 1332 1333 1334
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1335
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1336
		/* Now the cache_reaper is guaranteed to be not running. */
1337
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1338 1339
  		break;
  	case CPU_DOWN_FAILED:
1340
  	case CPU_DOWN_FAILED_FROZEN:
1341 1342
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1343
	case CPU_DEAD:
1344
	case CPU_DEAD_FROZEN:
1345 1346
		/*
		 * Even if all the cpus of a node are down, we don't free the
1347
		 * kmem_cache_node of any cache. This to avoid a race between
1348
		 * cpu_down, and a kmalloc allocation from another cpu for
1349
		 * memory from the node of the cpu going down.  The node
1350 1351 1352
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1353
		/* fall through */
1354
#endif
L
Linus Torvalds 已提交
1355
	case CPU_UP_CANCELED:
1356
	case CPU_UP_CANCELED_FROZEN:
1357
		mutex_lock(&slab_mutex);
1358
		cpuup_canceled(cpu);
1359
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1360 1361
		break;
	}
1362
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1363 1364
}

1365
static struct notifier_block cpucache_notifier = {
1366 1367
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1368

1369 1370 1371 1372 1373 1374
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1375
 * Must hold slab_mutex.
1376
 */
1377
static int __meminit drain_cache_node_node(int node)
1378 1379 1380 1381
{
	struct kmem_cache *cachep;
	int ret = 0;

1382
	list_for_each_entry(cachep, &slab_caches, list) {
1383
		struct kmem_cache_node *n;
1384

1385 1386
		n = cachep->node[node];
		if (!n)
1387 1388
			continue;

1389
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1390

1391 1392
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1413
		mutex_lock(&slab_mutex);
1414
		ret = init_cache_node_node(nid);
1415
		mutex_unlock(&slab_mutex);
1416 1417
		break;
	case MEM_GOING_OFFLINE:
1418
		mutex_lock(&slab_mutex);
1419
		ret = drain_cache_node_node(nid);
1420
		mutex_unlock(&slab_mutex);
1421 1422 1423 1424 1425 1426 1427 1428
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1429
	return notifier_from_errno(ret);
1430 1431 1432
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1433
/*
1434
 * swap the static kmem_cache_node with kmalloced memory
1435
 */
1436
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1437
				int nodeid)
1438
{
1439
	struct kmem_cache_node *ptr;
1440

1441
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1442 1443
	BUG_ON(!ptr);

1444
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1445 1446 1447 1448 1449
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1450
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1451
	cachep->node[nodeid] = ptr;
1452 1453
}

1454
/*
1455 1456
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1457
 */
1458
static void __init set_up_node(struct kmem_cache *cachep, int index)
1459 1460 1461 1462
{
	int node;

	for_each_online_node(node) {
1463
		cachep->node[node] = &init_kmem_cache_node[index + node];
1464
		cachep->node[node]->next_reap = jiffies +
1465 1466 1467 1468 1469
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1470 1471
/*
 * The memory after the last cpu cache pointer is used for the
1472
 * the node pointer.
C
Christoph Lameter 已提交
1473
 */
1474
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1475
{
1476
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1477 1478
}

A
Andrew Morton 已提交
1479 1480 1481
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1482 1483 1484
 */
void __init kmem_cache_init(void)
{
1485 1486
	int i;

1487 1488
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1489
	kmem_cache = &kmem_cache_boot;
1490
	setup_node_pointer(kmem_cache);
1491

1492
	if (num_possible_nodes() == 1)
1493 1494
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1495
	for (i = 0; i < NUM_INIT_LISTS; i++)
1496
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1497

1498
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1499 1500 1501

	/*
	 * Fragmentation resistance on low memory - only use bigger
1502 1503
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1504
	 */
1505
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1506
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1507 1508 1509

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1510 1511 1512
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1513
	 *    Initially an __init data area is used for the head array and the
1514
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1515
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1516
	 * 2) Create the first kmalloc cache.
1517
	 *    The struct kmem_cache for the new cache is allocated normally.
1518 1519 1520
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1521
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1522
	 *    kmalloc cache with kmalloc allocated arrays.
1523
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1524 1525
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1526 1527
	 */

1528
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1529

E
Eric Dumazet 已提交
1530
	/*
1531
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1532
	 */
1533 1534
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1535
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1536 1537
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1538 1539 1540

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1541 1542
	/*
	 * Initialize the caches that provide memory for the array cache and the
1543
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1544
	 * bug.
1545 1546
	 */

1547 1548
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1549

1550 1551 1552 1553
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1554

1555 1556
	slab_early_init = 0;

L
Linus Torvalds 已提交
1557 1558
	/* 4) Replace the bootstrap head arrays */
	{
1559
		struct array_cache *ptr;
1560

1561
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1562

1563
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1564
		       sizeof(struct arraycache_init));
1565 1566 1567 1568 1569
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1570
		kmem_cache->array[smp_processor_id()] = ptr;
1571

1572
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1573

1574
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1575
		       != &initarray_generic.cache);
1576
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1577
		       sizeof(struct arraycache_init));
1578 1579 1580 1581 1582
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1583
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1584
	}
1585
	/* 5) Replace the bootstrap kmem_cache_node */
1586
	{
P
Pekka Enberg 已提交
1587 1588
		int nid;

1589
		for_each_online_node(nid) {
1590
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1591

1592
			init_list(kmalloc_caches[INDEX_AC],
1593
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1594

1595 1596 1597
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1598 1599 1600
			}
		}
	}
L
Linus Torvalds 已提交
1601

1602
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1603 1604 1605 1606 1607 1608
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1609
	slab_state = UP;
P
Peter Zijlstra 已提交
1610

1611
	/* 6) resize the head arrays to their final sizes */
1612 1613
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1614 1615
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1616
	mutex_unlock(&slab_mutex);
1617

1618 1619 1620
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1621 1622 1623
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1624 1625 1626
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1627 1628 1629
	 */
	register_cpu_notifier(&cpucache_notifier);

1630 1631 1632
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1633
	 * node.
1634 1635 1636 1637
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1638 1639 1640
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645 1646 1647
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1648 1649
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1650
	 */
1651
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1652
		start_cpu_timer(cpu);
1653 1654

	/* Done! */
1655
	slab_state = FULL;
L
Linus Torvalds 已提交
1656 1657 1658 1659
	return 0;
}
__initcall(cpucache_init);

1660 1661 1662
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1663
	struct kmem_cache_node *n;
1664 1665 1666 1667 1668 1669 1670 1671
	struct slab *slabp;
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1672
		cachep->name, cachep->size, cachep->gfporder);
1673 1674 1675 1676 1677

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1678 1679
		n = cachep->node[node];
		if (!n)
1680 1681
			continue;

1682 1683
		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(slabp, &n->slabs_full, list) {
1684 1685 1686
			active_objs += cachep->num;
			active_slabs++;
		}
1687
		list_for_each_entry(slabp, &n->slabs_partial, list) {
1688 1689 1690
			active_objs += slabp->inuse;
			active_slabs++;
		}
1691
		list_for_each_entry(slabp, &n->slabs_free, list)
1692 1693
			num_slabs++;

1694 1695
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1706 1707 1708 1709 1710 1711 1712
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1713 1714
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1715 1716
{
	struct page *page;
1717
	int nr_pages;
1718

1719
	flags |= cachep->allocflags;
1720 1721
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1722

L
Linus Torvalds 已提交
1723
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1724 1725 1726
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1727
		return NULL;
1728
	}
L
Linus Torvalds 已提交
1729

1730
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1731 1732 1733
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1734
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1735
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1736 1737 1738 1739 1740
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1741 1742 1743
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
G
Glauber Costa 已提交
1744
	memcg_bind_pages(cachep, cachep->gfporder);
1745

1746 1747 1748 1749 1750 1751 1752 1753
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1754

1755
	return page;
L
Linus Torvalds 已提交
1756 1757 1758 1759 1760
}

/*
 * Interface to system's page release.
 */
1761
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1762
{
1763
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1764

1765
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1766

1767 1768 1769 1770 1771 1772
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1773

1774
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1775
	__ClearPageSlabPfmemalloc(page);
1776
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1777 1778

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1779 1780
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1781
	__free_memcg_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1782 1783 1784 1785
}

static void kmem_rcu_free(struct rcu_head *head)
{
1786 1787
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1788

1789 1790 1791 1792
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1798
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1799
			    unsigned long caller)
L
Linus Torvalds 已提交
1800
{
1801
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1802

1803
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1804

P
Pekka Enberg 已提交
1805
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1806 1807
		return;

P
Pekka Enberg 已提交
1808 1809 1810 1811
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817 1818
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1819
				*addr++ = svalue;
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825 1826
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1827
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1828 1829 1830
}
#endif

1831
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1832
{
1833
	int size = cachep->object_size;
1834
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1835 1836

	memset(addr, val, size);
P
Pekka Enberg 已提交
1837
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1843 1844 1845
	unsigned char error = 0;
	int bad_count = 0;

1846
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1847 1848 1849 1850 1851 1852
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1853 1854
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873
}
#endif

#if DEBUG

1874
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1880
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1881 1882
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1883 1884 1885
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1886 1887 1888
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1889
	}
1890
	realobj = (char *)objp + obj_offset(cachep);
1891
	size = cachep->object_size;
P
Pekka Enberg 已提交
1892
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1893 1894
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1895 1896
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1897 1898 1899 1900
		dump_line(realobj, i, limit);
	}
}

1901
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906
{
	char *realobj;
	int size, i;
	int lines = 0;

1907
	realobj = (char *)objp + obj_offset(cachep);
1908
	size = cachep->object_size;
L
Linus Torvalds 已提交
1909

P
Pekka Enberg 已提交
1910
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1911
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1912
		if (i == size - 1)
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917 1918
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1919
				printk(KERN_ERR
1920 1921
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1922 1923 1924
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1925
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1926
			limit = 16;
P
Pekka Enberg 已提交
1927 1928
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1941
		struct slab *slabp = virt_to_slab(objp);
1942
		unsigned int objnr;
L
Linus Torvalds 已提交
1943

1944
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1945
		if (objnr) {
1946
			objp = index_to_obj(cachep, slabp, objnr - 1);
1947
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1948
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1949
			       realobj, size);
L
Linus Torvalds 已提交
1950 1951
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1952
		if (objnr + 1 < cachep->num) {
1953
			objp = index_to_obj(cachep, slabp, objnr + 1);
1954
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1955
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1956
			       realobj, size);
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961 1962
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1963
#if DEBUG
R
Rabin Vincent 已提交
1964
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1965 1966 1967
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1968
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1969 1970 1971

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1972
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1973
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1974
				kernel_map_pages(virt_to_page(objp),
1975
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1985
					   "was overwritten");
L
Linus Torvalds 已提交
1986 1987
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1988
					   "was overwritten");
L
Linus Torvalds 已提交
1989 1990
		}
	}
1991
}
L
Linus Torvalds 已提交
1992
#else
R
Rabin Vincent 已提交
1993
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1994 1995
{
}
L
Linus Torvalds 已提交
1996 1997
#endif

1998 1999 2000 2001 2002
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
2003
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
2004 2005
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
2006
 */
2007
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2008
{
2009
	struct page *page = virt_to_head_page(slabp->s_mem);
2010

R
Rabin Vincent 已提交
2011
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
2012
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
2023 2024

	} else {
2025
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
2026
	}
2027 2028 2029 2030 2031 2032 2033

	/*
	 * From now on, we don't use slab management
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
2034 2035
}

2036
/**
2037 2038 2039 2040 2041 2042 2043
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2044 2045 2046 2047 2048
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2049
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2050
			size_t size, size_t align, unsigned long flags)
2051
{
2052
	unsigned long offslab_limit;
2053
	size_t left_over = 0;
2054
	int gfporder;
2055

2056
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2057 2058 2059
		unsigned int num;
		size_t remainder;

2060
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2061 2062
		if (!num)
			continue;
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2076

2077
		/* Found something acceptable - save it away */
2078
		cachep->num = num;
2079
		cachep->gfporder = gfporder;
2080 2081
		left_over = remainder;

2082 2083 2084 2085 2086 2087 2088 2089
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2090 2091 2092 2093
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2094
		if (gfporder >= slab_max_order)
2095 2096
			break;

2097 2098 2099
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2100
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2101 2102 2103 2104 2105
			break;
	}
	return left_over;
}

2106
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2107
{
2108
	if (slab_state >= FULL)
2109
		return enable_cpucache(cachep, gfp);
2110

2111
	if (slab_state == DOWN) {
2112
		/*
2113
		 * Note: Creation of first cache (kmem_cache).
2114
		 * The setup_node is taken care
2115 2116 2117 2118 2119 2120 2121
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2122 2123 2124 2125 2126 2127
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2128 2129
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2130 2131
		 * otherwise the creation of further caches will BUG().
		 */
2132 2133 2134
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2135
		else
2136
			slab_state = PARTIAL_ARRAYCACHE;
2137
	} else {
2138
		/* Remaining boot caches */
2139
		cachep->array[smp_processor_id()] =
2140
			kmalloc(sizeof(struct arraycache_init), gfp);
2141

2142
		if (slab_state == PARTIAL_ARRAYCACHE) {
2143 2144
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2145 2146
		} else {
			int node;
2147
			for_each_online_node(node) {
2148
				cachep->node[node] =
2149
				    kmalloc_node(sizeof(struct kmem_cache_node),
2150
						gfp, node);
2151
				BUG_ON(!cachep->node[node]);
2152
				kmem_cache_node_init(cachep->node[node]);
2153 2154 2155
			}
		}
	}
2156
	cachep->node[numa_mem_id()]->next_reap =
2157 2158 2159 2160 2161 2162 2163 2164 2165
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2166
	return 0;
2167 2168
}

L
Linus Torvalds 已提交
2169
/**
2170
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2171
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2172 2173 2174 2175
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2176
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2190
int
2191
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2192 2193
{
	size_t left_over, slab_size, ralign;
2194
	gfp_t gfp;
2195
	int err;
2196
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2206 2207
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2208
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213 2214 2215
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2216 2217
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2218 2219 2220
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2221 2222 2223
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2224 2225
	}

2226
	/*
D
David Woodhouse 已提交
2227 2228 2229
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2230
	 */
D
David Woodhouse 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2241

2242
	/* 3) caller mandated alignment */
2243 2244
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2245
	}
2246 2247
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2248
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2249
	/*
2250
	 * 4) Store it.
L
Linus Torvalds 已提交
2251
	 */
2252
	cachep->align = ralign;
L
Linus Torvalds 已提交
2253

2254 2255 2256 2257 2258
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2259
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2260 2261
#if DEBUG

2262 2263 2264 2265
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2266 2267
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2268 2269
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2270 2271
	}
	if (flags & SLAB_STORE_USER) {
2272
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2273 2274
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2275
		 */
D
David Woodhouse 已提交
2276 2277 2278 2279
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2280 2281
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2282
	if (size >= kmalloc_size(INDEX_NODE + 1)
2283 2284 2285
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290
		size = PAGE_SIZE;
	}
#endif
#endif

2291 2292 2293
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2294 2295
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2296
	 */
2297 2298
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2299 2300 2301 2302 2303 2304
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2305
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2306

2307
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2308

2309
	if (!cachep->num)
2310
		return -E2BIG;
L
Linus Torvalds 已提交
2311

P
Pekka Enberg 已提交
2312
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2313
			  + sizeof(struct slab), cachep->align);
L
Linus Torvalds 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2326 2327
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2328 2329 2330 2331 2332 2333 2334 2335 2336

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2337 2338 2339 2340
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2341 2342
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2343
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2344 2345
	cachep->slab_size = slab_size;
	cachep->flags = flags;
2346
	cachep->allocflags = __GFP_COMP;
2347
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2348
		cachep->allocflags |= GFP_DMA;
2349
	cachep->size = size;
2350
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2351

2352
	if (flags & CFLGS_OFF_SLAB) {
2353
		cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2354 2355 2356 2357 2358 2359 2360
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2361
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2362
	}
L
Linus Torvalds 已提交
2363

2364 2365
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2366
		__kmem_cache_shutdown(cachep);
2367
		return err;
2368
	}
L
Linus Torvalds 已提交
2369

2370 2371 2372 2373 2374 2375 2376 2377
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2378 2379
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2380

2381
	return 0;
L
Linus Torvalds 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2395
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2396 2397 2398
{
#ifdef CONFIG_SMP
	check_irq_off();
2399
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2400 2401
#endif
}
2402

2403
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2404 2405 2406
{
#ifdef CONFIG_SMP
	check_irq_off();
2407
	assert_spin_locked(&cachep->node[node]->list_lock);
2408 2409 2410
#endif
}

L
Linus Torvalds 已提交
2411 2412 2413 2414
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2415
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2416 2417
#endif

2418
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2419 2420 2421
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2422 2423
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2424
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2425
	struct array_cache *ac;
2426
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2427 2428

	check_irq_off();
2429
	ac = cpu_cache_get(cachep);
2430
	spin_lock(&cachep->node[node]->list_lock);
2431
	free_block(cachep, ac->entry, ac->avail, node);
2432
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2433 2434 2435
	ac->avail = 0;
}

2436
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2437
{
2438
	struct kmem_cache_node *n;
2439 2440
	int node;

2441
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2442
	check_irq_on();
P
Pekka Enberg 已提交
2443
	for_each_online_node(node) {
2444 2445 2446
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2447 2448 2449
	}

	for_each_online_node(node) {
2450 2451 2452
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2453
	}
L
Linus Torvalds 已提交
2454 2455
}

2456 2457 2458 2459 2460 2461 2462
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2463
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2464
{
2465 2466
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2467 2468
	struct slab *slabp;

2469
	nr_freed = 0;
2470
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2471

2472 2473 2474 2475
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2476 2477
			goto out;
		}
L
Linus Torvalds 已提交
2478

2479
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2480
#if DEBUG
2481
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2482 2483
#endif
		list_del(&slabp->list);
2484 2485 2486 2487
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2488 2489
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2490 2491
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2492
	}
2493 2494
out:
	return nr_freed;
L
Linus Torvalds 已提交
2495 2496
}

2497
/* Called with slab_mutex held to protect against cpu hotplug */
2498
static int __cache_shrink(struct kmem_cache *cachep)
2499 2500
{
	int ret = 0, i = 0;
2501
	struct kmem_cache_node *n;
2502 2503 2504 2505 2506

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2507 2508
		n = cachep->node[i];
		if (!n)
2509 2510
			continue;

2511
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2512

2513 2514
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2515 2516 2517 2518
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2526
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2527
{
2528
	int ret;
2529
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2530

2531
	get_online_cpus();
2532
	mutex_lock(&slab_mutex);
2533
	ret = __cache_shrink(cachep);
2534
	mutex_unlock(&slab_mutex);
2535
	put_online_cpus();
2536
	return ret;
L
Linus Torvalds 已提交
2537 2538 2539
}
EXPORT_SYMBOL(kmem_cache_shrink);

2540
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2541
{
2542
	int i;
2543
	struct kmem_cache_node *n;
2544
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2545

2546 2547
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2548

2549 2550
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2551

2552
	/* NUMA: free the node structures */
2553
	for_each_online_node(i) {
2554 2555 2556 2557 2558
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2559 2560 2561
		}
	}
	return 0;
L
Linus Torvalds 已提交
2562 2563
}

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2575 2576 2577
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep,
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2578 2579
{
	struct slab *slabp;
2580
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2581

L
Linus Torvalds 已提交
2582 2583
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2584
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2585
					      local_flags, nodeid);
2586 2587 2588 2589 2590 2591
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2592 2593
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2594 2595 2596
		if (!slabp)
			return NULL;
	} else {
2597
		slabp = addr + colour_off;
L
Linus Torvalds 已提交
2598 2599 2600
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
2601
	slabp->s_mem = addr + colour_off;
2602
	slabp->free = 0;
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2608
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2609 2610
}

2611
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2612
			    struct slab *slabp)
L
Linus Torvalds 已提交
2613 2614 2615 2616
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2617
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2630 2631 2632
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2633 2634
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2635
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2636 2637 2638 2639

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2640
					   " end of an object");
L
Linus Torvalds 已提交
2641 2642
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2643
					   " start of an object");
L
Linus Torvalds 已提交
2644
		}
2645
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2646
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2647
			kernel_map_pages(virt_to_page(objp),
2648
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2649 2650
#else
		if (cachep->ctor)
2651
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2652
#endif
2653
		slab_bufctl(slabp)[i] = i;
L
Linus Torvalds 已提交
2654 2655 2656
	}
}

2657
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2658
{
2659 2660
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2661
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2662
		else
2663
			BUG_ON(cachep->allocflags & GFP_DMA);
2664
	}
L
Linus Torvalds 已提交
2665 2666
}

A
Andrew Morton 已提交
2667 2668
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2669
{
2670
	void *objp;
2671 2672

	slabp->inuse++;
2673
	objp = index_to_obj(cachep, slabp, slab_bufctl(slabp)[slabp->free]);
2674
#if DEBUG
J
Joonsoo Kim 已提交
2675
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2676
#endif
2677
	slabp->free++;
2678 2679 2680 2681

	return objp;
}

A
Andrew Morton 已提交
2682 2683
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2684
{
2685
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2686
#if DEBUG
2687 2688
	kmem_bufctl_t i;

2689
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2690
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2691

2692 2693 2694 2695 2696 2697 2698
	/* Verify double free bug */
	for (i = slabp->free; i < cachep->num; i++) {
		if (slab_bufctl(slabp)[i] == objnr) {
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2699 2700
	}
#endif
2701 2702
	slabp->free--;
	slab_bufctl(slabp)[slabp->free] = objnr;
2703 2704 2705
	slabp->inuse--;
}

2706 2707 2708
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2709
 * virtual address for kfree, ksize, and slab debugging.
2710 2711
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2712
			   struct page *page)
L
Linus Torvalds 已提交
2713
{
2714 2715
	page->slab_cache = cache;
	page->slab_page = slab;
L
Linus Torvalds 已提交
2716 2717 2718 2719 2720 2721
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2722
static int cache_grow(struct kmem_cache *cachep,
2723
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2724
{
P
Pekka Enberg 已提交
2725 2726 2727
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2728
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2729

A
Andrew Morton 已提交
2730 2731 2732
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2733
	 */
C
Christoph Lameter 已提交
2734 2735
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2736

2737
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2738
	check_irq_off();
2739 2740
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2741 2742

	/* Get colour for the slab, and cal the next value. */
2743 2744 2745 2746 2747
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2748

2749
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2762 2763 2764
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2765
	 */
2766 2767 2768
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2769 2770 2771
		goto failed;

	/* Get slab management. */
2772
	slabp = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2773
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2774
	if (!slabp)
L
Linus Torvalds 已提交
2775 2776
		goto opps1;

2777
	slab_map_pages(cachep, slabp, page);
L
Linus Torvalds 已提交
2778

C
Christoph Lameter 已提交
2779
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2780 2781 2782 2783

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2784
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2785 2786

	/* Make slab active. */
2787
	list_add_tail(&slabp->list, &(n->slabs_free));
L
Linus Torvalds 已提交
2788
	STATS_INC_GROWN(cachep);
2789 2790
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2791
	return 1;
A
Andrew Morton 已提交
2792
opps1:
2793
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2794
failed:
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2811 2812
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2813 2814 2815
	}
}

2816 2817
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2818
	unsigned long long redzone1, redzone2;
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2834
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2835 2836 2837
			obj, redzone1, redzone2);
}

2838
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2839
				   unsigned long caller)
L
Linus Torvalds 已提交
2840 2841 2842 2843
{
	unsigned int objnr;
	struct slab *slabp;

2844 2845
	BUG_ON(virt_to_cache(objp) != cachep);

2846
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2847
	kfree_debugcheck(objp);
2848
	slabp = virt_to_slab(objp);
L
Linus Torvalds 已提交
2849 2850

	if (cachep->flags & SLAB_RED_ZONE) {
2851
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2852 2853 2854 2855
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2856
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2857

2858
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2859 2860

	BUG_ON(objnr >= cachep->num);
2861
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2862 2863 2864

	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2865
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2866
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2867
			kernel_map_pages(virt_to_page(objp),
2868
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2884 2885
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2886 2887
{
	int batchcount;
2888
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2889
	struct array_cache *ac;
P
Pekka Enberg 已提交
2890 2891
	int node;

L
Linus Torvalds 已提交
2892
	check_irq_off();
2893
	node = numa_mem_id();
2894 2895 2896
	if (unlikely(force_refill))
		goto force_grow;
retry:
2897
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2898 2899
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2900 2901 2902 2903
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2904 2905 2906
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2907
	n = cachep->node[node];
2908

2909 2910
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2911

2912
	/* See if we can refill from the shared array */
2913 2914
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2915
		goto alloc_done;
2916
	}
2917

L
Linus Torvalds 已提交
2918 2919 2920 2921
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
2922 2923 2924 2925 2926
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2927 2928 2929 2930 2931
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_spinlock_acquired(cachep);
2932 2933 2934 2935 2936 2937

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2938
		BUG_ON(slabp->inuse >= cachep->num);
2939

L
Linus Torvalds 已提交
2940 2941 2942 2943 2944
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2945 2946
			ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
									node));
L
Linus Torvalds 已提交
2947 2948 2949 2950
		}

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
2951
		if (slabp->free == cachep->num)
2952
			list_add(&slabp->list, &n->slabs_full);
L
Linus Torvalds 已提交
2953
		else
2954
			list_add(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
2955 2956
	}

A
Andrew Morton 已提交
2957
must_grow:
2958
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2959
alloc_done:
2960
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2961 2962 2963

	if (unlikely(!ac->avail)) {
		int x;
2964
force_grow:
2965
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2966

A
Andrew Morton 已提交
2967
		/* cache_grow can reenable interrupts, then ac could change. */
2968
		ac = cpu_cache_get(cachep);
2969
		node = numa_mem_id();
2970 2971 2972

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2973 2974
			return NULL;

A
Andrew Morton 已提交
2975
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2976 2977 2978
			goto retry;
	}
	ac->touched = 1;
2979 2980

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2981 2982
}

A
Andrew Morton 已提交
2983 2984
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990 2991 2992
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2993
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2994
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2995
{
P
Pekka Enberg 已提交
2996
	if (!objp)
L
Linus Torvalds 已提交
2997
		return objp;
P
Pekka Enberg 已提交
2998
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2999
#ifdef CONFIG_DEBUG_PAGEALLOC
3000
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3001
			kernel_map_pages(virt_to_page(objp),
3002
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007 3008 3009 3010
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3011
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
3012 3013

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3014 3015 3016 3017
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3018
			printk(KERN_ERR
3019
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3020 3021
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3022 3023 3024 3025
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3026
	objp += obj_offset(cachep);
3027
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3028
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
3029 3030
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3031
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
3032
		       objp, (int)ARCH_SLAB_MINALIGN);
3033
	}
L
Linus Torvalds 已提交
3034 3035 3036 3037 3038 3039
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3040
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3041
{
3042
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
3043
		return false;
3044

3045
	return should_failslab(cachep->object_size, flags, cachep->flags);
3046 3047
}

3048
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3049
{
P
Pekka Enberg 已提交
3050
	void *objp;
L
Linus Torvalds 已提交
3051
	struct array_cache *ac;
3052
	bool force_refill = false;
L
Linus Torvalds 已提交
3053

3054
	check_irq_off();
3055

3056
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3057 3058
	if (likely(ac->avail)) {
		ac->touched = 1;
3059 3060
		objp = ac_get_obj(cachep, ac, flags, false);

3061
		/*
3062 3063
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3064
		 */
3065 3066 3067 3068 3069
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3070
	}
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3081 3082 3083 3084 3085
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3086 3087
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3088 3089 3090
	return objp;
}

3091
#ifdef CONFIG_NUMA
3092
/*
3093
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3094 3095 3096 3097 3098 3099 3100 3101
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3102
	if (in_interrupt() || (flags & __GFP_THISNODE))
3103
		return NULL;
3104
	nid_alloc = nid_here = numa_mem_id();
3105
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3106
		nid_alloc = cpuset_slab_spread_node();
3107
	else if (current->mempolicy)
3108
		nid_alloc = slab_node();
3109
	if (nid_alloc != nid_here)
3110
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3111 3112 3113
	return NULL;
}

3114 3115
/*
 * Fallback function if there was no memory available and no objects on a
3116
 * certain node and fall back is permitted. First we scan all the
3117
 * available node for available objects. If that fails then we
3118 3119 3120
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3121
 */
3122
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3123
{
3124 3125
	struct zonelist *zonelist;
	gfp_t local_flags;
3126
	struct zoneref *z;
3127 3128
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3129
	void *obj = NULL;
3130
	int nid;
3131
	unsigned int cpuset_mems_cookie;
3132 3133 3134 3135

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3136
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3137

3138 3139
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3140
	zonelist = node_zonelist(slab_node(), flags);
3141

3142 3143 3144 3145 3146
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3147 3148
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3149

3150
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3151 3152
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3153 3154
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3155 3156 3157
				if (obj)
					break;
		}
3158 3159
	}

3160
	if (!obj) {
3161 3162 3163 3164 3165 3166
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3167 3168
		struct page *page;

3169 3170 3171
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3172
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3173 3174
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3175
		if (page) {
3176 3177 3178
			/*
			 * Insert into the appropriate per node queues
			 */
3179 3180
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3191
				/* cache_grow already freed obj */
3192 3193 3194
				obj = NULL;
			}
		}
3195
	}
3196 3197 3198

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3199 3200 3201
	return obj;
}

3202 3203
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3204
 */
3205
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3206
				int nodeid)
3207 3208
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3209
	struct slab *slabp;
3210
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3211 3212 3213
	void *obj;
	int x;

3214
	VM_BUG_ON(nodeid > num_online_nodes());
3215 3216
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3217

A
Andrew Morton 已提交
3218
retry:
3219
	check_irq_off();
3220 3221 3222 3223 3224 3225
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3238
	obj = slab_get_obj(cachep, slabp, nodeid);
3239
	n->free_objects--;
P
Pekka Enberg 已提交
3240 3241 3242
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

3243
	if (slabp->free == cachep->num)
3244
		list_add(&slabp->list, &n->slabs_full);
A
Andrew Morton 已提交
3245
	else
3246
		list_add(&slabp->list, &n->slabs_partial);
3247

3248
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3249
	goto done;
3250

A
Andrew Morton 已提交
3251
must_grow:
3252
	spin_unlock(&n->list_lock);
3253
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3254 3255
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3256

3257
	return fallback_alloc(cachep, flags);
3258

A
Andrew Morton 已提交
3259
done:
P
Pekka Enberg 已提交
3260
	return obj;
3261
}
3262 3263

static __always_inline void *
3264
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3265
		   unsigned long caller)
3266 3267 3268
{
	unsigned long save_flags;
	void *ptr;
3269
	int slab_node = numa_mem_id();
3270

3271
	flags &= gfp_allowed_mask;
3272

3273 3274
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3275
	if (slab_should_failslab(cachep, flags))
3276 3277
		return NULL;

3278 3279
	cachep = memcg_kmem_get_cache(cachep, flags);

3280 3281 3282
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3283
	if (nodeid == NUMA_NO_NODE)
3284
		nodeid = slab_node;
3285

3286
	if (unlikely(!cachep->node[nodeid])) {
3287 3288 3289 3290 3291
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3292
	if (nodeid == slab_node) {
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3308
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3309
				 flags);
3310

P
Pekka Enberg 已提交
3311
	if (likely(ptr))
3312
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3313

3314
	if (unlikely((flags & __GFP_ZERO) && ptr))
3315
		memset(ptr, 0, cachep->object_size);
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3336 3337
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3353
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3354 3355 3356 3357
{
	unsigned long save_flags;
	void *objp;

3358
	flags &= gfp_allowed_mask;
3359

3360 3361
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3362
	if (slab_should_failslab(cachep, flags))
3363 3364
		return NULL;

3365 3366
	cachep = memcg_kmem_get_cache(cachep, flags);

3367 3368 3369 3370 3371
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3372
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3373
				 flags);
3374 3375
	prefetchw(objp);

P
Pekka Enberg 已提交
3376
	if (likely(objp))
3377
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3378

3379
	if (unlikely((flags & __GFP_ZERO) && objp))
3380
		memset(objp, 0, cachep->object_size);
3381

3382 3383
	return objp;
}
3384 3385 3386 3387

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3388
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3389
		       int node)
L
Linus Torvalds 已提交
3390 3391
{
	int i;
3392
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3393 3394

	for (i = 0; i < nr_objects; i++) {
3395
		void *objp;
L
Linus Torvalds 已提交
3396 3397
		struct slab *slabp;

3398 3399 3400
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3401
		slabp = virt_to_slab(objp);
3402
		n = cachep->node[node];
L
Linus Torvalds 已提交
3403
		list_del(&slabp->list);
3404
		check_spinlock_acquired_node(cachep, node);
3405
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3406
		STATS_DEC_ACTIVE(cachep);
3407
		n->free_objects++;
L
Linus Torvalds 已提交
3408 3409 3410

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3411 3412
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3413 3414 3415 3416 3417 3418
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3419 3420
				slab_destroy(cachep, slabp);
			} else {
3421
				list_add(&slabp->list, &n->slabs_free);
L
Linus Torvalds 已提交
3422 3423 3424 3425 3426 3427
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3428
			list_add_tail(&slabp->list, &n->slabs_partial);
L
Linus Torvalds 已提交
3429 3430 3431 3432
		}
	}
}

3433
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3434 3435
{
	int batchcount;
3436
	struct kmem_cache_node *n;
3437
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3438 3439 3440 3441 3442 3443

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3444 3445 3446 3447
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3448
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3449 3450 3451
		if (max) {
			if (batchcount > max)
				batchcount = max;
3452
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3453
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3454 3455 3456 3457 3458
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3459
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3460
free_done:
L
Linus Torvalds 已提交
3461 3462 3463 3464 3465
#if STATS
	{
		int i = 0;
		struct list_head *p;

3466 3467
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
L
Linus Torvalds 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3479
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3480
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3481
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3482 3483 3484
}

/*
A
Andrew Morton 已提交
3485 3486
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3487
 */
3488
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3489
				unsigned long caller)
L
Linus Torvalds 已提交
3490
{
3491
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3492 3493

	check_irq_off();
3494
	kmemleak_free_recursive(objp, cachep->flags);
3495
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3496

3497
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3498

3499 3500 3501 3502 3503 3504 3505
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3506
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3507 3508
		return;

L
Linus Torvalds 已提交
3509 3510 3511 3512 3513 3514
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3515

3516
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3527
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3528
{
3529
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3530

3531
	trace_kmem_cache_alloc(_RET_IP_, ret,
3532
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3533 3534

	return ret;
L
Linus Torvalds 已提交
3535 3536 3537
}
EXPORT_SYMBOL(kmem_cache_alloc);

3538
#ifdef CONFIG_TRACING
3539
void *
3540
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3541
{
3542 3543
	void *ret;

3544
	ret = slab_alloc(cachep, flags, _RET_IP_);
3545 3546

	trace_kmalloc(_RET_IP_, ret,
3547
		      size, cachep->size, flags);
3548
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3549
}
3550
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3551 3552
#endif

L
Linus Torvalds 已提交
3553
#ifdef CONFIG_NUMA
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3565 3566
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3567
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3568

3569
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3570
				    cachep->object_size, cachep->size,
3571
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3572 3573

	return ret;
3574
}
L
Linus Torvalds 已提交
3575 3576
EXPORT_SYMBOL(kmem_cache_alloc_node);

3577
#ifdef CONFIG_TRACING
3578
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3579
				  gfp_t flags,
3580 3581
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3582
{
3583 3584
	void *ret;

3585
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3586

3587
	trace_kmalloc_node(_RET_IP_, ret,
3588
			   size, cachep->size,
3589 3590
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3591
}
3592
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3593 3594
#endif

3595
static __always_inline void *
3596
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3597
{
3598
	struct kmem_cache *cachep;
3599

3600
	cachep = kmalloc_slab(size, flags);
3601 3602
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3603
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3604
}
3605

3606
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3607 3608
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3609
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3610
}
3611
EXPORT_SYMBOL(__kmalloc_node);
3612 3613

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3614
		int node, unsigned long caller)
3615
{
3616
	return __do_kmalloc_node(size, flags, node, caller);
3617 3618 3619 3620 3621
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3622
	return __do_kmalloc_node(size, flags, node, 0);
3623 3624
}
EXPORT_SYMBOL(__kmalloc_node);
3625
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3626
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3627 3628

/**
3629
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3630
 * @size: how many bytes of memory are required.
3631
 * @flags: the type of memory to allocate (see kmalloc).
3632
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3633
 */
3634
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3635
					  unsigned long caller)
L
Linus Torvalds 已提交
3636
{
3637
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3638
	void *ret;
L
Linus Torvalds 已提交
3639

3640 3641 3642 3643 3644
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
3645
	cachep = kmalloc_slab(size, flags);
3646 3647
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3648
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3649

3650
	trace_kmalloc(caller, ret,
3651
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3652 3653

	return ret;
3654 3655 3656
}


3657
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3658 3659
void *__kmalloc(size_t size, gfp_t flags)
{
3660
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3661 3662 3663
}
EXPORT_SYMBOL(__kmalloc);

3664
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3665
{
3666
	return __do_kmalloc(size, flags, caller);
3667 3668
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3669 3670 3671 3672

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3673
	return __do_kmalloc(size, flags, 0);
3674 3675
}
EXPORT_SYMBOL(__kmalloc);
3676 3677
#endif

L
Linus Torvalds 已提交
3678 3679 3680 3681 3682 3683 3684 3685
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3686
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3687 3688
{
	unsigned long flags;
3689 3690 3691
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3692 3693

	local_irq_save(flags);
3694
	debug_check_no_locks_freed(objp, cachep->object_size);
3695
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3696
		debug_check_no_obj_freed(objp, cachep->object_size);
3697
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3698
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3699

3700
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3701 3702 3703 3704 3705 3706 3707
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3708 3709
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3710 3711 3712 3713 3714
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3715
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3716 3717
	unsigned long flags;

3718 3719
	trace_kfree(_RET_IP_, objp);

3720
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3721 3722 3723
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3724
	c = virt_to_cache(objp);
3725 3726 3727
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3728
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3729 3730 3731 3732
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3733
/*
3734
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3735
 */
3736
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3737 3738
{
	int node;
3739
	struct kmem_cache_node *n;
3740
	struct array_cache *new_shared;
3741
	struct array_cache **new_alien = NULL;
3742

3743
	for_each_online_node(node) {
3744

3745
                if (use_alien_caches) {
3746
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3747 3748 3749
                        if (!new_alien)
                                goto fail;
                }
3750

3751 3752 3753
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3754
				cachep->shared*cachep->batchcount,
3755
					0xbaadf00d, gfp);
3756 3757 3758 3759
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3760
		}
3761

3762 3763 3764
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3765

3766
			spin_lock_irq(&n->list_lock);
3767

3768
			if (shared)
3769 3770
				free_block(cachep, shared->entry,
						shared->avail, node);
3771

3772 3773 3774
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3775 3776
				new_alien = NULL;
			}
3777
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3778
					cachep->batchcount + cachep->num;
3779
			spin_unlock_irq(&n->list_lock);
3780
			kfree(shared);
3781 3782 3783
			free_alien_cache(new_alien);
			continue;
		}
3784 3785
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3786 3787
			free_alien_cache(new_alien);
			kfree(new_shared);
3788
			goto fail;
3789
		}
3790

3791 3792
		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3793
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3794 3795 3796
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3797
					cachep->batchcount + cachep->num;
3798
		cachep->node[node] = n;
3799
	}
3800
	return 0;
3801

A
Andrew Morton 已提交
3802
fail:
3803
	if (!cachep->list.next) {
3804 3805 3806
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3807
			if (cachep->node[node]) {
3808
				n = cachep->node[node];
3809

3810 3811 3812
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3813
				cachep->node[node] = NULL;
3814 3815 3816 3817
			}
			node--;
		}
	}
3818
	return -ENOMEM;
3819 3820
}

L
Linus Torvalds 已提交
3821
struct ccupdate_struct {
3822
	struct kmem_cache *cachep;
3823
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3824 3825 3826 3827
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3828
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3829 3830 3831
	struct array_cache *old;

	check_irq_off();
3832
	old = cpu_cache_get(new->cachep);
3833

L
Linus Torvalds 已提交
3834 3835 3836 3837
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3838
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3839
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3840
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3841
{
3842
	struct ccupdate_struct *new;
3843
	int i;
L
Linus Torvalds 已提交
3844

3845 3846
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3847 3848 3849
	if (!new)
		return -ENOMEM;

3850
	for_each_online_cpu(i) {
3851
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3852
						batchcount, gfp);
3853
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3854
			for (i--; i >= 0; i--)
3855 3856
				kfree(new->new[i]);
			kfree(new);
3857
			return -ENOMEM;
L
Linus Torvalds 已提交
3858 3859
		}
	}
3860
	new->cachep = cachep;
L
Linus Torvalds 已提交
3861

3862
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3863

L
Linus Torvalds 已提交
3864 3865 3866
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3867
	cachep->shared = shared;
L
Linus Torvalds 已提交
3868

3869
	for_each_online_cpu(i) {
3870
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3871 3872
		if (!ccold)
			continue;
3873
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3874
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3875
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3876 3877
		kfree(ccold);
	}
3878
	kfree(new);
3879
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3880 3881
}

G
Glauber Costa 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3897
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3908
/* Called with slab_mutex held always */
3909
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3910 3911
{
	int err;
G
Glauber Costa 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3922

G
Glauber Costa 已提交
3923 3924
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3925 3926
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3927 3928
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3929
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3930 3931 3932 3933
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3934
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3935
		limit = 1;
3936
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3937
		limit = 8;
3938
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3939
		limit = 24;
3940
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3941 3942 3943 3944
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3945 3946
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3947 3948 3949 3950 3951 3952 3953 3954
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3955
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3956 3957 3958
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3959 3960 3961
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3962 3963 3964 3965
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3966 3967 3968
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3969 3970
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3971
		       cachep->name, -err);
3972
	return err;
L
Linus Torvalds 已提交
3973 3974
}

3975
/*
3976 3977
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3978
 * if drain_array() is used on the shared array.
3979
 */
3980
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3981
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3982 3983 3984
{
	int tofree;

3985 3986
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3987 3988
	if (ac->touched && !force) {
		ac->touched = 0;
3989
	} else {
3990
		spin_lock_irq(&n->list_lock);
3991 3992 3993 3994 3995 3996 3997 3998 3999
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4000
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4001 4002 4003 4004 4005
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4006
 * @w: work descriptor
L
Linus Torvalds 已提交
4007 4008 4009 4010 4011 4012
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4013 4014
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4015
 */
4016
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4017
{
4018
	struct kmem_cache *searchp;
4019
	struct kmem_cache_node *n;
4020
	int node = numa_mem_id();
4021
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4022

4023
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
4024
		/* Give up. Setup the next iteration. */
4025
		goto out;
L
Linus Torvalds 已提交
4026

4027
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
4028 4029
		check_irq_on();

4030
		/*
4031
		 * We only take the node lock if absolutely necessary and we
4032 4033 4034
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4035
		n = searchp->node[node];
4036

4037
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
4038

4039
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4040

4041 4042 4043 4044
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4045
		if (time_after(n->next_reap, jiffies))
4046
			goto next;
L
Linus Torvalds 已提交
4047

4048
		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4049

4050
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
4051

4052 4053
		if (n->free_touched)
			n->free_touched = 0;
4054 4055
		else {
			int freed;
L
Linus Torvalds 已提交
4056

4057
			freed = drain_freelist(searchp, n, (n->free_limit +
4058 4059 4060
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4061
next:
L
Linus Torvalds 已提交
4062 4063 4064
		cond_resched();
	}
	check_irq_on();
4065
	mutex_unlock(&slab_mutex);
4066
	next_reap_node();
4067
out:
A
Andrew Morton 已提交
4068
	/* Set up the next iteration */
4069
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4070 4071
}

4072
#ifdef CONFIG_SLABINFO
4073
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4074
{
P
Pekka Enberg 已提交
4075 4076 4077 4078 4079
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4080
	const char *name;
L
Linus Torvalds 已提交
4081
	char *error = NULL;
4082
	int node;
4083
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4084 4085 4086

	active_objs = 0;
	num_slabs = 0;
4087
	for_each_online_node(node) {
4088 4089
		n = cachep->node[node];
		if (!n)
4090 4091
			continue;

4092
		check_irq_on();
4093
		spin_lock_irq(&n->list_lock);
4094

4095
		list_for_each_entry(slabp, &n->slabs_full, list) {
4096 4097 4098 4099 4100
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4101
		list_for_each_entry(slabp, &n->slabs_partial, list) {
4102 4103 4104 4105 4106 4107 4108
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4109
		list_for_each_entry(slabp, &n->slabs_free, list) {
4110 4111 4112 4113
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
4114 4115 4116
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4117

4118
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4119
	}
P
Pekka Enberg 已提交
4120 4121
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4122
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4123 4124
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4125
	name = cachep->name;
L
Linus Torvalds 已提交
4126 4127 4128
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4143
#if STATS
4144
	{			/* node stats */
L
Linus Torvalds 已提交
4145 4146 4147 4148 4149 4150 4151
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4152
		unsigned long node_frees = cachep->node_frees;
4153
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4154

J
Joe Perches 已提交
4155 4156 4157 4158 4159
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4169
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4182
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4183
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4184
{
P
Pekka Enberg 已提交
4185
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4186
	int limit, batchcount, shared, res;
4187
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4188

L
Linus Torvalds 已提交
4189 4190 4191 4192
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4193
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4204
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4205
	res = -EINVAL;
4206
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4207
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4208 4209
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4210
				res = 0;
L
Linus Torvalds 已提交
4211
			} else {
4212
				res = do_tune_cpucache(cachep, limit,
4213 4214
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4215 4216 4217 4218
			}
			break;
		}
	}
4219
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4220 4221 4222 4223
	if (res >= 0)
		res = count;
	return res;
}
4224 4225 4226 4227 4228

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4229 4230
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
4266 4267
	int i, j;

4268 4269
	if (n[0] == n[1])
		return;
4270
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
		bool active = true;

		for (j = s->free; j < c->num; j++) {
			/* Skip freed item */
			if (slab_bufctl(s)[j] == i) {
				active = false;
				break;
			}
		}
		if (!active)
4281
			continue;
4282

4283 4284 4285 4286 4287 4288 4289 4290 4291
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4292
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4293

4294
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4295
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4296
		if (modname[0])
4297 4298 4299 4300 4301 4302 4303 4304 4305
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4306
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4307
	struct slab *slabp;
4308
	struct kmem_cache_node *n;
4309
	const char *name;
4310
	unsigned long *x = m->private;
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4321
	x[1] = 0;
4322 4323

	for_each_online_node(node) {
4324 4325
		n = cachep->node[node];
		if (!n)
4326 4327 4328
			continue;

		check_irq_on();
4329
		spin_lock_irq(&n->list_lock);
4330

4331
		list_for_each_entry(slabp, &n->slabs_full, list)
4332
			handle_slab(x, cachep, slabp);
4333
		list_for_each_entry(slabp, &n->slabs_partial, list)
4334
			handle_slab(x, cachep, slabp);
4335
		spin_unlock_irq(&n->list_lock);
4336 4337
	}
	name = cachep->name;
4338
	if (x[0] == x[1]) {
4339
		/* Increase the buffer size */
4340
		mutex_unlock(&slab_mutex);
4341
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4342 4343
		if (!m->private) {
			/* Too bad, we are really out */
4344
			m->private = x;
4345
			mutex_lock(&slab_mutex);
4346 4347
			return -ENOMEM;
		}
4348 4349
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4350
		mutex_lock(&slab_mutex);
4351 4352 4353 4354
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4355 4356 4357
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4358 4359
		seq_putc(m, '\n');
	}
4360

4361 4362 4363
	return 0;
}

4364
static const struct seq_operations slabstats_op = {
4365
	.start = leaks_start,
4366 4367
	.next = slab_next,
	.stop = slab_stop,
4368 4369
	.show = leaks_show,
};
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4400
#endif
4401 4402 4403
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4404 4405
#endif

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4418
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4419
{
4420 4421
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4422
		return 0;
L
Linus Torvalds 已提交
4423

4424
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4425
}
K
Kirill A. Shutemov 已提交
4426
EXPORT_SYMBOL(ksize);