page-writeback.c 83.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148 149 150 151 152 153
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
154

155 156
#ifdef CONFIG_CGROUP_WRITEBACK

157 158 159 160
#define GDTC_INIT(__wb)		.wb = (__wb),				\
				.dom = &global_wb_domain,		\
				.wb_completions = &(__wb)->completions

161
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 163 164 165 166

#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
				.dom = mem_cgroup_wb_domain(__wb),	\
				.wb_completions = &(__wb)->memcg_completions, \
				.gdtc = __gdtc
167 168 169 170 171

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
172 173 174 175 176 177

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

178 179 180 181 182
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
183 184 185 186 187
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

217 218
#define GDTC_INIT(__wb)		.wb = (__wb),                           \
				.wb_completions = &(__wb)->completions
219
#define GDTC_INIT_NO_WB
220 221 222 223 224 225
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
226 227 228 229 230 231

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

232 233 234 235 236
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
237 238 239 240 241
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

242 243 244 245 246 247 248 249 250
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

269 270 271 272 273 274 275 276 277 278 279 280 281 282
/**
 * zone_dirtyable_memory - number of dirtyable pages in a zone
 * @zone: the zone
 *
 * Returns the zone's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-zone dirty limits.
 */
static unsigned long zone_dirtyable_memory(struct zone *zone)
{
	unsigned long nr_pages;

	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);

283 284
	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
285 286 287 288

	return nr_pages;
}

289 290 291 292 293 294 295
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

	for_each_node_state(node, N_HIGH_MEMORY) {
296
		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
297

298
		x += zone_dirtyable_memory(z);
299
	}
300 301 302 303 304 305 306 307 308 309 310 311
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

312 313 314 315 316 317 318 319 320 321 322 323 324
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
325
 * global_dirtyable_memory - number of globally dirtyable pages
326
 *
327 328
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
329
 */
330
static unsigned long global_dirtyable_memory(void)
331 332 333
{
	unsigned long x;

334
	x = global_page_state(NR_FREE_PAGES);
335
	x -= min(x, dirty_balance_reserve);
336

337 338
	x += global_page_state(NR_INACTIVE_FILE);
	x += global_page_state(NR_ACTIVE_FILE);
339

340 341 342 343 344 345
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

346 347 348
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
349
 *
350 351 352 353
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
354 355
 * real-time tasks.
 */
356
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
357
{
358 359 360 361 362 363 364 365
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
	unsigned long ratio = vm_dirty_ratio;
	unsigned long bg_ratio = dirty_background_ratio;
	unsigned long thresh;
	unsigned long bg_thresh;
366 367
	struct task_struct *tsk;

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
		 * globally available memory.
		 */
		if (bytes)
			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
				    global_avail, 100UL);
		if (bg_bytes)
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
				       global_avail, 100UL);
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
388
	else
389
		thresh = (ratio * available_memory) / 100;
390

391 392
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
393
	else
394
		bg_thresh = (bg_ratio * available_memory) / 100;
395

396 397
	if (bg_thresh >= thresh)
		bg_thresh = thresh / 2;
398 399
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
400 401
		bg_thresh += bg_thresh / 4;
		thresh += thresh / 4;
402
	}
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
428 429
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/**
 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 * @zone: the zone
 *
 * Returns the maximum number of dirty pages allowed in a zone, based
 * on the zone's dirtyable memory.
 */
static unsigned long zone_dirty_limit(struct zone *zone)
{
	unsigned long zone_memory = zone_dirtyable_memory(zone);
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
			zone_memory / global_dirtyable_memory();
	else
		dirty = vm_dirty_ratio * zone_memory / 100;

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
 * zone_dirty_ok - tells whether a zone is within its dirty limits
 * @zone: the zone to check
 *
 * Returns %true when the dirty pages in @zone are within the zone's
 * dirty limit, %false if the limit is exceeded.
 */
bool zone_dirty_ok(struct zone *zone)
{
	unsigned long limit = zone_dirty_limit(zone);

	return zone_page_state(zone, NR_FILE_DIRTY) +
	       zone_page_state(zone, NR_UNSTABLE_NFS) +
	       zone_page_state(zone, NR_WRITEBACK) <= limit;
}

471
int dirty_background_ratio_handler(struct ctl_table *table, int write,
472
		void __user *buffer, size_t *lenp,
473 474 475 476
		loff_t *ppos)
{
	int ret;

477
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
478 479 480 481 482 483
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
484
		void __user *buffer, size_t *lenp,
485 486 487 488
		loff_t *ppos)
{
	int ret;

489
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
490 491 492 493 494
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
495
int dirty_ratio_handler(struct ctl_table *table, int write,
496
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
497 498 499
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
500 501
	int ret;

502
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
503
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
504
		writeback_set_ratelimit();
505 506 507 508 509 510
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
511
		void __user *buffer, size_t *lenp,
512 513
		loff_t *ppos)
{
514
	unsigned long old_bytes = vm_dirty_bytes;
515 516
	int ret;

517
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
518
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
519
		writeback_set_ratelimit();
520
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
521 522 523 524
	}
	return ret;
}

525 526 527 528 529 530 531 532 533
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

534 535 536
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
537
{
538 539
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
540
	/* First event after period switching was turned off? */
T
Tejun Heo 已提交
541
	if (!unlikely(dom->period_time)) {
542 543 544 545 546 547
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
548 549
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
550
	}
P
Peter Zijlstra 已提交
551 552
}

553 554 555 556 557
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
558
{
T
Tejun Heo 已提交
559
	struct wb_domain *cgdom;
560

561 562 563
	__inc_wb_stat(wb, WB_WRITTEN);
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
564 565 566 567 568

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
569 570
}

571
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
572
{
573 574 575
	unsigned long flags;

	local_irq_save(flags);
576
	__wb_writeout_inc(wb);
577
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
578
}
579
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
580

581 582 583 584 585 586
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
587 588
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
589 590
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
591 592
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
593
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
594
		mod_timer(&dom->period_timer, dom->period_time);
595 596 597 598 599
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
600
		dom->period_time = 0;
601 602 603
	}
}

T
Tejun Heo 已提交
604 605 606
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
607 608 609

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
610 611 612
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
613 614 615

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
616 617 618
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
619 620 621 622 623 624 625 626
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

627
/*
628 629 630
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
631 632 633 634 635 636 637
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

638
	spin_lock_bh(&bdi_lock);
639
	if (min_ratio > bdi->max_ratio) {
640
		ret = -EINVAL;
641 642 643 644 645 646 647 648 649
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
650
	spin_unlock_bh(&bdi_lock);
651 652 653 654 655 656 657 658 659 660 661

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

662
	spin_lock_bh(&bdi_lock);
663 664 665 666
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
667
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
668
	}
669
	spin_unlock_bh(&bdi_lock);
670 671 672

	return ret;
}
673
EXPORT_SYMBOL(bdi_set_max_ratio);
674

W
Wu Fengguang 已提交
675 676 677 678 679 680
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

681 682
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
683
{
684
	return max(thresh, dom->dirty_limit);
685 686
}

687 688 689 690 691 692
/*
 * Memory which can be further allocated to a memcg domain is capped by
 * system-wide clean memory excluding the amount being used in the domain.
 */
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
			    unsigned long filepages, unsigned long headroom)
693 694
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
695 696 697
	unsigned long clean = filepages - min(filepages, mdtc->dirty);
	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
	unsigned long other_clean = global_clean - min(global_clean, clean);
698

699
	mdtc->avail = filepages + min(headroom, other_clean);
700 701
}

702
/**
703 704
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
705
 *
706
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
707
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
708 709 710 711 712 713
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
714
 * more (rather than completely block them) when the wb dirty pages go high.
715
 *
716
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
717 718 719
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
720
 * The wb's share of dirty limit will be adapting to its throughput and
721 722
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
723
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
724
{
725
	struct wb_domain *dom = dtc_dom(dtc);
726
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
727
	u64 wb_thresh;
728
	long numerator, denominator;
729
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
730

731
	/*
T
Tejun Heo 已提交
732
	 * Calculate this BDI's share of the thresh ratio.
733
	 */
734
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
735
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
736

T
Tejun Heo 已提交
737 738 739
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
740

741
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
742

T
Tejun Heo 已提交
743 744 745
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
746

T
Tejun Heo 已提交
747
	return wb_thresh;
L
Linus Torvalds 已提交
748 749
}

750 751 752 753 754
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
755 756
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
771
static long long pos_ratio_polynom(unsigned long setpoint,
772 773 774 775 776 777
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

778
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
779
		      (limit - setpoint) | 1);
780 781 782 783 784 785 786 787
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
788 789 790 791 792
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
793
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
794 795 796 797 798 799 800 801 802
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
803 804
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
829
 * (o) wb control line
W
Wu Fengguang 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
855
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
856
 *
857
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
858 859
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
860 861
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
862
 */
863
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
864
{
865
	struct bdi_writeback *wb = dtc->wb;
866
	unsigned long write_bw = wb->avg_write_bandwidth;
867
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
868
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
869
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
870 871
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
872
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
873 874 875 876
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

877 878
	dtc->pos_ratio = 0;

879
	if (unlikely(dtc->dirty >= limit))
880
		return;
W
Wu Fengguang 已提交
881 882 883 884

	/*
	 * global setpoint
	 *
885 886 887
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
888
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
889 890 891 892

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
893 894
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
895 896 897 898
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
899
	 *
900
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
901
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
902 903
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
904
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
905
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
906
	 * about ~6K pages (as the average of background and throttle wb
907
	 * limits). The 3rd order polynomial will provide positive feedback if
908
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
909
	 *
910
	 * Note, that we cannot use global counters in these calculations
911
	 * because we want to throttle process writing to a strictlimit wb
912 913
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
914
	 */
915
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
916
		long long wb_pos_ratio;
917

918 919 920 921 922
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
923

924
		if (dtc->wb_dirty >= wb_thresh)
925
			return;
926

927 928
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
929

930
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
931
			return;
932

933
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
934
						 wb_thresh);
935 936

		/*
937 938
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
939
		 * state ("dirty") is not limiting factor and we have to
940
		 * make decision based on wb counters. But there is an
941 942
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
943
		 * wb's) while given strictlimit wb is below limit.
944
		 *
945
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
946
		 * but it would look too non-natural for the case of all
947
		 * activity in the system coming from a single strictlimit wb
948 949 950 951
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
952
		 * (when globally we are at freerun and wb is well below wb
953 954 955 956
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
957 958
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
959
	}
W
Wu Fengguang 已提交
960 961 962

	/*
	 * We have computed basic pos_ratio above based on global situation. If
963
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
964 965 966 967
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
968
	 * wb setpoint
W
Wu Fengguang 已提交
969
	 *
970
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
971
	 *
972
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
973
	 *                     := --------------------------
974
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
975
	 *
976
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
977
	 *
978 979 980
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
981
	 *
982
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
983
	 * regularly within range
984
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
985 986 987
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
988
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
989
	 * own size, so move the slope over accordingly and choose a slope that
990
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
991
	 */
992 993
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
994
	/*
995
	 * It's very possible that wb_thresh is close to 0 not because the
996 997 998 999 1000
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
1001
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
1002
	/*
1003 1004
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
1005
	 */
1006
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1007
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1008
	/*
1009 1010
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1011
	 *
1012 1013 1014
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1015
	 */
1016
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1017
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1018

1019 1020
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1021
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1022 1023 1024
	} else
		pos_ratio /= 4;

1025
	/*
1026
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1027 1028 1029
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1030
	x_intercept = wb_thresh / 2;
1031 1032 1033 1034
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1035
		else
1036 1037 1038
			pos_ratio *= 8;
	}

1039
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1040 1041
}

1042 1043 1044
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1045 1046
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1047 1048
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1049 1050 1051 1052 1053 1054 1055 1056
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1057 1058 1059
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1060
	 */
1061
	bw = written - min(written, wb->written_stamp);
1062 1063 1064 1065 1066 1067
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1068
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1081 1082 1083 1084 1085 1086 1087
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1088 1089
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1090 1091
}

1092
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1093
{
1094
	struct wb_domain *dom = dtc_dom(dtc);
1095
	unsigned long thresh = dtc->thresh;
1096
	unsigned long limit = dom->dirty_limit;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1109
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1110
	 */
1111
	thresh = max(thresh, dtc->dirty);
1112 1113 1114 1115 1116 1117
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1118
	dom->dirty_limit = limit;
1119 1120
}

1121
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1122 1123
				    unsigned long now)
{
1124
	struct wb_domain *dom = dtc_dom(dtc);
1125 1126 1127 1128

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1129
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1130 1131
		return;

1132 1133
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1134
		update_dirty_limit(dtc);
1135
		dom->dirty_limit_tstamp = now;
1136
	}
1137
	spin_unlock(&dom->lock);
1138 1139
}

W
Wu Fengguang 已提交
1140
/*
1141
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1142
 *
1143
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1144 1145
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1146
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1147 1148
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1149
{
1150 1151 1152
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1153
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1154
	unsigned long setpoint = (freerun + limit) / 2;
1155 1156
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1157 1158 1159
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1160 1161
	unsigned long step;
	unsigned long x;
W
Wu Fengguang 已提交
1162 1163 1164 1165 1166

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1167
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1168 1169 1170 1171 1172

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1173
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1174 1175 1176 1177
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1178
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1208 1209 1210 1211 1212
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1213

1214 1215 1216
	/*
	 * We could safely do this and return immediately:
	 *
1217
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1218 1219
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1220
	 * code makes use of task_ratelimit to filter out singular points and
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1243
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1244 1245 1246 1247 1248
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1249 1250

	/*
1251
	 * For strictlimit case, calculations above were based on wb counters
1252
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1253
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1254 1255
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1256
	 *
1257 1258
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1259
	 * of backing device.
1260
	 */
1261
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1262 1263 1264
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1265
		else
1266
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1267 1268
	}

1269
	if (dirty < setpoint) {
1270
		x = min3(wb->balanced_dirty_ratelimit,
1271
			 balanced_dirty_ratelimit, task_ratelimit);
1272 1273 1274
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1275
		x = max3(wb->balanced_dirty_ratelimit,
1276
			 balanced_dirty_ratelimit, task_ratelimit);
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
	step >>= dirty_ratelimit / (2 * step + 1);
	/*
	 * Limit the tracking speed to avoid overshooting.
	 */
	step = (step + 7) / 8;

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1297 1298
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1299

1300
	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1301 1302
}

1303 1304
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1305 1306
				  unsigned long start_time,
				  bool update_ratelimit)
1307
{
1308
	struct bdi_writeback *wb = gdtc->wb;
1309
	unsigned long now = jiffies;
1310
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1311
	unsigned long dirtied;
1312 1313
	unsigned long written;

1314 1315
	lockdep_assert_held(&wb->list_lock);

1316 1317 1318 1319 1320 1321
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1322 1323
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1324 1325 1326 1327 1328

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1329
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1330 1331
		goto snapshot;

1332
	if (update_ratelimit) {
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1344
	}
1345
	wb_update_write_bandwidth(wb, elapsed, written);
1346 1347

snapshot:
1348 1349 1350
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1351 1352
}

1353
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1354
{
1355 1356
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1357
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1358 1359
}

1360
/*
1361
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1377
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1378
				  unsigned long wb_dirty)
1379
{
1380
	unsigned long bw = wb->avg_write_bandwidth;
1381
	unsigned long t;
1382

1383 1384 1385 1386 1387 1388 1389
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1390
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1391 1392
	t++;

1393
	return min_t(unsigned long, t, MAX_PAUSE);
1394 1395
}

1396 1397 1398 1399 1400
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1401
{
1402 1403
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1404 1405 1406
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1407

1408 1409
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1410 1411 1412 1413 1414

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1415
	 * (N * 10ms) on 2^N concurrent tasks.
1416 1417
	 */
	if (hi > lo)
1418
		t += (hi - lo) * (10 * HZ) / 1024;
1419 1420

	/*
1421 1422 1423 1424 1425 1426 1427 1428
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1429
	 *
1430 1431 1432 1433 1434 1435 1436
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1437
	 */
1438 1439
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1440 1441

	/*
1442 1443 1444 1445 1446 1447
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1448
	 */
1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1458 1459 1460 1461 1462
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1463

1464
	*nr_dirtied_pause = pages;
1465
	/*
1466
	 * The minimal pause time will normally be half the target pause time.
1467
	 */
1468
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1469 1470
}

1471
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1472
{
1473
	struct bdi_writeback *wb = dtc->wb;
1474
	unsigned long wb_reclaimable;
1475 1476

	/*
1477
	 * wb_thresh is not treated as some limiting factor as
1478
	 * dirty_thresh, due to reasons
1479
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1480
	 * - in a system with HDD and USB key, the USB key may somehow
1481 1482
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1483
	 *   In this case we don't want to hard throttle the USB key
1484 1485
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1486
	 *   wb_position_ratio() will let the dirtier task progress
1487
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1488
	 */
1489
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1490 1491
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1503
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1504
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1505
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1506
	} else {
1507
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1508
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1509 1510 1511
	}
}

L
Linus Torvalds 已提交
1512 1513 1514
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1515
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1516 1517
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1518
 */
1519
static void balance_dirty_pages(struct address_space *mapping,
1520
				struct bdi_writeback *wb,
1521
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1522
{
1523
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1524
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1525
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1526 1527 1528
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1529
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1530
	long period;
1531 1532 1533 1534
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1535
	bool dirty_exceeded = false;
1536
	unsigned long task_ratelimit;
1537
	unsigned long dirty_ratelimit;
1538
	struct backing_dev_info *bdi = wb->bdi;
1539
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1540
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1541 1542

	for (;;) {
1543
		unsigned long now = jiffies;
1544
		unsigned long dirty, thresh, bg_thresh;
1545 1546 1547
		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
		unsigned long m_thresh = 0;
		unsigned long m_bg_thresh = 0;
1548

1549 1550 1551 1552 1553 1554
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1555 1556
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
1557
		gdtc->avail = global_dirtyable_memory();
1558
		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1559

1560
		domain_dirty_limits(gdtc);
1561

1562
		if (unlikely(strictlimit)) {
1563
			wb_dirty_limits(gdtc);
1564

1565 1566
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1567
			bg_thresh = gdtc->wb_bg_thresh;
1568
		} else {
1569 1570 1571
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1572 1573
		}

1574
		if (mdtc) {
1575
			unsigned long filepages, headroom, writeback;
1576 1577 1578 1579 1580

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
1581 1582
			mem_cgroup_wb_stats(wb, &filepages, &headroom,
					    &mdtc->dirty, &writeback);
1583
			mdtc->dirty += writeback;
1584
			mdtc_calc_avail(mdtc, filepages, headroom);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1598 1599
		}

1600 1601 1602
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1603
		 * when the wb limits are ramping up in case of !strictlimit.
1604
		 *
1605 1606
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1607
		 * up are the price we consciously pay for strictlimit-ing.
1608 1609 1610
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1611
		 */
1612 1613 1614 1615 1616 1617
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1618 1619
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1620 1621 1622
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1623
			break;
1624
		}
1625

1626
		if (unlikely(!writeback_in_progress(wb)))
1627
			wb_start_background_writeback(wb);
1628

1629 1630 1631 1632
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1633
		if (!strictlimit)
1634
			wb_dirty_limits(gdtc);
1635

1636 1637
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1638 1639

		wb_position_ratio(gdtc);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1659

1660 1661
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1662

1663 1664 1665
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1666
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1667 1668
			spin_unlock(&wb->list_lock);
		}
1669

1670
		/* throttle according to the chosen dtc */
1671
		dirty_ratelimit = wb->dirty_ratelimit;
1672
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1673
							RATELIMIT_CALC_SHIFT;
1674
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1675 1676 1677
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1678

1679
		if (unlikely(task_ratelimit == 0)) {
1680
			period = max_pause;
1681
			pause = max_pause;
1682
			goto pause;
P
Peter Zijlstra 已提交
1683
		}
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1695
		if (pause < min_pause) {
1696
			trace_balance_dirty_pages(wb,
1697 1698 1699 1700 1701
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1702 1703 1704
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1705
						  period,
1706
						  min(pause, 0L),
1707
						  start_time);
1708 1709 1710 1711 1712 1713
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1714 1715
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1716
			break;
P
Peter Zijlstra 已提交
1717
		}
1718 1719 1720 1721 1722
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1723 1724

pause:
1725
		trace_balance_dirty_pages(wb,
1726 1727 1728 1729 1730
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1731 1732 1733
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1734
					  period,
1735 1736
					  pause,
					  start_time);
1737
		__set_current_state(TASK_KILLABLE);
1738
		io_schedule_timeout(pause);
1739

1740 1741
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1742
		current->nr_dirtied_pause = nr_dirtied_pause;
1743

1744
		/*
1745 1746
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1747
		 */
1748
		if (task_ratelimit)
1749
			break;
1750

1751 1752
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1753
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1754 1755 1756 1757
		 * to go through, so that tasks on them still remain responsive.
		 *
		 * In theory 1 page is enough to keep the comsumer-producer
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1758
		 * more page. However wb_dirty has accounting errors.  So use
1759
		 * the larger and more IO friendly wb_stat_error.
1760
		 */
1761
		if (sdtc->wb_dirty <= wb_stat_error(wb))
1762 1763
			break;

1764 1765
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1766 1767
	}

1768 1769
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1770

1771
	if (writeback_in_progress(wb))
1772
		return;
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1782 1783 1784
	if (laptop_mode)
		return;

1785
	if (nr_reclaimable > gdtc->bg_thresh)
1786
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1787 1788
}

1789
static DEFINE_PER_CPU(int, bdp_ratelimits);
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1807
/**
1808
 * balance_dirty_pages_ratelimited - balance dirty memory state
1809
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1820
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1821
{
1822 1823 1824
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1825 1826
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1827

1828 1829 1830
	if (!bdi_cap_account_dirty(bdi))
		return;

1831 1832 1833 1834 1835
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1836
	ratelimit = current->nr_dirtied_pause;
1837
	if (wb->dirty_exceeded)
1838 1839 1840
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1841
	/*
1842 1843 1844 1845
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1846
	 */
1847
	p =  this_cpu_ptr(&bdp_ratelimits);
1848
	if (unlikely(current->nr_dirtied >= ratelimit))
1849
		*p = 0;
1850 1851 1852
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1853
	}
1854 1855 1856 1857 1858
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1859
	p = this_cpu_ptr(&dirty_throttle_leaks);
1860
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1861
		unsigned long nr_pages_dirtied;
1862 1863 1864
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1865
	}
1866
	preempt_enable();
1867 1868

	if (unlikely(current->nr_dirtied >= ratelimit))
1869 1870 1871
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1872
}
1873
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1874

1875 1876 1877 1878 1879 1880 1881 1882 1883
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1884
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1885
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1886
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1887 1888
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1889

1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
		      global_page_state(NR_UNSTABLE_NFS);
	domain_dirty_limits(gdtc);
1898

1899
	if (gdtc->dirty > gdtc->bg_thresh)
1900 1901
		return true;

1902
	if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1903 1904
		return true;

1905
	if (mdtc) {
1906
		unsigned long filepages, headroom, writeback;
1907

1908 1909 1910
		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
				    &writeback);
		mdtc_calc_avail(mdtc, filepages, headroom);
1911 1912 1913 1914 1915 1916 1917 1918 1919
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

		if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
			return true;
	}

1920 1921 1922
	return false;
}

1923
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
1924
{
1925 1926
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
1927 1928

        for ( ; ; ) {
1929
		global_dirty_limits(&background_thresh, &dirty_thresh);
1930
		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
L
Linus Torvalds 已提交
1931 1932 1933 1934 1935 1936 1937

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

1938 1939 1940
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
1941
                congestion_wait(BLK_RW_ASYNC, HZ/10);
1942 1943 1944 1945 1946 1947 1948 1949

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954 1955
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1956
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1957
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1958
{
1959
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1960 1961 1962
	return 0;
}

1963
#ifdef CONFIG_BLOCK
1964
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1965
{
1966 1967 1968
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
1969
	struct bdi_writeback *wb;
L
Linus Torvalds 已提交
1970

1971 1972 1973 1974
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1975 1976 1977
	if (!bdi_has_dirty_io(&q->backing_dev_info))
		return;

1978
	rcu_read_lock();
1979
	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1980 1981 1982
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
1983
	rcu_read_unlock();
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988 1989 1990
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
1991
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
1992
{
1993
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
2003 2004 2005 2006 2007 2008 2009 2010
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
2011
}
2012
#endif
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2022
 * thresholds.
L
Linus Torvalds 已提交
2023 2024
 */

2025
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2026
{
2027
	struct wb_domain *dom = &global_wb_domain;
2028 2029
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2030

2031
	global_dirty_limits(&background_thresh, &dirty_thresh);
2032
	dom->dirty_limit = dirty_thresh;
2033
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2034 2035 2036 2037
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2038
static int
2039 2040
ratelimit_handler(struct notifier_block *self, unsigned long action,
		  void *hcpu)
L
Linus Torvalds 已提交
2041
{
2042 2043 2044 2045 2046 2047 2048 2049 2050

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DEAD:
		writeback_set_ratelimit();
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
L
Linus Torvalds 已提交
2051 2052
}

2053
static struct notifier_block ratelimit_nb = {
L
Linus Torvalds 已提交
2054 2055 2056 2057 2058
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2075 2076 2077
 */
void __init page_writeback_init(void)
{
2078 2079
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));

2080
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
2081 2082 2083
	register_cpu_notifier(&ratelimit_nb);
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2104
#define WRITEBACK_TAG_BATCH 4096
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
2115 2116
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2117 2118 2119
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2120
/**
2121
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2122 2123
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2124 2125
 * @writepage: function called for each page
 * @data: data passed to writepage function
2126
 *
2127
 * If a page is already under I/O, write_cache_pages() skips it, even
2128 2129 2130 2131 2132 2133
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2134 2135 2136 2137 2138 2139 2140
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2141
 */
2142 2143 2144
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2145 2146 2147 2148 2149
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2150
	pgoff_t uninitialized_var(writeback_index);
2151 2152
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2153
	pgoff_t done_index;
N
Nick Piggin 已提交
2154
	int cycled;
2155
	int range_whole = 0;
2156
	int tag;
2157 2158 2159

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2160 2161 2162 2163 2164 2165
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2166 2167 2168 2169 2170 2171
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2172
		cycled = 1; /* ignore range_cyclic tests */
2173
	}
2174
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2175 2176 2177
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2178
retry:
2179
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2180
		tag_pages_for_writeback(mapping, index, end);
2181
	done_index = index;
N
Nick Piggin 已提交
2182 2183 2184
	while (!done && (index <= end)) {
		int i;

2185
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
2186 2187 2188
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
2189 2190 2191 2192 2193

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
2194 2195 2196 2197 2198
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
2199
			 */
2200 2201 2202 2203 2204 2205 2206 2207 2208
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

2209
			done_index = page->index;
2210

2211 2212
			lock_page(page);

N
Nick Piggin 已提交
2213 2214 2215 2216 2217 2218 2219 2220
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2221
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2222
continue_unlock:
2223 2224 2225 2226
				unlock_page(page);
				continue;
			}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2238

2239 2240
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2241
				goto continue_unlock;
2242

2243
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2244
			ret = (*writepage)(page, wbc, data);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2259
					done_index = page->index + 1;
2260 2261 2262
					done = 1;
					break;
				}
2263
			}
2264

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2275
			}
2276 2277 2278 2279
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2280
	if (!cycled && !done) {
2281
		/*
N
Nick Piggin 已提交
2282
		 * range_cyclic:
2283 2284 2285
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2286
		cycled = 1;
2287
		index = 0;
N
Nick Piggin 已提交
2288
		end = writeback_index - 1;
2289 2290
		goto retry;
	}
2291 2292
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2293

2294 2295
	return ret;
}
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2322 2323 2324
	struct blk_plug plug;
	int ret;

2325 2326 2327 2328
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2329 2330 2331 2332
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2333
}
2334 2335 2336

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2337 2338
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2339 2340
	int ret;

L
Linus Torvalds 已提交
2341 2342 2343
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2344
		ret = mapping->a_ops->writepages(mapping, wbc);
2345 2346 2347
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2348 2349 2350 2351
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2352 2353
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2389 2390 2391 2392 2393 2394
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2395
		return !TestSetPageDirty(page);
2396 2397 2398
	return 0;
}

2399 2400
/*
 * Helper function for set_page_dirty family.
2401 2402 2403
 *
 * Caller must hold mem_cgroup_begin_page_stat().
 *
2404 2405
 * NOTE: This relies on being atomic wrt interrupts.
 */
2406 2407
void account_page_dirtied(struct page *page, struct address_space *mapping,
			  struct mem_cgroup *memcg)
2408
{
2409 2410
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2411 2412
	trace_writeback_dirty_page(page, mapping);

2413
	if (mapping_cap_account_dirty(mapping)) {
2414
		struct bdi_writeback *wb;
2415

2416 2417
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2418

2419
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2420
		__inc_zone_page_state(page, NR_FILE_DIRTY);
2421
		__inc_zone_page_state(page, NR_DIRTIED);
2422 2423
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2424
		task_io_account_write(PAGE_CACHE_SIZE);
2425 2426
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2427 2428
	}
}
M
Michael Rubin 已提交
2429
EXPORT_SYMBOL(account_page_dirtied);
2430

2431 2432 2433
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2434
 * Caller must hold mem_cgroup_begin_page_stat().
2435
 */
2436
void account_page_cleaned(struct page *page, struct address_space *mapping,
2437
			  struct mem_cgroup *memcg, struct bdi_writeback *wb)
2438 2439
{
	if (mapping_cap_account_dirty(mapping)) {
2440
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2441
		dec_zone_page_state(page, NR_FILE_DIRTY);
2442
		dec_wb_stat(wb, WB_RECLAIMABLE);
2443 2444 2445 2446
		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
	}
}

L
Linus Torvalds 已提交
2447 2448 2449 2450 2451 2452 2453 2454
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2455 2456 2457
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2458 2459 2460
 */
int __set_page_dirty_nobuffers(struct page *page)
{
2461 2462 2463
	struct mem_cgroup *memcg;

	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2464 2465
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2466
		unsigned long flags;
L
Linus Torvalds 已提交
2467

2468 2469
		if (!mapping) {
			mem_cgroup_end_page_stat(memcg);
2470
			return 1;
2471
		}
2472

2473
		spin_lock_irqsave(&mapping->tree_lock, flags);
2474 2475
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2476
		account_page_dirtied(page, mapping, memcg);
2477 2478
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2479
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2480 2481
		mem_cgroup_end_page_stat(memcg);

2482 2483 2484
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2485
		}
2486
		return 1;
L
Linus Torvalds 已提交
2487
	}
2488
	mem_cgroup_end_page_stat(memcg);
2489
	return 0;
L
Linus Torvalds 已提交
2490 2491 2492
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2503

2504
	if (mapping && mapping_cap_account_dirty(mapping)) {
2505 2506 2507
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2508

2509
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2510 2511
		current->nr_dirtied--;
		dec_zone_page_state(page, NR_DIRTIED);
2512
		dec_wb_stat(wb, WB_DIRTIED);
2513
		unlocked_inode_to_wb_end(inode, locked);
2514 2515 2516 2517
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2518 2519 2520 2521 2522 2523 2524
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2525 2526
	int ret;

L
Linus Torvalds 已提交
2527
	wbc->pages_skipped++;
2528
	ret = __set_page_dirty_nobuffers(page);
2529
	account_page_redirty(page);
2530
	return ret;
L
Linus Torvalds 已提交
2531 2532 2533 2534
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2535 2536 2537 2538 2539 2540 2541
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2542 2543 2544
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2545
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2546 2547 2548 2549 2550
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2561 2562
		if (PageReclaim(page))
			ClearPageReclaim(page);
2563 2564 2565 2566 2567
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2568
	}
2569 2570 2571 2572
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2591
	lock_page(page);
L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2613 2614 2615
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2616 2617
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
2618
		struct mem_cgroup *memcg;
2619
		bool locked;
2620 2621

		memcg = mem_cgroup_begin_page_stat(page);
2622
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2623 2624

		if (TestClearPageDirty(page))
2625
			account_page_cleaned(page, mapping, memcg, wb);
2626

2627
		unlocked_inode_to_wb_end(inode, locked);
2628 2629 2630 2631
		mem_cgroup_end_page_stat(memcg);
	} else {
		ClearPageDirty(page);
	}
2632 2633 2634
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2652
	int ret = 0;
L
Linus Torvalds 已提交
2653

2654 2655
	BUG_ON(!PageLocked(page));

2656
	if (mapping && mapping_cap_account_dirty(mapping)) {
2657 2658 2659 2660 2661
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		struct mem_cgroup *memcg;
		bool locked;

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2689 2690 2691
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2692 2693 2694 2695
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2696
		 */
2697
		memcg = mem_cgroup_begin_page_stat(page);
2698
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2699
		if (TestClearPageDirty(page)) {
2700
			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2701
			dec_zone_page_state(page, NR_FILE_DIRTY);
2702
			dec_wb_stat(wb, WB_RECLAIMABLE);
2703
			ret = 1;
L
Linus Torvalds 已提交
2704
		}
2705
		unlocked_inode_to_wb_end(inode, locked);
2706 2707
		mem_cgroup_end_page_stat(memcg);
		return ret;
L
Linus Torvalds 已提交
2708
	}
2709
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2710
}
2711
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2712 2713 2714 2715

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2716 2717
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2718

2719
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2720
	if (mapping) {
2721 2722
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2723 2724
		unsigned long flags;

N
Nick Piggin 已提交
2725
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2726
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2727
		if (ret) {
L
Linus Torvalds 已提交
2728 2729 2730
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2731
			if (bdi_cap_account_writeback(bdi)) {
2732 2733 2734 2735
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2736
			}
P
Peter Zijlstra 已提交
2737
		}
N
Nick Piggin 已提交
2738
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2739 2740 2741
	} else {
		ret = TestClearPageWriteback(page);
	}
2742
	if (ret) {
2743
		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2744
		dec_zone_page_state(page, NR_WRITEBACK);
2745 2746
		inc_zone_page_state(page, NR_WRITTEN);
	}
2747
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2748 2749 2750
	return ret;
}

2751
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2752 2753
{
	struct address_space *mapping = page_mapping(page);
2754 2755
	struct mem_cgroup *memcg;
	int ret;
L
Linus Torvalds 已提交
2756

2757
	memcg = mem_cgroup_begin_page_stat(page);
L
Linus Torvalds 已提交
2758
	if (mapping) {
2759 2760
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2761 2762
		unsigned long flags;

N
Nick Piggin 已提交
2763
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2764
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2765
		if (!ret) {
L
Linus Torvalds 已提交
2766 2767 2768
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2769
			if (bdi_cap_account_writeback(bdi))
2770
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
P
Peter Zijlstra 已提交
2771
		}
L
Linus Torvalds 已提交
2772 2773 2774 2775
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2776 2777 2778 2779
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2780
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2781 2782 2783
	} else {
		ret = TestSetPageWriteback(page);
	}
2784
	if (!ret) {
2785
		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2786 2787
		inc_zone_page_state(page, NR_WRITEBACK);
	}
2788
	mem_cgroup_end_page_stat(memcg);
L
Linus Torvalds 已提交
2789 2790 2791
	return ret;

}
2792
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2793 2794

/*
N
Nick Piggin 已提交
2795
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2796 2797 2798 2799
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2800
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2801 2802
}
EXPORT_SYMBOL(mapping_tagged);
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2814 2815
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2816 2817
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);