page-writeback.c 84.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/sched/signal.h>
40
#include <linux/mm_inline.h>
41
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
42

43 44
#include "internal.h"

45 46 47 48 49
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

50 51 52 53 54 55
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

56 57 58 59 60
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
61 62
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
72
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
73
 */
74
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
75

76 77 78 79 80 81
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

82 83 84 85 86 87
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
88 89 90
/*
 * The generator of dirty data starts writeback at this percentage
 */
91
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
92

93 94 95 96 97 98
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
99
/*
100
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
101
 */
102
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
103

104 105
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
106
/*
107
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
108
 */
109
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
110 111 112 113 114 115 116

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
117 118
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
119 120 121 122 123 124 125
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

126
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
127

128 129
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
130 131
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
132
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
133
#endif
134
	struct bdi_writeback	*wb;
135
	struct fprop_local_percpu *wb_completions;
136

137
	unsigned long		avail;		/* dirtyable */
138 139 140 141 142 143
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
144
	unsigned long		wb_bg_thresh;
145 146

	unsigned long		pos_ratio;
147 148
};

149 150 151 152 153 154
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
155

156 157
#ifdef CONFIG_CGROUP_WRITEBACK

158 159 160 161
#define GDTC_INIT(__wb)		.wb = (__wb),				\
				.dom = &global_wb_domain,		\
				.wb_completions = &(__wb)->completions

162
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 164 165 166 167

#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
				.dom = mem_cgroup_wb_domain(__wb),	\
				.wb_completions = &(__wb)->memcg_completions, \
				.gdtc = __gdtc
168 169 170 171 172

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
173 174 175 176 177 178

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

179 180 181 182 183
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
184 185 186 187 188
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

218 219
#define GDTC_INIT(__wb)		.wb = (__wb),                           \
				.wb_completions = &(__wb)->completions
220
#define GDTC_INIT_NO_WB
221 222 223 224 225 226
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
227 228 229 230 231 232

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

233 234 235 236 237
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
238 239 240 241 242
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

243 244 245 246 247 248 249 250 251
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

270
/**
271 272
 * node_dirtyable_memory - number of dirtyable pages in a node
 * @pgdat: the node
273
 *
274 275
 * Returns the node's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-node dirty limits.
276
 */
277
static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278
{
279 280 281 282 283 284 285 286 287 288 289
	unsigned long nr_pages = 0;
	int z;

	for (z = 0; z < MAX_NR_ZONES; z++) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
	}
290

291 292 293 294 295
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
296
	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297

298 299
	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300 301 302 303

	return nr_pages;
}

304 305 306 307
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
308
	unsigned long x = 0;
309
	int i;
310 311

	for_each_node_state(node, N_HIGH_MEMORY) {
312 313
		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
			struct zone *z;
314
			unsigned long nr_pages;
315 316 317 318 319

			if (!is_highmem_idx(i))
				continue;

			z = &NODE_DATA(node)->node_zones[i];
320 321
			if (!populated_zone(z))
				continue;
322

323
			nr_pages = zone_page_state(z, NR_FREE_PAGES);
324
			/* watch for underflows */
325
			nr_pages -= min(nr_pages, high_wmark_pages(z));
326 327 328
			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
			x += nr_pages;
329
		}
330
	}
331

332 333 334 335 336 337 338 339 340 341 342 343
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

344 345 346 347 348 349 350 351 352 353 354 355 356
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
357
 * global_dirtyable_memory - number of globally dirtyable pages
358
 *
359 360
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
361
 */
362
static unsigned long global_dirtyable_memory(void)
363 364 365
{
	unsigned long x;

366
	x = global_zone_page_state(NR_FREE_PAGES);
367 368 369 370 371 372
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	x -= min(x, totalreserve_pages);
373

M
Mel Gorman 已提交
374 375
	x += global_node_page_state(NR_INACTIVE_FILE);
	x += global_node_page_state(NR_ACTIVE_FILE);
376

377 378 379 380 381 382
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

383 384 385
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
386
 *
387 388 389 390
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391 392
 * real-time tasks.
 */
393
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394
{
395 396 397 398
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
399 400 401
	/* convert ratios to per-PAGE_SIZE for higher precision */
	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 403
	unsigned long thresh;
	unsigned long bg_thresh;
404 405
	struct task_struct *tsk;

406 407 408 409 410 411 412
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
413 414 415
		 * globally available memory.  As the ratios are in
		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
		 * number of pages.
416 417
		 */
		if (bytes)
418 419
			ratio = min(DIV_ROUND_UP(bytes, global_avail),
				    PAGE_SIZE);
420
		if (bg_bytes)
421 422
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
				       PAGE_SIZE);
423 424 425 426 427
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428
	else
429
		thresh = (ratio * available_memory) / PAGE_SIZE;
430

431 432
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433
	else
434
		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435

436 437
	if (unlikely(bg_thresh >= thresh)) {
		pr_warn("vm direct limit must be set greater than background limit.\n");
438
		bg_thresh = thresh / 2;
439 440
	}

441 442
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
443 444
		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
445
	}
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
471 472
}

473
/**
474 475
 * node_dirty_limit - maximum number of dirty pages allowed in a node
 * @pgdat: the node
476
 *
477 478
 * Returns the maximum number of dirty pages allowed in a node, based
 * on the node's dirtyable memory.
479
 */
480
static unsigned long node_dirty_limit(struct pglist_data *pgdat)
481
{
482
	unsigned long node_memory = node_dirtyable_memory(pgdat);
483 484 485 486 487
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
488
			node_memory / global_dirtyable_memory();
489
	else
490
		dirty = vm_dirty_ratio * node_memory / 100;
491 492 493 494 495 496 497 498

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
499 500
 * node_dirty_ok - tells whether a node is within its dirty limits
 * @pgdat: the node to check
501
 *
502
 * Returns %true when the dirty pages in @pgdat are within the node's
503 504
 * dirty limit, %false if the limit is exceeded.
 */
505
bool node_dirty_ok(struct pglist_data *pgdat)
506
{
507 508 509
	unsigned long limit = node_dirty_limit(pgdat);
	unsigned long nr_pages = 0;

510 511 512
	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
513

514
	return nr_pages <= limit;
515 516
}

517
int dirty_background_ratio_handler(struct ctl_table *table, int write,
518
		void __user *buffer, size_t *lenp,
519 520 521 522
		loff_t *ppos)
{
	int ret;

523
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
524 525 526 527 528 529
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
530
		void __user *buffer, size_t *lenp,
531 532 533 534
		loff_t *ppos)
{
	int ret;

535
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
536 537 538 539 540
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
541
int dirty_ratio_handler(struct ctl_table *table, int write,
542
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
543 544 545
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
546 547
	int ret;

548
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
549
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
550
		writeback_set_ratelimit();
551 552 553 554 555 556
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
557
		void __user *buffer, size_t *lenp,
558 559
		loff_t *ppos)
{
560
	unsigned long old_bytes = vm_dirty_bytes;
561 562
	int ret;

563
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
564
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
565
		writeback_set_ratelimit();
566
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
567 568 569 570
	}
	return ret;
}

571 572 573 574 575 576 577 578 579
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

580 581 582
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
583
{
584 585
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
586
	/* First event after period switching was turned off? */
587
	if (unlikely(!dom->period_time)) {
588 589 590 591 592 593
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
594 595
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
596
	}
P
Peter Zijlstra 已提交
597 598
}

599 600 601 602 603
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
604
{
T
Tejun Heo 已提交
605
	struct wb_domain *cgdom;
606

607
	inc_wb_stat(wb, WB_WRITTEN);
608 609
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
610 611 612 613 614

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
615 616
}

617
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
618
{
619 620 621
	unsigned long flags;

	local_irq_save(flags);
622
	__wb_writeout_inc(wb);
623
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
624
}
625
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
626

627 628 629 630
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
631
static void writeout_period(struct timer_list *t)
632
{
633
	struct wb_domain *dom = from_timer(dom, t, period_timer);
T
Tejun Heo 已提交
634
	int miss_periods = (jiffies - dom->period_time) /
635 636
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
637 638
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
639
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
640
		mod_timer(&dom->period_timer, dom->period_time);
641 642 643 644 645
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
646
		dom->period_time = 0;
647 648 649
	}
}

T
Tejun Heo 已提交
650 651 652
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
653 654 655

	spin_lock_init(&dom->lock);

656
	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
657 658 659

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
660 661 662
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
663 664 665 666 667 668 669 670
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

671
/*
672 673 674
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
675 676 677 678 679 680 681
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

682
	spin_lock_bh(&bdi_lock);
683
	if (min_ratio > bdi->max_ratio) {
684
		ret = -EINVAL;
685 686 687 688 689 690 691 692 693
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
694
	spin_unlock_bh(&bdi_lock);
695 696 697 698 699 700 701 702 703 704 705

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

706
	spin_lock_bh(&bdi_lock);
707 708 709 710
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
711
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
712
	}
713
	spin_unlock_bh(&bdi_lock);
714 715 716

	return ret;
}
717
EXPORT_SYMBOL(bdi_set_max_ratio);
718

W
Wu Fengguang 已提交
719 720 721 722 723 724
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

725 726
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
727
{
728
	return max(thresh, dom->dirty_limit);
729 730
}

731 732 733 734 735 736
/*
 * Memory which can be further allocated to a memcg domain is capped by
 * system-wide clean memory excluding the amount being used in the domain.
 */
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
			    unsigned long filepages, unsigned long headroom)
737 738
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
739 740 741
	unsigned long clean = filepages - min(filepages, mdtc->dirty);
	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
	unsigned long other_clean = global_clean - min(global_clean, clean);
742

743
	mdtc->avail = filepages + min(headroom, other_clean);
744 745
}

746
/**
747 748
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
749
 *
750
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
751
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
752 753 754 755 756 757
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
758
 * more (rather than completely block them) when the wb dirty pages go high.
759
 *
760
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
761 762 763
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
764
 * The wb's share of dirty limit will be adapting to its throughput and
765 766
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
767
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
768
{
769
	struct wb_domain *dom = dtc_dom(dtc);
770
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
771
	u64 wb_thresh;
772
	long numerator, denominator;
773
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
774

775
	/*
T
Tejun Heo 已提交
776
	 * Calculate this BDI's share of the thresh ratio.
777
	 */
778
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
779
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
780

T
Tejun Heo 已提交
781 782 783
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
784

785
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
786

T
Tejun Heo 已提交
787 788 789
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
790

T
Tejun Heo 已提交
791
	return wb_thresh;
L
Linus Torvalds 已提交
792 793
}

794 795 796 797 798
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
799 800
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
815
static long long pos_ratio_polynom(unsigned long setpoint,
816 817 818 819 820 821
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

822
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
823
		      (limit - setpoint) | 1);
824 825 826 827 828 829 830 831
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
832 833 834 835 836
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
837
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
838 839 840 841 842 843 844 845 846
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
847 848
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
873
 * (o) wb control line
W
Wu Fengguang 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
899
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
900
 *
901
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
902 903
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
904 905
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
906
 */
907
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
908
{
909
	struct bdi_writeback *wb = dtc->wb;
910
	unsigned long write_bw = wb->avg_write_bandwidth;
911
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
912
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
913
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
914 915
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
916
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
917 918 919 920
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

921 922
	dtc->pos_ratio = 0;

923
	if (unlikely(dtc->dirty >= limit))
924
		return;
W
Wu Fengguang 已提交
925 926 927 928

	/*
	 * global setpoint
	 *
929 930 931
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
932
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
933 934 935 936

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
937 938
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
939 940 941 942
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
943
	 *
944
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
945
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
946 947
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
948
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
949
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
950
	 * about ~6K pages (as the average of background and throttle wb
951
	 * limits). The 3rd order polynomial will provide positive feedback if
952
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
953
	 *
954
	 * Note, that we cannot use global counters in these calculations
955
	 * because we want to throttle process writing to a strictlimit wb
956 957
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
958
	 */
959
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
960
		long long wb_pos_ratio;
961

962 963 964 965 966
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
967

968
		if (dtc->wb_dirty >= wb_thresh)
969
			return;
970

971 972
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
973

974
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
975
			return;
976

977
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
978
						 wb_thresh);
979 980

		/*
981 982
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
983
		 * state ("dirty") is not limiting factor and we have to
984
		 * make decision based on wb counters. But there is an
985 986
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
987
		 * wb's) while given strictlimit wb is below limit.
988
		 *
989
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
990
		 * but it would look too non-natural for the case of all
991
		 * activity in the system coming from a single strictlimit wb
992 993 994 995
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
996
		 * (when globally we are at freerun and wb is well below wb
997 998 999 1000
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
1001 1002
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
1003
	}
W
Wu Fengguang 已提交
1004 1005 1006

	/*
	 * We have computed basic pos_ratio above based on global situation. If
1007
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
1008 1009 1010 1011
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
1012
	 * wb setpoint
W
Wu Fengguang 已提交
1013
	 *
1014
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
1015
	 *
1016
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
1017
	 *                     := --------------------------
1018
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
1019
	 *
1020
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
1021
	 *
1022 1023 1024
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
1025
	 *
1026
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
1027
	 * regularly within range
1028
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
1029 1030 1031
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
1032
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
1033
	 * own size, so move the slope over accordingly and choose a slope that
1034
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
1035
	 */
1036 1037
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
1038
	/*
1039
	 * It's very possible that wb_thresh is close to 0 not because the
1040 1041 1042 1043 1044
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
1045
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
1046
	/*
1047 1048
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
1049
	 */
1050
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1051
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1052
	/*
1053 1054
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1055
	 *
1056 1057 1058
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1059
	 */
1060
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1061
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1062

1063 1064
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1065
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1066 1067 1068
	} else
		pos_ratio /= 4;

1069
	/*
1070
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1071 1072 1073
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1074
	x_intercept = wb_thresh / 2;
1075 1076 1077 1078
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1079
		else
1080 1081 1082
			pos_ratio *= 8;
	}

1083
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1084 1085
}

1086 1087 1088
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1089 1090
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1091 1092
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1093 1094 1095 1096 1097 1098 1099 1100
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1101 1102 1103
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1104
	 */
1105
	bw = written - min(written, wb->written_stamp);
1106 1107 1108 1109 1110 1111
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1112
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1125 1126 1127 1128 1129 1130 1131
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1132 1133
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1134 1135
}

1136
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1137
{
1138
	struct wb_domain *dom = dtc_dom(dtc);
1139
	unsigned long thresh = dtc->thresh;
1140
	unsigned long limit = dom->dirty_limit;
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1153
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1154
	 */
1155
	thresh = max(thresh, dtc->dirty);
1156 1157 1158 1159 1160 1161
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1162
	dom->dirty_limit = limit;
1163 1164
}

1165
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1166 1167
				    unsigned long now)
{
1168
	struct wb_domain *dom = dtc_dom(dtc);
1169 1170 1171 1172

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1173
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1174 1175
		return;

1176 1177
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1178
		update_dirty_limit(dtc);
1179
		dom->dirty_limit_tstamp = now;
1180
	}
1181
	spin_unlock(&dom->lock);
1182 1183
}

W
Wu Fengguang 已提交
1184
/*
1185
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1186
 *
1187
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1188 1189
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1190
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1191 1192
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1193
{
1194 1195 1196
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1197
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1198
	unsigned long setpoint = (freerun + limit) / 2;
1199 1200
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1201 1202 1203
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1204 1205
	unsigned long step;
	unsigned long x;
1206
	unsigned long shift;
W
Wu Fengguang 已提交
1207 1208 1209 1210 1211

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1212
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1213 1214 1215 1216 1217

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1218
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1219 1220 1221 1222
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1223
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1253 1254 1255 1256 1257
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1258

1259 1260 1261
	/*
	 * We could safely do this and return immediately:
	 *
1262
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1263 1264
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1265
	 * code makes use of task_ratelimit to filter out singular points and
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1288
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1289 1290 1291 1292 1293
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1294 1295

	/*
1296
	 * For strictlimit case, calculations above were based on wb counters
1297
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1298
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1299 1300
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1301
	 *
1302 1303
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1304
	 * of backing device.
1305
	 */
1306
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1307 1308 1309
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1310
		else
1311
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1312 1313
	}

1314
	if (dirty < setpoint) {
1315
		x = min3(wb->balanced_dirty_ratelimit,
1316
			 balanced_dirty_ratelimit, task_ratelimit);
1317 1318 1319
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1320
		x = max3(wb->balanced_dirty_ratelimit,
1321
			 balanced_dirty_ratelimit, task_ratelimit);
1322 1323 1324 1325 1326 1327 1328 1329 1330
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
1331 1332 1333 1334 1335
	shift = dirty_ratelimit / (2 * step + 1);
	if (shift < BITS_PER_LONG)
		step = DIV_ROUND_UP(step >> shift, 8);
	else
		step = 0;
1336 1337 1338 1339 1340 1341

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1342 1343
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1344

1345
	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1346 1347
}

1348 1349
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1350 1351
				  unsigned long start_time,
				  bool update_ratelimit)
1352
{
1353
	struct bdi_writeback *wb = gdtc->wb;
1354
	unsigned long now = jiffies;
1355
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1356
	unsigned long dirtied;
1357 1358
	unsigned long written;

1359 1360
	lockdep_assert_held(&wb->list_lock);

1361 1362 1363 1364 1365 1366
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1367 1368
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1369 1370 1371 1372 1373

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1374
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1375 1376
		goto snapshot;

1377
	if (update_ratelimit) {
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1389
	}
1390
	wb_update_write_bandwidth(wb, elapsed, written);
1391 1392

snapshot:
1393 1394 1395
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1396 1397
}

1398
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1399
{
1400 1401
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1402
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1403 1404
}

1405
/*
1406
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1407 1408 1409
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1410
 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1422
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1423
				  unsigned long wb_dirty)
1424
{
1425
	unsigned long bw = wb->avg_write_bandwidth;
1426
	unsigned long t;
1427

1428 1429 1430 1431 1432 1433 1434
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1435
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1436 1437
	t++;

1438
	return min_t(unsigned long, t, MAX_PAUSE);
1439 1440
}

1441 1442 1443 1444 1445
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1446
{
1447 1448
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1449 1450 1451
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1452

1453 1454
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1455 1456 1457 1458 1459

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1460
	 * (N * 10ms) on 2^N concurrent tasks.
1461 1462
	 */
	if (hi > lo)
1463
		t += (hi - lo) * (10 * HZ) / 1024;
1464 1465

	/*
1466 1467 1468 1469 1470 1471 1472 1473
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1474
	 *
1475 1476 1477 1478 1479 1480 1481
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1482
	 */
1483 1484
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1485 1486

	/*
1487 1488 1489 1490 1491 1492
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1493
	 */
1494 1495 1496 1497 1498 1499 1500 1501 1502
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1503 1504 1505 1506 1507
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1508

1509
	*nr_dirtied_pause = pages;
1510
	/*
1511
	 * The minimal pause time will normally be half the target pause time.
1512
	 */
1513
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1514 1515
}

1516
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1517
{
1518
	struct bdi_writeback *wb = dtc->wb;
1519
	unsigned long wb_reclaimable;
1520 1521

	/*
1522
	 * wb_thresh is not treated as some limiting factor as
1523
	 * dirty_thresh, due to reasons
1524
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1525
	 * - in a system with HDD and USB key, the USB key may somehow
1526 1527
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1528
	 *   In this case we don't want to hard throttle the USB key
1529 1530
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1531
	 *   wb_position_ratio() will let the dirtier task progress
1532
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1533
	 */
1534
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1535 1536
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1548
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1549
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1550
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1551
	} else {
1552
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1553
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1554 1555 1556
	}
}

L
Linus Torvalds 已提交
1557 1558 1559
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1560
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1561 1562
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1563
 */
1564
static void balance_dirty_pages(struct bdi_writeback *wb,
1565
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1566
{
1567
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1568
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1569
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1570 1571 1572
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1573
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1574
	long period;
1575 1576 1577 1578
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1579
	bool dirty_exceeded = false;
1580
	unsigned long task_ratelimit;
1581
	unsigned long dirty_ratelimit;
1582
	struct backing_dev_info *bdi = wb->bdi;
1583
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1584
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1585 1586

	for (;;) {
1587
		unsigned long now = jiffies;
1588
		unsigned long dirty, thresh, bg_thresh;
1589 1590 1591
		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
		unsigned long m_thresh = 0;
		unsigned long m_bg_thresh = 0;
1592

1593 1594 1595 1596 1597 1598
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1599 1600
		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
					global_node_page_state(NR_UNSTABLE_NFS);
1601
		gdtc->avail = global_dirtyable_memory();
1602
		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1603

1604
		domain_dirty_limits(gdtc);
1605

1606
		if (unlikely(strictlimit)) {
1607
			wb_dirty_limits(gdtc);
1608

1609 1610
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1611
			bg_thresh = gdtc->wb_bg_thresh;
1612
		} else {
1613 1614 1615
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1616 1617
		}

1618
		if (mdtc) {
1619
			unsigned long filepages, headroom, writeback;
1620 1621 1622 1623 1624

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
1625 1626
			mem_cgroup_wb_stats(wb, &filepages, &headroom,
					    &mdtc->dirty, &writeback);
1627
			mdtc->dirty += writeback;
1628
			mdtc_calc_avail(mdtc, filepages, headroom);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1642 1643
		}

1644 1645 1646
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1647
		 * when the wb limits are ramping up in case of !strictlimit.
1648
		 *
1649 1650
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1651
		 * up are the price we consciously pay for strictlimit-ing.
1652 1653 1654
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1655
		 */
1656 1657 1658 1659 1660 1661
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1662 1663
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1664 1665 1666
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1667
			break;
1668
		}
1669

1670
		if (unlikely(!writeback_in_progress(wb)))
1671
			wb_start_background_writeback(wb);
1672

1673 1674 1675 1676
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1677
		if (!strictlimit)
1678
			wb_dirty_limits(gdtc);
1679

1680 1681
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1682 1683

		wb_position_ratio(gdtc);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1703

1704 1705
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1706

1707 1708 1709
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1710
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1711 1712
			spin_unlock(&wb->list_lock);
		}
1713

1714
		/* throttle according to the chosen dtc */
1715
		dirty_ratelimit = wb->dirty_ratelimit;
1716
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1717
							RATELIMIT_CALC_SHIFT;
1718
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1719 1720 1721
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1722

1723
		if (unlikely(task_ratelimit == 0)) {
1724
			period = max_pause;
1725
			pause = max_pause;
1726
			goto pause;
P
Peter Zijlstra 已提交
1727
		}
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1739
		if (pause < min_pause) {
1740
			trace_balance_dirty_pages(wb,
1741 1742 1743 1744 1745
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1746 1747 1748
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1749
						  period,
1750
						  min(pause, 0L),
1751
						  start_time);
1752 1753 1754 1755 1756 1757
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1758 1759
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1760
			break;
P
Peter Zijlstra 已提交
1761
		}
1762 1763 1764 1765 1766
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1767 1768

pause:
1769
		trace_balance_dirty_pages(wb,
1770 1771 1772 1773 1774
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1775 1776 1777
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1778
					  period,
1779 1780
					  pause,
					  start_time);
1781
		__set_current_state(TASK_KILLABLE);
1782
		wb->dirty_sleep = now;
1783
		io_schedule_timeout(pause);
1784

1785 1786
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1787
		current->nr_dirtied_pause = nr_dirtied_pause;
1788

1789
		/*
1790 1791
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1792
		 */
1793
		if (task_ratelimit)
1794
			break;
1795

1796 1797
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1798
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1799 1800
		 * to go through, so that tasks on them still remain responsive.
		 *
1801
		 * In theory 1 page is enough to keep the consumer-producer
1802
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1803
		 * more page. However wb_dirty has accounting errors.  So use
1804
		 * the larger and more IO friendly wb_stat_error.
1805
		 */
1806
		if (sdtc->wb_dirty <= wb_stat_error(wb))
1807 1808
			break;

1809 1810
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1811 1812
	}

1813 1814
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1815

1816
	if (writeback_in_progress(wb))
1817
		return;
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1827 1828 1829
	if (laptop_mode)
		return;

1830
	if (nr_reclaimable > gdtc->bg_thresh)
1831
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1832 1833
}

1834
static DEFINE_PER_CPU(int, bdp_ratelimits);
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1852
/**
1853
 * balance_dirty_pages_ratelimited - balance dirty memory state
1854
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1865
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1866
{
1867 1868 1869
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1870 1871
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1872

1873 1874 1875
	if (!bdi_cap_account_dirty(bdi))
		return;

1876 1877 1878 1879 1880
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1881
	ratelimit = current->nr_dirtied_pause;
1882
	if (wb->dirty_exceeded)
1883 1884 1885
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1886
	/*
1887 1888 1889 1890
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1891
	 */
1892
	p =  this_cpu_ptr(&bdp_ratelimits);
1893
	if (unlikely(current->nr_dirtied >= ratelimit))
1894
		*p = 0;
1895 1896 1897
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1898
	}
1899 1900 1901 1902 1903
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1904
	p = this_cpu_ptr(&dirty_throttle_leaks);
1905
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1906
		unsigned long nr_pages_dirtied;
1907 1908 1909
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1910
	}
1911
	preempt_enable();
1912 1913

	if (unlikely(current->nr_dirtied >= ratelimit))
1914
		balance_dirty_pages(wb, current->nr_dirtied);
1915 1916

	wb_put(wb);
L
Linus Torvalds 已提交
1917
}
1918
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1929
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1930
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1931
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1932 1933
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1934

1935 1936 1937 1938 1939
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
1940 1941
	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
		      global_node_page_state(NR_UNSTABLE_NFS);
1942
	domain_dirty_limits(gdtc);
1943

1944
	if (gdtc->dirty > gdtc->bg_thresh)
1945 1946
		return true;

1947 1948
	if (wb_stat(wb, WB_RECLAIMABLE) >
	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1949 1950
		return true;

1951
	if (mdtc) {
1952
		unsigned long filepages, headroom, writeback;
1953

1954 1955 1956
		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
				    &writeback);
		mdtc_calc_avail(mdtc, filepages, headroom);
1957 1958 1959 1960 1961
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

1962 1963
		if (wb_stat(wb, WB_RECLAIMABLE) >
		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1964 1965 1966
			return true;
	}

1967 1968 1969
	return false;
}

L
Linus Torvalds 已提交
1970 1971 1972
/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1973
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1975
{
1976 1977 1978 1979
	unsigned int old_interval = dirty_writeback_interval;
	int ret;

	ret = proc_dointvec(table, write, buffer, length, ppos);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	/*
	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
	 * and a different non-zero value will wakeup the writeback threads.
	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
	 * iterate over all bdis and wbs.
	 * The reason we do this is to make the change take effect immediately.
	 */
	if (!ret && write && dirty_writeback_interval &&
		dirty_writeback_interval != old_interval)
1990 1991 1992
		wakeup_flusher_threads(WB_REASON_PERIODIC);

	return ret;
L
Linus Torvalds 已提交
1993 1994
}

1995
#ifdef CONFIG_BLOCK
1996
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1997
{
1998
	struct request_queue *q = (struct request_queue *)data;
L
Linus Torvalds 已提交
1999

2000
	wakeup_flusher_threads_bdi(q->backing_dev_info, WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
2001 2002 2003 2004 2005 2006 2007
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
2008
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
2009
{
2010
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
2020 2021 2022 2023 2024 2025 2026 2027
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
2028
}
2029
#endif
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2039
 * thresholds.
L
Linus Torvalds 已提交
2040 2041
 */

2042
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2043
{
2044
	struct wb_domain *dom = &global_wb_domain;
2045 2046
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2047

2048
	global_dirty_limits(&background_thresh, &dirty_thresh);
2049
	dom->dirty_limit = dirty_thresh;
2050
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2051 2052 2053 2054
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2055
static int page_writeback_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
2056
{
2057 2058
	writeback_set_ratelimit();
	return 0;
L
Linus Torvalds 已提交
2059 2060 2061
}

/*
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2078 2079 2080
 */
void __init page_writeback_init(void)
{
2081 2082
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));

2083 2084 2085 2086
	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
			  page_writeback_cpu_online, NULL);
	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
			  page_writeback_cpu_online);
L
Linus Torvalds 已提交
2087 2088
}

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2109
#define WRITEBACK_TAG_BATCH 4096
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	unsigned long tagged = 0;
	struct radix_tree_iter iter;
	void **slot;

	spin_lock_irq(&mapping->tree_lock);
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
							PAGECACHE_TAG_DIRTY) {
		if (iter.index > end)
			break;
		radix_tree_iter_tag_set(&mapping->page_tree, &iter,
							PAGECACHE_TAG_TOWRITE);
		tagged++;
		if ((tagged % WRITEBACK_TAG_BATCH) != 0)
			continue;
		slot = radix_tree_iter_resume(slot, &iter);
2125 2126
		spin_unlock_irq(&mapping->tree_lock);
		cond_resched();
2127 2128 2129
		spin_lock_irq(&mapping->tree_lock);
	}
	spin_unlock_irq(&mapping->tree_lock);
2130 2131 2132
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2133
/**
2134
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2135 2136
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2137 2138
 * @writepage: function called for each page
 * @data: data passed to writepage function
2139
 *
2140
 * If a page is already under I/O, write_cache_pages() skips it, even
2141 2142 2143 2144 2145 2146
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2147 2148 2149 2150 2151 2152 2153
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2154
 */
2155 2156 2157
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2158 2159 2160 2161 2162
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2163
	pgoff_t uninitialized_var(writeback_index);
2164 2165
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2166
	pgoff_t done_index;
N
Nick Piggin 已提交
2167
	int cycled;
2168
	int range_whole = 0;
2169
	int tag;
2170 2171 2172

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2173 2174 2175 2176 2177 2178
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2179 2180
		end = -1;
	} else {
2181 2182
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
2183 2184
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2185
		cycled = 1; /* ignore range_cyclic tests */
2186
	}
2187
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188 2189 2190
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2191
retry:
2192
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193
		tag_pages_for_writeback(mapping, index, end);
2194
	done_index = index;
N
Nick Piggin 已提交
2195 2196 2197
	while (!done && (index <= end)) {
		int i;

2198
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2199
				tag);
N
Nick Piggin 已提交
2200 2201
		if (nr_pages == 0)
			break;
2202 2203 2204 2205

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

2206
			done_index = page->index;
2207

2208 2209
			lock_page(page);

N
Nick Piggin 已提交
2210 2211 2212 2213 2214 2215 2216 2217
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2218
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2219
continue_unlock:
2220 2221 2222 2223
				unlock_page(page);
				continue;
			}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2235

2236 2237
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2238
				goto continue_unlock;
2239

2240
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2241
			ret = (*writepage)(page, wbc, data);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2256
					done_index = page->index + 1;
2257 2258 2259
					done = 1;
					break;
				}
2260
			}
2261

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2272
			}
2273 2274 2275 2276
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2277
	if (!cycled && !done) {
2278
		/*
N
Nick Piggin 已提交
2279
		 * range_cyclic:
2280 2281 2282
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2283
		cycled = 1;
2284
		index = 0;
N
Nick Piggin 已提交
2285
		end = writeback_index - 1;
2286 2287
		goto retry;
	}
2288 2289
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2290

2291 2292
	return ret;
}
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2319 2320 2321
	struct blk_plug plug;
	int ret;

2322 2323 2324 2325
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2326 2327 2328 2329
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2330
}
2331 2332 2333

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2334 2335
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2336 2337
	int ret;

L
Linus Torvalds 已提交
2338 2339
	if (wbc->nr_to_write <= 0)
		return 0;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	while (1) {
		if (mapping->a_ops->writepages)
			ret = mapping->a_ops->writepages(mapping, wbc);
		else
			ret = generic_writepages(mapping, wbc);
		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
			break;
		cond_resched();
		congestion_wait(BLK_RW_ASYNC, HZ/50);
	}
2350
	return ret;
L
Linus Torvalds 已提交
2351 2352 2353
}

/**
2354
 * write_one_page - write out a single page and wait on I/O
2355
 * @page: the page to write
L
Linus Torvalds 已提交
2356 2357 2358
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
2359 2360
 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
 * function returns.
L
Linus Torvalds 已提交
2361
 */
2362
int write_one_page(struct page *page)
L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

2373
	wait_on_page_writeback(page);
L
Linus Torvalds 已提交
2374 2375

	if (clear_page_dirty_for_io(page)) {
2376
		get_page(page);
L
Linus Torvalds 已提交
2377
		ret = mapping->a_ops->writepage(page, &wbc);
2378
		if (ret == 0)
L
Linus Torvalds 已提交
2379
			wait_on_page_writeback(page);
2380
		put_page(page);
L
Linus Torvalds 已提交
2381 2382 2383
	} else {
		unlock_page(page);
	}
2384 2385 2386

	if (!ret)
		ret = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
2387 2388 2389 2390
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2391 2392 2393 2394 2395 2396
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2397
		return !TestSetPageDirty(page);
2398 2399 2400
	return 0;
}

2401 2402
/*
 * Helper function for set_page_dirty family.
2403
 *
2404
 * Caller must hold lock_page_memcg().
2405
 *
2406 2407
 * NOTE: This relies on being atomic wrt interrupts.
 */
J
Johannes Weiner 已提交
2408
void account_page_dirtied(struct page *page, struct address_space *mapping)
2409
{
2410 2411
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2412 2413
	trace_writeback_dirty_page(page, mapping);

2414
	if (mapping_cap_account_dirty(mapping)) {
2415
		struct bdi_writeback *wb;
2416

2417 2418
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2419

2420
		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2421
		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2422
		__inc_node_page_state(page, NR_DIRTIED);
2423 2424
		inc_wb_stat(wb, WB_RECLAIMABLE);
		inc_wb_stat(wb, WB_DIRTIED);
2425
		task_io_account_write(PAGE_SIZE);
2426 2427
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2428 2429
	}
}
M
Michael Rubin 已提交
2430
EXPORT_SYMBOL(account_page_dirtied);
2431

2432 2433 2434
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2435
 * Caller must hold lock_page_memcg().
2436
 */
2437
void account_page_cleaned(struct page *page, struct address_space *mapping,
J
Johannes Weiner 已提交
2438
			  struct bdi_writeback *wb)
2439 2440
{
	if (mapping_cap_account_dirty(mapping)) {
2441
		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2442
		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2443
		dec_wb_stat(wb, WB_RECLAIMABLE);
2444
		task_io_account_cancelled_write(PAGE_SIZE);
2445 2446 2447
	}
}

L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453 2454 2455
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2456 2457 2458
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2459 2460 2461
 */
int __set_page_dirty_nobuffers(struct page *page)
{
J
Johannes Weiner 已提交
2462
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2463 2464
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2465
		unsigned long flags;
L
Linus Torvalds 已提交
2466

2467
		if (!mapping) {
J
Johannes Weiner 已提交
2468
			unlock_page_memcg(page);
2469
			return 1;
2470
		}
2471

2472
		spin_lock_irqsave(&mapping->tree_lock, flags);
2473 2474
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
J
Johannes Weiner 已提交
2475
		account_page_dirtied(page, mapping);
2476 2477
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2478
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
J
Johannes Weiner 已提交
2479
		unlock_page_memcg(page);
2480

2481 2482 2483
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2484
		}
2485
		return 1;
L
Linus Torvalds 已提交
2486
	}
J
Johannes Weiner 已提交
2487
	unlock_page_memcg(page);
2488
	return 0;
L
Linus Torvalds 已提交
2489 2490 2491
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2502

2503
	if (mapping && mapping_cap_account_dirty(mapping)) {
2504 2505 2506
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2507

2508
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2509
		current->nr_dirtied--;
2510
		dec_node_page_state(page, NR_DIRTIED);
2511
		dec_wb_stat(wb, WB_DIRTIED);
2512
		unlocked_inode_to_wb_end(inode, locked);
2513 2514 2515 2516
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2517 2518 2519 2520 2521 2522 2523
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2524 2525
	int ret;

L
Linus Torvalds 已提交
2526
	wbc->pages_skipped++;
2527
	ret = __set_page_dirty_nobuffers(page);
2528
	account_page_redirty(page);
2529
	return ret;
L
Linus Torvalds 已提交
2530 2531 2532 2533
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2534 2535 2536 2537 2538 2539 2540
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2541 2542 2543
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2544
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2545 2546 2547
{
	struct address_space *mapping = page_mapping(page);

2548
	page = compound_head(page);
L
Linus Torvalds 已提交
2549 2550
	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2561 2562
		if (PageReclaim(page))
			ClearPageReclaim(page);
2563 2564 2565 2566 2567
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2568
	}
2569 2570 2571 2572
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2591
	lock_page(page);
L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2613 2614 2615
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2616 2617 2618
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2619

J
Johannes Weiner 已提交
2620
		lock_page_memcg(page);
2621
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2622 2623

		if (TestClearPageDirty(page))
J
Johannes Weiner 已提交
2624
			account_page_cleaned(page, mapping, wb);
2625

2626
		unlocked_inode_to_wb_end(inode, locked);
J
Johannes Weiner 已提交
2627
		unlock_page_memcg(page);
2628 2629 2630
	} else {
		ClearPageDirty(page);
	}
2631 2632 2633
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2651
	int ret = 0;
L
Linus Torvalds 已提交
2652

2653 2654
	BUG_ON(!PageLocked(page));

2655
	if (mapping && mapping_cap_account_dirty(mapping)) {
2656 2657 2658 2659
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2687 2688 2689
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2690 2691 2692 2693
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2694
		 */
2695
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2696
		if (TestClearPageDirty(page)) {
2697
			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2698
			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2699
			dec_wb_stat(wb, WB_RECLAIMABLE);
2700
			ret = 1;
L
Linus Torvalds 已提交
2701
		}
2702
		unlocked_inode_to_wb_end(inode, locked);
2703
		return ret;
L
Linus Torvalds 已提交
2704
	}
2705
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2706
}
2707
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2708 2709 2710 2711

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2712 2713
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;
2714
	int ret;
L
Linus Torvalds 已提交
2715

2716 2717
	memcg = lock_page_memcg(page);
	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2718
	if (mapping && mapping_use_writeback_tags(mapping)) {
2719 2720
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2721 2722
		unsigned long flags;

N
Nick Piggin 已提交
2723
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2724
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2725
		if (ret) {
L
Linus Torvalds 已提交
2726 2727 2728
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2729
			if (bdi_cap_account_writeback(bdi)) {
2730 2731
				struct bdi_writeback *wb = inode_to_wb(inode);

2732
				dec_wb_stat(wb, WB_WRITEBACK);
2733
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2734
			}
P
Peter Zijlstra 已提交
2735
		}
2736 2737 2738 2739 2740

		if (mapping->host && !mapping_tagged(mapping,
						     PAGECACHE_TAG_WRITEBACK))
			sb_clear_inode_writeback(mapping->host);

N
Nick Piggin 已提交
2741
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2742 2743 2744
	} else {
		ret = TestClearPageWriteback(page);
	}
2745 2746 2747 2748 2749 2750
	/*
	 * NOTE: Page might be free now! Writeback doesn't hold a page
	 * reference on its own, it relies on truncation to wait for
	 * the clearing of PG_writeback. The below can only access
	 * page state that is static across allocation cycles.
	 */
2751
	if (ret) {
2752
		dec_lruvec_state(lruvec, NR_WRITEBACK);
2753
		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2754
		inc_node_page_state(page, NR_WRITTEN);
2755
	}
2756
	__unlock_page_memcg(memcg);
L
Linus Torvalds 已提交
2757 2758 2759
	return ret;
}

2760
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2761 2762
{
	struct address_space *mapping = page_mapping(page);
2763
	int ret;
L
Linus Torvalds 已提交
2764

J
Johannes Weiner 已提交
2765
	lock_page_memcg(page);
2766
	if (mapping && mapping_use_writeback_tags(mapping)) {
2767 2768
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2769 2770
		unsigned long flags;

N
Nick Piggin 已提交
2771
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2772
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2773
		if (!ret) {
2774 2775 2776 2777 2778
			bool on_wblist;

			on_wblist = mapping_tagged(mapping,
						   PAGECACHE_TAG_WRITEBACK);

L
Linus Torvalds 已提交
2779 2780 2781
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2782
			if (bdi_cap_account_writeback(bdi))
2783
				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2784 2785 2786 2787 2788 2789 2790 2791

			/*
			 * We can come through here when swapping anonymous
			 * pages, so we don't necessarily have an inode to track
			 * for sync.
			 */
			if (mapping->host && !on_wblist)
				sb_mark_inode_writeback(mapping->host);
P
Peter Zijlstra 已提交
2792
		}
L
Linus Torvalds 已提交
2793 2794 2795 2796
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2797 2798 2799 2800
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2801
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2802 2803 2804
	} else {
		ret = TestSetPageWriteback(page);
	}
2805
	if (!ret) {
2806
		inc_lruvec_page_state(page, NR_WRITEBACK);
2807
		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2808
	}
J
Johannes Weiner 已提交
2809
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2810 2811 2812
	return ret;

}
2813
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2814 2815

/*
N
Nick Piggin 已提交
2816
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2817 2818 2819 2820
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2821
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2822 2823
}
EXPORT_SYMBOL(mapping_tagged);
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2835 2836
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2837 2838
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);