page-writeback.c 45.2 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
P
Peter Zijlstra 已提交
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *		Initial version
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
35
#include <linux/buffer_head.h>
36
#include <linux/pagevec.h>
37
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
38

39 40 41 42 43
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

44 45 46 47 48
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/*
 * When balance_dirty_pages decides that the caller needs to perform some
 * non-background writeback, this is how many pages it will attempt to write.
58
 * It should be somewhat larger than dirtied pages to ensure that reasonably
L
Linus Torvalds 已提交
59 60
 * large amounts of I/O are submitted.
 */
61
static inline long sync_writeback_pages(unsigned long dirtied)
L
Linus Torvalds 已提交
62
{
63 64 65 66
	if (dirtied < ratelimit_pages)
		dirtied = ratelimit_pages;

	return dirtied + dirtied / 2;
L
Linus Torvalds 已提交
67 68 69 70 71
}

/* The following parameters are exported via /proc/sys/vm */

/*
72
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
73
 */
74
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
75

76 77 78 79 80 81
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

82 83 84 85 86 87
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
88 89 90
/*
 * The generator of dirty data starts writeback at this percentage
 */
91
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
92

93 94 95 96 97 98
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
99
/*
100
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
101
 */
102
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
103 104

/*
105
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
106
 */
107
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
108 109 110 111 112 113 114

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
115 116
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
117 118 119 120 121 122 123
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

124
unsigned long global_dirty_limit;
L
Linus Torvalds 已提交
125

P
Peter Zijlstra 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/*
 * Scale the writeback cache size proportional to the relative writeout speeds.
 *
 * We do this by keeping a floating proportion between BDIs, based on page
 * writeback completions [end_page_writeback()]. Those devices that write out
 * pages fastest will get the larger share, while the slower will get a smaller
 * share.
 *
 * We use page writeout completions because we are interested in getting rid of
 * dirty pages. Having them written out is the primary goal.
 *
 * We introduce a concept of time, a period over which we measure these events,
 * because demand can/will vary over time. The length of this period itself is
 * measured in page writeback completions.
 *
 */
static struct prop_descriptor vm_completions;
P
Peter Zijlstra 已提交
143
static struct prop_descriptor vm_dirties;
P
Peter Zijlstra 已提交
144 145 146 147 148 149 150 151 152 153

/*
 * couple the period to the dirty_ratio:
 *
 *   period/2 ~ roundup_pow_of_two(dirty limit)
 */
static int calc_period_shift(void)
{
	unsigned long dirty_total;

154 155 156 157 158
	if (vm_dirty_bytes)
		dirty_total = vm_dirty_bytes / PAGE_SIZE;
	else
		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
				100;
P
Peter Zijlstra 已提交
159 160 161 162
	return 2 + ilog2(dirty_total - 1);
}

/*
163
 * update the period when the dirty threshold changes.
P
Peter Zijlstra 已提交
164
 */
165 166 167 168 169 170 171 172
static void update_completion_period(void)
{
	int shift = calc_period_shift();
	prop_change_shift(&vm_completions, shift);
	prop_change_shift(&vm_dirties, shift);
}

int dirty_background_ratio_handler(struct ctl_table *table, int write,
173
		void __user *buffer, size_t *lenp,
174 175 176 177
		loff_t *ppos)
{
	int ret;

178
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
179 180 181 182 183 184
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
185
		void __user *buffer, size_t *lenp,
186 187 188 189
		loff_t *ppos)
{
	int ret;

190
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
191 192 193 194 195
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
196
int dirty_ratio_handler(struct ctl_table *table, int write,
197
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
198 199 200
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
201 202
	int ret;

203
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
204
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
205 206 207 208 209 210 211 212
		update_completion_period();
		vm_dirty_bytes = 0;
	}
	return ret;
}


int dirty_bytes_handler(struct ctl_table *table, int write,
213
		void __user *buffer, size_t *lenp,
214 215
		loff_t *ppos)
{
216
	unsigned long old_bytes = vm_dirty_bytes;
217 218
	int ret;

219
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
220 221 222
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
		update_completion_period();
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
223 224 225 226 227 228 229 230 231 232
	}
	return ret;
}

/*
 * Increment the BDI's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
{
233
	__inc_bdi_stat(bdi, BDI_WRITTEN);
234 235
	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
			      bdi->max_prop_frac);
P
Peter Zijlstra 已提交
236 237
}

238 239 240 241 242 243 244 245 246 247
void bdi_writeout_inc(struct backing_dev_info *bdi)
{
	unsigned long flags;

	local_irq_save(flags);
	__bdi_writeout_inc(bdi);
	local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(bdi_writeout_inc);

N
Nick Piggin 已提交
248
void task_dirty_inc(struct task_struct *tsk)
P
Peter Zijlstra 已提交
249 250 251 252
{
	prop_inc_single(&vm_dirties, &tsk->dirties);
}

P
Peter Zijlstra 已提交
253 254 255 256 257 258
/*
 * Obtain an accurate fraction of the BDI's portion.
 */
static void bdi_writeout_fraction(struct backing_dev_info *bdi,
		long *numerator, long *denominator)
{
259
	prop_fraction_percpu(&vm_completions, &bdi->completions,
P
Peter Zijlstra 已提交
260 261 262
				numerator, denominator);
}

P
Peter Zijlstra 已提交
263 264 265 266 267 268 269 270
static inline void task_dirties_fraction(struct task_struct *tsk,
		long *numerator, long *denominator)
{
	prop_fraction_single(&vm_dirties, &tsk->dirties,
				numerator, denominator);
}

/*
271
 * task_dirty_limit - scale down dirty throttling threshold for one task
P
Peter Zijlstra 已提交
272 273 274 275
 *
 * task specific dirty limit:
 *
 *   dirty -= (dirty/8) * p_{t}
276 277 278 279 280 281 282
 *
 * To protect light/slow dirtying tasks from heavier/fast ones, we start
 * throttling individual tasks before reaching the bdi dirty limit.
 * Relatively low thresholds will be allocated to heavy dirtiers. So when
 * dirty pages grow large, heavy dirtiers will be throttled first, which will
 * effectively curb the growth of dirty pages. Light dirtiers with high enough
 * dirty threshold may never get throttled.
P
Peter Zijlstra 已提交
283
 */
284
#define TASK_LIMIT_FRACTION 8
285 286
static unsigned long task_dirty_limit(struct task_struct *tsk,
				       unsigned long bdi_dirty)
P
Peter Zijlstra 已提交
287 288
{
	long numerator, denominator;
289
	unsigned long dirty = bdi_dirty;
290
	u64 inv = dirty / TASK_LIMIT_FRACTION;
P
Peter Zijlstra 已提交
291 292 293 294 295 296 297

	task_dirties_fraction(tsk, &numerator, &denominator);
	inv *= numerator;
	do_div(inv, denominator);

	dirty -= inv;

298
	return max(dirty, bdi_dirty/2);
P
Peter Zijlstra 已提交
299 300
}

301 302 303 304 305 306
/* Minimum limit for any task */
static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
{
	return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
}

307 308 309 310 311 312 313 314 315
/*
 *
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

316
	spin_lock_bh(&bdi_lock);
317
	if (min_ratio > bdi->max_ratio) {
318
		ret = -EINVAL;
319 320 321 322 323 324 325 326 327
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
328
	spin_unlock_bh(&bdi_lock);
329 330 331 332 333 334 335 336 337 338 339

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

340
	spin_lock_bh(&bdi_lock);
341 342 343 344 345 346
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
	}
347
	spin_unlock_bh(&bdi_lock);
348 349 350

	return ret;
}
351
EXPORT_SYMBOL(bdi_set_max_ratio);
352

L
Linus Torvalds 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Work out the current dirty-memory clamping and background writeout
 * thresholds.
 *
 * The main aim here is to lower them aggressively if there is a lot of mapped
 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 * pages.  It is better to clamp down on writers than to start swapping, and
 * performing lots of scanning.
 *
 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 *
 * We don't permit the clamping level to fall below 5% - that is getting rather
 * excessive.
 *
 * We make sure that the background writeout level is below the adjusted
 * clamping level.
 */
370 371 372 373 374 375 376

static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
	unsigned long x = 0;

377
	for_each_node_state(node, N_HIGH_MEMORY) {
378 379 380
		struct zone *z =
			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];

381 382
		x += zone_page_state(z, NR_FREE_PAGES) +
		     zone_reclaimable_pages(z);
383 384 385 386 387 388 389 390 391 392 393 394 395
	}
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

S
Steven Rostedt 已提交
396 397 398 399 400 401 402
/**
 * determine_dirtyable_memory - amount of memory that may be used
 *
 * Returns the numebr of pages that can currently be freed and used
 * by the kernel for direct mappings.
 */
unsigned long determine_dirtyable_memory(void)
403 404 405
{
	unsigned long x;

406
	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
407 408 409 410

	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

411 412 413
	return x + 1;	/* Ensure that we never return 0 */
}

414 415 416 417 418
static unsigned long hard_dirty_limit(unsigned long thresh)
{
	return max(thresh, global_dirty_limit);
}

419
/*
420 421 422 423 424 425
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 *
 * Calculate the dirty thresholds based on sysctl parameters
 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 * - vm.dirty_ratio             or  vm.dirty_bytes
 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
426
 * real-time tasks.
427
 */
428
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
L
Linus Torvalds 已提交
429
{
430 431
	unsigned long background;
	unsigned long dirty;
432
	unsigned long uninitialized_var(available_memory);
L
Linus Torvalds 已提交
433 434
	struct task_struct *tsk;

435 436 437
	if (!vm_dirty_bytes || !dirty_background_bytes)
		available_memory = determine_dirtyable_memory();

438 439
	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
440 441
	else
		dirty = (vm_dirty_ratio * available_memory) / 100;
L
Linus Torvalds 已提交
442

443 444 445 446
	if (dirty_background_bytes)
		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
	else
		background = (dirty_background_ratio * available_memory) / 100;
L
Linus Torvalds 已提交
447

448 449
	if (background >= dirty)
		background = dirty / 2;
L
Linus Torvalds 已提交
450 451 452 453 454 455 456
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
		background += background / 4;
		dirty += dirty / 4;
	}
	*pbackground = background;
	*pdirty = dirty;
457
	trace_global_dirty_state(background, dirty);
458
}
P
Peter Zijlstra 已提交
459

460
/**
461
 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
462 463
 * @bdi: the backing_dev_info to query
 * @dirty: global dirty limit in pages
464
 *
465 466 467 468
 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 * And the "limit" in the name is not seriously taken as hard limit in
 * balance_dirty_pages().
469
 *
470
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
471 472 473 474 475 476 477
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
 * The bdi's share of dirty limit will be adapting to its throughput and
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
478 479 480
{
	u64 bdi_dirty;
	long numerator, denominator;
P
Peter Zijlstra 已提交
481

482 483 484 485
	/*
	 * Calculate this BDI's share of the dirty ratio.
	 */
	bdi_writeout_fraction(bdi, &numerator, &denominator);
P
Peter Zijlstra 已提交
486

487 488 489
	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
	bdi_dirty *= numerator;
	do_div(bdi_dirty, denominator);
P
Peter Zijlstra 已提交
490

491 492 493 494 495
	bdi_dirty += (dirty * bdi->min_ratio) / 100;
	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
		bdi_dirty = dirty * bdi->max_ratio / 100;

	return bdi_dirty;
L
Linus Torvalds 已提交
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
				       unsigned long elapsed,
				       unsigned long written)
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
	unsigned long avg = bdi->avg_write_bandwidth;
	unsigned long old = bdi->write_bandwidth;
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
	 */
	bw = written - bdi->written_stamp;
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
	bw += (u64)bdi->write_bandwidth * (period - elapsed);
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
	bdi->write_bandwidth = bw;
	bdi->avg_write_bandwidth = avg;
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * The global dirtyable memory and dirty threshold could be suddenly knocked
 * down by a large amount (eg. on the startup of KVM in a swapless system).
 * This may throw the system into deep dirty exceeded state and throttle
 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 * global_dirty_limit for tracking slowly down to the knocked down dirty
 * threshold.
 */
static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
{
	unsigned long limit = global_dirty_limit;

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
	 */
	thresh = max(thresh, dirty);
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
	global_dirty_limit = limit;
}

static void global_update_bandwidth(unsigned long thresh,
				    unsigned long dirty,
				    unsigned long now)
{
	static DEFINE_SPINLOCK(dirty_lock);
	static unsigned long update_time;

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
		return;

	spin_lock(&dirty_lock);
	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
		update_dirty_limit(thresh, dirty);
		update_time = now;
	}
	spin_unlock(&dirty_lock);
}

594
void __bdi_update_bandwidth(struct backing_dev_info *bdi,
595 596 597 598
			    unsigned long thresh,
			    unsigned long dirty,
			    unsigned long bdi_thresh,
			    unsigned long bdi_dirty,
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
			    unsigned long start_time)
{
	unsigned long now = jiffies;
	unsigned long elapsed = now - bdi->bw_time_stamp;
	unsigned long written;

	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
		goto snapshot;

620 621 622
	if (thresh)
		global_update_bandwidth(thresh, dirty, now);

623 624 625 626 627 628 629 630
	bdi_update_write_bandwidth(bdi, elapsed, written);

snapshot:
	bdi->written_stamp = written;
	bdi->bw_time_stamp = now;
}

static void bdi_update_bandwidth(struct backing_dev_info *bdi,
631 632 633 634
				 unsigned long thresh,
				 unsigned long dirty,
				 unsigned long bdi_thresh,
				 unsigned long bdi_dirty,
635 636 637 638 639
				 unsigned long start_time)
{
	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
		return;
	spin_lock(&bdi->wb.list_lock);
640 641
	__bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
			       start_time);
642 643 644
	spin_unlock(&bdi->wb.list_lock);
}

L
Linus Torvalds 已提交
645 646 647 648
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
649 650
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
651
 */
652 653
static void balance_dirty_pages(struct address_space *mapping,
				unsigned long write_chunk)
L
Linus Torvalds 已提交
654
{
655 656 657
	unsigned long nr_reclaimable, bdi_nr_reclaimable;
	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
	unsigned long bdi_dirty;
658 659 660
	unsigned long background_thresh;
	unsigned long dirty_thresh;
	unsigned long bdi_thresh;
661 662
	unsigned long task_bdi_thresh;
	unsigned long min_task_bdi_thresh;
L
Linus Torvalds 已提交
663
	unsigned long pages_written = 0;
664
	unsigned long pause = 1;
665
	bool dirty_exceeded = false;
666
	bool clear_dirty_exceeded = true;
L
Linus Torvalds 已提交
667
	struct backing_dev_info *bdi = mapping->backing_dev_info;
668
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
669 670

	for (;;) {
671 672
		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
					global_page_state(NR_UNSTABLE_NFS);
673
		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
674

675 676 677 678 679 680 681
		global_dirty_limits(&background_thresh, &dirty_thresh);

		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
		 * when the bdi limits are ramping up.
		 */
682
		if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
683 684 685
			break;

		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
686 687
		min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
		task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
688

689 690 691 692 693 694 695 696 697 698
		/*
		 * In order to avoid the stacked BDI deadlock we need
		 * to ensure we accurately count the 'dirty' pages when
		 * the threshold is low.
		 *
		 * Otherwise it would be possible to get thresh+n pages
		 * reported dirty, even though there are thresh-m pages
		 * actually dirty; with m+n sitting in the percpu
		 * deltas.
		 */
699
		if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
700
			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
701 702
			bdi_dirty = bdi_nr_reclaimable +
				    bdi_stat_sum(bdi, BDI_WRITEBACK);
703 704
		} else {
			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
705 706
			bdi_dirty = bdi_nr_reclaimable +
				    bdi_stat(bdi, BDI_WRITEBACK);
707
		}
708

709 710 711 712 713 714
		/*
		 * The bdi thresh is somehow "soft" limit derived from the
		 * global "hard" limit. The former helps to prevent heavy IO
		 * bdi or process from holding back light ones; The latter is
		 * the last resort safeguard.
		 */
715
		dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
716
				  (nr_dirty > dirty_thresh);
717 718
		clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
					(nr_dirty <= dirty_thresh);
719 720

		if (!dirty_exceeded)
P
Peter Zijlstra 已提交
721
			break;
L
Linus Torvalds 已提交
722

P
Peter Zijlstra 已提交
723 724
		if (!bdi->dirty_exceeded)
			bdi->dirty_exceeded = 1;
L
Linus Torvalds 已提交
725

726 727
		bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
				     bdi_thresh, bdi_dirty, start_time);
728

L
Linus Torvalds 已提交
729 730 731 732 733
		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
734 735 736
		 * Only move pages to writeback if this bdi is over its
		 * threshold otherwise wait until the disk writes catch
		 * up.
L
Linus Torvalds 已提交
737
		 */
738
		trace_balance_dirty_start(bdi);
739
		if (bdi_nr_reclaimable > task_bdi_thresh) {
740 741 742
			pages_written += writeback_inodes_wb(&bdi->wb,
							     write_chunk);
			trace_balance_dirty_written(bdi, pages_written);
743 744
			if (pages_written >= write_chunk)
				break;		/* We've done our duty */
P
Peter Zijlstra 已提交
745
		}
746
		__set_current_state(TASK_UNINTERRUPTIBLE);
747
		io_schedule_timeout(pause);
748
		trace_balance_dirty_wait(bdi);
749

750 751 752 753 754 755 756
		dirty_thresh = hard_dirty_limit(dirty_thresh);
		/*
		 * max-pause area. If dirty exceeded but still within this
		 * area, no need to sleep for more than 200ms: (a) 8 pages per
		 * 200ms is typically more than enough to curb heavy dirtiers;
		 * (b) the pause time limit makes the dirtiers more responsive.
		 */
757 758
		if (nr_dirty < dirty_thresh &&
		    bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
759 760
		    time_after(jiffies, start_time + MAX_PAUSE))
			break;
761 762 763 764 765 766 767 768

		/*
		 * Increase the delay for each loop, up to our previous
		 * default of taking a 100ms nap.
		 */
		pause <<= 1;
		if (pause > HZ / 10)
			pause = HZ / 10;
L
Linus Torvalds 已提交
769 770
	}

771 772
	/* Clear dirty_exceeded flag only when no task can exceed the limit */
	if (clear_dirty_exceeded && bdi->dirty_exceeded)
P
Peter Zijlstra 已提交
773
		bdi->dirty_exceeded = 0;
L
Linus Torvalds 已提交
774 775

	if (writeback_in_progress(bdi))
776
		return;
L
Linus Torvalds 已提交
777 778 779 780 781 782 783 784 785 786

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
	if ((laptop_mode && pages_written) ||
787
	    (!laptop_mode && (nr_reclaimable > background_thresh)))
788
		bdi_start_background_writeback(bdi);
L
Linus Torvalds 已提交
789 790
}

791
void set_page_dirty_balance(struct page *page, int page_mkwrite)
P
Peter Zijlstra 已提交
792
{
793
	if (set_page_dirty(page) || page_mkwrite) {
P
Peter Zijlstra 已提交
794 795 796 797 798 799 800
		struct address_space *mapping = page_mapping(page);

		if (mapping)
			balance_dirty_pages_ratelimited(mapping);
	}
}

801 802
static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;

L
Linus Torvalds 已提交
803
/**
804
 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
805
 * @mapping: address_space which was dirtied
806
 * @nr_pages_dirtied: number of pages which the caller has just dirtied
L
Linus Torvalds 已提交
807 808 809 810 811 812 813 814 815 816
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
817 818
void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
					unsigned long nr_pages_dirtied)
L
Linus Torvalds 已提交
819
{
820
	struct backing_dev_info *bdi = mapping->backing_dev_info;
821 822
	unsigned long ratelimit;
	unsigned long *p;
L
Linus Torvalds 已提交
823

824 825 826
	if (!bdi_cap_account_dirty(bdi))
		return;

L
Linus Torvalds 已提交
827
	ratelimit = ratelimit_pages;
P
Peter Zijlstra 已提交
828
	if (mapping->backing_dev_info->dirty_exceeded)
L
Linus Torvalds 已提交
829 830 831 832 833 834
		ratelimit = 8;

	/*
	 * Check the rate limiting. Also, we do not want to throttle real-time
	 * tasks in balance_dirty_pages(). Period.
	 */
835
	preempt_disable();
836
	p =  &__get_cpu_var(bdp_ratelimits);
837 838
	*p += nr_pages_dirtied;
	if (unlikely(*p >= ratelimit)) {
839
		ratelimit = sync_writeback_pages(*p);
840 841
		*p = 0;
		preempt_enable();
842
		balance_dirty_pages(mapping, ratelimit);
L
Linus Torvalds 已提交
843 844
		return;
	}
845
	preempt_enable();
L
Linus Torvalds 已提交
846
}
847
EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
L
Linus Torvalds 已提交
848

849
void throttle_vm_writeout(gfp_t gfp_mask)
L
Linus Torvalds 已提交
850
{
851 852
	unsigned long background_thresh;
	unsigned long dirty_thresh;
L
Linus Torvalds 已提交
853 854

        for ( ; ; ) {
855
		global_dirty_limits(&background_thresh, &dirty_thresh);
L
Linus Torvalds 已提交
856 857 858 859 860 861 862

                /*
                 * Boost the allowable dirty threshold a bit for page
                 * allocators so they don't get DoS'ed by heavy writers
                 */
                dirty_thresh += dirty_thresh / 10;      /* wheeee... */

863 864 865
                if (global_page_state(NR_UNSTABLE_NFS) +
			global_page_state(NR_WRITEBACK) <= dirty_thresh)
                        	break;
866
                congestion_wait(BLK_RW_ASYNC, HZ/10);
867 868 869 870 871 872 873 874

		/*
		 * The caller might hold locks which can prevent IO completion
		 * or progress in the filesystem.  So we cannot just sit here
		 * waiting for IO to complete.
		 */
		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
			break;
L
Linus Torvalds 已提交
875 876 877 878 879 880 881
        }
}

/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
int dirty_writeback_centisecs_handler(ctl_table *table, int write,
882
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
883
{
884
	proc_dointvec(table, write, buffer, length, ppos);
885
	bdi_arm_supers_timer();
L
Linus Torvalds 已提交
886 887 888
	return 0;
}

889
#ifdef CONFIG_BLOCK
890
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
891
{
892 893 894
	struct request_queue *q = (struct request_queue *)data;
	int nr_pages = global_page_state(NR_FILE_DIRTY) +
		global_page_state(NR_UNSTABLE_NFS);
L
Linus Torvalds 已提交
895

896 897 898 899 900
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
	if (bdi_has_dirty_io(&q->backing_dev_info))
901
		bdi_start_writeback(&q->backing_dev_info, nr_pages);
L
Linus Torvalds 已提交
902 903 904 905 906 907 908
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
909
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
910
{
911
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
912 913 914 915 916 917 918 919 920
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
921 922 923 924 925 926 927 928
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
929
}
930
#endif
L
Linus Torvalds 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 * thresholds before writeback cuts in.
 *
 * But the limit should not be set too high.  Because it also controls the
 * amount of memory which the balance_dirty_pages() caller has to write back.
 * If this is too large then the caller will block on the IO queue all the
 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 * will write six megabyte chunks, max.
 */

949
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
950
{
951
	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
952 953 954 955 956 957
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
}

958
static int __cpuinit
L
Linus Torvalds 已提交
959 960
ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
{
961
	writeback_set_ratelimit();
962
	return NOTIFY_DONE;
L
Linus Torvalds 已提交
963 964
}

965
static struct notifier_block __cpuinitdata ratelimit_nb = {
L
Linus Torvalds 已提交
966 967 968 969 970
	.notifier_call	= ratelimit_handler,
	.next		= NULL,
};

/*
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
987 988 989
 */
void __init page_writeback_init(void)
{
P
Peter Zijlstra 已提交
990 991
	int shift;

992
	writeback_set_ratelimit();
L
Linus Torvalds 已提交
993
	register_cpu_notifier(&ratelimit_nb);
P
Peter Zijlstra 已提交
994 995 996

	shift = calc_period_shift();
	prop_descriptor_init(&vm_completions, shift);
P
Peter Zijlstra 已提交
997
	prop_descriptor_init(&vm_dirties, shift);
L
Linus Torvalds 已提交
998 999
}

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
1020
#define WRITEBACK_TAG_BATCH 4096
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	unsigned long tagged;

	do {
		spin_lock_irq(&mapping->tree_lock);
		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
				&start, end, WRITEBACK_TAG_BATCH,
				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
		spin_unlock_irq(&mapping->tree_lock);
		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
		cond_resched();
1031 1032
		/* We check 'start' to handle wrapping when end == ~0UL */
	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1033 1034 1035
}
EXPORT_SYMBOL(tag_pages_for_writeback);

1036
/**
1037
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1038 1039
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1040 1041
 * @writepage: function called for each page
 * @data: data passed to writepage function
1042
 *
1043
 * If a page is already under I/O, write_cache_pages() skips it, even
1044 1045 1046 1047 1048 1049
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
1050 1051 1052 1053 1054 1055 1056
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
1057
 */
1058 1059 1060
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
1061 1062 1063 1064 1065
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
1066
	pgoff_t uninitialized_var(writeback_index);
1067 1068
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
1069
	pgoff_t done_index;
N
Nick Piggin 已提交
1070
	int cycled;
1071
	int range_whole = 0;
1072
	int tag;
1073 1074 1075

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
1076 1077 1078 1079 1080 1081
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
1082 1083 1084 1085 1086 1087
		end = -1;
	} else {
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
1088
		cycled = 1; /* ignore range_cyclic tests */
1089
	}
1090
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1091 1092 1093
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
1094
retry:
1095
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1096
		tag_pages_for_writeback(mapping, index, end);
1097
	done_index = index;
N
Nick Piggin 已提交
1098 1099 1100
	while (!done && (index <= end)) {
		int i;

1101
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
1102 1103 1104
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
1105 1106 1107 1108 1109

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
1110 1111 1112 1113 1114
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
1115
			 */
1116 1117 1118 1119 1120 1121 1122 1123 1124
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

1125
			done_index = page->index;
1126

1127 1128
			lock_page(page);

N
Nick Piggin 已提交
1129 1130 1131 1132 1133 1134 1135 1136
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
1137
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
1138
continue_unlock:
1139 1140 1141 1142
				unlock_page(page);
				continue;
			}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
1154

1155 1156
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
1157
				goto continue_unlock;
1158

1159
			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1160
			ret = (*writepage)(page, wbc, data);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
1175
					done_index = page->index + 1;
1176 1177 1178
					done = 1;
					break;
				}
1179
			}
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
1191
			}
1192 1193 1194 1195
		}
		pagevec_release(&pvec);
		cond_resched();
	}
1196
	if (!cycled && !done) {
1197
		/*
N
Nick Piggin 已提交
1198
		 * range_cyclic:
1199 1200 1201
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
1202
		cycled = 1;
1203
		index = 0;
N
Nick Piggin 已提交
1204
		end = writeback_index - 1;
1205 1206
		goto retry;
	}
1207 1208
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
1209

1210 1211
	return ret;
}
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
1238 1239 1240
	struct blk_plug plug;
	int ret;

1241 1242 1243 1244
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

1245 1246 1247 1248
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
1249
}
1250 1251 1252

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
1253 1254
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
1255 1256
	int ret;

L
Linus Torvalds 已提交
1257 1258 1259
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
1260
		ret = mapping->a_ops->writepages(mapping, wbc);
1261 1262 1263
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
1264 1265 1266 1267
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
1268 1269
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
		page_cache_get(page);
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		page_cache_release(page);
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

1305 1306 1307 1308 1309 1310
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
1311
		return !TestSetPageDirty(page);
1312 1313 1314
	return 0;
}

1315 1316 1317 1318 1319 1320 1321 1322
/*
 * Helper function for set_page_dirty family.
 * NOTE: This relies on being atomic wrt interrupts.
 */
void account_page_dirtied(struct page *page, struct address_space *mapping)
{
	if (mapping_cap_account_dirty(mapping)) {
		__inc_zone_page_state(page, NR_FILE_DIRTY);
1323
		__inc_zone_page_state(page, NR_DIRTIED);
1324 1325 1326 1327 1328
		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
		task_dirty_inc(current);
		task_io_account_write(PAGE_CACHE_SIZE);
	}
}
M
Michael Rubin 已提交
1329
EXPORT_SYMBOL(account_page_dirtied);
1330

M
Michael Rubin 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
/*
 * Helper function for set_page_writeback family.
 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
 * wrt interrupts.
 */
void account_page_writeback(struct page *page)
{
	inc_zone_page_state(page, NR_WRITEBACK);
}
EXPORT_SYMBOL(account_page_writeback);

L
Linus Torvalds 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
 * Most callers have locked the page, which pins the address_space in memory.
 * But zap_pte_range() does not lock the page, however in that case the
 * mapping is pinned by the vma's ->vm_file reference.
 *
 * We take care to handle the case where the page was truncated from the
S
Simon Arlott 已提交
1355
 * mapping by re-checking page_mapping() inside tree_lock.
L
Linus Torvalds 已提交
1356 1357 1358 1359 1360 1361 1362
 */
int __set_page_dirty_nobuffers(struct page *page)
{
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
		struct address_space *mapping2;

1363 1364 1365
		if (!mapping)
			return 1;

N
Nick Piggin 已提交
1366
		spin_lock_irq(&mapping->tree_lock);
1367 1368 1369
		mapping2 = page_mapping(page);
		if (mapping2) { /* Race with truncate? */
			BUG_ON(mapping2 != mapping);
1370
			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1371
			account_page_dirtied(page, mapping);
1372 1373 1374
			radix_tree_tag_set(&mapping->page_tree,
				page_index(page), PAGECACHE_TAG_DIRTY);
		}
N
Nick Piggin 已提交
1375
		spin_unlock_irq(&mapping->tree_lock);
1376 1377 1378
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
1379
		}
1380
		return 1;
L
Linus Torvalds 已提交
1381
	}
1382
	return 0;
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
	wbc->pages_skipped++;
	return __set_page_dirty_nobuffers(page);
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
1399 1400 1401 1402 1403 1404 1405
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
1406 1407 1408
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
1409
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414
{
	struct address_space *mapping = page_mapping(page);

	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
		ClearPageReclaim(page);
1426 1427 1428 1429 1430
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
1431
	}
1432 1433 1434 1435
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
1454
	lock_page(page);
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);

1479 1480
	BUG_ON(!PageLocked(page));

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (mapping && mapping_cap_account_dirty(mapping)) {
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
		 * at this point. We do this by having them hold the
		 * page lock at some point after installing their
		 * pte, but before marking the page dirty.
		 * Pages are always locked coming in here, so we get
		 * the desired exclusion. See mm/memory.c:do_wp_page()
		 * for more comments.
		 */
1519
		if (TestClearPageDirty(page)) {
1520
			dec_zone_page_state(page, NR_FILE_DIRTY);
1521 1522
			dec_bdi_stat(mapping->backing_dev_info,
					BDI_RECLAIMABLE);
1523
			return 1;
L
Linus Torvalds 已提交
1524
		}
1525
		return 0;
L
Linus Torvalds 已提交
1526
	}
1527
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
1528
}
1529
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
1530 1531 1532 1533 1534 1535 1536

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int ret;

	if (mapping) {
P
Peter Zijlstra 已提交
1537
		struct backing_dev_info *bdi = mapping->backing_dev_info;
L
Linus Torvalds 已提交
1538 1539
		unsigned long flags;

N
Nick Piggin 已提交
1540
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1541
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
1542
		if (ret) {
L
Linus Torvalds 已提交
1543 1544 1545
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
1546
			if (bdi_cap_account_writeback(bdi)) {
P
Peter Zijlstra 已提交
1547
				__dec_bdi_stat(bdi, BDI_WRITEBACK);
P
Peter Zijlstra 已提交
1548 1549
				__bdi_writeout_inc(bdi);
			}
P
Peter Zijlstra 已提交
1550
		}
N
Nick Piggin 已提交
1551
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1552 1553 1554
	} else {
		ret = TestClearPageWriteback(page);
	}
1555
	if (ret) {
1556
		dec_zone_page_state(page, NR_WRITEBACK);
1557 1558
		inc_zone_page_state(page, NR_WRITTEN);
	}
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567
	return ret;
}

int test_set_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
	int ret;

	if (mapping) {
P
Peter Zijlstra 已提交
1568
		struct backing_dev_info *bdi = mapping->backing_dev_info;
L
Linus Torvalds 已提交
1569 1570
		unsigned long flags;

N
Nick Piggin 已提交
1571
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1572
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
1573
		if (!ret) {
L
Linus Torvalds 已提交
1574 1575 1576
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
1577
			if (bdi_cap_account_writeback(bdi))
P
Peter Zijlstra 已提交
1578 1579
				__inc_bdi_stat(bdi, BDI_WRITEBACK);
		}
L
Linus Torvalds 已提交
1580 1581 1582 1583
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
1584 1585 1586
		radix_tree_tag_clear(&mapping->page_tree,
				     page_index(page),
				     PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
1587
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
1588 1589 1590
	} else {
		ret = TestSetPageWriteback(page);
	}
1591
	if (!ret)
M
Michael Rubin 已提交
1592
		account_page_writeback(page);
L
Linus Torvalds 已提交
1593 1594 1595 1596 1597 1598
	return ret;

}
EXPORT_SYMBOL(test_set_page_writeback);

/*
N
Nick Piggin 已提交
1599
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
1600 1601 1602 1603
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
1604
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
1605 1606
}
EXPORT_SYMBOL(mapping_tagged);