page-writeback.c 84.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/sched/signal.h>
40
#include <linux/mm_inline.h>
41
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
42

43 44
#include "internal.h"

45 46 47 48 49
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

50 51 52 53 54 55
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

56 57 58 59 60
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
61 62
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
63 64 65 66 67 68 69 70 71
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
72
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
73
 */
74
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
75

76 77 78 79 80 81
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

82 83 84 85 86 87
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
88 89 90
/*
 * The generator of dirty data starts writeback at this percentage
 */
91
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
92

93 94 95 96 97 98
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
99
/*
100
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
101
 */
102
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
103

104 105
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
106
/*
107
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
108
 */
109
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
110 111 112 113 114 115 116

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
117 118
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
119 120 121 122 123 124 125
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

126
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
127

128 129
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
130 131
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
132
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
133
#endif
134
	struct bdi_writeback	*wb;
135
	struct fprop_local_percpu *wb_completions;
136

137
	unsigned long		avail;		/* dirtyable */
138 139 140 141 142 143
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
144
	unsigned long		wb_bg_thresh;
145 146

	unsigned long		pos_ratio;
147 148
};

149 150 151 152 153 154
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
155

156 157
#ifdef CONFIG_CGROUP_WRITEBACK

158 159 160 161
#define GDTC_INIT(__wb)		.wb = (__wb),				\
				.dom = &global_wb_domain,		\
				.wb_completions = &(__wb)->completions

162
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 164 165 166 167

#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
				.dom = mem_cgroup_wb_domain(__wb),	\
				.wb_completions = &(__wb)->memcg_completions, \
				.gdtc = __gdtc
168 169 170 171 172

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
173 174 175 176 177 178

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

179 180 181 182 183
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
184 185 186 187 188
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

218 219
#define GDTC_INIT(__wb)		.wb = (__wb),                           \
				.wb_completions = &(__wb)->completions
220
#define GDTC_INIT_NO_WB
221 222 223 224 225 226
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
227 228 229 230 231 232

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

233 234 235 236 237
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
238 239 240 241 242
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

243 244 245 246 247 248 249 250 251
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

270
/**
271 272
 * node_dirtyable_memory - number of dirtyable pages in a node
 * @pgdat: the node
273
 *
274 275
 * Returns the node's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-node dirty limits.
276
 */
277
static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278
{
279 280 281 282 283 284 285 286 287 288 289
	unsigned long nr_pages = 0;
	int z;

	for (z = 0; z < MAX_NR_ZONES; z++) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
	}
290

291 292 293 294 295
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
296
	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297

298 299
	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300 301 302 303

	return nr_pages;
}

304 305 306 307
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
308
	unsigned long x = 0;
309
	int i;
310 311

	for_each_node_state(node, N_HIGH_MEMORY) {
312 313
		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
			struct zone *z;
314
			unsigned long nr_pages;
315 316 317 318 319

			if (!is_highmem_idx(i))
				continue;

			z = &NODE_DATA(node)->node_zones[i];
320 321
			if (!populated_zone(z))
				continue;
322

323
			nr_pages = zone_page_state(z, NR_FREE_PAGES);
324
			/* watch for underflows */
325
			nr_pages -= min(nr_pages, high_wmark_pages(z));
326 327 328
			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
			x += nr_pages;
329
		}
330
	}
331

332 333 334 335 336 337 338 339 340 341 342 343
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

344 345 346 347 348 349 350 351 352 353 354 355 356
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
357
 * global_dirtyable_memory - number of globally dirtyable pages
358
 *
359 360
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
361
 */
362
static unsigned long global_dirtyable_memory(void)
363 364 365
{
	unsigned long x;

366
	x = global_zone_page_state(NR_FREE_PAGES);
367 368 369 370 371 372
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	x -= min(x, totalreserve_pages);
373

M
Mel Gorman 已提交
374 375
	x += global_node_page_state(NR_INACTIVE_FILE);
	x += global_node_page_state(NR_ACTIVE_FILE);
376

377 378 379 380 381 382
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

383 384 385
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
386
 *
387 388 389 390
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391 392
 * real-time tasks.
 */
393
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394
{
395 396 397 398
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
399 400 401
	/* convert ratios to per-PAGE_SIZE for higher precision */
	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 403
	unsigned long thresh;
	unsigned long bg_thresh;
404 405
	struct task_struct *tsk;

406 407 408 409 410 411 412
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
413 414 415
		 * globally available memory.  As the ratios are in
		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
		 * number of pages.
416 417
		 */
		if (bytes)
418 419
			ratio = min(DIV_ROUND_UP(bytes, global_avail),
				    PAGE_SIZE);
420
		if (bg_bytes)
421 422
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
				       PAGE_SIZE);
423 424 425 426 427
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428
	else
429
		thresh = (ratio * available_memory) / PAGE_SIZE;
430

431 432
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433
	else
434
		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435

436
	if (bg_thresh >= thresh)
437
		bg_thresh = thresh / 2;
438 439
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
440 441
		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
442
	}
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
468 469
}

470
/**
471 472
 * node_dirty_limit - maximum number of dirty pages allowed in a node
 * @pgdat: the node
473
 *
474 475
 * Returns the maximum number of dirty pages allowed in a node, based
 * on the node's dirtyable memory.
476
 */
477
static unsigned long node_dirty_limit(struct pglist_data *pgdat)
478
{
479
	unsigned long node_memory = node_dirtyable_memory(pgdat);
480 481 482 483 484
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
485
			node_memory / global_dirtyable_memory();
486
	else
487
		dirty = vm_dirty_ratio * node_memory / 100;
488 489 490 491 492 493 494 495

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
496 497
 * node_dirty_ok - tells whether a node is within its dirty limits
 * @pgdat: the node to check
498
 *
499
 * Returns %true when the dirty pages in @pgdat are within the node's
500 501
 * dirty limit, %false if the limit is exceeded.
 */
502
bool node_dirty_ok(struct pglist_data *pgdat)
503
{
504 505 506
	unsigned long limit = node_dirty_limit(pgdat);
	unsigned long nr_pages = 0;

507 508 509
	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
510

511
	return nr_pages <= limit;
512 513
}

514
int dirty_background_ratio_handler(struct ctl_table *table, int write,
515
		void __user *buffer, size_t *lenp,
516 517 518 519
		loff_t *ppos)
{
	int ret;

520
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
521 522 523 524 525 526
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
527
		void __user *buffer, size_t *lenp,
528 529 530 531
		loff_t *ppos)
{
	int ret;

532
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
533 534 535 536 537
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
538
int dirty_ratio_handler(struct ctl_table *table, int write,
539
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
540 541 542
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
543 544
	int ret;

545
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
546
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
547
		writeback_set_ratelimit();
548 549 550 551 552 553
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
554
		void __user *buffer, size_t *lenp,
555 556
		loff_t *ppos)
{
557
	unsigned long old_bytes = vm_dirty_bytes;
558 559
	int ret;

560
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
561
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
562
		writeback_set_ratelimit();
563
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
564 565 566 567
	}
	return ret;
}

568 569 570 571 572 573 574 575 576
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

577 578 579
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
580
{
581 582
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
583
	/* First event after period switching was turned off? */
584
	if (unlikely(!dom->period_time)) {
585 586 587 588 589 590
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
591 592
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
593
	}
P
Peter Zijlstra 已提交
594 595
}

596 597 598 599 600
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
601
{
T
Tejun Heo 已提交
602
	struct wb_domain *cgdom;
603

604
	inc_wb_stat(wb, WB_WRITTEN);
605 606
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
607 608 609 610 611

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
612 613
}

614
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
615
{
616 617 618
	unsigned long flags;

	local_irq_save(flags);
619
	__wb_writeout_inc(wb);
620
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
621
}
622
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
623

624 625 626 627
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
628
static void writeout_period(struct timer_list *t)
629
{
630
	struct wb_domain *dom = from_timer(dom, t, period_timer);
T
Tejun Heo 已提交
631
	int miss_periods = (jiffies - dom->period_time) /
632 633
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
634 635
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
636
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
637
		mod_timer(&dom->period_timer, dom->period_time);
638 639 640 641 642
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
643
		dom->period_time = 0;
644 645 646
	}
}

T
Tejun Heo 已提交
647 648 649
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
650 651 652

	spin_lock_init(&dom->lock);

653
	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
654 655 656

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
657 658 659
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
660 661 662 663 664 665 666 667
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

668
/*
669 670 671
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
672 673 674 675 676 677 678
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

679
	spin_lock_bh(&bdi_lock);
680
	if (min_ratio > bdi->max_ratio) {
681
		ret = -EINVAL;
682 683 684 685 686 687 688 689 690
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
691
	spin_unlock_bh(&bdi_lock);
692 693 694 695 696 697 698 699 700 701 702

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

703
	spin_lock_bh(&bdi_lock);
704 705 706 707
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
708
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
709
	}
710
	spin_unlock_bh(&bdi_lock);
711 712 713

	return ret;
}
714
EXPORT_SYMBOL(bdi_set_max_ratio);
715

W
Wu Fengguang 已提交
716 717 718 719 720 721
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

722 723
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
724
{
725
	return max(thresh, dom->dirty_limit);
726 727
}

728 729 730 731 732 733
/*
 * Memory which can be further allocated to a memcg domain is capped by
 * system-wide clean memory excluding the amount being used in the domain.
 */
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
			    unsigned long filepages, unsigned long headroom)
734 735
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
736 737 738
	unsigned long clean = filepages - min(filepages, mdtc->dirty);
	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
	unsigned long other_clean = global_clean - min(global_clean, clean);
739

740
	mdtc->avail = filepages + min(headroom, other_clean);
741 742
}

743
/**
744 745
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
746
 *
747
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
748
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
749 750 751 752 753 754
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
755
 * more (rather than completely block them) when the wb dirty pages go high.
756
 *
757
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
758 759 760
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
761
 * The wb's share of dirty limit will be adapting to its throughput and
762 763
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
764
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
765
{
766
	struct wb_domain *dom = dtc_dom(dtc);
767
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
768
	u64 wb_thresh;
769
	long numerator, denominator;
770
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
771

772
	/*
T
Tejun Heo 已提交
773
	 * Calculate this BDI's share of the thresh ratio.
774
	 */
775
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
776
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
777

T
Tejun Heo 已提交
778 779 780
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
781

782
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
783

T
Tejun Heo 已提交
784 785 786
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
787

T
Tejun Heo 已提交
788
	return wb_thresh;
L
Linus Torvalds 已提交
789 790
}

791 792 793 794 795
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
796 797
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
812
static long long pos_ratio_polynom(unsigned long setpoint,
813 814 815 816 817 818
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

819
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
820
		      (limit - setpoint) | 1);
821 822 823 824 825 826 827 828
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
829 830 831 832 833
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
834
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
835 836 837 838 839 840 841 842 843
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
844 845
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
870
 * (o) wb control line
W
Wu Fengguang 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
896
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
897
 *
898
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
899 900
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
901 902
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
903
 */
904
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
905
{
906
	struct bdi_writeback *wb = dtc->wb;
907
	unsigned long write_bw = wb->avg_write_bandwidth;
908
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
909
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
910
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
911 912
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
913
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
914 915 916 917
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

918 919
	dtc->pos_ratio = 0;

920
	if (unlikely(dtc->dirty >= limit))
921
		return;
W
Wu Fengguang 已提交
922 923 924 925

	/*
	 * global setpoint
	 *
926 927 928
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
929
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
930 931 932 933

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
934 935
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
936 937 938 939
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
940
	 *
941
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
942
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
943 944
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
945
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
946
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
947
	 * about ~6K pages (as the average of background and throttle wb
948
	 * limits). The 3rd order polynomial will provide positive feedback if
949
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
950
	 *
951
	 * Note, that we cannot use global counters in these calculations
952
	 * because we want to throttle process writing to a strictlimit wb
953 954
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
955
	 */
956
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
957
		long long wb_pos_ratio;
958

959 960 961 962 963
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
964

965
		if (dtc->wb_dirty >= wb_thresh)
966
			return;
967

968 969
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
970

971
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
972
			return;
973

974
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
975
						 wb_thresh);
976 977

		/*
978 979
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
980
		 * state ("dirty") is not limiting factor and we have to
981
		 * make decision based on wb counters. But there is an
982 983
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
984
		 * wb's) while given strictlimit wb is below limit.
985
		 *
986
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
987
		 * but it would look too non-natural for the case of all
988
		 * activity in the system coming from a single strictlimit wb
989 990 991 992
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
993
		 * (when globally we are at freerun and wb is well below wb
994 995 996 997
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
998 999
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
1000
	}
W
Wu Fengguang 已提交
1001 1002 1003

	/*
	 * We have computed basic pos_ratio above based on global situation. If
1004
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
1005 1006 1007 1008
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
1009
	 * wb setpoint
W
Wu Fengguang 已提交
1010
	 *
1011
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
1012
	 *
1013
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
1014
	 *                     := --------------------------
1015
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
1016
	 *
1017
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
1018
	 *
1019 1020 1021
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
1022
	 *
1023
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
1024
	 * regularly within range
1025
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
1026 1027 1028
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
1029
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
1030
	 * own size, so move the slope over accordingly and choose a slope that
1031
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
1032
	 */
1033 1034
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
1035
	/*
1036
	 * It's very possible that wb_thresh is close to 0 not because the
1037 1038 1039 1040 1041
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
1042
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
1043
	/*
1044 1045
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
1046
	 */
1047
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1048
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1049
	/*
1050 1051
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1052
	 *
1053 1054 1055
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1056
	 */
1057
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1058
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1059

1060 1061
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1062
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1063 1064 1065
	} else
		pos_ratio /= 4;

1066
	/*
1067
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1068 1069 1070
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1071
	x_intercept = wb_thresh / 2;
1072 1073 1074 1075
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1076
		else
1077 1078 1079
			pos_ratio *= 8;
	}

1080
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1081 1082
}

1083 1084 1085
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1086 1087
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1088 1089
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1090 1091 1092 1093 1094 1095 1096 1097
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1098 1099 1100
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1101
	 */
1102
	bw = written - min(written, wb->written_stamp);
1103 1104 1105 1106 1107 1108
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1109
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1122 1123 1124 1125 1126 1127 1128
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1129 1130
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1131 1132
}

1133
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1134
{
1135
	struct wb_domain *dom = dtc_dom(dtc);
1136
	unsigned long thresh = dtc->thresh;
1137
	unsigned long limit = dom->dirty_limit;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1150
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1151
	 */
1152
	thresh = max(thresh, dtc->dirty);
1153 1154 1155 1156 1157 1158
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1159
	dom->dirty_limit = limit;
1160 1161
}

1162
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1163 1164
				    unsigned long now)
{
1165
	struct wb_domain *dom = dtc_dom(dtc);
1166 1167 1168 1169

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1170
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1171 1172
		return;

1173 1174
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1175
		update_dirty_limit(dtc);
1176
		dom->dirty_limit_tstamp = now;
1177
	}
1178
	spin_unlock(&dom->lock);
1179 1180
}

W
Wu Fengguang 已提交
1181
/*
1182
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1183
 *
1184
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1185 1186
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1187
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1188 1189
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1190
{
1191 1192 1193
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1194
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1195
	unsigned long setpoint = (freerun + limit) / 2;
1196 1197
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1198 1199 1200
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1201 1202
	unsigned long step;
	unsigned long x;
1203
	unsigned long shift;
W
Wu Fengguang 已提交
1204 1205 1206 1207 1208

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1209
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1210 1211 1212 1213 1214

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1215
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1216 1217 1218 1219
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1220
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1250 1251 1252 1253 1254
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1255

1256 1257 1258
	/*
	 * We could safely do this and return immediately:
	 *
1259
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1260 1261
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1262
	 * code makes use of task_ratelimit to filter out singular points and
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1285
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1286 1287 1288 1289 1290
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1291 1292

	/*
1293
	 * For strictlimit case, calculations above were based on wb counters
1294
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1295
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1296 1297
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1298
	 *
1299 1300
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1301
	 * of backing device.
1302
	 */
1303
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1304 1305 1306
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1307
		else
1308
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1309 1310
	}

1311
	if (dirty < setpoint) {
1312
		x = min3(wb->balanced_dirty_ratelimit,
1313
			 balanced_dirty_ratelimit, task_ratelimit);
1314 1315 1316
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1317
		x = max3(wb->balanced_dirty_ratelimit,
1318
			 balanced_dirty_ratelimit, task_ratelimit);
1319 1320 1321 1322 1323 1324 1325 1326 1327
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
1328 1329 1330 1331 1332
	shift = dirty_ratelimit / (2 * step + 1);
	if (shift < BITS_PER_LONG)
		step = DIV_ROUND_UP(step >> shift, 8);
	else
		step = 0;
1333 1334 1335 1336 1337 1338

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1339 1340
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1341

1342
	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1343 1344
}

1345 1346
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1347 1348
				  unsigned long start_time,
				  bool update_ratelimit)
1349
{
1350
	struct bdi_writeback *wb = gdtc->wb;
1351
	unsigned long now = jiffies;
1352
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1353
	unsigned long dirtied;
1354 1355
	unsigned long written;

1356 1357
	lockdep_assert_held(&wb->list_lock);

1358 1359 1360 1361 1362 1363
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1364 1365
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1366 1367 1368 1369 1370

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1371
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1372 1373
		goto snapshot;

1374
	if (update_ratelimit) {
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1386
	}
1387
	wb_update_write_bandwidth(wb, elapsed, written);
1388 1389

snapshot:
1390 1391 1392
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1393 1394
}

1395
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1396
{
1397 1398
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1399
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1400 1401
}

1402
/*
1403
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1404 1405 1406
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1407
 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1419
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1420
				  unsigned long wb_dirty)
1421
{
1422
	unsigned long bw = wb->avg_write_bandwidth;
1423
	unsigned long t;
1424

1425 1426 1427 1428 1429 1430 1431
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1432
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1433 1434
	t++;

1435
	return min_t(unsigned long, t, MAX_PAUSE);
1436 1437
}

1438 1439 1440 1441 1442
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1443
{
1444 1445
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1446 1447 1448
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1449

1450 1451
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1452 1453 1454 1455 1456

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1457
	 * (N * 10ms) on 2^N concurrent tasks.
1458 1459
	 */
	if (hi > lo)
1460
		t += (hi - lo) * (10 * HZ) / 1024;
1461 1462

	/*
1463 1464 1465 1466 1467 1468 1469 1470
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1471
	 *
1472 1473 1474 1475 1476 1477 1478
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1479
	 */
1480 1481
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1482 1483

	/*
1484 1485 1486 1487 1488 1489
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1490
	 */
1491 1492 1493 1494 1495 1496 1497 1498 1499
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1500 1501 1502 1503 1504
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1505

1506
	*nr_dirtied_pause = pages;
1507
	/*
1508
	 * The minimal pause time will normally be half the target pause time.
1509
	 */
1510
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1511 1512
}

1513
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1514
{
1515
	struct bdi_writeback *wb = dtc->wb;
1516
	unsigned long wb_reclaimable;
1517 1518

	/*
1519
	 * wb_thresh is not treated as some limiting factor as
1520
	 * dirty_thresh, due to reasons
1521
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1522
	 * - in a system with HDD and USB key, the USB key may somehow
1523 1524
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1525
	 *   In this case we don't want to hard throttle the USB key
1526 1527
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1528
	 *   wb_position_ratio() will let the dirtier task progress
1529
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1530
	 */
1531
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1532 1533
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1545
	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1546
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1547
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1548
	} else {
1549
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1550
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1551 1552 1553
	}
}

L
Linus Torvalds 已提交
1554 1555 1556
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1557
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1558 1559
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1560
 */
1561
static void balance_dirty_pages(struct bdi_writeback *wb,
1562
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1563
{
1564
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1565
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1566
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1567 1568 1569
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1570
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1571
	long period;
1572 1573 1574 1575
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1576
	bool dirty_exceeded = false;
1577
	unsigned long task_ratelimit;
1578
	unsigned long dirty_ratelimit;
1579
	struct backing_dev_info *bdi = wb->bdi;
1580
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1581
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1582 1583

	for (;;) {
1584
		unsigned long now = jiffies;
1585
		unsigned long dirty, thresh, bg_thresh;
1586 1587 1588
		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
		unsigned long m_thresh = 0;
		unsigned long m_bg_thresh = 0;
1589

1590 1591 1592 1593 1594 1595
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1596 1597
		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
					global_node_page_state(NR_UNSTABLE_NFS);
1598
		gdtc->avail = global_dirtyable_memory();
1599
		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1600

1601
		domain_dirty_limits(gdtc);
1602

1603
		if (unlikely(strictlimit)) {
1604
			wb_dirty_limits(gdtc);
1605

1606 1607
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1608
			bg_thresh = gdtc->wb_bg_thresh;
1609
		} else {
1610 1611 1612
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1613 1614
		}

1615
		if (mdtc) {
1616
			unsigned long filepages, headroom, writeback;
1617 1618 1619 1620 1621

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
1622 1623
			mem_cgroup_wb_stats(wb, &filepages, &headroom,
					    &mdtc->dirty, &writeback);
1624
			mdtc->dirty += writeback;
1625
			mdtc_calc_avail(mdtc, filepages, headroom);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1639 1640
		}

1641 1642 1643
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1644
		 * when the wb limits are ramping up in case of !strictlimit.
1645
		 *
1646 1647
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1648
		 * up are the price we consciously pay for strictlimit-ing.
1649 1650 1651
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1652
		 */
1653 1654 1655 1656 1657 1658
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1659 1660
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1661 1662 1663
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1664
			break;
1665
		}
1666

1667
		if (unlikely(!writeback_in_progress(wb)))
1668
			wb_start_background_writeback(wb);
1669

1670 1671 1672 1673
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1674
		if (!strictlimit)
1675
			wb_dirty_limits(gdtc);
1676

1677 1678
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1679 1680

		wb_position_ratio(gdtc);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1700

1701 1702
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1703

1704 1705 1706
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1707
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1708 1709
			spin_unlock(&wb->list_lock);
		}
1710

1711
		/* throttle according to the chosen dtc */
1712
		dirty_ratelimit = wb->dirty_ratelimit;
1713
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1714
							RATELIMIT_CALC_SHIFT;
1715
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1716 1717 1718
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1719

1720
		if (unlikely(task_ratelimit == 0)) {
1721
			period = max_pause;
1722
			pause = max_pause;
1723
			goto pause;
P
Peter Zijlstra 已提交
1724
		}
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1736
		if (pause < min_pause) {
1737
			trace_balance_dirty_pages(wb,
1738 1739 1740 1741 1742
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1743 1744 1745
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1746
						  period,
1747
						  min(pause, 0L),
1748
						  start_time);
1749 1750 1751 1752 1753 1754
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1755 1756
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1757
			break;
P
Peter Zijlstra 已提交
1758
		}
1759 1760 1761 1762 1763
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1764 1765

pause:
1766
		trace_balance_dirty_pages(wb,
1767 1768 1769 1770 1771
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1772 1773 1774
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1775
					  period,
1776 1777
					  pause,
					  start_time);
1778
		__set_current_state(TASK_KILLABLE);
1779
		wb->dirty_sleep = now;
1780
		io_schedule_timeout(pause);
1781

1782 1783
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1784
		current->nr_dirtied_pause = nr_dirtied_pause;
1785

1786
		/*
1787 1788
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1789
		 */
1790
		if (task_ratelimit)
1791
			break;
1792

1793 1794
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1795
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1796 1797
		 * to go through, so that tasks on them still remain responsive.
		 *
1798
		 * In theory 1 page is enough to keep the consumer-producer
1799
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1800
		 * more page. However wb_dirty has accounting errors.  So use
1801
		 * the larger and more IO friendly wb_stat_error.
1802
		 */
1803
		if (sdtc->wb_dirty <= wb_stat_error())
1804 1805
			break;

1806 1807
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1808 1809
	}

1810 1811
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1812

1813
	if (writeback_in_progress(wb))
1814
		return;
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1824 1825 1826
	if (laptop_mode)
		return;

1827
	if (nr_reclaimable > gdtc->bg_thresh)
1828
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1829 1830
}

1831
static DEFINE_PER_CPU(int, bdp_ratelimits);
1832

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1849
/**
1850
 * balance_dirty_pages_ratelimited - balance dirty memory state
1851
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1862
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1863
{
1864 1865 1866
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1867 1868
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1869

1870 1871 1872
	if (!bdi_cap_account_dirty(bdi))
		return;

1873 1874 1875 1876 1877
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1878
	ratelimit = current->nr_dirtied_pause;
1879
	if (wb->dirty_exceeded)
1880 1881 1882
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1883
	/*
1884 1885 1886 1887
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1888
	 */
1889
	p =  this_cpu_ptr(&bdp_ratelimits);
1890
	if (unlikely(current->nr_dirtied >= ratelimit))
1891
		*p = 0;
1892 1893 1894
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1895
	}
1896 1897 1898 1899 1900
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1901
	p = this_cpu_ptr(&dirty_throttle_leaks);
1902
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1903
		unsigned long nr_pages_dirtied;
1904 1905 1906
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1907
	}
1908
	preempt_enable();
1909 1910

	if (unlikely(current->nr_dirtied >= ratelimit))
1911
		balance_dirty_pages(wb, current->nr_dirtied);
1912 1913

	wb_put(wb);
L
Linus Torvalds 已提交
1914
}
1915
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1926
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1927
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1928
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1929 1930
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1931

1932 1933 1934 1935 1936
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
1937 1938
	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
		      global_node_page_state(NR_UNSTABLE_NFS);
1939
	domain_dirty_limits(gdtc);
1940

1941
	if (gdtc->dirty > gdtc->bg_thresh)
1942 1943
		return true;

1944 1945
	if (wb_stat(wb, WB_RECLAIMABLE) >
	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1946 1947
		return true;

1948
	if (mdtc) {
1949
		unsigned long filepages, headroom, writeback;
1950

1951 1952 1953
		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
				    &writeback);
		mdtc_calc_avail(mdtc, filepages, headroom);
1954 1955 1956 1957 1958
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

1959 1960
		if (wb_stat(wb, WB_RECLAIMABLE) >
		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1961 1962 1963
			return true;
	}

1964 1965 1966
	return false;
}

L
Linus Torvalds 已提交
1967 1968 1969
/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1970
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1971
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1972
{
1973 1974 1975 1976
	unsigned int old_interval = dirty_writeback_interval;
	int ret;

	ret = proc_dointvec(table, write, buffer, length, ppos);
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

	/*
	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
	 * and a different non-zero value will wakeup the writeback threads.
	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
	 * iterate over all bdis and wbs.
	 * The reason we do this is to make the change take effect immediately.
	 */
	if (!ret && write && dirty_writeback_interval &&
		dirty_writeback_interval != old_interval)
1987 1988 1989
		wakeup_flusher_threads(WB_REASON_PERIODIC);

	return ret;
L
Linus Torvalds 已提交
1990 1991
}

1992
#ifdef CONFIG_BLOCK
1993
void laptop_mode_timer_fn(struct timer_list *t)
L
Linus Torvalds 已提交
1994
{
1995 1996
	struct backing_dev_info *backing_dev_info =
		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
L
Linus Torvalds 已提交
1997

1998
	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004 2005
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
2006
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
2007
{
2008
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
2018 2019 2020 2021 2022 2023 2024 2025
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
2026
}
2027
#endif
L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2037
 * thresholds.
L
Linus Torvalds 已提交
2038 2039
 */

2040
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2041
{
2042
	struct wb_domain *dom = &global_wb_domain;
2043 2044
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2045

2046
	global_dirty_limits(&background_thresh, &dirty_thresh);
2047
	dom->dirty_limit = dirty_thresh;
2048
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2049 2050 2051 2052
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2053
static int page_writeback_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
2054
{
2055 2056
	writeback_set_ratelimit();
	return 0;
L
Linus Torvalds 已提交
2057 2058 2059
}

/*
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2076 2077 2078
 */
void __init page_writeback_init(void)
{
2079 2080
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));

2081 2082 2083 2084
	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
			  page_writeback_cpu_online, NULL);
	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
			  page_writeback_cpu_online);
L
Linus Torvalds 已提交
2085 2086
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
M
Matthew Wilcox 已提交
2102 2103
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce the i_pages lock
 * latency.
2104 2105 2106 2107
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2108
#define WRITEBACK_TAG_BATCH 4096
2109 2110 2111 2112
	unsigned long tagged = 0;
	struct radix_tree_iter iter;
	void **slot;

M
Matthew Wilcox 已提交
2113 2114
	xa_lock_irq(&mapping->i_pages);
	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start,
2115 2116 2117
							PAGECACHE_TAG_DIRTY) {
		if (iter.index > end)
			break;
M
Matthew Wilcox 已提交
2118
		radix_tree_iter_tag_set(&mapping->i_pages, &iter,
2119 2120 2121 2122 2123
							PAGECACHE_TAG_TOWRITE);
		tagged++;
		if ((tagged % WRITEBACK_TAG_BATCH) != 0)
			continue;
		slot = radix_tree_iter_resume(slot, &iter);
M
Matthew Wilcox 已提交
2124
		xa_unlock_irq(&mapping->i_pages);
2125
		cond_resched();
M
Matthew Wilcox 已提交
2126
		xa_lock_irq(&mapping->i_pages);
2127
	}
M
Matthew Wilcox 已提交
2128
	xa_unlock_irq(&mapping->i_pages);
2129 2130 2131
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2132
/**
2133
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2134 2135
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2136 2137
 * @writepage: function called for each page
 * @data: data passed to writepage function
2138
 *
2139
 * If a page is already under I/O, write_cache_pages() skips it, even
2140 2141 2142 2143 2144 2145
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2146 2147 2148 2149 2150 2151 2152
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2153
 */
2154 2155 2156
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2157 2158 2159 2160 2161
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2162
	pgoff_t uninitialized_var(writeback_index);
2163 2164
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2165
	pgoff_t done_index;
N
Nick Piggin 已提交
2166
	int cycled;
2167
	int range_whole = 0;
2168
	int tag;
2169

2170
	pagevec_init(&pvec);
2171
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2172 2173 2174 2175 2176 2177
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2178 2179
		end = -1;
	} else {
2180 2181
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
2182 2183
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2184
		cycled = 1; /* ignore range_cyclic tests */
2185
	}
2186
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2187 2188 2189
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2190
retry:
2191
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192
		tag_pages_for_writeback(mapping, index, end);
2193
	done_index = index;
N
Nick Piggin 已提交
2194 2195 2196
	while (!done && (index <= end)) {
		int i;

2197
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2198
				tag);
N
Nick Piggin 已提交
2199 2200
		if (nr_pages == 0)
			break;
2201 2202 2203 2204

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

2205
			done_index = page->index;
2206

2207 2208
			lock_page(page);

N
Nick Piggin 已提交
2209 2210 2211 2212 2213 2214 2215 2216
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2217
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2218
continue_unlock:
2219 2220 2221 2222
				unlock_page(page);
				continue;
			}

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2234

2235 2236
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2237
				goto continue_unlock;
2238

2239
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2240
			ret = (*writepage)(page, wbc, data);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2255
					done_index = page->index + 1;
2256 2257 2258
					done = 1;
					break;
				}
2259
			}
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2271
			}
2272 2273 2274 2275
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2276
	if (!cycled && !done) {
2277
		/*
N
Nick Piggin 已提交
2278
		 * range_cyclic:
2279 2280 2281
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2282
		cycled = 1;
2283
		index = 0;
N
Nick Piggin 已提交
2284
		end = writeback_index - 1;
2285 2286
		goto retry;
	}
2287 2288
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2289

2290 2291
	return ret;
}
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2318 2319 2320
	struct blk_plug plug;
	int ret;

2321 2322 2323 2324
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2325 2326 2327 2328
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2329
}
2330 2331 2332

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2333 2334
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2335 2336
	int ret;

L
Linus Torvalds 已提交
2337 2338
	if (wbc->nr_to_write <= 0)
		return 0;
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	while (1) {
		if (mapping->a_ops->writepages)
			ret = mapping->a_ops->writepages(mapping, wbc);
		else
			ret = generic_writepages(mapping, wbc);
		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
			break;
		cond_resched();
		congestion_wait(BLK_RW_ASYNC, HZ/50);
	}
2349
	return ret;
L
Linus Torvalds 已提交
2350 2351 2352
}

/**
2353
 * write_one_page - write out a single page and wait on I/O
2354
 * @page: the page to write
L
Linus Torvalds 已提交
2355 2356 2357
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
2358 2359
 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
 * function returns.
L
Linus Torvalds 已提交
2360
 */
2361
int write_one_page(struct page *page)
L
Linus Torvalds 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

2372
	wait_on_page_writeback(page);
L
Linus Torvalds 已提交
2373 2374

	if (clear_page_dirty_for_io(page)) {
2375
		get_page(page);
L
Linus Torvalds 已提交
2376
		ret = mapping->a_ops->writepage(page, &wbc);
2377
		if (ret == 0)
L
Linus Torvalds 已提交
2378
			wait_on_page_writeback(page);
2379
		put_page(page);
L
Linus Torvalds 已提交
2380 2381 2382
	} else {
		unlock_page(page);
	}
2383 2384 2385

	if (!ret)
		ret = filemap_check_errors(mapping);
L
Linus Torvalds 已提交
2386 2387 2388 2389
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2390 2391 2392 2393 2394 2395
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2396
		return !TestSetPageDirty(page);
2397 2398 2399
	return 0;
}

2400 2401
/*
 * Helper function for set_page_dirty family.
2402
 *
2403
 * Caller must hold lock_page_memcg().
2404
 *
2405 2406
 * NOTE: This relies on being atomic wrt interrupts.
 */
J
Johannes Weiner 已提交
2407
void account_page_dirtied(struct page *page, struct address_space *mapping)
2408
{
2409 2410
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2411 2412
	trace_writeback_dirty_page(page, mapping);

2413
	if (mapping_cap_account_dirty(mapping)) {
2414
		struct bdi_writeback *wb;
2415

2416 2417
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2418

2419
		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2420
		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2421
		__inc_node_page_state(page, NR_DIRTIED);
2422 2423
		inc_wb_stat(wb, WB_RECLAIMABLE);
		inc_wb_stat(wb, WB_DIRTIED);
2424
		task_io_account_write(PAGE_SIZE);
2425 2426
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2427 2428
	}
}
M
Michael Rubin 已提交
2429
EXPORT_SYMBOL(account_page_dirtied);
2430

2431 2432 2433
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2434
 * Caller must hold lock_page_memcg().
2435
 */
2436
void account_page_cleaned(struct page *page, struct address_space *mapping,
J
Johannes Weiner 已提交
2437
			  struct bdi_writeback *wb)
2438 2439
{
	if (mapping_cap_account_dirty(mapping)) {
2440
		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2441
		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2442
		dec_wb_stat(wb, WB_RECLAIMABLE);
2443
		task_io_account_cancelled_write(PAGE_SIZE);
2444 2445 2446
	}
}

L
Linus Torvalds 已提交
2447 2448 2449 2450 2451 2452 2453 2454
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2455 2456 2457
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2458 2459 2460
 */
int __set_page_dirty_nobuffers(struct page *page)
{
J
Johannes Weiner 已提交
2461
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2462 2463
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2464
		unsigned long flags;
L
Linus Torvalds 已提交
2465

2466
		if (!mapping) {
J
Johannes Weiner 已提交
2467
			unlock_page_memcg(page);
2468
			return 1;
2469
		}
2470

M
Matthew Wilcox 已提交
2471
		xa_lock_irqsave(&mapping->i_pages, flags);
2472 2473
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
J
Johannes Weiner 已提交
2474
		account_page_dirtied(page, mapping);
M
Matthew Wilcox 已提交
2475
		radix_tree_tag_set(&mapping->i_pages, page_index(page),
2476
				   PAGECACHE_TAG_DIRTY);
M
Matthew Wilcox 已提交
2477
		xa_unlock_irqrestore(&mapping->i_pages, flags);
J
Johannes Weiner 已提交
2478
		unlock_page_memcg(page);
2479

2480 2481 2482
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2483
		}
2484
		return 1;
L
Linus Torvalds 已提交
2485
	}
J
Johannes Weiner 已提交
2486
	unlock_page_memcg(page);
2487
	return 0;
L
Linus Torvalds 已提交
2488 2489 2490
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2501

2502
	if (mapping && mapping_cap_account_dirty(mapping)) {
2503 2504 2505
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2506

2507
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2508
		current->nr_dirtied--;
2509
		dec_node_page_state(page, NR_DIRTIED);
2510
		dec_wb_stat(wb, WB_DIRTIED);
2511
		unlocked_inode_to_wb_end(inode, locked);
2512 2513 2514 2515
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2516 2517 2518 2519 2520 2521 2522
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2523 2524
	int ret;

L
Linus Torvalds 已提交
2525
	wbc->pages_skipped++;
2526
	ret = __set_page_dirty_nobuffers(page);
2527
	account_page_redirty(page);
2528
	return ret;
L
Linus Torvalds 已提交
2529 2530 2531 2532
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2533 2534 2535 2536 2537 2538 2539
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2540 2541 2542
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2543
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2544 2545 2546
{
	struct address_space *mapping = page_mapping(page);

2547
	page = compound_head(page);
L
Linus Torvalds 已提交
2548 2549
	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2560 2561
		if (PageReclaim(page))
			ClearPageReclaim(page);
2562 2563 2564 2565 2566
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2567
	}
2568 2569 2570 2571
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2590
	lock_page(page);
L
Linus Torvalds 已提交
2591 2592 2593 2594 2595 2596
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
2610
void __cancel_dirty_page(struct page *page)
2611
{
2612 2613 2614
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2615 2616 2617
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2618

J
Johannes Weiner 已提交
2619
		lock_page_memcg(page);
2620
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2621 2622

		if (TestClearPageDirty(page))
J
Johannes Weiner 已提交
2623
			account_page_cleaned(page, mapping, wb);
2624

2625
		unlocked_inode_to_wb_end(inode, locked);
J
Johannes Weiner 已提交
2626
		unlock_page_memcg(page);
2627 2628 2629
	} else {
		ClearPageDirty(page);
	}
2630
}
2631
EXPORT_SYMBOL(__cancel_dirty_page);
2632

L
Linus Torvalds 已提交
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2650
	int ret = 0;
L
Linus Torvalds 已提交
2651

2652 2653
	BUG_ON(!PageLocked(page));

2654
	if (mapping && mapping_cap_account_dirty(mapping)) {
2655 2656 2657 2658
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2686 2687 2688
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2689 2690 2691 2692
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2693
		 */
2694
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2695
		if (TestClearPageDirty(page)) {
2696
			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2697
			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2698
			dec_wb_stat(wb, WB_RECLAIMABLE);
2699
			ret = 1;
L
Linus Torvalds 已提交
2700
		}
2701
		unlocked_inode_to_wb_end(inode, locked);
2702
		return ret;
L
Linus Torvalds 已提交
2703
	}
2704
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2705
}
2706
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2707 2708 2709 2710

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2711 2712
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;
2713
	int ret;
L
Linus Torvalds 已提交
2714

2715 2716
	memcg = lock_page_memcg(page);
	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2717
	if (mapping && mapping_use_writeback_tags(mapping)) {
2718 2719
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2720 2721
		unsigned long flags;

M
Matthew Wilcox 已提交
2722
		xa_lock_irqsave(&mapping->i_pages, flags);
L
Linus Torvalds 已提交
2723
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2724
		if (ret) {
M
Matthew Wilcox 已提交
2725
			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
L
Linus Torvalds 已提交
2726
						PAGECACHE_TAG_WRITEBACK);
2727
			if (bdi_cap_account_writeback(bdi)) {
2728 2729
				struct bdi_writeback *wb = inode_to_wb(inode);

2730
				dec_wb_stat(wb, WB_WRITEBACK);
2731
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2732
			}
P
Peter Zijlstra 已提交
2733
		}
2734 2735 2736 2737 2738

		if (mapping->host && !mapping_tagged(mapping,
						     PAGECACHE_TAG_WRITEBACK))
			sb_clear_inode_writeback(mapping->host);

M
Matthew Wilcox 已提交
2739
		xa_unlock_irqrestore(&mapping->i_pages, flags);
L
Linus Torvalds 已提交
2740 2741 2742
	} else {
		ret = TestClearPageWriteback(page);
	}
2743 2744 2745 2746 2747 2748
	/*
	 * NOTE: Page might be free now! Writeback doesn't hold a page
	 * reference on its own, it relies on truncation to wait for
	 * the clearing of PG_writeback. The below can only access
	 * page state that is static across allocation cycles.
	 */
2749
	if (ret) {
2750
		dec_lruvec_state(lruvec, NR_WRITEBACK);
2751
		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2752
		inc_node_page_state(page, NR_WRITTEN);
2753
	}
2754
	__unlock_page_memcg(memcg);
L
Linus Torvalds 已提交
2755 2756 2757
	return ret;
}

2758
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2759 2760
{
	struct address_space *mapping = page_mapping(page);
2761
	int ret;
L
Linus Torvalds 已提交
2762

J
Johannes Weiner 已提交
2763
	lock_page_memcg(page);
2764
	if (mapping && mapping_use_writeback_tags(mapping)) {
2765 2766
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2767 2768
		unsigned long flags;

M
Matthew Wilcox 已提交
2769
		xa_lock_irqsave(&mapping->i_pages, flags);
L
Linus Torvalds 已提交
2770
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2771
		if (!ret) {
2772 2773 2774 2775 2776
			bool on_wblist;

			on_wblist = mapping_tagged(mapping,
						   PAGECACHE_TAG_WRITEBACK);

M
Matthew Wilcox 已提交
2777
			radix_tree_tag_set(&mapping->i_pages, page_index(page),
L
Linus Torvalds 已提交
2778
						PAGECACHE_TAG_WRITEBACK);
2779
			if (bdi_cap_account_writeback(bdi))
2780
				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2781 2782 2783 2784 2785 2786 2787 2788

			/*
			 * We can come through here when swapping anonymous
			 * pages, so we don't necessarily have an inode to track
			 * for sync.
			 */
			if (mapping->host && !on_wblist)
				sb_mark_inode_writeback(mapping->host);
P
Peter Zijlstra 已提交
2789
		}
L
Linus Torvalds 已提交
2790
		if (!PageDirty(page))
M
Matthew Wilcox 已提交
2791
			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
L
Linus Torvalds 已提交
2792
						PAGECACHE_TAG_DIRTY);
2793
		if (!keep_write)
M
Matthew Wilcox 已提交
2794
			radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2795
						PAGECACHE_TAG_TOWRITE);
M
Matthew Wilcox 已提交
2796
		xa_unlock_irqrestore(&mapping->i_pages, flags);
L
Linus Torvalds 已提交
2797 2798 2799
	} else {
		ret = TestSetPageWriteback(page);
	}
2800
	if (!ret) {
2801
		inc_lruvec_page_state(page, NR_WRITEBACK);
2802
		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2803
	}
J
Johannes Weiner 已提交
2804
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2805 2806 2807
	return ret;

}
2808
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2809 2810

/*
N
Nick Piggin 已提交
2811
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2812 2813 2814 2815
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
M
Matthew Wilcox 已提交
2816
	return radix_tree_tagged(&mapping->i_pages, tag);
L
Linus Torvalds 已提交
2817 2818
}
EXPORT_SYMBOL(mapping_tagged);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2830 2831
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2832 2833
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);