page-writeback.c 84.9 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/percpu.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
34
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
35
#include <linux/pagevec.h>
36
#include <linux/timer.h>
37
#include <linux/sched/rt.h>
38
#include <linux/sched/signal.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148 149 150 151 152 153
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
154

155 156
#ifdef CONFIG_CGROUP_WRITEBACK

157 158 159 160
#define GDTC_INIT(__wb)		.wb = (__wb),				\
				.dom = &global_wb_domain,		\
				.wb_completions = &(__wb)->completions

161
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 163 164 165 166

#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
				.dom = mem_cgroup_wb_domain(__wb),	\
				.wb_completions = &(__wb)->memcg_completions, \
				.gdtc = __gdtc
167 168 169 170 171

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
172 173 174 175 176 177

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

178 179 180 181 182
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
183 184 185 186 187
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

217 218
#define GDTC_INIT(__wb)		.wb = (__wb),                           \
				.wb_completions = &(__wb)->completions
219
#define GDTC_INIT_NO_WB
220 221 222 223 224 225
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
226 227 228 229 230 231

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

232 233 234 235 236
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
237 238 239 240 241
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

242 243 244 245 246 247 248 249 250
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

269
/**
270 271
 * node_dirtyable_memory - number of dirtyable pages in a node
 * @pgdat: the node
272
 *
273 274
 * Returns the node's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-node dirty limits.
275
 */
276
static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
277
{
278 279 280 281 282 283 284 285 286 287 288
	unsigned long nr_pages = 0;
	int z;

	for (z = 0; z < MAX_NR_ZONES; z++) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
	}
289

290 291 292 293 294
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
295
	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
296

297 298
	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
299 300 301 302

	return nr_pages;
}

303 304 305 306
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
307
	unsigned long x = 0;
308
	int i;
309 310

	for_each_node_state(node, N_HIGH_MEMORY) {
311 312
		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
			struct zone *z;
313
			unsigned long nr_pages;
314 315 316 317 318

			if (!is_highmem_idx(i))
				continue;

			z = &NODE_DATA(node)->node_zones[i];
319 320
			if (!populated_zone(z))
				continue;
321

322
			nr_pages = zone_page_state(z, NR_FREE_PAGES);
323
			/* watch for underflows */
324
			nr_pages -= min(nr_pages, high_wmark_pages(z));
325 326 327
			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
			x += nr_pages;
328
		}
329
	}
330

331 332 333 334 335 336 337 338 339 340 341 342
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

343 344 345 346 347 348 349 350 351 352 353 354 355
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
356
 * global_dirtyable_memory - number of globally dirtyable pages
357
 *
358 359
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
360
 */
361
static unsigned long global_dirtyable_memory(void)
362 363 364
{
	unsigned long x;

365
	x = global_zone_page_state(NR_FREE_PAGES);
366 367 368 369 370 371
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	x -= min(x, totalreserve_pages);
372

M
Mel Gorman 已提交
373 374
	x += global_node_page_state(NR_INACTIVE_FILE);
	x += global_node_page_state(NR_ACTIVE_FILE);
375

376 377 378 379 380 381
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

382 383 384
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
385
 *
386 387 388 389
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
390 391
 * real-time tasks.
 */
392
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
393
{
394 395 396 397
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
398 399 400
	/* convert ratios to per-PAGE_SIZE for higher precision */
	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
401 402
	unsigned long thresh;
	unsigned long bg_thresh;
403 404
	struct task_struct *tsk;

405 406 407 408 409 410 411
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
412 413 414
		 * globally available memory.  As the ratios are in
		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
		 * number of pages.
415 416
		 */
		if (bytes)
417 418
			ratio = min(DIV_ROUND_UP(bytes, global_avail),
				    PAGE_SIZE);
419
		if (bg_bytes)
420 421
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
				       PAGE_SIZE);
422 423 424 425 426
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
427
	else
428
		thresh = (ratio * available_memory) / PAGE_SIZE;
429

430 431
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
432
	else
433
		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
434

435
	if (bg_thresh >= thresh)
436
		bg_thresh = thresh / 2;
437 438
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
439 440
		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
441
	}
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
467 468
}

469
/**
470 471
 * node_dirty_limit - maximum number of dirty pages allowed in a node
 * @pgdat: the node
472
 *
473 474
 * Returns the maximum number of dirty pages allowed in a node, based
 * on the node's dirtyable memory.
475
 */
476
static unsigned long node_dirty_limit(struct pglist_data *pgdat)
477
{
478
	unsigned long node_memory = node_dirtyable_memory(pgdat);
479 480 481 482 483
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
484
			node_memory / global_dirtyable_memory();
485
	else
486
		dirty = vm_dirty_ratio * node_memory / 100;
487 488 489 490 491 492 493 494

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
495 496
 * node_dirty_ok - tells whether a node is within its dirty limits
 * @pgdat: the node to check
497
 *
498
 * Returns %true when the dirty pages in @pgdat are within the node's
499 500
 * dirty limit, %false if the limit is exceeded.
 */
501
bool node_dirty_ok(struct pglist_data *pgdat)
502
{
503 504 505
	unsigned long limit = node_dirty_limit(pgdat);
	unsigned long nr_pages = 0;

506 507 508
	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
509

510
	return nr_pages <= limit;
511 512
}

513
int dirty_background_ratio_handler(struct ctl_table *table, int write,
514
		void __user *buffer, size_t *lenp,
515 516 517 518
		loff_t *ppos)
{
	int ret;

519
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
520 521 522 523 524 525
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
526
		void __user *buffer, size_t *lenp,
527 528 529 530
		loff_t *ppos)
{
	int ret;

531
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532 533 534 535 536
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
537
int dirty_ratio_handler(struct ctl_table *table, int write,
538
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
539 540 541
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
542 543
	int ret;

544
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
545
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
546
		writeback_set_ratelimit();
547 548 549 550 551 552
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
553
		void __user *buffer, size_t *lenp,
554 555
		loff_t *ppos)
{
556
	unsigned long old_bytes = vm_dirty_bytes;
557 558
	int ret;

559
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
560
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
561
		writeback_set_ratelimit();
562
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
563 564 565 566
	}
	return ret;
}

567 568 569 570 571 572 573 574 575
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

576 577 578
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
579
{
580 581
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
582
	/* First event after period switching was turned off? */
583
	if (unlikely(!dom->period_time)) {
584 585 586 587 588 589
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
590 591
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
592
	}
P
Peter Zijlstra 已提交
593 594
}

595 596 597 598 599
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
600
{
T
Tejun Heo 已提交
601
	struct wb_domain *cgdom;
602

603
	inc_wb_stat(wb, WB_WRITTEN);
604 605
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
606 607 608 609 610

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
611 612
}

613
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
614
{
615 616 617
	unsigned long flags;

	local_irq_save(flags);
618
	__wb_writeout_inc(wb);
619
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
620
}
621
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
622

623 624 625 626
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
627
static void writeout_period(struct timer_list *t)
628
{
629
	struct wb_domain *dom = from_timer(dom, t, period_timer);
T
Tejun Heo 已提交
630
	int miss_periods = (jiffies - dom->period_time) /
631 632
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
633 634
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
635
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
636
		mod_timer(&dom->period_timer, dom->period_time);
637 638 639 640 641
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
642
		dom->period_time = 0;
643 644 645
	}
}

T
Tejun Heo 已提交
646 647 648
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
649 650 651

	spin_lock_init(&dom->lock);

652
	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
653 654 655

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
656 657 658
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
659 660 661 662 663 664 665 666
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

667
/*
668 669 670
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
671 672 673 674 675 676 677
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

678
	spin_lock_bh(&bdi_lock);
679
	if (min_ratio > bdi->max_ratio) {
680
		ret = -EINVAL;
681 682 683 684 685 686 687 688 689
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
690
	spin_unlock_bh(&bdi_lock);
691 692 693 694 695 696 697 698 699 700 701

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

702
	spin_lock_bh(&bdi_lock);
703 704 705 706
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
707
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
708
	}
709
	spin_unlock_bh(&bdi_lock);
710 711 712

	return ret;
}
713
EXPORT_SYMBOL(bdi_set_max_ratio);
714

W
Wu Fengguang 已提交
715 716 717 718 719 720
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

721 722
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
723
{
724
	return max(thresh, dom->dirty_limit);
725 726
}

727 728 729 730 731 732
/*
 * Memory which can be further allocated to a memcg domain is capped by
 * system-wide clean memory excluding the amount being used in the domain.
 */
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
			    unsigned long filepages, unsigned long headroom)
733 734
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
735 736 737
	unsigned long clean = filepages - min(filepages, mdtc->dirty);
	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
	unsigned long other_clean = global_clean - min(global_clean, clean);
738

739
	mdtc->avail = filepages + min(headroom, other_clean);
740 741
}

742
/**
743 744
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
745
 *
746
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
747
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
748 749 750 751 752 753
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
754
 * more (rather than completely block them) when the wb dirty pages go high.
755
 *
756
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
757 758 759
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
760
 * The wb's share of dirty limit will be adapting to its throughput and
761 762
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
763
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
764
{
765
	struct wb_domain *dom = dtc_dom(dtc);
766
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
767
	u64 wb_thresh;
768
	long numerator, denominator;
769
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
770

771
	/*
T
Tejun Heo 已提交
772
	 * Calculate this BDI's share of the thresh ratio.
773
	 */
774
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
775
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
776

T
Tejun Heo 已提交
777 778 779
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
780

781
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
782

T
Tejun Heo 已提交
783 784 785
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
786

T
Tejun Heo 已提交
787
	return wb_thresh;
L
Linus Torvalds 已提交
788 789
}

790 791 792 793 794
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
795 796
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
811
static long long pos_ratio_polynom(unsigned long setpoint,
812 813 814 815 816 817
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

818
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
819
		      (limit - setpoint) | 1);
820 821 822 823 824 825 826 827
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
828 829 830 831 832
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
833
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
834 835 836 837 838 839 840 841 842
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
843 844
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
869
 * (o) wb control line
W
Wu Fengguang 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
895
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
896
 *
897
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
898 899
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
900 901
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
902
 */
903
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
904
{
905
	struct bdi_writeback *wb = dtc->wb;
906
	unsigned long write_bw = wb->avg_write_bandwidth;
907
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
908
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
909
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
910 911
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
912
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
913 914 915 916
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

917 918
	dtc->pos_ratio = 0;

919
	if (unlikely(dtc->dirty >= limit))
920
		return;
W
Wu Fengguang 已提交
921 922 923 924

	/*
	 * global setpoint
	 *
925 926 927
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
928
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
929 930 931 932

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
933 934
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
935 936 937 938
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
939
	 *
940
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
941
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
942 943
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
944
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
945
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
946
	 * about ~6K pages (as the average of background and throttle wb
947
	 * limits). The 3rd order polynomial will provide positive feedback if
948
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
949
	 *
950
	 * Note, that we cannot use global counters in these calculations
951
	 * because we want to throttle process writing to a strictlimit wb
952 953
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
954
	 */
955
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
956
		long long wb_pos_ratio;
957

958 959 960 961 962
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
963

964
		if (dtc->wb_dirty >= wb_thresh)
965
			return;
966

967 968
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
969

970
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
971
			return;
972

973
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
974
						 wb_thresh);
975 976

		/*
977 978
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
979
		 * state ("dirty") is not limiting factor and we have to
980
		 * make decision based on wb counters. But there is an
981 982
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
983
		 * wb's) while given strictlimit wb is below limit.
984
		 *
985
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
986
		 * but it would look too non-natural for the case of all
987
		 * activity in the system coming from a single strictlimit wb
988 989 990 991
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
992
		 * (when globally we are at freerun and wb is well below wb
993 994 995 996
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
997 998
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
999
	}
W
Wu Fengguang 已提交
1000 1001 1002

	/*
	 * We have computed basic pos_ratio above based on global situation. If
1003
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
1004 1005 1006 1007
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
1008
	 * wb setpoint
W
Wu Fengguang 已提交
1009
	 *
1010
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
1011
	 *
1012
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
1013
	 *                     := --------------------------
1014
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
1015
	 *
1016
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
1017
	 *
1018 1019 1020
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
1021
	 *
1022
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
1023
	 * regularly within range
1024
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
1025 1026 1027
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
1028
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
1029
	 * own size, so move the slope over accordingly and choose a slope that
1030
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
1031
	 */
1032 1033
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
1034
	/*
1035
	 * It's very possible that wb_thresh is close to 0 not because the
1036 1037 1038 1039 1040
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
1041
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
1042
	/*
1043 1044
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
1045
	 */
1046
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1047
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1048
	/*
1049 1050
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1051
	 *
1052 1053 1054
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1055
	 */
1056
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1057
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1058

1059 1060
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1061
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1062 1063 1064
	} else
		pos_ratio /= 4;

1065
	/*
1066
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1067 1068 1069
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1070
	x_intercept = wb_thresh / 2;
1071 1072 1073 1074
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1075
		else
1076 1077 1078
			pos_ratio *= 8;
	}

1079
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1080 1081
}

1082 1083 1084
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1085 1086
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1087 1088
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1089 1090 1091 1092 1093 1094 1095 1096
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1097 1098 1099
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1100
	 */
1101
	bw = written - min(written, wb->written_stamp);
1102 1103 1104 1105 1106 1107
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1108
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1121 1122 1123 1124 1125 1126 1127
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1128 1129
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1130 1131
}

1132
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1133
{
1134
	struct wb_domain *dom = dtc_dom(dtc);
1135
	unsigned long thresh = dtc->thresh;
1136
	unsigned long limit = dom->dirty_limit;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1149
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1150
	 */
1151
	thresh = max(thresh, dtc->dirty);
1152 1153 1154 1155 1156 1157
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1158
	dom->dirty_limit = limit;
1159 1160
}

1161
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1162 1163
				    unsigned long now)
{
1164
	struct wb_domain *dom = dtc_dom(dtc);
1165 1166 1167 1168

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1169
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1170 1171
		return;

1172 1173
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1174
		update_dirty_limit(dtc);
1175
		dom->dirty_limit_tstamp = now;
1176
	}
1177
	spin_unlock(&dom->lock);
1178 1179
}

W
Wu Fengguang 已提交
1180
/*
1181
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1182
 *
1183
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1184 1185
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1186
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1187 1188
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1189
{
1190 1191 1192
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1193
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1194
	unsigned long setpoint = (freerun + limit) / 2;
1195 1196
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1197 1198 1199
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1200 1201
	unsigned long step;
	unsigned long x;
1202
	unsigned long shift;
W
Wu Fengguang 已提交
1203 1204 1205 1206 1207

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1208
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1209 1210 1211 1212 1213

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1214
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1215 1216 1217 1218
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1219
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1249 1250 1251 1252 1253
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1254

1255 1256 1257
	/*
	 * We could safely do this and return immediately:
	 *
1258
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1259 1260
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1261
	 * code makes use of task_ratelimit to filter out singular points and
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1284
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1285 1286 1287 1288 1289
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1290 1291

	/*
1292
	 * For strictlimit case, calculations above were based on wb counters
1293
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1294
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1295 1296
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1297
	 *
1298 1299
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1300
	 * of backing device.
1301
	 */
1302
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1303 1304 1305
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1306
		else
1307
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1308 1309
	}

1310
	if (dirty < setpoint) {
1311
		x = min3(wb->balanced_dirty_ratelimit,
1312
			 balanced_dirty_ratelimit, task_ratelimit);
1313 1314 1315
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1316
		x = max3(wb->balanced_dirty_ratelimit,
1317
			 balanced_dirty_ratelimit, task_ratelimit);
1318 1319 1320 1321 1322 1323 1324 1325 1326
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
1327 1328 1329 1330 1331
	shift = dirty_ratelimit / (2 * step + 1);
	if (shift < BITS_PER_LONG)
		step = DIV_ROUND_UP(step >> shift, 8);
	else
		step = 0;
1332 1333 1334 1335 1336 1337

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1338 1339
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1340

1341
	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1342 1343
}

1344 1345
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1346 1347
				  unsigned long start_time,
				  bool update_ratelimit)
1348
{
1349
	struct bdi_writeback *wb = gdtc->wb;
1350
	unsigned long now = jiffies;
1351
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1352
	unsigned long dirtied;
1353 1354
	unsigned long written;

1355 1356
	lockdep_assert_held(&wb->list_lock);

1357 1358 1359 1360 1361 1362
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1363 1364
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1365 1366 1367 1368 1369

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1370
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1371 1372
		goto snapshot;

1373
	if (update_ratelimit) {
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1385
	}
1386
	wb_update_write_bandwidth(wb, elapsed, written);
1387 1388

snapshot:
1389 1390 1391
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1392 1393
}

1394
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1395
{
1396 1397
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1398
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1399 1400
}

1401
/*
1402
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1403 1404 1405
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1406
 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1418
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1419
				  unsigned long wb_dirty)
1420
{
1421
	unsigned long bw = wb->avg_write_bandwidth;
1422
	unsigned long t;
1423

1424 1425 1426 1427 1428 1429 1430
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1431
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1432 1433
	t++;

1434
	return min_t(unsigned long, t, MAX_PAUSE);
1435 1436
}

1437 1438 1439 1440 1441
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1442
{
1443 1444
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1445 1446 1447
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1448

1449 1450
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1451 1452 1453 1454 1455

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1456
	 * (N * 10ms) on 2^N concurrent tasks.
1457 1458
	 */
	if (hi > lo)
1459
		t += (hi - lo) * (10 * HZ) / 1024;
1460 1461

	/*
1462 1463 1464 1465 1466 1467 1468 1469
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1470
	 *
1471 1472 1473 1474 1475 1476 1477
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1478
	 */
1479 1480
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1481 1482

	/*
1483 1484 1485 1486 1487 1488
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1489
	 */
1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1499 1500 1501 1502 1503
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1504

1505
	*nr_dirtied_pause = pages;
1506
	/*
1507
	 * The minimal pause time will normally be half the target pause time.
1508
	 */
1509
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1510 1511
}

1512
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1513
{
1514
	struct bdi_writeback *wb = dtc->wb;
1515
	unsigned long wb_reclaimable;
1516 1517

	/*
1518
	 * wb_thresh is not treated as some limiting factor as
1519
	 * dirty_thresh, due to reasons
1520
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1521
	 * - in a system with HDD and USB key, the USB key may somehow
1522 1523
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1524
	 *   In this case we don't want to hard throttle the USB key
1525 1526
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1527
	 *   wb_position_ratio() will let the dirtier task progress
1528
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1529
	 */
1530
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1531 1532
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1544
	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1545
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1546
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1547
	} else {
1548
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1549
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1550 1551 1552
	}
}

L
Linus Torvalds 已提交
1553 1554 1555
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1556
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1557 1558
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1559
 */
1560
static void balance_dirty_pages(struct bdi_writeback *wb,
1561
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1562
{
1563
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1564
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1565
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1566 1567 1568
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1569
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1570
	long period;
1571 1572 1573 1574
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1575
	bool dirty_exceeded = false;
1576
	unsigned long task_ratelimit;
1577
	unsigned long dirty_ratelimit;
1578
	struct backing_dev_info *bdi = wb->bdi;
1579
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1580
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1581 1582

	for (;;) {
1583
		unsigned long now = jiffies;
1584
		unsigned long dirty, thresh, bg_thresh;
1585 1586 1587
		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
		unsigned long m_thresh = 0;
		unsigned long m_bg_thresh = 0;
1588

1589 1590 1591 1592 1593 1594
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1595 1596
		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
					global_node_page_state(NR_UNSTABLE_NFS);
1597
		gdtc->avail = global_dirtyable_memory();
1598
		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1599

1600
		domain_dirty_limits(gdtc);
1601

1602
		if (unlikely(strictlimit)) {
1603
			wb_dirty_limits(gdtc);
1604

1605 1606
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1607
			bg_thresh = gdtc->wb_bg_thresh;
1608
		} else {
1609 1610 1611
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1612 1613
		}

1614
		if (mdtc) {
1615
			unsigned long filepages, headroom, writeback;
1616 1617 1618 1619 1620

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
1621 1622
			mem_cgroup_wb_stats(wb, &filepages, &headroom,
					    &mdtc->dirty, &writeback);
1623
			mdtc->dirty += writeback;
1624
			mdtc_calc_avail(mdtc, filepages, headroom);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1638 1639
		}

1640 1641 1642
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1643
		 * when the wb limits are ramping up in case of !strictlimit.
1644
		 *
1645 1646
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1647
		 * up are the price we consciously pay for strictlimit-ing.
1648 1649 1650
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1651
		 */
1652 1653 1654 1655 1656 1657
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1658 1659
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1660 1661 1662
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1663
			break;
1664
		}
1665

1666
		if (unlikely(!writeback_in_progress(wb)))
1667
			wb_start_background_writeback(wb);
1668

1669 1670 1671 1672
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1673
		if (!strictlimit)
1674
			wb_dirty_limits(gdtc);
1675

1676 1677
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1678 1679

		wb_position_ratio(gdtc);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1699

1700 1701
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1702

1703 1704 1705
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1706
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1707 1708
			spin_unlock(&wb->list_lock);
		}
1709

1710
		/* throttle according to the chosen dtc */
1711
		dirty_ratelimit = wb->dirty_ratelimit;
1712
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1713
							RATELIMIT_CALC_SHIFT;
1714
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1715 1716 1717
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1718

1719
		if (unlikely(task_ratelimit == 0)) {
1720
			period = max_pause;
1721
			pause = max_pause;
1722
			goto pause;
P
Peter Zijlstra 已提交
1723
		}
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1735
		if (pause < min_pause) {
1736
			trace_balance_dirty_pages(wb,
1737 1738 1739 1740 1741
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1742 1743 1744
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1745
						  period,
1746
						  min(pause, 0L),
1747
						  start_time);
1748 1749 1750 1751 1752 1753
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1754 1755
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1756
			break;
P
Peter Zijlstra 已提交
1757
		}
1758 1759 1760 1761 1762
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1763 1764

pause:
1765
		trace_balance_dirty_pages(wb,
1766 1767 1768 1769 1770
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1771 1772 1773
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1774
					  period,
1775 1776
					  pause,
					  start_time);
1777
		__set_current_state(TASK_KILLABLE);
1778
		wb->dirty_sleep = now;
1779
		io_schedule_timeout(pause);
1780

1781 1782
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1783
		current->nr_dirtied_pause = nr_dirtied_pause;
1784

1785
		/*
1786 1787
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1788
		 */
1789
		if (task_ratelimit)
1790
			break;
1791

1792 1793
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1794
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1795 1796
		 * to go through, so that tasks on them still remain responsive.
		 *
1797
		 * In theory 1 page is enough to keep the consumer-producer
1798
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1799
		 * more page. However wb_dirty has accounting errors.  So use
1800
		 * the larger and more IO friendly wb_stat_error.
1801
		 */
1802
		if (sdtc->wb_dirty <= wb_stat_error())
1803 1804
			break;

1805 1806
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1807 1808
	}

1809 1810
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1811

1812
	if (writeback_in_progress(wb))
1813
		return;
L
Linus Torvalds 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1823 1824 1825
	if (laptop_mode)
		return;

1826
	if (nr_reclaimable > gdtc->bg_thresh)
1827
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1828 1829
}

1830
static DEFINE_PER_CPU(int, bdp_ratelimits);
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1848
/**
1849
 * balance_dirty_pages_ratelimited - balance dirty memory state
1850
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1861
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1862
{
1863 1864 1865
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1866 1867
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1868

1869 1870 1871
	if (!bdi_cap_account_dirty(bdi))
		return;

1872 1873 1874 1875 1876
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1877
	ratelimit = current->nr_dirtied_pause;
1878
	if (wb->dirty_exceeded)
1879 1880 1881
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1882
	/*
1883 1884 1885 1886
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1887
	 */
1888
	p =  this_cpu_ptr(&bdp_ratelimits);
1889
	if (unlikely(current->nr_dirtied >= ratelimit))
1890
		*p = 0;
1891 1892 1893
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1894
	}
1895 1896 1897 1898 1899
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1900
	p = this_cpu_ptr(&dirty_throttle_leaks);
1901
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1902
		unsigned long nr_pages_dirtied;
1903 1904 1905
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1906
	}
1907
	preempt_enable();
1908 1909

	if (unlikely(current->nr_dirtied >= ratelimit))
1910
		balance_dirty_pages(wb, current->nr_dirtied);
1911 1912

	wb_put(wb);
L
Linus Torvalds 已提交
1913
}
1914
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1925
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1926
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1927
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1928 1929
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1930

1931 1932 1933 1934 1935
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
1936 1937
	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
		      global_node_page_state(NR_UNSTABLE_NFS);
1938
	domain_dirty_limits(gdtc);
1939

1940
	if (gdtc->dirty > gdtc->bg_thresh)
1941 1942
		return true;

1943 1944
	if (wb_stat(wb, WB_RECLAIMABLE) >
	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1945 1946
		return true;

1947
	if (mdtc) {
1948
		unsigned long filepages, headroom, writeback;
1949

1950 1951 1952
		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
				    &writeback);
		mdtc_calc_avail(mdtc, filepages, headroom);
1953 1954 1955 1956 1957
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

1958 1959
		if (wb_stat(wb, WB_RECLAIMABLE) >
		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1960 1961 1962
			return true;
	}

1963 1964 1965
	return false;
}

L
Linus Torvalds 已提交
1966 1967 1968
/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1969
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1970
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1971
{
1972 1973 1974 1975
	unsigned int old_interval = dirty_writeback_interval;
	int ret;

	ret = proc_dointvec(table, write, buffer, length, ppos);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

	/*
	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
	 * and a different non-zero value will wakeup the writeback threads.
	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
	 * iterate over all bdis and wbs.
	 * The reason we do this is to make the change take effect immediately.
	 */
	if (!ret && write && dirty_writeback_interval &&
		dirty_writeback_interval != old_interval)
1986 1987 1988
		wakeup_flusher_threads(WB_REASON_PERIODIC);

	return ret;
L
Linus Torvalds 已提交
1989 1990
}

1991
#ifdef CONFIG_BLOCK
1992
void laptop_mode_timer_fn(struct timer_list *t)
L
Linus Torvalds 已提交
1993
{
1994 1995
	struct backing_dev_info *backing_dev_info =
		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
L
Linus Torvalds 已提交
1996

1997
	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002 2003 2004
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
2005
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
2006
{
2007
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
2017 2018 2019 2020 2021 2022 2023 2024
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
2025
}
2026
#endif
L
Linus Torvalds 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2036
 * thresholds.
L
Linus Torvalds 已提交
2037 2038
 */

2039
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2040
{
2041
	struct wb_domain *dom = &global_wb_domain;
2042 2043
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2044

2045
	global_dirty_limits(&background_thresh, &dirty_thresh);
2046
	dom->dirty_limit = dirty_thresh;
2047
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2048 2049 2050 2051
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2052
static int page_writeback_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
2053
{
2054 2055
	writeback_set_ratelimit();
	return 0;
L
Linus Torvalds 已提交
2056 2057 2058
}

/*
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2075 2076 2077
 */
void __init page_writeback_init(void)
{
2078 2079
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));

2080 2081 2082 2083
	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
			  page_writeback_cpu_online, NULL);
	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
			  page_writeback_cpu_online);
L
Linus Torvalds 已提交
2084 2085
}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
M
Matthew Wilcox 已提交
2101 2102
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce the i_pages lock
 * latency.
2103 2104 2105 2106
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2107
#define WRITEBACK_TAG_BATCH 4096
2108 2109 2110 2111
	unsigned long tagged = 0;
	struct radix_tree_iter iter;
	void **slot;

M
Matthew Wilcox 已提交
2112 2113
	xa_lock_irq(&mapping->i_pages);
	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start,
2114 2115 2116
							PAGECACHE_TAG_DIRTY) {
		if (iter.index > end)
			break;
M
Matthew Wilcox 已提交
2117
		radix_tree_iter_tag_set(&mapping->i_pages, &iter,
2118 2119 2120 2121 2122
							PAGECACHE_TAG_TOWRITE);
		tagged++;
		if ((tagged % WRITEBACK_TAG_BATCH) != 0)
			continue;
		slot = radix_tree_iter_resume(slot, &iter);
M
Matthew Wilcox 已提交
2123
		xa_unlock_irq(&mapping->i_pages);
2124
		cond_resched();
M
Matthew Wilcox 已提交
2125
		xa_lock_irq(&mapping->i_pages);
2126
	}
M
Matthew Wilcox 已提交
2127
	xa_unlock_irq(&mapping->i_pages);
2128 2129 2130
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2131
/**
2132
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2133 2134
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2135 2136
 * @writepage: function called for each page
 * @data: data passed to writepage function
2137
 *
2138
 * If a page is already under I/O, write_cache_pages() skips it, even
2139 2140 2141 2142 2143 2144
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2145 2146 2147 2148 2149 2150 2151
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2152 2153 2154 2155 2156 2157 2158
 *
 * To avoid deadlocks between range_cyclic writeback and callers that hold
 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
 * we do not loop back to the start of the file. Doing so causes a page
 * lock/page writeback access order inversion - we should only ever lock
 * multiple pages in ascending page->index order, and looping back to the start
 * of the file violates that rule and causes deadlocks.
2159
 */
2160 2161 2162
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2163 2164 2165
{
	int ret = 0;
	int done = 0;
2166
	int error;
2167 2168
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2169
	pgoff_t uninitialized_var(writeback_index);
2170 2171
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2172
	pgoff_t done_index;
2173
	int range_whole = 0;
2174
	int tag;
2175

2176
	pagevec_init(&pvec);
2177
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2178 2179
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
2180 2181
		end = -1;
	} else {
2182 2183
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
2184 2185 2186
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
	}
2187
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188 2189 2190
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2191
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192
		tag_pages_for_writeback(mapping, index, end);
2193
	done_index = index;
N
Nick Piggin 已提交
2194 2195 2196
	while (!done && (index <= end)) {
		int i;

2197
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2198
				tag);
N
Nick Piggin 已提交
2199 2200
		if (nr_pages == 0)
			break;
2201 2202 2203 2204

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

2205
			done_index = page->index;
2206

2207 2208
			lock_page(page);

N
Nick Piggin 已提交
2209 2210 2211 2212 2213 2214 2215 2216
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2217
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2218
continue_unlock:
2219 2220 2221 2222
				unlock_page(page);
				continue;
			}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2234

2235 2236
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2237
				goto continue_unlock;
2238

2239
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
			error = (*writepage)(page, wbc, data);
			if (unlikely(error)) {
				/*
				 * Handle errors according to the type of
				 * writeback. There's no need to continue for
				 * background writeback. Just push done_index
				 * past this page so media errors won't choke
				 * writeout for the entire file. For integrity
				 * writeback, we must process the entire dirty
				 * set regardless of errors because the fs may
				 * still have state to clear for each page. In
				 * that case we continue processing and return
				 * the first error.
				 */
				if (error == AOP_WRITEPAGE_ACTIVATE) {
2255
					unlock_page(page);
2256 2257 2258
					error = 0;
				} else if (wbc->sync_mode != WB_SYNC_ALL) {
					ret = error;
2259
					done_index = page->index + 1;
2260 2261 2262
					done = 1;
					break;
				}
2263 2264
				if (!ret)
					ret = error;
2265
			}
2266

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2277
			}
2278 2279 2280 2281
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2282 2283 2284 2285 2286 2287 2288 2289

	/*
	 * If we hit the last page and there is more work to be done: wrap
	 * back the index back to the start of the file for the next
	 * time we are called.
	 */
	if (wbc->range_cyclic && !done)
		done_index = 0;
2290 2291
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2292

2293 2294
	return ret;
}
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2321 2322 2323
	struct blk_plug plug;
	int ret;

2324 2325 2326 2327
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2328 2329 2330 2331
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2332
}
2333 2334 2335

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2336 2337
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2338 2339
	int ret;

L
Linus Torvalds 已提交
2340 2341
	if (wbc->nr_to_write <= 0)
		return 0;
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	while (1) {
		if (mapping->a_ops->writepages)
			ret = mapping->a_ops->writepages(mapping, wbc);
		else
			ret = generic_writepages(mapping, wbc);
		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
			break;
		cond_resched();
		congestion_wait(BLK_RW_ASYNC, HZ/50);
	}
2352
	return ret;
L
Linus Torvalds 已提交
2353 2354 2355
}

/**
2356
 * write_one_page - write out a single page and wait on I/O
2357
 * @page: the page to write
L
Linus Torvalds 已提交
2358 2359 2360
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
2361 2362
 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
 * function returns.
L
Linus Torvalds 已提交
2363
 */
2364
int write_one_page(struct page *page)
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

2375
	wait_on_page_writeback(page);
L
Linus Torvalds 已提交
2376 2377

	if (clear_page_dirty_for_io(page)) {
2378
		get_page(page);
L
Linus Torvalds 已提交
2379
		ret = mapping->a_ops->writepage(page, &wbc);
2380
		if (ret == 0)
L
Linus Torvalds 已提交
2381
			wait_on_page_writeback(page);
2382
		put_page(page);
L
Linus Torvalds 已提交
2383 2384 2385
	} else {
		unlock_page(page);
	}
2386 2387 2388

	if (!ret)
		ret = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
2389 2390 2391 2392
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2393 2394 2395 2396 2397 2398
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2399
		return !TestSetPageDirty(page);
2400 2401 2402
	return 0;
}

2403 2404
/*
 * Helper function for set_page_dirty family.
2405
 *
2406
 * Caller must hold lock_page_memcg().
2407
 *
2408 2409
 * NOTE: This relies on being atomic wrt interrupts.
 */
J
Johannes Weiner 已提交
2410
void account_page_dirtied(struct page *page, struct address_space *mapping)
2411
{
2412 2413
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2414 2415
	trace_writeback_dirty_page(page, mapping);

2416
	if (mapping_cap_account_dirty(mapping)) {
2417
		struct bdi_writeback *wb;
2418

2419 2420
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2421

2422
		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2423
		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2424
		__inc_node_page_state(page, NR_DIRTIED);
2425 2426
		inc_wb_stat(wb, WB_RECLAIMABLE);
		inc_wb_stat(wb, WB_DIRTIED);
2427
		task_io_account_write(PAGE_SIZE);
2428 2429
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2430 2431
	}
}
M
Michael Rubin 已提交
2432
EXPORT_SYMBOL(account_page_dirtied);
2433

2434 2435 2436
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2437
 * Caller must hold lock_page_memcg().
2438
 */
2439
void account_page_cleaned(struct page *page, struct address_space *mapping,
J
Johannes Weiner 已提交
2440
			  struct bdi_writeback *wb)
2441 2442
{
	if (mapping_cap_account_dirty(mapping)) {
2443
		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2444
		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2445
		dec_wb_stat(wb, WB_RECLAIMABLE);
2446
		task_io_account_cancelled_write(PAGE_SIZE);
2447 2448 2449
	}
}

L
Linus Torvalds 已提交
2450 2451 2452 2453 2454 2455 2456 2457
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2458 2459 2460
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2461 2462 2463
 */
int __set_page_dirty_nobuffers(struct page *page)
{
J
Johannes Weiner 已提交
2464
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2465 2466
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2467
		unsigned long flags;
L
Linus Torvalds 已提交
2468

2469
		if (!mapping) {
J
Johannes Weiner 已提交
2470
			unlock_page_memcg(page);
2471
			return 1;
2472
		}
2473

M
Matthew Wilcox 已提交
2474
		xa_lock_irqsave(&mapping->i_pages, flags);
2475 2476
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
J
Johannes Weiner 已提交
2477
		account_page_dirtied(page, mapping);
M
Matthew Wilcox 已提交
2478
		radix_tree_tag_set(&mapping->i_pages, page_index(page),
2479
				   PAGECACHE_TAG_DIRTY);
M
Matthew Wilcox 已提交
2480
		xa_unlock_irqrestore(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
2481
		unlock_page_memcg(page);
2482

2483 2484 2485
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2486
		}
2487
		return 1;
L
Linus Torvalds 已提交
2488
	}
J
Johannes Weiner 已提交
2489
	unlock_page_memcg(page);
2490
	return 0;
L
Linus Torvalds 已提交
2491 2492 2493
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2494 2495
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
2496 2497
 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2498 2499 2500 2501 2502 2503
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2504

2505
	if (mapping && mapping_cap_account_dirty(mapping)) {
2506 2507
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
2508
		struct wb_lock_cookie cookie = {};
2509

G
Greg Thelen 已提交
2510
		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2511
		current->nr_dirtied--;
2512
		dec_node_page_state(page, NR_DIRTIED);
2513
		dec_wb_stat(wb, WB_DIRTIED);
G
Greg Thelen 已提交
2514
		unlocked_inode_to_wb_end(inode, &cookie);
2515 2516 2517 2518
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2519 2520 2521 2522 2523 2524 2525
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2526 2527
	int ret;

L
Linus Torvalds 已提交
2528
	wbc->pages_skipped++;
2529
	ret = __set_page_dirty_nobuffers(page);
2530
	account_page_redirty(page);
2531
	return ret;
L
Linus Torvalds 已提交
2532 2533 2534 2535
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2536 2537 2538 2539 2540 2541 2542
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2543 2544 2545
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2546
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2547 2548 2549
{
	struct address_space *mapping = page_mapping(page);

2550
	page = compound_head(page);
L
Linus Torvalds 已提交
2551 2552
	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2563 2564
		if (PageReclaim(page))
			ClearPageReclaim(page);
2565 2566 2567 2568 2569
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2570
	}
2571 2572 2573 2574
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2593
	lock_page(page);
L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
2613
void __cancel_dirty_page(struct page *page)
2614
{
2615 2616 2617
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2618 2619
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
2620
		struct wb_lock_cookie cookie = {};
2621

J
Johannes Weiner 已提交
2622
		lock_page_memcg(page);
G
Greg Thelen 已提交
2623
		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2624 2625

		if (TestClearPageDirty(page))
J
Johannes Weiner 已提交
2626
			account_page_cleaned(page, mapping, wb);
2627

G
Greg Thelen 已提交
2628
		unlocked_inode_to_wb_end(inode, &cookie);
J
Johannes Weiner 已提交
2629
		unlock_page_memcg(page);
2630 2631 2632
	} else {
		ClearPageDirty(page);
	}
2633
}
2634
EXPORT_SYMBOL(__cancel_dirty_page);
2635

L
Linus Torvalds 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2653
	int ret = 0;
L
Linus Torvalds 已提交
2654

2655 2656
	BUG_ON(!PageLocked(page));

2657
	if (mapping && mapping_cap_account_dirty(mapping)) {
2658 2659
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
G
Greg Thelen 已提交
2660
		struct wb_lock_cookie cookie = {};
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2689 2690 2691
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2692 2693 2694 2695
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2696
		 */
G
Greg Thelen 已提交
2697
		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2698
		if (TestClearPageDirty(page)) {
2699
			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2700
			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2701
			dec_wb_stat(wb, WB_RECLAIMABLE);
2702
			ret = 1;
L
Linus Torvalds 已提交
2703
		}
G
Greg Thelen 已提交
2704
		unlocked_inode_to_wb_end(inode, &cookie);
2705
		return ret;
L
Linus Torvalds 已提交
2706
	}
2707
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2708
}
2709
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2710 2711 2712 2713

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2714 2715
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;
2716
	int ret;
L
Linus Torvalds 已提交
2717

2718 2719
	memcg = lock_page_memcg(page);
	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2720
	if (mapping && mapping_use_writeback_tags(mapping)) {
2721 2722
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2723 2724
		unsigned long flags;

M
Matthew Wilcox 已提交
2725
		xa_lock_irqsave(&mapping->i_pages, flags);
L
Linus Torvalds 已提交
2726
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2727
		if (ret) {
M
Matthew Wilcox 已提交
2728
			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
L
Linus Torvalds 已提交
2729
						PAGECACHE_TAG_WRITEBACK);
2730
			if (bdi_cap_account_writeback(bdi)) {
2731 2732
				struct bdi_writeback *wb = inode_to_wb(inode);

2733
				dec_wb_stat(wb, WB_WRITEBACK);
2734
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2735
			}
P
Peter Zijlstra 已提交
2736
		}
2737 2738 2739 2740 2741

		if (mapping->host && !mapping_tagged(mapping,
						     PAGECACHE_TAG_WRITEBACK))
			sb_clear_inode_writeback(mapping->host);

M
Matthew Wilcox 已提交
2742
		xa_unlock_irqrestore(&mapping->i_pages, flags);
L
Linus Torvalds 已提交
2743 2744 2745
	} else {
		ret = TestClearPageWriteback(page);
	}
2746 2747 2748 2749 2750 2751
	/*
	 * NOTE: Page might be free now! Writeback doesn't hold a page
	 * reference on its own, it relies on truncation to wait for
	 * the clearing of PG_writeback. The below can only access
	 * page state that is static across allocation cycles.
	 */
2752
	if (ret) {
2753
		dec_lruvec_state(lruvec, NR_WRITEBACK);
2754
		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2755
		inc_node_page_state(page, NR_WRITTEN);
2756
	}
2757
	__unlock_page_memcg(memcg);
L
Linus Torvalds 已提交
2758 2759 2760
	return ret;
}

2761
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2762 2763
{
	struct address_space *mapping = page_mapping(page);
2764
	int ret;
L
Linus Torvalds 已提交
2765

J
Johannes Weiner 已提交
2766
	lock_page_memcg(page);
2767
	if (mapping && mapping_use_writeback_tags(mapping)) {
2768 2769
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2770 2771
		unsigned long flags;

M
Matthew Wilcox 已提交
2772
		xa_lock_irqsave(&mapping->i_pages, flags);
L
Linus Torvalds 已提交
2773
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2774
		if (!ret) {
2775 2776 2777 2778 2779
			bool on_wblist;

			on_wblist = mapping_tagged(mapping,
						   PAGECACHE_TAG_WRITEBACK);

M
Matthew Wilcox 已提交
2780
			radix_tree_tag_set(&mapping->i_pages, page_index(page),
L
Linus Torvalds 已提交
2781
						PAGECACHE_TAG_WRITEBACK);
2782
			if (bdi_cap_account_writeback(bdi))
2783
				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2784 2785 2786 2787 2788 2789 2790 2791

			/*
			 * We can come through here when swapping anonymous
			 * pages, so we don't necessarily have an inode to track
			 * for sync.
			 */
			if (mapping->host && !on_wblist)
				sb_mark_inode_writeback(mapping->host);
P
Peter Zijlstra 已提交
2792
		}
L
Linus Torvalds 已提交
2793
		if (!PageDirty(page))
M
Matthew Wilcox 已提交
2794
			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
L
Linus Torvalds 已提交
2795
						PAGECACHE_TAG_DIRTY);
2796
		if (!keep_write)
M
Matthew Wilcox 已提交
2797
			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2798
						PAGECACHE_TAG_TOWRITE);
M
Matthew Wilcox 已提交
2799
		xa_unlock_irqrestore(&mapping->i_pages, flags);
L
Linus Torvalds 已提交
2800 2801 2802
	} else {
		ret = TestSetPageWriteback(page);
	}
2803
	if (!ret) {
2804
		inc_lruvec_page_state(page, NR_WRITEBACK);
2805
		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2806
	}
J
Johannes Weiner 已提交
2807
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2808 2809 2810
	return ret;

}
2811
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2812 2813

/*
N
Nick Piggin 已提交
2814
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2815 2816 2817 2818
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
M
Matthew Wilcox 已提交
2819
	return radix_tree_tagged(&mapping->i_pages, tag);
L
Linus Torvalds 已提交
2820 2821
}
EXPORT_SYMBOL(mapping_tagged);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2833 2834
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2835 2836
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);