page-writeback.c 79.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148
#define DTC_INIT_COMMON(__wb)	.wb = (__wb),				\
149
				.wb_completions = &(__wb)->completions
150

151 152 153 154 155 156
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
157

158 159
#ifdef CONFIG_CGROUP_WRITEBACK

160 161
#define GDTC_INIT(__wb)		.dom = &global_wb_domain,		\
				DTC_INIT_COMMON(__wb)
162
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 164 165 166 167 168

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

169 170 171 172 173
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
174 175 176 177 178
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

208
#define GDTC_INIT(__wb)		DTC_INIT_COMMON(__wb)
209
#define GDTC_INIT_NO_WB
210 211 212 213 214 215

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

216 217 218 219 220
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
221 222 223 224 225
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

226 227 228 229 230 231 232 233 234
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

253 254 255 256 257 258 259 260 261 262 263 264 265 266
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);

267 268
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
269 270 271 272

	return nr_pages;
}

273 274 275 276 277 278 279
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
280
		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
281

282
		x += zone_dirtyable_memory(z);
283
	}
284 285 286 287 288 289 290 291 292 293 294 295
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

296 297 298 299 300 301 302 303 304 305 306 307 308
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
309
 * global_dirtyable_memory - number of globally dirtyable pages
310
 *
311 312
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
313
 */
314
static unsigned long global_dirtyable_memory(void)
315 316 317
{
	unsigned long x;

318
	x = global_page_state(NR_FREE_PAGES);
319
	x -= min(x, dirty_balance_reserve);
320

321 322
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
323

324 325 326 327 328 329
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

330 331 332
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
333
 *
334 335 336 337
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
338 339
 * real-time tasks.
 */
340
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
341
{
342 343 344 345 346 347 348 349
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
	unsigned long ratio = vm_dirty_ratio;
	unsigned long bg_ratio = dirty_background_ratio;
	unsigned long thresh;
	unsigned long bg_thresh;
350 351
	struct task_struct *tsk;

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
		 * globally available memory.
		 */
		if (bytes)
			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
				    global_avail, 100UL);
		if (bg_bytes)
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
				       global_avail, 100UL);
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
372
	else
373
		thresh = (ratio * available_memory) / 100;
374

375 376
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
377
	else
378
		bg_thresh = (bg_ratio * available_memory) / 100;
379

380 381
	if (bg_thresh >= thresh)
		bg_thresh = thresh / 2;
382 383
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
384 385
		bg_thresh += bg_thresh / 4;
		thresh += thresh / 4;
386
	}
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
412 413
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

455
int dirty_background_ratio_handler(struct ctl_table *table, int write,
456
		void __user *buffer, size_t *lenp,
457 458 459 460
		loff_t *ppos)
{
	int ret;

461
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
462 463 464 465 466 467
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
468
		void __user *buffer, size_t *lenp,
469 470 471 472
		loff_t *ppos)
{
	int ret;

473
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
474 475 476 477 478
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
479
int dirty_ratio_handler(struct ctl_table *table, int write,
480
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
481 482 483
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
484 485
	int ret;

486
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
487
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
488
		writeback_set_ratelimit();
489 490 491 492 493 494
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
495
		void __user *buffer, size_t *lenp,
496 497
		loff_t *ppos)
{
498
	unsigned long old_bytes = vm_dirty_bytes;
499 500
	int ret;

501
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
502
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
503
		writeback_set_ratelimit();
504
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
505 506 507 508
	}
	return ret;
}

509 510 511 512 513 514 515 516 517
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

518 519 520
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
521
{
522 523
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
524
	/* First event after period switching was turned off? */
T
Tejun Heo 已提交
525
	if (!unlikely(dom->period_time)) {
526 527 528 529 530 531
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
532 533
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
534
	}
P
Peter Zijlstra 已提交
535 536
}

537 538 539 540 541 542
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
{
T
Tejun Heo 已提交
543 544
	struct wb_domain *cgdom;

545 546 547
	__inc_wb_stat(wb, WB_WRITTEN);
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
548 549 550 551 552

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
553 554
}

555
void wb_writeout_inc(struct bdi_writeback *wb)
556 557 558 559
{
	unsigned long flags;

	local_irq_save(flags);
560
	__wb_writeout_inc(wb);
561 562
	local_irq_restore(flags);
}
563
EXPORT_SYMBOL_GPL(wb_writeout_inc);
564

565 566 567 568 569 570
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
571 572
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
573 574
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
575 576
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
577
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
578
		mod_timer(&dom->period_timer, dom->period_time);
579 580 581 582 583
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
584
		dom->period_time = 0;
585 586 587
	}
}

T
Tejun Heo 已提交
588 589 590
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
591 592 593

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
594 595 596
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
597 598 599

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
600 601 602
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
603 604 605 606 607 608 609 610
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

611
/*
612 613 614
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
615 616 617 618 619 620 621
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

622
	spin_lock_bh(&bdi_lock);
623
	if (min_ratio > bdi->max_ratio) {
624
		ret = -EINVAL;
625 626 627 628 629 630 631 632 633
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
634
	spin_unlock_bh(&bdi_lock);
635 636 637 638 639 640 641 642 643 644 645

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

646
	spin_lock_bh(&bdi_lock);
647 648 649 650
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
651
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
652
	}
653
	spin_unlock_bh(&bdi_lock);
654 655 656

	return ret;
}
657
EXPORT_SYMBOL(bdi_set_max_ratio);
658

W
Wu Fengguang 已提交
659 660 661 662 663 664
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

665 666
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
667
{
668
	return max(thresh, dom->dirty_limit);
669 670
}

671
/**
672 673
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
674
 *
675
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
676
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
677 678 679 680 681 682
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
683
 * more (rather than completely block them) when the wb dirty pages go high.
684
 *
685
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
686 687 688
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
689
 * The wb's share of dirty limit will be adapting to its throughput and
690 691
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
692
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
693
{
694
	struct wb_domain *dom = dtc_dom(dtc);
695
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
696
	u64 wb_thresh;
697
	long numerator, denominator;
698
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
699

700
	/*
T
Tejun Heo 已提交
701
	 * Calculate this BDI's share of the thresh ratio.
702
	 */
703
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
704
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
705

T
Tejun Heo 已提交
706 707 708
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
709

710
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
711

T
Tejun Heo 已提交
712 713 714
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
715

T
Tejun Heo 已提交
716
	return wb_thresh;
L
Linus Torvalds 已提交
717 718
}

719 720 721 722 723 724 725
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
740
static long long pos_ratio_polynom(unsigned long setpoint,
741 742 743 744 745 746
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

747
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
748 749 750 751 752 753 754 755 756
		    limit - setpoint + 1);
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
757 758 759 760 761
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
762
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
763 764 765 766 767 768 769 770 771
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
772 773
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
798
 * (o) wb control line
W
Wu Fengguang 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
824
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
825
 *
826
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
827 828
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
829 830
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
831
 */
832
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
833
{
834
	struct bdi_writeback *wb = dtc->wb;
835
	unsigned long write_bw = wb->avg_write_bandwidth;
836
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
837
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
838
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
839 840
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
841
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
842 843 844 845
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

846 847
	dtc->pos_ratio = 0;

848
	if (unlikely(dtc->dirty >= limit))
849
		return;
W
Wu Fengguang 已提交
850 851 852 853

	/*
	 * global setpoint
	 *
854 855 856
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
857
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
858 859 860 861

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
862 863
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
864 865 866 867
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
868
	 *
869
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
870
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
871 872
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
873
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
874
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
875
	 * about ~6K pages (as the average of background and throttle wb
876
	 * limits). The 3rd order polynomial will provide positive feedback if
877
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
878
	 *
879
	 * Note, that we cannot use global counters in these calculations
880
	 * because we want to throttle process writing to a strictlimit wb
881 882
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
883
	 */
884
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
885
		long long wb_pos_ratio;
886

887 888 889 890 891
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
892

893
		if (dtc->wb_dirty >= wb_thresh)
894
			return;
895

896 897
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
898

899
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
900
			return;
901

902
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
903
						 wb_thresh);
904 905

		/*
906 907
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
908
		 * state ("dirty") is not limiting factor and we have to
909
		 * make decision based on wb counters. But there is an
910 911
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
912
		 * wb's) while given strictlimit wb is below limit.
913
		 *
914
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
915
		 * but it would look too non-natural for the case of all
916
		 * activity in the system coming from a single strictlimit wb
917 918 919 920
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
921
		 * (when globally we are at freerun and wb is well below wb
922 923 924 925
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
926 927
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
928
	}
W
Wu Fengguang 已提交
929 930 931

	/*
	 * We have computed basic pos_ratio above based on global situation. If
932
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
933 934 935 936
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
937
	 * wb setpoint
W
Wu Fengguang 已提交
938
	 *
939
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
940
	 *
941
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
942
	 *                     := --------------------------
943
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
944
	 *
945
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
946
	 *
947 948 949
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
950
	 *
951
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
952
	 * regularly within range
953
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
954 955 956
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
957
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
958
	 * own size, so move the slope over accordingly and choose a slope that
959
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
960
	 */
961 962
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
963
	/*
964
	 * It's very possible that wb_thresh is close to 0 not because the
965 966 967 968 969
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
970
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
971
	/*
972 973
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
974
	 */
975
	x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
976
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
977
	/*
978 979
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
980
	 *
981 982 983
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
984
	 */
985
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
986
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
987

988 989 990
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
				      x_intercept - wb_setpoint + 1);
W
Wu Fengguang 已提交
991 992 993
	} else
		pos_ratio /= 4;

994
	/*
995
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
996 997 998
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
999
	x_intercept = wb_thresh / 2;
1000 1001 1002 1003
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1004
		else
1005 1006 1007
			pos_ratio *= 8;
	}

1008
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1009 1010
}

1011 1012 1013
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1014 1015
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1016 1017
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1018 1019 1020 1021 1022 1023 1024 1025
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1026 1027 1028
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1029
	 */
1030
	bw = written - min(written, wb->written_stamp);
1031 1032 1033 1034 1035 1036
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1037
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1050 1051 1052 1053 1054 1055 1056
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1057 1058
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1059 1060
}

1061
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1062
{
1063
	struct wb_domain *dom = dtc_dom(dtc);
1064
	unsigned long thresh = dtc->thresh;
1065
	unsigned long limit = dom->dirty_limit;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1078
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1079
	 */
1080
	thresh = max(thresh, dtc->dirty);
1081 1082 1083 1084 1085 1086
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1087
	dom->dirty_limit = limit;
1088 1089
}

1090
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1091 1092
				    unsigned long now)
{
1093
	struct wb_domain *dom = dtc_dom(dtc);
1094 1095 1096 1097

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1098
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1099 1100
		return;

1101 1102
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1103
		update_dirty_limit(dtc);
1104
		dom->dirty_limit_tstamp = now;
1105
	}
1106
	spin_unlock(&dom->lock);
1107 1108
}

W
Wu Fengguang 已提交
1109
/*
1110
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1111
 *
1112
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1113 1114
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1115
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1116 1117
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1118
{
1119 1120 1121
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1122
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1123
	unsigned long setpoint = (freerun + limit) / 2;
1124 1125
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1126 1127 1128
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1129 1130
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
1131 1132 1133 1134 1135

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1136
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1137 1138 1139 1140 1141

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1142
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1143 1144 1145 1146
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1147
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1177 1178 1179 1180 1181
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1182

1183 1184 1185
	/*
	 * We could safely do this and return immediately:
	 *
1186
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1187 1188
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1189
	 * code makes use of task_ratelimit to filter out singular points and
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1212
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1213 1214 1215 1216 1217
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1218 1219

	/*
1220
	 * For strictlimit case, calculations above were based on wb counters
1221
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1222
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1223 1224
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1225
	 *
1226 1227
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1228
	 * of backing device.
1229
	 */
1230
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1231 1232 1233
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1234
		else
1235
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1236 1237
	}

1238
	if (dirty < setpoint) {
1239
		x = min3(wb->balanced_dirty_ratelimit,
1240
			 balanced_dirty_ratelimit, task_ratelimit);
1241 1242 1243
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1244
		x = max3(wb->balanced_dirty_ratelimit,
1245
			 balanced_dirty_ratelimit, task_ratelimit);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1266 1267
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1268

1269
	trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1270 1271
}

1272
static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
1273 1274
				  unsigned long start_time,
				  bool update_ratelimit)
1275
{
1276
	struct bdi_writeback *wb = dtc->wb;
1277
	unsigned long now = jiffies;
1278
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1279
	unsigned long dirtied;
1280 1281
	unsigned long written;

1282 1283
	lockdep_assert_held(&wb->list_lock);

1284 1285 1286 1287 1288 1289
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1290 1291
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1292 1293 1294 1295 1296

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1297
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1298 1299
		goto snapshot;

1300
	if (update_ratelimit) {
1301
		domain_update_bandwidth(dtc, now);
1302
		wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
W
Wu Fengguang 已提交
1303
	}
1304
	wb_update_write_bandwidth(wb, elapsed, written);
1305 1306

snapshot:
1307 1308 1309
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1310 1311
}

1312
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1313
{
1314 1315 1316
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

	__wb_update_bandwidth(&gdtc, start_time, false);
1317 1318
}

1319
/*
1320
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1336
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1337
				  unsigned long wb_dirty)
1338
{
1339
	unsigned long bw = wb->avg_write_bandwidth;
1340
	unsigned long t;
1341

1342 1343 1344 1345 1346 1347 1348
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1349
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1350 1351
	t++;

1352
	return min_t(unsigned long, t, MAX_PAUSE);
1353 1354
}

1355 1356 1357 1358 1359
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1360
{
1361 1362
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1363 1364 1365
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1366

1367 1368
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1369 1370 1371 1372 1373

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1374
	 * (N * 10ms) on 2^N concurrent tasks.
1375 1376
	 */
	if (hi > lo)
1377
		t += (hi - lo) * (10 * HZ) / 1024;
1378 1379

	/*
1380 1381 1382 1383 1384 1385 1386 1387
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1388
	 *
1389 1390 1391 1392 1393 1394 1395
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1396
	 */
1397 1398
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1399 1400

	/*
1401 1402 1403 1404 1405 1406
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1407
	 */
1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1417 1418 1419 1420 1421
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1422

1423
	*nr_dirtied_pause = pages;
1424
	/*
1425
	 * The minimal pause time will normally be half the target pause time.
1426
	 */
1427
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1428 1429
}

1430
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1431
{
1432
	struct bdi_writeback *wb = dtc->wb;
1433
	unsigned long wb_reclaimable;
1434 1435

	/*
1436
	 * wb_thresh is not treated as some limiting factor as
1437
	 * dirty_thresh, due to reasons
1438
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1439
	 * - in a system with HDD and USB key, the USB key may somehow
1440 1441
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1442
	 *   In this case we don't want to hard throttle the USB key
1443 1444
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1445
	 *   wb_position_ratio() will let the dirtier task progress
1446
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1447
	 */
1448
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1449 1450
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1462
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1463
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1464
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1465
	} else {
1466
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1467
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1468 1469 1470
	}
}

L
Linus Torvalds 已提交
1471 1472 1473
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1474
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1475 1476
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1477
 */
1478
static void balance_dirty_pages(struct address_space *mapping,
1479
				struct bdi_writeback *wb,
1480
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1481
{
1482 1483
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1484
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1485
	long period;
1486 1487 1488 1489
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1490
	bool dirty_exceeded = false;
1491
	unsigned long task_ratelimit;
1492
	unsigned long dirty_ratelimit;
1493
	struct backing_dev_info *bdi = wb->bdi;
1494
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1495
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1496 1497

	for (;;) {
1498
		unsigned long now = jiffies;
1499
		unsigned long dirty, thresh, bg_thresh;
1500

1501 1502 1503 1504 1505 1506
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1507 1508
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1509
		gdtc->avail = global_dirtyable_memory();
1510
		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1511

1512
		domain_dirty_limits(gdtc);
1513

1514
		if (unlikely(strictlimit)) {
1515
			wb_dirty_limits(gdtc);
1516

1517 1518
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1519
			bg_thresh = gdtc->wb_bg_thresh;
1520
		} else {
1521 1522 1523
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1524 1525
		}

1526 1527 1528
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1529
		 * when the wb limits are ramping up in case of !strictlimit.
1530
		 *
1531 1532
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1533
		 * up are the price we consciously pay for strictlimit-ing.
1534
		 */
1535
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1536 1537
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1538
			current->nr_dirtied_pause =
1539
				dirty_poll_interval(dirty, thresh);
1540
			break;
1541
		}
1542

1543
		if (unlikely(!writeback_in_progress(wb)))
1544
			wb_start_background_writeback(wb);
1545

1546
		if (!strictlimit)
1547
			wb_dirty_limits(gdtc);
1548

1549 1550
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1551 1552 1553

		wb_position_ratio(gdtc);

1554 1555
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1556

1557 1558 1559
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1560
			__wb_update_bandwidth(gdtc, start_time, true);
1561 1562
			spin_unlock(&wb->list_lock);
		}
1563

1564
		dirty_ratelimit = wb->dirty_ratelimit;
1565
		task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
1566
							RATELIMIT_CALC_SHIFT;
1567
		max_pause = wb_max_pause(wb, gdtc->wb_dirty);
1568 1569 1570
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1571

1572
		if (unlikely(task_ratelimit == 0)) {
1573
			period = max_pause;
1574
			pause = max_pause;
1575
			goto pause;
P
Peter Zijlstra 已提交
1576
		}
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1588
		if (pause < min_pause) {
1589
			trace_balance_dirty_pages(bdi,
1590 1591 1592 1593 1594
						  gdtc->thresh,
						  gdtc->bg_thresh,
						  gdtc->dirty,
						  gdtc->wb_thresh,
						  gdtc->wb_dirty,
1595 1596 1597
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1598
						  period,
1599
						  min(pause, 0L),
1600
						  start_time);
1601 1602 1603 1604 1605 1606
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1607 1608
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1609
			break;
P
Peter Zijlstra 已提交
1610
		}
1611 1612 1613 1614 1615
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1616 1617

pause:
1618
		trace_balance_dirty_pages(bdi,
1619 1620 1621 1622 1623
					  gdtc->thresh,
					  gdtc->bg_thresh,
					  gdtc->dirty,
					  gdtc->wb_thresh,
					  gdtc->wb_dirty,
1624 1625 1626
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1627
					  period,
1628 1629
					  pause,
					  start_time);
1630
		__set_current_state(TASK_KILLABLE);
1631
		io_schedule_timeout(pause);
1632

1633 1634
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1635
		current->nr_dirtied_pause = nr_dirtied_pause;
1636

1637
		/*
1638 1639
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1640
		 */
1641
		if (task_ratelimit)
1642
			break;
1643

1644 1645
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1646
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1647 1648 1649 1650
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1651
		 * more page. However wb_dirty has accounting errors.  So use
1652
		 * the larger and more IO friendly wb_stat_error.
1653
		 */
1654
		if (gdtc->wb_dirty <= wb_stat_error(wb))
1655 1656
			break;

1657 1658
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1659 1660
	}

1661 1662
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1663

1664
	if (writeback_in_progress(wb))
1665
		return;
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1675 1676 1677
	if (laptop_mode)
		return;

1678
	if (nr_reclaimable > gdtc->bg_thresh)
1679
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1680 1681
}

1682
static DEFINE_PER_CPU(int, bdp_ratelimits);
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1700
/**
1701
 * balance_dirty_pages_ratelimited - balance dirty memory state
1702
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1713
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1714
{
1715 1716 1717
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1718 1719
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1720

1721 1722 1723
	if (!bdi_cap_account_dirty(bdi))
		return;

1724 1725 1726 1727 1728
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1729
	ratelimit = current->nr_dirtied_pause;
1730
	if (wb->dirty_exceeded)
1731 1732 1733
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1734
	/*
1735 1736 1737 1738
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1739
	 */
1740
	p =  this_cpu_ptr(&bdp_ratelimits);
1741
	if (unlikely(current->nr_dirtied >= ratelimit))
1742
		*p = 0;
1743 1744 1745
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1746
	}
1747 1748 1749 1750 1751
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1752
	p = this_cpu_ptr(&dirty_throttle_leaks);
1753
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1754
		unsigned long nr_pages_dirtied;
1755 1756 1757
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1758
	}
1759
	preempt_enable();
1760 1761

	if (unlikely(current->nr_dirtied >= ratelimit))
1762 1763 1764
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1765
}
1766
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1777 1778
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1779

1780 1781 1782 1783 1784 1785 1786 1787
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
		      global_page_state(NR_UNSTABLE_NFS);
	domain_dirty_limits(gdtc);
1788

1789
	if (gdtc->dirty > gdtc->bg_thresh)
1790 1791
		return true;

1792
	if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1793 1794 1795 1796 1797
		return true;

	return false;
}

1798
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1799
{
1800 1801
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1802 1803

        for ( ; ; ) {
1804
		global_dirty_limits(&background_thresh, &dirty_thresh);
1805
		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811 1812

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1813 1814 1815
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1816
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1817 1818 1819 1820 1821 1822 1823 1824

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1831
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1832
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1833
{
1834
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1835 1836 1837
	return 0;
}

1838
#ifdef CONFIG_BLOCK
1839
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1840
{
1841 1842 1843
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1844 1845
	struct bdi_writeback *wb;
	struct wb_iter iter;
L
Linus Torvalds 已提交
1846

1847 1848 1849 1850
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1851 1852 1853 1854 1855 1856 1857
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

	bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862 1863 1864
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1865
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1866
{
1867
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
1877 1878 1879 1880 1881 1882 1883 1884
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
1885
}
1886
#endif
L
Linus Torvalds 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1896
 * thresholds.
L
Linus Torvalds 已提交
1897 1898
 */

1899
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
1900
{
1901
	struct wb_domain *dom = &global_wb_domain;
1902 1903
	unsigned long background_thresh;
	unsigned long dirty_thresh;
1904

1905
	global_dirty_limits(&background_thresh, &dirty_thresh);
1906
	dom->dirty_limit = dirty_thresh;
1907
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
1908 1909 1910 1911
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

1912
static int
1913 1914
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
1915
{
1916 1917 1918 1919 1920 1921 1922 1923 1924

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
1925 1926
}

1927
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
1949 1950 1951
 */
void __init page_writeback_init(void)
{
1952
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
1953
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
1954

T
Tejun Heo 已提交
1955
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
L
Linus Torvalds 已提交
1956 1957
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
1978
#define WRITEBACK_TAG_BATCH 4096
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
1989 1990
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1991 1992 1993
}
EXPORT_SYMBOL(tag_pages_for_writeback);

1994
/**
1995
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1996 1997
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1998 1999
 * @writepage: function called for each page
 * @data: data passed to writepage function
2000
 *
2001
 * If a page is already under I/O, write_cache_pages() skips it, even
2002 2003 2004 2005 2006 2007
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2008 2009 2010 2011 2012 2013 2014
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2015
 */
2016 2017 2018
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2019 2020 2021 2022 2023
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2024
	pgoff_t uninitialized_var(writeback_index);
2025 2026
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2027
	pgoff_t done_index;
N
Nick Piggin 已提交
2028
	int cycled;
2029
	int range_whole = 0;
2030
	int tag;
2031 2032 2033

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2034 2035 2036 2037 2038 2039
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2040 2041 2042 2043 2044 2045
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2046
		cycled = 1; /* ignore range_cyclic tests */
2047
	}
2048
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2049 2050 2051
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2052
retry:
2053
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2054
		tag_pages_for_writeback(mapping, index, end);
2055
	done_index = index;
N
Nick Piggin 已提交
2056 2057 2058
	while (!done && (index <= end)) {
		int i;

2059
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
2060 2061 2062
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
2063 2064 2065 2066 2067

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
2068 2069 2070 2071 2072
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
2073
			 */
2074 2075 2076 2077 2078 2079 2080 2081 2082
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

2083
			done_index = page->index;
2084

2085 2086
			lock_page(page);

N
Nick Piggin 已提交
2087 2088 2089 2090 2091 2092 2093 2094
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2095
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2096
continue_unlock:
2097 2098 2099 2100
				unlock_page(page);
				continue;
			}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2112

2113 2114
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2115
				goto continue_unlock;
2116

2117
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2118
			ret = (*writepage)(page, wbc, data);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2133
					done_index = page->index + 1;
2134 2135 2136
					done = 1;
					break;
				}
2137
			}
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2149
			}
2150 2151 2152 2153
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2154
	if (!cycled && !done) {
2155
		/*
N
Nick Piggin 已提交
2156
		 * range_cyclic:
2157 2158 2159
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2160
		cycled = 1;
2161
		index = 0;
N
Nick Piggin 已提交
2162
		end = writeback_index - 1;
2163 2164
		goto retry;
	}
2165 2166
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2167

2168 2169
	return ret;
}
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2196 2197 2198
	struct blk_plug plug;
	int ret;

2199 2200 2201 2202
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2203 2204 2205 2206
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2207
}
2208 2209 2210

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2211 2212
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2213 2214
	int ret;

L
Linus Torvalds 已提交
2215 2216 2217
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2218
		ret = mapping->a_ops->writepages(mapping, wbc);
2219 2220 2221
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2222 2223 2224 2225
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2226 2227
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2263 2264 2265 2266 2267 2268
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2269
		return !TestSetPageDirty(page);
2270 2271 2272
	return 0;
}

2273 2274
/*
 * Helper function for set_page_dirty family.
2275 2276 2277
 *
 * Caller must hold mem_cgroup_begin_page_stat().
 *
2278 2279
 * NOTE: This relies on being atomic wrt interrupts.
 */
2280 2281
void account_page_dirtied(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2282
{
2283 2284
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2285 2286
	trace_writeback_dirty_page(page, mapping);

2287
	if (mapping_cap_account_dirty(mapping)) {
2288 2289 2290 2291
		struct bdi_writeback *wb;

		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2292

2293
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2294
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2295
		__inc_zone_page_state(page, NR_DIRTIED);
2296 2297
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2298
		task_io_account_write(PAGE_CACHE_SIZE);
2299 2300
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2301 2302
	}
}
M
Michael Rubin 已提交
2303
EXPORT_SYMBOL(account_page_dirtied);
2304

2305 2306
/*
 * Helper function for deaccounting dirty page without writeback.
2307 2308
 *
 * Caller must hold mem_cgroup_begin_page_stat().
2309
 */
2310 2311
void account_page_cleaned(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2312 2313
{
	if (mapping_cap_account_dirty(mapping)) {
2314
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2315
		dec_zone_page_state(page, NR_FILE_DIRTY);
2316
		dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2317 2318 2319 2320
		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
	}
}

L
Linus Torvalds 已提交
2321 2322 2323 2324 2325 2326 2327 2328
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2329 2330 2331
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2332 2333 2334
 */
int __set_page_dirty_nobuffers(struct page *page)
{
2335 2336 2337
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2338 2339
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2340
		unsigned long flags;
L
Linus Torvalds 已提交
2341

2342 2343
		if (!mapping) {
			mem_cgroup_end_page_stat(memcg);
2344
			return 1;
2345
		}
2346

2347
		spin_lock_irqsave(&mapping->tree_lock, flags);
2348 2349
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2350
		account_page_dirtied(page, mapping, memcg);
2351 2352
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2353
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2354 2355
		mem_cgroup_end_page_stat(memcg);

2356 2357 2358
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2359
		}
2360
		return 1;
L
Linus Torvalds 已提交
2361
	}
2362
	mem_cgroup_end_page_stat(memcg);
2363
	return 0;
L
Linus Torvalds 已提交
2364 2365 2366
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2377

2378
	if (mapping && mapping_cap_account_dirty(mapping)) {
2379 2380
		struct bdi_writeback *wb = inode_to_wb(mapping->host);

2381 2382
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2383
		dec_wb_stat(wb, WB_DIRTIED);
2384 2385 2386 2387
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2388 2389 2390 2391 2392 2393 2394
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2395 2396
	int ret;

L
Linus Torvalds 已提交
2397
	wbc->pages_skipped++;
2398
	ret = __set_page_dirty_nobuffers(page);
2399
	account_page_redirty(page);
2400
	return ret;
L
Linus Torvalds 已提交
2401 2402 2403 2404
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2405 2406 2407 2408 2409 2410 2411
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2412 2413 2414
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2415
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2416 2417 2418 2419 2420
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2431 2432
		if (PageReclaim(page))
			ClearPageReclaim(page);
2433 2434 2435 2436 2437
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2438
	}
2439 2440 2441 2442
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2461
	lock_page(page);
L
Linus Torvalds 已提交
2462 2463 2464 2465 2466 2467
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
		struct mem_cgroup *memcg;

		memcg = mem_cgroup_begin_page_stat(page);

		if (TestClearPageDirty(page))
			account_page_cleaned(page, mapping, memcg);

		mem_cgroup_end_page_stat(memcg);
	} else {
		ClearPageDirty(page);
	}
2497 2498 2499
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2517 2518
	struct mem_cgroup *memcg;
	int ret = 0;
L
Linus Torvalds 已提交
2519

2520 2521
	BUG_ON(!PageLocked(page));

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2550 2551 2552
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2553 2554 2555 2556
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2557
		 */
2558
		memcg = mem_cgroup_begin_page_stat(page);
2559
		if (TestClearPageDirty(page)) {
2560
			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2561
			dec_zone_page_state(page, NR_FILE_DIRTY);
2562
			dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
2563
			ret = 1;
L
Linus Torvalds 已提交
2564
		}
2565 2566
		mem_cgroup_end_page_stat(memcg);
		return ret;
L
Linus Torvalds 已提交
2567
	}
2568
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2569
}
2570
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2571 2572 2573 2574

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2575 2576
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2577

2578
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2579
	if (mapping) {
2580 2581
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2582 2583
		unsigned long flags;

N
Nick Piggin 已提交
2584
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2585
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2586
		if (ret) {
L
Linus Torvalds 已提交
2587 2588 2589
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2590
			if (bdi_cap_account_writeback(bdi)) {
2591 2592 2593 2594
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2595
			}
P
Peter Zijlstra 已提交
2596
		}
N
Nick Piggin 已提交
2597
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2598 2599 2600
	} else {
		ret = TestClearPageWriteback(page);
	}
2601
	if (ret) {
2602
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2603
		dec_zone_page_state(page, NR_WRITEBACK);
2604 2605
		inc_zone_page_state(page, NR_WRITTEN);
	}
2606
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2607 2608 2609
	return ret;
}

2610
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2611 2612
{
	struct address_space *mapping = page_mapping(page);
2613 2614
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2615

2616
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2617
	if (mapping) {
2618 2619
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2620 2621
		unsigned long flags;

N
Nick Piggin 已提交
2622
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2623
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2624
		if (!ret) {
L
Linus Torvalds 已提交
2625 2626 2627
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2628
			if (bdi_cap_account_writeback(bdi))
2629
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2630
		}
L
Linus Torvalds 已提交
2631 2632 2633 2634
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2635 2636 2637 2638
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2639
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2640 2641 2642
	} else {
		ret = TestSetPageWriteback(page);
	}
2643
	if (!ret) {
2644
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2645 2646
		inc_zone_page_state(page, NR_WRITEBACK);
	}
2647
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2648 2649 2650
	return ret;

}
2651
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2652 2653

/*
N
Nick Piggin 已提交
2654
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2655 2656 2657 2658
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2659
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2660 2661
}
EXPORT_SYMBOL(mapping_tagged);
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2673 2674
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2675 2676
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);