page-writeback.c 84.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * mm/page-writeback.c
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2002, Linus Torvalds.
5
 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
L
Linus Torvalds 已提交
6 7 8 9
 *
 * Contains functions related to writing back dirty pages at the
 * address_space level.
 *
10
 * 10Apr2002	Andrew Morton
L
Linus Torvalds 已提交
11 12 13 14
 *		Initial version
 */

#include <linux/kernel.h>
15
#include <linux/export.h>
L
Linus Torvalds 已提交
16 17 18 19 20 21 22 23 24
#include <linux/spinlock.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/init.h>
#include <linux/backing-dev.h>
25
#include <linux/task_io_accounting_ops.h>
L
Linus Torvalds 已提交
26 27
#include <linux/blkdev.h>
#include <linux/mpage.h>
28
#include <linux/rmap.h>
L
Linus Torvalds 已提交
29 30 31 32 33 34
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/smp.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Al Viro 已提交
35
#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36
#include <linux/pagevec.h>
37
#include <linux/timer.h>
38
#include <linux/sched/rt.h>
39
#include <linux/mm_inline.h>
40
#include <trace/events/writeback.h>
L
Linus Torvalds 已提交
41

42 43
#include "internal.h"

44 45 46 47 48
/*
 * Sleep at most 200ms at a time in balance_dirty_pages().
 */
#define MAX_PAUSE		max(HZ/5, 1)

49 50 51 52 53 54
/*
 * Try to keep balance_dirty_pages() call intervals higher than this many pages
 * by raising pause time to max_pause when falls below it.
 */
#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))

55 56 57 58 59
/*
 * Estimate write bandwidth at 200ms intervals.
 */
#define BANDWIDTH_INTERVAL	max(HZ/5, 1)

W
Wu Fengguang 已提交
60 61
#define RATELIMIT_CALC_SHIFT	10

L
Linus Torvalds 已提交
62 63 64 65 66 67 68 69 70
/*
 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
 * will look to see if it needs to force writeback or throttling.
 */
static long ratelimit_pages = 32;

/* The following parameters are exported via /proc/sys/vm */

/*
71
 * Start background writeback (via writeback threads) at this percentage
L
Linus Torvalds 已提交
72
 */
73
int dirty_background_ratio = 10;
L
Linus Torvalds 已提交
74

75 76 77 78 79 80
/*
 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
 * dirty_background_ratio * the amount of dirtyable memory
 */
unsigned long dirty_background_bytes;

81 82 83 84 85 86
/*
 * free highmem will not be subtracted from the total free memory
 * for calculating free ratios if vm_highmem_is_dirtyable is true
 */
int vm_highmem_is_dirtyable;

L
Linus Torvalds 已提交
87 88 89
/*
 * The generator of dirty data starts writeback at this percentage
 */
90
int vm_dirty_ratio = 20;
L
Linus Torvalds 已提交
91

92 93 94 95 96 97
/*
 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
 * vm_dirty_ratio * the amount of dirtyable memory
 */
unsigned long vm_dirty_bytes;

L
Linus Torvalds 已提交
98
/*
99
 * The interval between `kupdate'-style writebacks
L
Linus Torvalds 已提交
100
 */
101
unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
L
Linus Torvalds 已提交
102

103 104
EXPORT_SYMBOL_GPL(dirty_writeback_interval);

L
Linus Torvalds 已提交
105
/*
106
 * The longest time for which data is allowed to remain dirty
L
Linus Torvalds 已提交
107
 */
108
unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
L
Linus Torvalds 已提交
109 110 111 112 113 114 115

/*
 * Flag that makes the machine dump writes/reads and block dirtyings.
 */
int block_dump;

/*
116 117
 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 * a full sync is triggered after this time elapses without any disk activity.
L
Linus Torvalds 已提交
118 119 120 121 122 123 124
 */
int laptop_mode;

EXPORT_SYMBOL(laptop_mode);

/* End of sysctl-exported parameters */

125
struct wb_domain global_wb_domain;
L
Linus Torvalds 已提交
126

127 128
/* consolidated parameters for balance_dirty_pages() and its subroutines */
struct dirty_throttle_control {
129 130
#ifdef CONFIG_CGROUP_WRITEBACK
	struct wb_domain	*dom;
131
	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132
#endif
133
	struct bdi_writeback	*wb;
134
	struct fprop_local_percpu *wb_completions;
135

136
	unsigned long		avail;		/* dirtyable */
137 138 139 140 141 142
	unsigned long		dirty;		/* file_dirty + write + nfs */
	unsigned long		thresh;		/* dirty threshold */
	unsigned long		bg_thresh;	/* dirty background threshold */

	unsigned long		wb_dirty;	/* per-wb counterparts */
	unsigned long		wb_thresh;
143
	unsigned long		wb_bg_thresh;
144 145

	unsigned long		pos_ratio;
146 147
};

148 149 150 151 152 153
/*
 * Length of period for aging writeout fractions of bdis. This is an
 * arbitrarily chosen number. The longer the period, the slower fractions will
 * reflect changes in current writeout rate.
 */
#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
P
Peter Zijlstra 已提交
154

155 156
#ifdef CONFIG_CGROUP_WRITEBACK

157 158 159 160
#define GDTC_INIT(__wb)		.wb = (__wb),				\
				.dom = &global_wb_domain,		\
				.wb_completions = &(__wb)->completions

161
#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 163 164 165 166

#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
				.dom = mem_cgroup_wb_domain(__wb),	\
				.wb_completions = &(__wb)->memcg_completions, \
				.gdtc = __gdtc
167 168 169 170 171

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}
172 173 174 175 176 177

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return dtc->dom;
}

178 179 180 181 182
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return mdtc->gdtc;
}

T
Tejun Heo 已提交
183 184 185 186 187
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return &wb->memcg_completions;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	unsigned long this_bw = wb->avg_write_bandwidth;
	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
	unsigned long long min = wb->bdi->min_ratio;
	unsigned long long max = wb->bdi->max_ratio;

	/*
	 * @wb may already be clean by the time control reaches here and
	 * the total may not include its bw.
	 */
	if (this_bw < tot_bw) {
		if (min) {
			min *= this_bw;
			do_div(min, tot_bw);
		}
		if (max < 100) {
			max *= this_bw;
			do_div(max, tot_bw);
		}
	}

	*minp = min;
	*maxp = max;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

217 218
#define GDTC_INIT(__wb)		.wb = (__wb),                           \
				.wb_completions = &(__wb)->completions
219
#define GDTC_INIT_NO_WB
220 221 222 223 224 225
#define MDTC_INIT(__wb, __gdtc)

static bool mdtc_valid(struct dirty_throttle_control *dtc)
{
	return false;
}
226 227 228 229 230 231

static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
{
	return &global_wb_domain;
}

232 233 234 235 236
static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
{
	return NULL;
}

T
Tejun Heo 已提交
237 238 239 240 241
static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
{
	return NULL;
}

242 243 244 245 246 247 248 249 250
static void wb_min_max_ratio(struct bdi_writeback *wb,
			     unsigned long *minp, unsigned long *maxp)
{
	*minp = wb->bdi->min_ratio;
	*maxp = wb->bdi->max_ratio;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
/*
 * In a memory zone, there is a certain amount of pages we consider
 * available for the page cache, which is essentially the number of
 * free and reclaimable pages, minus some zone reserves to protect
 * lowmem and the ability to uphold the zone's watermarks without
 * requiring writeback.
 *
 * This number of dirtyable pages is the base value of which the
 * user-configurable dirty ratio is the effictive number of pages that
 * are allowed to be actually dirtied.  Per individual zone, or
 * globally by using the sum of dirtyable pages over all zones.
 *
 * Because the user is allowed to specify the dirty limit globally as
 * absolute number of bytes, calculating the per-zone dirty limit can
 * require translating the configured limit into a percentage of
 * global dirtyable memory first.
 */

269
/**
270 271
 * node_dirtyable_memory - number of dirtyable pages in a node
 * @pgdat: the node
272
 *
273 274
 * Returns the node's number of pages potentially available for dirty
 * page cache.  This is the base value for the per-node dirty limits.
275
 */
276
static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
277
{
278 279 280 281 282 283 284 285 286 287 288
	unsigned long nr_pages = 0;
	int z;

	for (z = 0; z < MAX_NR_ZONES; z++) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
	}
289

290 291 292 293 294
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
295
	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
296

297 298
	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
299 300 301 302

	return nr_pages;
}

303 304 305 306
static unsigned long highmem_dirtyable_memory(unsigned long total)
{
#ifdef CONFIG_HIGHMEM
	int node;
307
	unsigned long x = 0;
308
	int i;
309 310

	for_each_node_state(node, N_HIGH_MEMORY) {
311 312
		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
			struct zone *z;
313
			unsigned long nr_pages;
314 315 316 317 318

			if (!is_highmem_idx(i))
				continue;

			z = &NODE_DATA(node)->node_zones[i];
319 320
			if (!populated_zone(z))
				continue;
321

322
			nr_pages = zone_page_state(z, NR_FREE_PAGES);
323
			/* watch for underflows */
324
			nr_pages -= min(nr_pages, high_wmark_pages(z));
325 326 327
			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
			x += nr_pages;
328
		}
329
	}
330

331 332 333 334 335 336 337 338 339 340 341 342
	/*
	 * Unreclaimable memory (kernel memory or anonymous memory
	 * without swap) can bring down the dirtyable pages below
	 * the zone's dirty balance reserve and the above calculation
	 * will underflow.  However we still want to add in nodes
	 * which are below threshold (negative values) to get a more
	 * accurate calculation but make sure that the total never
	 * underflows.
	 */
	if ((long)x < 0)
		x = 0;

343 344 345 346 347 348 349 350 351 352 353 354 355
	/*
	 * Make sure that the number of highmem pages is never larger
	 * than the number of the total dirtyable memory. This can only
	 * occur in very strange VM situations but we want to make sure
	 * that this does not occur.
	 */
	return min(x, total);
#else
	return 0;
#endif
}

/**
356
 * global_dirtyable_memory - number of globally dirtyable pages
357
 *
358 359
 * Returns the global number of pages potentially available for dirty
 * page cache.  This is the base value for the global dirty limits.
360
 */
361
static unsigned long global_dirtyable_memory(void)
362 363 364
{
	unsigned long x;

365
	x = global_page_state(NR_FREE_PAGES);
366 367 368 369 370 371
	/*
	 * Pages reserved for the kernel should not be considered
	 * dirtyable, to prevent a situation where reclaim has to
	 * clean pages in order to balance the zones.
	 */
	x -= min(x, totalreserve_pages);
372

M
Mel Gorman 已提交
373 374
	x += global_node_page_state(NR_INACTIVE_FILE);
	x += global_node_page_state(NR_ACTIVE_FILE);
375

376 377 378 379 380 381
	if (!vm_highmem_is_dirtyable)
		x -= highmem_dirtyable_memory(x);

	return x + 1;	/* Ensure that we never return 0 */
}

382 383 384
/**
 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 * @dtc: dirty_throttle_control of interest
385
 *
386 387 388 389
 * Calculate @dtc->thresh and ->bg_thresh considering
 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 * must ensure that @dtc->avail is set before calling this function.  The
 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
390 391
 * real-time tasks.
 */
392
static void domain_dirty_limits(struct dirty_throttle_control *dtc)
393
{
394 395 396 397
	const unsigned long available_memory = dtc->avail;
	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
	unsigned long bytes = vm_dirty_bytes;
	unsigned long bg_bytes = dirty_background_bytes;
398 399 400
	/* convert ratios to per-PAGE_SIZE for higher precision */
	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
401 402
	unsigned long thresh;
	unsigned long bg_thresh;
403 404
	struct task_struct *tsk;

405 406 407 408 409 410 411
	/* gdtc is !NULL iff @dtc is for memcg domain */
	if (gdtc) {
		unsigned long global_avail = gdtc->avail;

		/*
		 * The byte settings can't be applied directly to memcg
		 * domains.  Convert them to ratios by scaling against
412 413 414
		 * globally available memory.  As the ratios are in
		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
		 * number of pages.
415 416
		 */
		if (bytes)
417 418
			ratio = min(DIV_ROUND_UP(bytes, global_avail),
				    PAGE_SIZE);
419
		if (bg_bytes)
420 421
			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
				       PAGE_SIZE);
422 423 424 425 426
		bytes = bg_bytes = 0;
	}

	if (bytes)
		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
427
	else
428
		thresh = (ratio * available_memory) / PAGE_SIZE;
429

430 431
	if (bg_bytes)
		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
432
	else
433
		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
434

435 436
	if (bg_thresh >= thresh)
		bg_thresh = thresh / 2;
437 438
	tsk = current;
	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
439 440
		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
441
	}
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	dtc->thresh = thresh;
	dtc->bg_thresh = bg_thresh;

	/* we should eventually report the domain in the TP */
	if (!gdtc)
		trace_global_dirty_state(bg_thresh, thresh);
}

/**
 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 * @pbackground: out parameter for bg_thresh
 * @pdirty: out parameter for thresh
 *
 * Calculate bg_thresh and thresh for global_wb_domain.  See
 * domain_dirty_limits() for details.
 */
void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };

	gdtc.avail = global_dirtyable_memory();
	domain_dirty_limits(&gdtc);

	*pbackground = gdtc.bg_thresh;
	*pdirty = gdtc.thresh;
467 468
}

469
/**
470 471
 * node_dirty_limit - maximum number of dirty pages allowed in a node
 * @pgdat: the node
472
 *
473 474
 * Returns the maximum number of dirty pages allowed in a node, based
 * on the node's dirtyable memory.
475
 */
476
static unsigned long node_dirty_limit(struct pglist_data *pgdat)
477
{
478
	unsigned long node_memory = node_dirtyable_memory(pgdat);
479 480 481 482 483
	struct task_struct *tsk = current;
	unsigned long dirty;

	if (vm_dirty_bytes)
		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
484
			node_memory / global_dirtyable_memory();
485
	else
486
		dirty = vm_dirty_ratio * node_memory / 100;
487 488 489 490 491 492 493 494

	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
		dirty += dirty / 4;

	return dirty;
}

/**
495 496
 * node_dirty_ok - tells whether a node is within its dirty limits
 * @pgdat: the node to check
497
 *
498
 * Returns %true when the dirty pages in @pgdat are within the node's
499 500
 * dirty limit, %false if the limit is exceeded.
 */
501
bool node_dirty_ok(struct pglist_data *pgdat)
502
{
503 504 505
	unsigned long limit = node_dirty_limit(pgdat);
	unsigned long nr_pages = 0;

506 507 508
	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
509

510
	return nr_pages <= limit;
511 512
}

513
int dirty_background_ratio_handler(struct ctl_table *table, int write,
514
		void __user *buffer, size_t *lenp,
515 516 517 518
		loff_t *ppos)
{
	int ret;

519
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
520 521 522 523 524 525
	if (ret == 0 && write)
		dirty_background_bytes = 0;
	return ret;
}

int dirty_background_bytes_handler(struct ctl_table *table, int write,
526
		void __user *buffer, size_t *lenp,
527 528 529 530
		loff_t *ppos)
{
	int ret;

531
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532 533 534 535 536
	if (ret == 0 && write)
		dirty_background_ratio = 0;
	return ret;
}

P
Peter Zijlstra 已提交
537
int dirty_ratio_handler(struct ctl_table *table, int write,
538
		void __user *buffer, size_t *lenp,
P
Peter Zijlstra 已提交
539 540 541
		loff_t *ppos)
{
	int old_ratio = vm_dirty_ratio;
542 543
	int ret;

544
	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
545
	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
546
		writeback_set_ratelimit();
547 548 549 550 551 552
		vm_dirty_bytes = 0;
	}
	return ret;
}

int dirty_bytes_handler(struct ctl_table *table, int write,
553
		void __user *buffer, size_t *lenp,
554 555
		loff_t *ppos)
{
556
	unsigned long old_bytes = vm_dirty_bytes;
557 558
	int ret;

559
	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
560
	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
561
		writeback_set_ratelimit();
562
		vm_dirty_ratio = 0;
P
Peter Zijlstra 已提交
563 564 565 566
	}
	return ret;
}

567 568 569 570 571 572 573 574 575
static unsigned long wp_next_time(unsigned long cur_time)
{
	cur_time += VM_COMPLETIONS_PERIOD_LEN;
	/* 0 has a special meaning... */
	if (!cur_time)
		return 1;
	return cur_time;
}

576 577 578
static void wb_domain_writeout_inc(struct wb_domain *dom,
				   struct fprop_local_percpu *completions,
				   unsigned int max_prop_frac)
P
Peter Zijlstra 已提交
579
{
580 581
	__fprop_inc_percpu_max(&dom->completions, completions,
			       max_prop_frac);
582
	/* First event after period switching was turned off? */
583
	if (unlikely(!dom->period_time)) {
584 585 586 587 588 589
		/*
		 * We can race with other __bdi_writeout_inc calls here but
		 * it does not cause any harm since the resulting time when
		 * timer will fire and what is in writeout_period_time will be
		 * roughly the same.
		 */
T
Tejun Heo 已提交
590 591
		dom->period_time = wp_next_time(jiffies);
		mod_timer(&dom->period_timer, dom->period_time);
592
	}
P
Peter Zijlstra 已提交
593 594
}

595 596 597 598 599
/*
 * Increment @wb's writeout completion count and the global writeout
 * completion count. Called from test_clear_page_writeback().
 */
static inline void __wb_writeout_inc(struct bdi_writeback *wb)
600
{
T
Tejun Heo 已提交
601
	struct wb_domain *cgdom;
602

603 604 605
	__inc_wb_stat(wb, WB_WRITTEN);
	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
			       wb->bdi->max_prop_frac);
T
Tejun Heo 已提交
606 607 608 609 610

	cgdom = mem_cgroup_wb_domain(wb);
	if (cgdom)
		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
				       wb->bdi->max_prop_frac);
611 612
}

613
void wb_writeout_inc(struct bdi_writeback *wb)
P
Peter Zijlstra 已提交
614
{
615 616 617
	unsigned long flags;

	local_irq_save(flags);
618
	__wb_writeout_inc(wb);
619
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
620
}
621
EXPORT_SYMBOL_GPL(wb_writeout_inc);
P
Peter Zijlstra 已提交
622

623 624 625 626 627 628
/*
 * On idle system, we can be called long after we scheduled because we use
 * deferred timers so count with missed periods.
 */
static void writeout_period(unsigned long t)
{
T
Tejun Heo 已提交
629 630
	struct wb_domain *dom = (void *)t;
	int miss_periods = (jiffies - dom->period_time) /
631 632
						 VM_COMPLETIONS_PERIOD_LEN;

T
Tejun Heo 已提交
633 634
	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
		dom->period_time = wp_next_time(dom->period_time +
635
				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
T
Tejun Heo 已提交
636
		mod_timer(&dom->period_timer, dom->period_time);
637 638 639 640 641
	} else {
		/*
		 * Aging has zeroed all fractions. Stop wasting CPU on period
		 * updates.
		 */
T
Tejun Heo 已提交
642
		dom->period_time = 0;
643 644 645
	}
}

T
Tejun Heo 已提交
646 647 648
int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
{
	memset(dom, 0, sizeof(*dom));
649 650 651

	spin_lock_init(&dom->lock);

T
Tejun Heo 已提交
652 653 654
	init_timer_deferrable(&dom->period_timer);
	dom->period_timer.function = writeout_period;
	dom->period_timer.data = (unsigned long)dom;
655 656 657

	dom->dirty_limit_tstamp = jiffies;

T
Tejun Heo 已提交
658 659 660
	return fprop_global_init(&dom->completions, gfp);
}

T
Tejun Heo 已提交
661 662 663 664 665 666 667 668
#ifdef CONFIG_CGROUP_WRITEBACK
void wb_domain_exit(struct wb_domain *dom)
{
	del_timer_sync(&dom->period_timer);
	fprop_global_destroy(&dom->completions);
}
#endif

669
/*
670 671 672
 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 * registered backing devices, which, for obvious reasons, can not
 * exceed 100%.
673 674 675 676 677 678 679
 */
static unsigned int bdi_min_ratio;

int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
{
	int ret = 0;

680
	spin_lock_bh(&bdi_lock);
681
	if (min_ratio > bdi->max_ratio) {
682
		ret = -EINVAL;
683 684 685 686 687 688 689 690 691
	} else {
		min_ratio -= bdi->min_ratio;
		if (bdi_min_ratio + min_ratio < 100) {
			bdi_min_ratio += min_ratio;
			bdi->min_ratio += min_ratio;
		} else {
			ret = -EINVAL;
		}
	}
692
	spin_unlock_bh(&bdi_lock);
693 694 695 696 697 698 699 700 701 702 703

	return ret;
}

int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
{
	int ret = 0;

	if (max_ratio > 100)
		return -EINVAL;

704
	spin_lock_bh(&bdi_lock);
705 706 707 708
	if (bdi->min_ratio > max_ratio) {
		ret = -EINVAL;
	} else {
		bdi->max_ratio = max_ratio;
709
		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
710
	}
711
	spin_unlock_bh(&bdi_lock);
712 713 714

	return ret;
}
715
EXPORT_SYMBOL(bdi_set_max_ratio);
716

W
Wu Fengguang 已提交
717 718 719 720 721 722
static unsigned long dirty_freerun_ceiling(unsigned long thresh,
					   unsigned long bg_thresh)
{
	return (thresh + bg_thresh) / 2;
}

723 724
static unsigned long hard_dirty_limit(struct wb_domain *dom,
				      unsigned long thresh)
725
{
726
	return max(thresh, dom->dirty_limit);
727 728
}

729 730 731 732 733 734
/*
 * Memory which can be further allocated to a memcg domain is capped by
 * system-wide clean memory excluding the amount being used in the domain.
 */
static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
			    unsigned long filepages, unsigned long headroom)
735 736
{
	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
737 738 739
	unsigned long clean = filepages - min(filepages, mdtc->dirty);
	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
	unsigned long other_clean = global_clean - min(global_clean, clean);
740

741
	mdtc->avail = filepages + min(headroom, other_clean);
742 743
}

744
/**
745 746
 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 * @dtc: dirty_throttle_context of interest
747
 *
748
 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
749
 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
750 751 752 753 754 755
 *
 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 * when sleeping max_pause per page is not enough to keep the dirty pages under
 * control. For example, when the device is completely stalled due to some error
 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 * In the other normal situations, it acts more gently by throttling the tasks
756
 * more (rather than completely block them) when the wb dirty pages go high.
757
 *
758
 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
759 760 761
 * - starving fast devices
 * - piling up dirty pages (that will take long time to sync) on slow devices
 *
762
 * The wb's share of dirty limit will be adapting to its throughput and
763 764
 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 */
765
static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
766
{
767
	struct wb_domain *dom = dtc_dom(dtc);
768
	unsigned long thresh = dtc->thresh;
T
Tejun Heo 已提交
769
	u64 wb_thresh;
770
	long numerator, denominator;
771
	unsigned long wb_min_ratio, wb_max_ratio;
P
Peter Zijlstra 已提交
772

773
	/*
T
Tejun Heo 已提交
774
	 * Calculate this BDI's share of the thresh ratio.
775
	 */
776
	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
T
Tejun Heo 已提交
777
			      &numerator, &denominator);
P
Peter Zijlstra 已提交
778

T
Tejun Heo 已提交
779 780 781
	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
	wb_thresh *= numerator;
	do_div(wb_thresh, denominator);
P
Peter Zijlstra 已提交
782

783
	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
P
Peter Zijlstra 已提交
784

T
Tejun Heo 已提交
785 786 787
	wb_thresh += (thresh * wb_min_ratio) / 100;
	if (wb_thresh > (thresh * wb_max_ratio) / 100)
		wb_thresh = thresh * wb_max_ratio / 100;
788

T
Tejun Heo 已提交
789
	return wb_thresh;
L
Linus Torvalds 已提交
790 791
}

792 793 794 795 796
unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
{
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
					       .thresh = thresh };
	return __wb_calc_thresh(&gdtc);
L
Linus Torvalds 已提交
797 798
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 *                           setpoint - dirty 3
 *        f(dirty) := 1.0 + (----------------)
 *                           limit - setpoint
 *
 * it's a 3rd order polynomial that subjects to
 *
 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 * (2) f(setpoint) = 1.0 => the balance point
 * (3) f(limit)    = 0   => the hard limit
 * (4) df/dx      <= 0	 => negative feedback control
 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 *     => fast response on large errors; small oscillation near setpoint
 */
813
static long long pos_ratio_polynom(unsigned long setpoint,
814 815 816 817 818 819
					  unsigned long dirty,
					  unsigned long limit)
{
	long long pos_ratio;
	long x;

820
	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
821
		      (limit - setpoint) | 1);
822 823 824 825 826 827 828 829
	pos_ratio = x;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;

	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
}

W
Wu Fengguang 已提交
830 831 832 833 834
/*
 * Dirty position control.
 *
 * (o) global/bdi setpoints
 *
835
 * We want the dirty pages be balanced around the global/wb setpoints.
W
Wu Fengguang 已提交
836 837 838 839 840 841 842 843 844
 * When the number of dirty pages is higher/lower than the setpoint, the
 * dirty position control ratio (and hence task dirty ratelimit) will be
 * decreased/increased to bring the dirty pages back to the setpoint.
 *
 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 *
 *     if (dirty < setpoint) scale up   pos_ratio
 *     if (dirty > setpoint) scale down pos_ratio
 *
845 846
 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
W
Wu Fengguang 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
 *
 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 *
 * (o) global control line
 *
 *     ^ pos_ratio
 *     |
 *     |            |<===== global dirty control scope ======>|
 * 2.0 .............*
 *     |            .*
 *     |            . *
 *     |            .   *
 *     |            .     *
 *     |            .        *
 *     |            .            *
 * 1.0 ................................*
 *     |            .                  .     *
 *     |            .                  .          *
 *     |            .                  .              *
 *     |            .                  .                 *
 *     |            .                  .                    *
 *   0 +------------.------------------.----------------------*------------->
 *           freerun^          setpoint^                 limit^   dirty pages
 *
871
 * (o) wb control line
W
Wu Fengguang 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
 *
 *     ^ pos_ratio
 *     |
 *     |            *
 *     |              *
 *     |                *
 *     |                  *
 *     |                    * |<=========== span ============>|
 * 1.0 .......................*
 *     |                      . *
 *     |                      .   *
 *     |                      .     *
 *     |                      .       *
 *     |                      .         *
 *     |                      .           *
 *     |                      .             *
 *     |                      .               *
 *     |                      .                 *
 *     |                      .                   *
 *     |                      .                     *
 * 1/4 ...............................................* * * * * * * * * * * *
 *     |                      .                         .
 *     |                      .                           .
 *     |                      .                             .
 *   0 +----------------------.-------------------------------.------------->
897
 *                wb_setpoint^                    x_intercept^
W
Wu Fengguang 已提交
898
 *
899
 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
W
Wu Fengguang 已提交
900 901
 * be smoothly throttled down to normal if it starts high in situations like
 * - start writing to a slow SD card and a fast disk at the same time. The SD
902 903
 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 * - the wb dirty thresh drops quickly due to change of JBOD workload
W
Wu Fengguang 已提交
904
 */
905
static void wb_position_ratio(struct dirty_throttle_control *dtc)
W
Wu Fengguang 已提交
906
{
907
	struct bdi_writeback *wb = dtc->wb;
908
	unsigned long write_bw = wb->avg_write_bandwidth;
909
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
910
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
911
	unsigned long wb_thresh = dtc->wb_thresh;
W
Wu Fengguang 已提交
912 913
	unsigned long x_intercept;
	unsigned long setpoint;		/* dirty pages' target balance point */
914
	unsigned long wb_setpoint;
W
Wu Fengguang 已提交
915 916 917 918
	unsigned long span;
	long long pos_ratio;		/* for scaling up/down the rate limit */
	long x;

919 920
	dtc->pos_ratio = 0;

921
	if (unlikely(dtc->dirty >= limit))
922
		return;
W
Wu Fengguang 已提交
923 924 925 926

	/*
	 * global setpoint
	 *
927 928 929
	 * See comment for pos_ratio_polynom().
	 */
	setpoint = (freerun + limit) / 2;
930
	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
931 932 933 934

	/*
	 * The strictlimit feature is a tool preventing mistrusted filesystems
	 * from growing a large number of dirty pages before throttling. For
935 936
	 * such filesystems balance_dirty_pages always checks wb counters
	 * against wb limits. Even if global "nr_dirty" is under "freerun".
937 938 939 940
	 * This is especially important for fuse which sets bdi->max_ratio to
	 * 1% by default. Without strictlimit feature, fuse writeback may
	 * consume arbitrary amount of RAM because it is accounted in
	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
W
Wu Fengguang 已提交
941
	 *
942
	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
943
	 * two values: wb_dirty and wb_thresh. Let's consider an example:
944 945
	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
	 * limits are set by default to 10% and 20% (background and throttle).
946
	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
T
Tejun Heo 已提交
947
	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
948
	 * about ~6K pages (as the average of background and throttle wb
949
	 * limits). The 3rd order polynomial will provide positive feedback if
950
	 * wb_dirty is under wb_setpoint and vice versa.
W
Wu Fengguang 已提交
951
	 *
952
	 * Note, that we cannot use global counters in these calculations
953
	 * because we want to throttle process writing to a strictlimit wb
954 955
	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
	 * in the example above).
W
Wu Fengguang 已提交
956
	 */
957
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
958
		long long wb_pos_ratio;
959

960 961 962 963 964
		if (dtc->wb_dirty < 8) {
			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
					   2 << RATELIMIT_CALC_SHIFT);
			return;
		}
965

966
		if (dtc->wb_dirty >= wb_thresh)
967
			return;
968

969 970
		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
						    dtc->wb_bg_thresh);
971

972
		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
973
			return;
974

975
		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
976
						 wb_thresh);
977 978

		/*
979 980
		 * Typically, for strictlimit case, wb_setpoint << setpoint
		 * and pos_ratio >> wb_pos_ratio. In the other words global
981
		 * state ("dirty") is not limiting factor and we have to
982
		 * make decision based on wb counters. But there is an
983 984
		 * important case when global pos_ratio should get precedence:
		 * global limits are exceeded (e.g. due to activities on other
985
		 * wb's) while given strictlimit wb is below limit.
986
		 *
987
		 * "pos_ratio * wb_pos_ratio" would work for the case above,
988
		 * but it would look too non-natural for the case of all
989
		 * activity in the system coming from a single strictlimit wb
990 991 992 993
		 * with bdi->max_ratio == 100%.
		 *
		 * Note that min() below somewhat changes the dynamics of the
		 * control system. Normally, pos_ratio value can be well over 3
994
		 * (when globally we are at freerun and wb is well below wb
995 996 997 998
		 * setpoint). Now the maximum pos_ratio in the same situation
		 * is 2. We might want to tweak this if we observe the control
		 * system is too slow to adapt.
		 */
999 1000
		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
		return;
1001
	}
W
Wu Fengguang 已提交
1002 1003 1004

	/*
	 * We have computed basic pos_ratio above based on global situation. If
1005
	 * the wb is over/under its share of dirty pages, we want to scale
W
Wu Fengguang 已提交
1006 1007 1008 1009
	 * pos_ratio further down/up. That is done by the following mechanism.
	 */

	/*
1010
	 * wb setpoint
W
Wu Fengguang 已提交
1011
	 *
1012
	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
W
Wu Fengguang 已提交
1013
	 *
1014
	 *                        x_intercept - wb_dirty
W
Wu Fengguang 已提交
1015
	 *                     := --------------------------
1016
	 *                        x_intercept - wb_setpoint
W
Wu Fengguang 已提交
1017
	 *
1018
	 * The main wb control line is a linear function that subjects to
W
Wu Fengguang 已提交
1019
	 *
1020 1021 1022
	 * (1) f(wb_setpoint) = 1.0
	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
W
Wu Fengguang 已提交
1023
	 *
1024
	 * For single wb case, the dirty pages are observed to fluctuate
W
Wu Fengguang 已提交
1025
	 * regularly within range
1026
	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
W
Wu Fengguang 已提交
1027 1028 1029
	 * for various filesystems, where (2) can yield in a reasonable 12.5%
	 * fluctuation range for pos_ratio.
	 *
1030
	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
W
Wu Fengguang 已提交
1031
	 * own size, so move the slope over accordingly and choose a slope that
1032
	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
W
Wu Fengguang 已提交
1033
	 */
1034 1035
	if (unlikely(wb_thresh > dtc->thresh))
		wb_thresh = dtc->thresh;
1036
	/*
1037
	 * It's very possible that wb_thresh is close to 0 not because the
1038 1039 1040 1041 1042
	 * device is slow, but that it has remained inactive for long time.
	 * Honour such devices a reasonable good (hopefully IO efficient)
	 * threshold, so that the occasional writes won't be blocked and active
	 * writes can rampup the threshold quickly.
	 */
1043
	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
W
Wu Fengguang 已提交
1044
	/*
1045 1046
	 * scale global setpoint to wb's:
	 *	wb_setpoint = setpoint * wb_thresh / thresh
W
Wu Fengguang 已提交
1047
	 */
1048
	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1049
	wb_setpoint = setpoint * (u64)x >> 16;
W
Wu Fengguang 已提交
1050
	/*
1051 1052
	 * Use span=(8*write_bw) in single wb case as indicated by
	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
W
Wu Fengguang 已提交
1053
	 *
1054 1055 1056
	 *        wb_thresh                    thresh - wb_thresh
	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
	 *         thresh                           thresh
W
Wu Fengguang 已提交
1057
	 */
1058
	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1059
	x_intercept = wb_setpoint + span;
W
Wu Fengguang 已提交
1060

1061 1062
	if (dtc->wb_dirty < x_intercept - span / 4) {
		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1063
				      (x_intercept - wb_setpoint) | 1);
W
Wu Fengguang 已提交
1064 1065 1066
	} else
		pos_ratio /= 4;

1067
	/*
1068
	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1069 1070 1071
	 * It may push the desired control point of global dirty pages higher
	 * than setpoint.
	 */
1072
	x_intercept = wb_thresh / 2;
1073 1074 1075 1076
	if (dtc->wb_dirty < x_intercept) {
		if (dtc->wb_dirty > x_intercept / 8)
			pos_ratio = div_u64(pos_ratio * x_intercept,
					    dtc->wb_dirty);
1077
		else
1078 1079 1080
			pos_ratio *= 8;
	}

1081
	dtc->pos_ratio = pos_ratio;
W
Wu Fengguang 已提交
1082 1083
}

1084 1085 1086
static void wb_update_write_bandwidth(struct bdi_writeback *wb,
				      unsigned long elapsed,
				      unsigned long written)
1087 1088
{
	const unsigned long period = roundup_pow_of_two(3 * HZ);
1089 1090
	unsigned long avg = wb->avg_write_bandwidth;
	unsigned long old = wb->write_bandwidth;
1091 1092 1093 1094 1095 1096 1097 1098
	u64 bw;

	/*
	 * bw = written * HZ / elapsed
	 *
	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
	 * write_bandwidth = ---------------------------------------------------
	 *                                          period
1099 1100 1101
	 *
	 * @written may have decreased due to account_page_redirty().
	 * Avoid underflowing @bw calculation.
1102
	 */
1103
	bw = written - min(written, wb->written_stamp);
1104 1105 1106 1107 1108 1109
	bw *= HZ;
	if (unlikely(elapsed > period)) {
		do_div(bw, elapsed);
		avg = bw;
		goto out;
	}
1110
	bw += (u64)wb->write_bandwidth * (period - elapsed);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	bw >>= ilog2(period);

	/*
	 * one more level of smoothing, for filtering out sudden spikes
	 */
	if (avg > old && old >= (unsigned long)bw)
		avg -= (avg - old) >> 3;

	if (avg < old && old <= (unsigned long)bw)
		avg += (old - avg) >> 3;

out:
1123 1124 1125 1126 1127 1128 1129
	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
	avg = max(avg, 1LU);
	if (wb_has_dirty_io(wb)) {
		long delta = avg - wb->avg_write_bandwidth;
		WARN_ON_ONCE(atomic_long_add_return(delta,
					&wb->bdi->tot_write_bandwidth) <= 0);
	}
1130 1131
	wb->write_bandwidth = bw;
	wb->avg_write_bandwidth = avg;
1132 1133
}

1134
static void update_dirty_limit(struct dirty_throttle_control *dtc)
1135
{
1136
	struct wb_domain *dom = dtc_dom(dtc);
1137
	unsigned long thresh = dtc->thresh;
1138
	unsigned long limit = dom->dirty_limit;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	/*
	 * Follow up in one step.
	 */
	if (limit < thresh) {
		limit = thresh;
		goto update;
	}

	/*
	 * Follow down slowly. Use the higher one as the target, because thresh
	 * may drop below dirty. This is exactly the reason to introduce
1151
	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1152
	 */
1153
	thresh = max(thresh, dtc->dirty);
1154 1155 1156 1157 1158 1159
	if (limit > thresh) {
		limit -= (limit - thresh) >> 5;
		goto update;
	}
	return;
update:
1160
	dom->dirty_limit = limit;
1161 1162
}

1163
static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1164 1165
				    unsigned long now)
{
1166
	struct wb_domain *dom = dtc_dom(dtc);
1167 1168 1169 1170

	/*
	 * check locklessly first to optimize away locking for the most time
	 */
1171
	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1172 1173
		return;

1174 1175
	spin_lock(&dom->lock);
	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1176
		update_dirty_limit(dtc);
1177
		dom->dirty_limit_tstamp = now;
1178
	}
1179
	spin_unlock(&dom->lock);
1180 1181
}

W
Wu Fengguang 已提交
1182
/*
1183
 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
W
Wu Fengguang 已提交
1184
 *
1185
 * Normal wb tasks will be curbed at or below it in long term.
W
Wu Fengguang 已提交
1186 1187
 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 */
1188
static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1189 1190
				      unsigned long dirtied,
				      unsigned long elapsed)
W
Wu Fengguang 已提交
1191
{
1192 1193 1194
	struct bdi_writeback *wb = dtc->wb;
	unsigned long dirty = dtc->dirty;
	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1195
	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1196
	unsigned long setpoint = (freerun + limit) / 2;
1197 1198
	unsigned long write_bw = wb->avg_write_bandwidth;
	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
W
Wu Fengguang 已提交
1199 1200 1201
	unsigned long dirty_rate;
	unsigned long task_ratelimit;
	unsigned long balanced_dirty_ratelimit;
1202 1203
	unsigned long step;
	unsigned long x;
1204
	unsigned long shift;
W
Wu Fengguang 已提交
1205 1206 1207 1208 1209

	/*
	 * The dirty rate will match the writeout rate in long term, except
	 * when dirty pages are truncated by userspace or re-dirtied by FS.
	 */
1210
	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
W
Wu Fengguang 已提交
1211 1212 1213 1214 1215

	/*
	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
	 */
	task_ratelimit = (u64)dirty_ratelimit *
1216
					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
W
Wu Fengguang 已提交
1217 1218 1219 1220
	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */

	/*
	 * A linear estimation of the "balanced" throttle rate. The theory is,
1221
	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
W
Wu Fengguang 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
	 * formula will yield the balanced rate limit (write_bw / N).
	 *
	 * Note that the expanded form is not a pure rate feedback:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
	 * but also takes pos_ratio into account:
	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
	 *
	 * (1) is not realistic because pos_ratio also takes part in balancing
	 * the dirty rate.  Consider the state
	 *	pos_ratio = 0.5						     (3)
	 *	rate = 2 * (write_bw / N)				     (4)
	 * If (1) is used, it will stuck in that state! Because each dd will
	 * be throttled at
	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
	 * yielding
	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
	 * put (6) into (1) we get
	 *	rate_(i+1) = rate_(i)					     (7)
	 *
	 * So we end up using (2) to always keep
	 *	rate_(i+1) ~= (write_bw / N)				     (8)
	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
	 * pos_ratio is able to drive itself to 1.0, which is not only where
	 * the dirty count meet the setpoint, but also where the slope of
	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
	 */
	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
					   dirty_rate | 1);
1251 1252 1253 1254 1255
	/*
	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
	 */
	if (unlikely(balanced_dirty_ratelimit > write_bw))
		balanced_dirty_ratelimit = write_bw;
W
Wu Fengguang 已提交
1256

1257 1258 1259
	/*
	 * We could safely do this and return immediately:
	 *
1260
	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1261 1262
	 *
	 * However to get a more stable dirty_ratelimit, the below elaborated
W
Wanpeng Li 已提交
1263
	 * code makes use of task_ratelimit to filter out singular points and
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	 * limit the step size.
	 *
	 * The below code essentially only uses the relative value of
	 *
	 *	task_ratelimit - dirty_ratelimit
	 *	= (pos_ratio - 1) * dirty_ratelimit
	 *
	 * which reflects the direction and size of dirty position error.
	 */

	/*
	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
	 * task_ratelimit is on the same side of dirty_ratelimit, too.
	 * For example, when
	 * - dirty_ratelimit > balanced_dirty_ratelimit
	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
	 * lowering dirty_ratelimit will help meet both the position and rate
	 * control targets. Otherwise, don't update dirty_ratelimit if it will
	 * only help meet the rate target. After all, what the users ultimately
	 * feel and care are stable dirty rate and small position error.
	 *
	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
W
Wanpeng Li 已提交
1286
	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1287 1288 1289 1290 1291
	 * keeps jumping around randomly and can even leap far away at times
	 * due to the small 200ms estimation period of dirty_rate (we want to
	 * keep that period small to reduce time lags).
	 */
	step = 0;
1292 1293

	/*
1294
	 * For strictlimit case, calculations above were based on wb counters
1295
	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1296
	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1297 1298
	 * Hence, to calculate "step" properly, we have to use wb_dirty as
	 * "dirty" and wb_setpoint as "setpoint".
1299
	 *
1300 1301
	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
	 * it's possible that wb_thresh is close to zero due to inactivity
1302
	 * of backing device.
1303
	 */
1304
	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1305 1306 1307
		dirty = dtc->wb_dirty;
		if (dtc->wb_dirty < 8)
			setpoint = dtc->wb_dirty + 1;
1308
		else
1309
			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1310 1311
	}

1312
	if (dirty < setpoint) {
1313
		x = min3(wb->balanced_dirty_ratelimit,
1314
			 balanced_dirty_ratelimit, task_ratelimit);
1315 1316 1317
		if (dirty_ratelimit < x)
			step = x - dirty_ratelimit;
	} else {
1318
		x = max3(wb->balanced_dirty_ratelimit,
1319
			 balanced_dirty_ratelimit, task_ratelimit);
1320 1321 1322 1323 1324 1325 1326 1327 1328
		if (dirty_ratelimit > x)
			step = dirty_ratelimit - x;
	}

	/*
	 * Don't pursue 100% rate matching. It's impossible since the balanced
	 * rate itself is constantly fluctuating. So decrease the track speed
	 * when it gets close to the target. Helps eliminate pointless tremors.
	 */
1329 1330 1331 1332 1333
	shift = dirty_ratelimit / (2 * step + 1);
	if (shift < BITS_PER_LONG)
		step = DIV_ROUND_UP(step >> shift, 8);
	else
		step = 0;
1334 1335 1336 1337 1338 1339

	if (dirty_ratelimit < balanced_dirty_ratelimit)
		dirty_ratelimit += step;
	else
		dirty_ratelimit -= step;

1340 1341
	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1342

1343
	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
W
Wu Fengguang 已提交
1344 1345
}

1346 1347
static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
				  struct dirty_throttle_control *mdtc,
1348 1349
				  unsigned long start_time,
				  bool update_ratelimit)
1350
{
1351
	struct bdi_writeback *wb = gdtc->wb;
1352
	unsigned long now = jiffies;
1353
	unsigned long elapsed = now - wb->bw_time_stamp;
W
Wu Fengguang 已提交
1354
	unsigned long dirtied;
1355 1356
	unsigned long written;

1357 1358
	lockdep_assert_held(&wb->list_lock);

1359 1360 1361 1362 1363 1364
	/*
	 * rate-limit, only update once every 200ms.
	 */
	if (elapsed < BANDWIDTH_INTERVAL)
		return;

1365 1366
	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1367 1368 1369 1370 1371

	/*
	 * Skip quiet periods when disk bandwidth is under-utilized.
	 * (at least 1s idle time between two flusher runs)
	 */
1372
	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1373 1374
		goto snapshot;

1375
	if (update_ratelimit) {
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		domain_update_bandwidth(gdtc, now);
		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);

		/*
		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
		 * compiler has no way to figure that out.  Help it.
		 */
		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
			domain_update_bandwidth(mdtc, now);
			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
		}
W
Wu Fengguang 已提交
1387
	}
1388
	wb_update_write_bandwidth(wb, elapsed, written);
1389 1390

snapshot:
1391 1392 1393
	wb->dirtied_stamp = dirtied;
	wb->written_stamp = written;
	wb->bw_time_stamp = now;
1394 1395
}

1396
void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1397
{
1398 1399
	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };

1400
	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1401 1402
}

1403
/*
1404
 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
 * will look to see if it needs to start dirty throttling.
 *
 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
 * global_page_state() too often. So scale it near-sqrt to the safety margin
 * (the number of pages we may dirty without exceeding the dirty limits).
 */
static unsigned long dirty_poll_interval(unsigned long dirty,
					 unsigned long thresh)
{
	if (thresh > dirty)
		return 1UL << (ilog2(thresh - dirty) >> 1);

	return 1;
}

1420
static unsigned long wb_max_pause(struct bdi_writeback *wb,
1421
				  unsigned long wb_dirty)
1422
{
1423
	unsigned long bw = wb->avg_write_bandwidth;
1424
	unsigned long t;
1425

1426 1427 1428 1429 1430 1431 1432
	/*
	 * Limit pause time for small memory systems. If sleeping for too long
	 * time, a small pool of dirty/writeback pages may go empty and disk go
	 * idle.
	 *
	 * 8 serves as the safety ratio.
	 */
1433
	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1434 1435
	t++;

1436
	return min_t(unsigned long, t, MAX_PAUSE);
1437 1438
}

1439 1440 1441 1442 1443
static long wb_min_pause(struct bdi_writeback *wb,
			 long max_pause,
			 unsigned long task_ratelimit,
			 unsigned long dirty_ratelimit,
			 int *nr_dirtied_pause)
1444
{
1445 1446
	long hi = ilog2(wb->avg_write_bandwidth);
	long lo = ilog2(wb->dirty_ratelimit);
1447 1448 1449
	long t;		/* target pause */
	long pause;	/* estimated next pause */
	int pages;	/* target nr_dirtied_pause */
1450

1451 1452
	/* target for 10ms pause on 1-dd case */
	t = max(1, HZ / 100);
1453 1454 1455 1456 1457

	/*
	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
	 * overheads.
	 *
1458
	 * (N * 10ms) on 2^N concurrent tasks.
1459 1460
	 */
	if (hi > lo)
1461
		t += (hi - lo) * (10 * HZ) / 1024;
1462 1463

	/*
1464 1465 1466 1467 1468 1469 1470 1471
	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
	 * on the much more stable dirty_ratelimit. However the next pause time
	 * will be computed based on task_ratelimit and the two rate limits may
	 * depart considerably at some time. Especially if task_ratelimit goes
	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
	 * result task_ratelimit won't be executed faithfully, which could
	 * eventually bring down dirty_ratelimit.
1472
	 *
1473 1474 1475 1476 1477 1478 1479
	 * We apply two rules to fix it up:
	 * 1) try to estimate the next pause time and if necessary, use a lower
	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
	 * 2) limit the target pause time to max_pause/2, so that the normal
	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1480
	 */
1481 1482
	t = min(t, 1 + max_pause / 2);
	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1483 1484

	/*
1485 1486 1487 1488 1489 1490
	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
	 * When the 16 consecutive reads are often interrupted by some dirty
	 * throttling pause during the async writes, cfq will go into idles
	 * (deadline is fine). So push nr_dirtied_pause as high as possible
	 * until reaches DIRTY_POLL_THRESH=32 pages.
1491
	 */
1492 1493 1494 1495 1496 1497 1498 1499 1500
	if (pages < DIRTY_POLL_THRESH) {
		t = max_pause;
		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
		if (pages > DIRTY_POLL_THRESH) {
			pages = DIRTY_POLL_THRESH;
			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
		}
	}

1501 1502 1503 1504 1505
	pause = HZ * pages / (task_ratelimit + 1);
	if (pause > max_pause) {
		t = max_pause;
		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
	}
1506

1507
	*nr_dirtied_pause = pages;
1508
	/*
1509
	 * The minimal pause time will normally be half the target pause time.
1510
	 */
1511
	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1512 1513
}

1514
static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1515
{
1516
	struct bdi_writeback *wb = dtc->wb;
1517
	unsigned long wb_reclaimable;
1518 1519

	/*
1520
	 * wb_thresh is not treated as some limiting factor as
1521
	 * dirty_thresh, due to reasons
1522
	 * - in JBOD setup, wb_thresh can fluctuate a lot
1523
	 * - in a system with HDD and USB key, the USB key may somehow
1524 1525
	 *   go into state (wb_dirty >> wb_thresh) either because
	 *   wb_dirty starts high, or because wb_thresh drops low.
1526
	 *   In this case we don't want to hard throttle the USB key
1527 1528
	 *   dirtiers for 100 seconds until wb_dirty drops under
	 *   wb_thresh. Instead the auxiliary wb control line in
1529
	 *   wb_position_ratio() will let the dirtier task progress
1530
	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1531
	 */
1532
	dtc->wb_thresh = __wb_calc_thresh(dtc);
1533 1534
	dtc->wb_bg_thresh = dtc->thresh ?
		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	/*
	 * In order to avoid the stacked BDI deadlock we need
	 * to ensure we accurately count the 'dirty' pages when
	 * the threshold is low.
	 *
	 * Otherwise it would be possible to get thresh+n pages
	 * reported dirty, even though there are thresh-m pages
	 * actually dirty; with m+n sitting in the percpu
	 * deltas.
	 */
1546
	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1547
		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1548
		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1549
	} else {
1550
		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1551
		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1552 1553 1554
	}
}

L
Linus Torvalds 已提交
1555 1556 1557
/*
 * balance_dirty_pages() must be called by processes which are generating dirty
 * data.  It looks at the number of dirty pages in the machine and will force
1558
 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1559 1560
 * If we're over `background_thresh' then the writeback threads are woken to
 * perform some writeout.
L
Linus Torvalds 已提交
1561
 */
1562
static void balance_dirty_pages(struct address_space *mapping,
1563
				struct bdi_writeback *wb,
1564
				unsigned long pages_dirtied)
L
Linus Torvalds 已提交
1565
{
1566
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1567
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1568
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1569 1570 1571
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
	struct dirty_throttle_control *sdtc;
1572
	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1573
	long period;
1574 1575 1576 1577
	long pause;
	long max_pause;
	long min_pause;
	int nr_dirtied_pause;
1578
	bool dirty_exceeded = false;
1579
	unsigned long task_ratelimit;
1580
	unsigned long dirty_ratelimit;
1581
	struct backing_dev_info *bdi = wb->bdi;
1582
	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1583
	unsigned long start_time = jiffies;
L
Linus Torvalds 已提交
1584 1585

	for (;;) {
1586
		unsigned long now = jiffies;
1587
		unsigned long dirty, thresh, bg_thresh;
1588 1589 1590
		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
		unsigned long m_thresh = 0;
		unsigned long m_bg_thresh = 0;
1591

1592 1593 1594 1595 1596 1597
		/*
		 * Unstable writes are a feature of certain networked
		 * filesystems (i.e. NFS) in which data may have been
		 * written to the server's write cache, but has not yet
		 * been flushed to permanent storage.
		 */
1598 1599
		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
					global_node_page_state(NR_UNSTABLE_NFS);
1600
		gdtc->avail = global_dirtyable_memory();
1601
		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1602

1603
		domain_dirty_limits(gdtc);
1604

1605
		if (unlikely(strictlimit)) {
1606
			wb_dirty_limits(gdtc);
1607

1608 1609
			dirty = gdtc->wb_dirty;
			thresh = gdtc->wb_thresh;
1610
			bg_thresh = gdtc->wb_bg_thresh;
1611
		} else {
1612 1613 1614
			dirty = gdtc->dirty;
			thresh = gdtc->thresh;
			bg_thresh = gdtc->bg_thresh;
1615 1616
		}

1617
		if (mdtc) {
1618
			unsigned long filepages, headroom, writeback;
1619 1620 1621 1622 1623

			/*
			 * If @wb belongs to !root memcg, repeat the same
			 * basic calculations for the memcg domain.
			 */
1624 1625
			mem_cgroup_wb_stats(wb, &filepages, &headroom,
					    &mdtc->dirty, &writeback);
1626
			mdtc->dirty += writeback;
1627
			mdtc_calc_avail(mdtc, filepages, headroom);
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

			domain_dirty_limits(mdtc);

			if (unlikely(strictlimit)) {
				wb_dirty_limits(mdtc);
				m_dirty = mdtc->wb_dirty;
				m_thresh = mdtc->wb_thresh;
				m_bg_thresh = mdtc->wb_bg_thresh;
			} else {
				m_dirty = mdtc->dirty;
				m_thresh = mdtc->thresh;
				m_bg_thresh = mdtc->bg_thresh;
			}
1641 1642
		}

1643 1644 1645
		/*
		 * Throttle it only when the background writeback cannot
		 * catch-up. This avoids (excessively) small writeouts
1646
		 * when the wb limits are ramping up in case of !strictlimit.
1647
		 *
1648 1649
		 * In strictlimit case make decision based on the wb counters
		 * and limits. Small writeouts when the wb limits are ramping
1650
		 * up are the price we consciously pay for strictlimit-ing.
1651 1652 1653
		 *
		 * If memcg domain is in effect, @dirty should be under
		 * both global and memcg freerun ceilings.
1654
		 */
1655 1656 1657 1658 1659 1660
		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
		    (!mdtc ||
		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
			unsigned long intv = dirty_poll_interval(dirty, thresh);
			unsigned long m_intv = ULONG_MAX;

1661 1662
			current->dirty_paused_when = now;
			current->nr_dirtied = 0;
1663 1664 1665
			if (mdtc)
				m_intv = dirty_poll_interval(m_dirty, m_thresh);
			current->nr_dirtied_pause = min(intv, m_intv);
1666
			break;
1667
		}
1668

1669
		if (unlikely(!writeback_in_progress(wb)))
1670
			wb_start_background_writeback(wb);
1671

1672 1673 1674 1675
		/*
		 * Calculate global domain's pos_ratio and select the
		 * global dtc by default.
		 */
1676
		if (!strictlimit)
1677
			wb_dirty_limits(gdtc);
1678

1679 1680
		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
			((gdtc->dirty > gdtc->thresh) || strictlimit);
1681 1682

		wb_position_ratio(gdtc);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		sdtc = gdtc;

		if (mdtc) {
			/*
			 * If memcg domain is in effect, calculate its
			 * pos_ratio.  @wb should satisfy constraints from
			 * both global and memcg domains.  Choose the one
			 * w/ lower pos_ratio.
			 */
			if (!strictlimit)
				wb_dirty_limits(mdtc);

			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
				((mdtc->dirty > mdtc->thresh) || strictlimit);

			wb_position_ratio(mdtc);
			if (mdtc->pos_ratio < gdtc->pos_ratio)
				sdtc = mdtc;
		}
1702

1703 1704
		if (dirty_exceeded && !wb->dirty_exceeded)
			wb->dirty_exceeded = 1;
L
Linus Torvalds 已提交
1705

1706 1707 1708
		if (time_is_before_jiffies(wb->bw_time_stamp +
					   BANDWIDTH_INTERVAL)) {
			spin_lock(&wb->list_lock);
1709
			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710 1711
			spin_unlock(&wb->list_lock);
		}
1712

1713
		/* throttle according to the chosen dtc */
1714
		dirty_ratelimit = wb->dirty_ratelimit;
1715
		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1716
							RATELIMIT_CALC_SHIFT;
1717
		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718 1719 1720
		min_pause = wb_min_pause(wb, max_pause,
					 task_ratelimit, dirty_ratelimit,
					 &nr_dirtied_pause);
1721

1722
		if (unlikely(task_ratelimit == 0)) {
1723
			period = max_pause;
1724
			pause = max_pause;
1725
			goto pause;
P
Peter Zijlstra 已提交
1726
		}
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		period = HZ * pages_dirtied / task_ratelimit;
		pause = period;
		if (current->dirty_paused_when)
			pause -= now - current->dirty_paused_when;
		/*
		 * For less than 1s think time (ext3/4 may block the dirtier
		 * for up to 800ms from time to time on 1-HDD; so does xfs,
		 * however at much less frequency), try to compensate it in
		 * future periods by updating the virtual time; otherwise just
		 * do a reset, as it may be a light dirtier.
		 */
1738
		if (pause < min_pause) {
1739
			trace_balance_dirty_pages(wb,
1740 1741 1742 1743 1744
						  sdtc->thresh,
						  sdtc->bg_thresh,
						  sdtc->dirty,
						  sdtc->wb_thresh,
						  sdtc->wb_dirty,
1745 1746 1747
						  dirty_ratelimit,
						  task_ratelimit,
						  pages_dirtied,
1748
						  period,
1749
						  min(pause, 0L),
1750
						  start_time);
1751 1752 1753 1754 1755 1756
			if (pause < -HZ) {
				current->dirty_paused_when = now;
				current->nr_dirtied = 0;
			} else if (period) {
				current->dirty_paused_when += period;
				current->nr_dirtied = 0;
1757 1758
			} else if (current->nr_dirtied_pause <= pages_dirtied)
				current->nr_dirtied_pause += pages_dirtied;
W
Wu Fengguang 已提交
1759
			break;
P
Peter Zijlstra 已提交
1760
		}
1761 1762 1763 1764 1765
		if (unlikely(pause > max_pause)) {
			/* for occasional dropped task_ratelimit */
			now += min(pause - max_pause, max_pause);
			pause = max_pause;
		}
1766 1767

pause:
1768
		trace_balance_dirty_pages(wb,
1769 1770 1771 1772 1773
					  sdtc->thresh,
					  sdtc->bg_thresh,
					  sdtc->dirty,
					  sdtc->wb_thresh,
					  sdtc->wb_dirty,
1774 1775 1776
					  dirty_ratelimit,
					  task_ratelimit,
					  pages_dirtied,
1777
					  period,
1778 1779
					  pause,
					  start_time);
1780
		__set_current_state(TASK_KILLABLE);
1781
		wb->dirty_sleep = now;
1782
		io_schedule_timeout(pause);
1783

1784 1785
		current->dirty_paused_when = now + pause;
		current->nr_dirtied = 0;
1786
		current->nr_dirtied_pause = nr_dirtied_pause;
1787

1788
		/*
1789 1790
		 * This is typically equal to (dirty < thresh) and can also
		 * keep "1000+ dd on a slow USB stick" under control.
1791
		 */
1792
		if (task_ratelimit)
1793
			break;
1794

1795 1796
		/*
		 * In the case of an unresponding NFS server and the NFS dirty
1797
		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1798 1799
		 * to go through, so that tasks on them still remain responsive.
		 *
1800
		 * In theory 1 page is enough to keep the consumer-producer
1801
		 * pipe going: the flusher cleans 1 page => the task dirties 1
1802
		 * more page. However wb_dirty has accounting errors.  So use
1803
		 * the larger and more IO friendly wb_stat_error.
1804
		 */
1805
		if (sdtc->wb_dirty <= wb_stat_error(wb))
1806 1807
			break;

1808 1809
		if (fatal_signal_pending(current))
			break;
L
Linus Torvalds 已提交
1810 1811
	}

1812 1813
	if (!dirty_exceeded && wb->dirty_exceeded)
		wb->dirty_exceeded = 0;
L
Linus Torvalds 已提交
1814

1815
	if (writeback_in_progress(wb))
1816
		return;
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825

	/*
	 * In laptop mode, we wait until hitting the higher threshold before
	 * starting background writeout, and then write out all the way down
	 * to the lower threshold.  So slow writers cause minimal disk activity.
	 *
	 * In normal mode, we start background writeout at the lower
	 * background_thresh, to keep the amount of dirty memory low.
	 */
1826 1827 1828
	if (laptop_mode)
		return;

1829
	if (nr_reclaimable > gdtc->bg_thresh)
1830
		wb_start_background_writeback(wb);
L
Linus Torvalds 已提交
1831 1832
}

1833
static DEFINE_PER_CPU(int, bdp_ratelimits);
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
/*
 * Normal tasks are throttled by
 *	loop {
 *		dirty tsk->nr_dirtied_pause pages;
 *		take a snap in balance_dirty_pages();
 *	}
 * However there is a worst case. If every task exit immediately when dirtied
 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
 * called to throttle the page dirties. The solution is to save the not yet
 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
 * randomly into the running tasks. This works well for the above worst case,
 * as the new task will pick up and accumulate the old task's leaked dirty
 * count and eventually get throttled.
 */
DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;

L
Linus Torvalds 已提交
1851
/**
1852
 * balance_dirty_pages_ratelimited - balance dirty memory state
1853
 * @mapping: address_space which was dirtied
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
 *
 * Processes which are dirtying memory should call in here once for each page
 * which was newly dirtied.  The function will periodically check the system's
 * dirty state and will initiate writeback if needed.
 *
 * On really big machines, get_writeback_state is expensive, so try to avoid
 * calling it too often (ratelimiting).  But once we're over the dirty memory
 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 * from overshooting the limit by (ratelimit_pages) each.
 */
1864
void balance_dirty_pages_ratelimited(struct address_space *mapping)
L
Linus Torvalds 已提交
1865
{
1866 1867 1868
	struct inode *inode = mapping->host;
	struct backing_dev_info *bdi = inode_to_bdi(inode);
	struct bdi_writeback *wb = NULL;
1869 1870
	int ratelimit;
	int *p;
L
Linus Torvalds 已提交
1871

1872 1873 1874
	if (!bdi_cap_account_dirty(bdi))
		return;

1875 1876 1877 1878 1879
	if (inode_cgwb_enabled(inode))
		wb = wb_get_create_current(bdi, GFP_KERNEL);
	if (!wb)
		wb = &bdi->wb;

1880
	ratelimit = current->nr_dirtied_pause;
1881
	if (wb->dirty_exceeded)
1882 1883 1884
		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));

	preempt_disable();
L
Linus Torvalds 已提交
1885
	/*
1886 1887 1888 1889
	 * This prevents one CPU to accumulate too many dirtied pages without
	 * calling into balance_dirty_pages(), which can happen when there are
	 * 1000+ tasks, all of them start dirtying pages at exactly the same
	 * time, hence all honoured too large initial task->nr_dirtied_pause.
L
Linus Torvalds 已提交
1890
	 */
1891
	p =  this_cpu_ptr(&bdp_ratelimits);
1892
	if (unlikely(current->nr_dirtied >= ratelimit))
1893
		*p = 0;
1894 1895 1896
	else if (unlikely(*p >= ratelimit_pages)) {
		*p = 0;
		ratelimit = 0;
L
Linus Torvalds 已提交
1897
	}
1898 1899 1900 1901 1902
	/*
	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
	 * the dirty throttling and livelock other long-run dirtiers.
	 */
1903
	p = this_cpu_ptr(&dirty_throttle_leaks);
1904
	if (*p > 0 && current->nr_dirtied < ratelimit) {
1905
		unsigned long nr_pages_dirtied;
1906 1907 1908
		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
		*p -= nr_pages_dirtied;
		current->nr_dirtied += nr_pages_dirtied;
L
Linus Torvalds 已提交
1909
	}
1910
	preempt_enable();
1911 1912

	if (unlikely(current->nr_dirtied >= ratelimit))
1913 1914 1915
		balance_dirty_pages(mapping, wb, current->nr_dirtied);

	wb_put(wb);
L
Linus Torvalds 已提交
1916
}
1917
EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
L
Linus Torvalds 已提交
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927
/**
 * wb_over_bg_thresh - does @wb need to be written back?
 * @wb: bdi_writeback of interest
 *
 * Determines whether background writeback should keep writing @wb or it's
 * clean enough.  Returns %true if writeback should continue.
 */
bool wb_over_bg_thresh(struct bdi_writeback *wb)
{
1928
	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1929
	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1930
	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1931 1932
	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
						     &mdtc_stor : NULL;
1933

1934 1935 1936 1937 1938
	/*
	 * Similar to balance_dirty_pages() but ignores pages being written
	 * as we're trying to decide whether to put more under writeback.
	 */
	gdtc->avail = global_dirtyable_memory();
1939 1940
	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
		      global_node_page_state(NR_UNSTABLE_NFS);
1941
	domain_dirty_limits(gdtc);
1942

1943
	if (gdtc->dirty > gdtc->bg_thresh)
1944 1945
		return true;

1946 1947
	if (wb_stat(wb, WB_RECLAIMABLE) >
	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1948 1949
		return true;

1950
	if (mdtc) {
1951
		unsigned long filepages, headroom, writeback;
1952

1953 1954 1955
		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
				    &writeback);
		mdtc_calc_avail(mdtc, filepages, headroom);
1956 1957 1958 1959 1960
		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */

		if (mdtc->dirty > mdtc->bg_thresh)
			return true;

1961 1962
		if (wb_stat(wb, WB_RECLAIMABLE) >
		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1963 1964 1965
			return true;
	}

1966 1967 1968
	return false;
}

L
Linus Torvalds 已提交
1969 1970 1971
/*
 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 */
1972
int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1973
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1974
{
1975
	proc_dointvec(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
1976 1977 1978
	return 0;
}

1979
#ifdef CONFIG_BLOCK
1980
void laptop_mode_timer_fn(unsigned long data)
L
Linus Torvalds 已提交
1981
{
1982
	struct request_queue *q = (struct request_queue *)data;
1983 1984
	int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
		global_node_page_state(NR_UNSTABLE_NFS);
1985
	struct bdi_writeback *wb;
L
Linus Torvalds 已提交
1986

1987 1988 1989 1990
	/*
	 * We want to write everything out, not just down to the dirty
	 * threshold
	 */
1991
	if (!bdi_has_dirty_io(q->backing_dev_info))
1992 1993
		return;

1994
	rcu_read_lock();
1995
	list_for_each_entry_rcu(wb, &q->backing_dev_info->wb_list, bdi_node)
1996 1997 1998
		if (wb_has_dirty_io(wb))
			wb_start_writeback(wb, nr_pages, true,
					   WB_REASON_LAPTOP_TIMER);
1999
	rcu_read_unlock();
L
Linus Torvalds 已提交
2000 2001 2002 2003 2004 2005 2006
}

/*
 * We've spun up the disk and we're in laptop mode: schedule writeback
 * of all dirty data a few seconds from now.  If the flush is already scheduled
 * then push it back - the user is still using the disk.
 */
2007
void laptop_io_completion(struct backing_dev_info *info)
L
Linus Torvalds 已提交
2008
{
2009
	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018
}

/*
 * We're in laptop mode and we've just synced. The sync's writes will have
 * caused another writeback to be scheduled by laptop_io_completion.
 * Nothing needs to be written back anymore, so we unschedule the writeback.
 */
void laptop_sync_completion(void)
{
2019 2020 2021 2022 2023 2024 2025 2026
	struct backing_dev_info *bdi;

	rcu_read_lock();

	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
		del_timer(&bdi->laptop_mode_wb_timer);

	rcu_read_unlock();
L
Linus Torvalds 已提交
2027
}
2028
#endif
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037

/*
 * If ratelimit_pages is too high then we can get into dirty-data overload
 * if a large number of processes all perform writes at the same time.
 * If it is too low then SMP machines will call the (expensive)
 * get_writeback_state too often.
 *
 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2038
 * thresholds.
L
Linus Torvalds 已提交
2039 2040
 */

2041
void writeback_set_ratelimit(void)
L
Linus Torvalds 已提交
2042
{
2043
	struct wb_domain *dom = &global_wb_domain;
2044 2045
	unsigned long background_thresh;
	unsigned long dirty_thresh;
2046

2047
	global_dirty_limits(&background_thresh, &dirty_thresh);
2048
	dom->dirty_limit = dirty_thresh;
2049
	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
L
Linus Torvalds 已提交
2050 2051 2052 2053
	if (ratelimit_pages < 16)
		ratelimit_pages = 16;
}

2054
static int page_writeback_cpu_online(unsigned int cpu)
L
Linus Torvalds 已提交
2055
{
2056 2057
	writeback_set_ratelimit();
	return 0;
L
Linus Torvalds 已提交
2058 2059 2060
}

/*
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
 * Called early on to tune the page writeback dirty limits.
 *
 * We used to scale dirty pages according to how total memory
 * related to pages that could be allocated for buffers (by
 * comparing nr_free_buffer_pages() to vm_total_pages.
 *
 * However, that was when we used "dirty_ratio" to scale with
 * all memory, and we don't do that any more. "dirty_ratio"
 * is now applied to total non-HIGHPAGE memory (by subtracting
 * totalhigh_pages from vm_total_pages), and as such we can't
 * get into the old insane situation any more where we had
 * large amounts of dirty pages compared to a small amount of
 * non-HIGHMEM memory.
 *
 * But we might still want to scale the dirty_ratio by how
 * much memory the box has..
L
Linus Torvalds 已提交
2077 2078 2079
 */
void __init page_writeback_init(void)
{
2080 2081
	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));

2082 2083 2084 2085
	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
			  page_writeback_cpu_online, NULL);
	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
			  page_writeback_cpu_online);
L
Linus Torvalds 已提交
2086 2087
}

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
/**
 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
 * @mapping: address space structure to write
 * @start: starting page index
 * @end: ending page index (inclusive)
 *
 * This function scans the page range from @start to @end (inclusive) and tags
 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
 * that write_cache_pages (or whoever calls this function) will then use
 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
 * used to avoid livelocking of writeback by a process steadily creating new
 * dirty pages in the file (thus it is important for this function to be quick
 * so that it can tag pages faster than a dirtying process can create them).
 */
/*
 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
 */
void tag_pages_for_writeback(struct address_space *mapping,
			     pgoff_t start, pgoff_t end)
{
R
Randy Dunlap 已提交
2108
#define WRITEBACK_TAG_BATCH 4096
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	unsigned long tagged = 0;
	struct radix_tree_iter iter;
	void **slot;

	spin_lock_irq(&mapping->tree_lock);
	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
							PAGECACHE_TAG_DIRTY) {
		if (iter.index > end)
			break;
		radix_tree_iter_tag_set(&mapping->page_tree, &iter,
							PAGECACHE_TAG_TOWRITE);
		tagged++;
		if ((tagged % WRITEBACK_TAG_BATCH) != 0)
			continue;
		slot = radix_tree_iter_resume(slot, &iter);
2124 2125
		spin_unlock_irq(&mapping->tree_lock);
		cond_resched();
2126 2127 2128
		spin_lock_irq(&mapping->tree_lock);
	}
	spin_unlock_irq(&mapping->tree_lock);
2129 2130 2131
}
EXPORT_SYMBOL(tag_pages_for_writeback);

2132
/**
2133
 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2134 2135
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2136 2137
 * @writepage: function called for each page
 * @data: data passed to writepage function
2138
 *
2139
 * If a page is already under I/O, write_cache_pages() skips it, even
2140 2141 2142 2143 2144 2145
 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 * and msync() need to guarantee that all the data which was dirty at the time
 * the call was made get new I/O started against them.  If wbc->sync_mode is
 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 * existing IO to complete.
2146 2147 2148 2149 2150 2151 2152
 *
 * To avoid livelocks (when other process dirties new pages), we first tag
 * pages which should be written back with TOWRITE tag and only then start
 * writing them. For data-integrity sync we have to be careful so that we do
 * not miss some pages (e.g., because some other process has cleared TOWRITE
 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
 * by the process clearing the DIRTY tag (and submitting the page for IO).
2153
 */
2154 2155 2156
int write_cache_pages(struct address_space *mapping,
		      struct writeback_control *wbc, writepage_t writepage,
		      void *data)
2157 2158 2159 2160 2161
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
	int nr_pages;
N
Nick Piggin 已提交
2162
	pgoff_t uninitialized_var(writeback_index);
2163 2164
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
2165
	pgoff_t done_index;
N
Nick Piggin 已提交
2166
	int cycled;
2167
	int range_whole = 0;
2168
	int tag;
2169 2170 2171

	pagevec_init(&pvec, 0);
	if (wbc->range_cyclic) {
N
Nick Piggin 已提交
2172 2173 2174 2175 2176 2177
		writeback_index = mapping->writeback_index; /* prev offset */
		index = writeback_index;
		if (index == 0)
			cycled = 1;
		else
			cycled = 0;
2178 2179
		end = -1;
	} else {
2180 2181
		index = wbc->range_start >> PAGE_SHIFT;
		end = wbc->range_end >> PAGE_SHIFT;
2182 2183
		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
			range_whole = 1;
N
Nick Piggin 已提交
2184
		cycled = 1; /* ignore range_cyclic tests */
2185
	}
2186
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2187 2188 2189
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;
2190
retry:
2191
	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192
		tag_pages_for_writeback(mapping, index, end);
2193
	done_index = index;
N
Nick Piggin 已提交
2194 2195 2196
	while (!done && (index <= end)) {
		int i;

2197
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
N
Nick Piggin 已提交
2198 2199 2200
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;
2201 2202 2203 2204 2205

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
2206 2207 2208 2209 2210
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
2211
			 */
2212 2213 2214 2215 2216 2217 2218 2219 2220
			if (page->index > end) {
				/*
				 * can't be range_cyclic (1st pass) because
				 * end == -1 in that case.
				 */
				done = 1;
				break;
			}

2221
			done_index = page->index;
2222

2223 2224
			lock_page(page);

N
Nick Piggin 已提交
2225 2226 2227 2228 2229 2230 2231 2232
			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
2233
			if (unlikely(page->mapping != mapping)) {
N
Nick Piggin 已提交
2234
continue_unlock:
2235 2236 2237 2238
				unlock_page(page);
				continue;
			}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}
2250

2251 2252
			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
N
Nick Piggin 已提交
2253
				goto continue_unlock;
2254

2255
			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2256
			ret = (*writepage)(page, wbc, data);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					/*
					 * done_index is set past this page,
					 * so media errors will not choke
					 * background writeout for the entire
					 * file. This has consequences for
					 * range_cyclic semantics (ie. it may
					 * not be suitable for data integrity
					 * writeout).
					 */
2271
					done_index = page->index + 1;
2272 2273 2274
					done = 1;
					break;
				}
2275
			}
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
			/*
			 * We stop writing back only if we are not doing
			 * integrity sync. In case of integrity sync we have to
			 * keep going until we have written all the pages
			 * we tagged for writeback prior to entering this loop.
			 */
			if (--wbc->nr_to_write <= 0 &&
			    wbc->sync_mode == WB_SYNC_NONE) {
				done = 1;
				break;
2287
			}
2288 2289 2290 2291
		}
		pagevec_release(&pvec);
		cond_resched();
	}
2292
	if (!cycled && !done) {
2293
		/*
N
Nick Piggin 已提交
2294
		 * range_cyclic:
2295 2296 2297
		 * We hit the last page and there is more work to be done: wrap
		 * back to the start of the file
		 */
N
Nick Piggin 已提交
2298
		cycled = 1;
2299
		index = 0;
N
Nick Piggin 已提交
2300
		end = writeback_index - 1;
2301 2302
		goto retry;
	}
2303 2304
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		mapping->writeback_index = done_index;
2305

2306 2307
	return ret;
}
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
EXPORT_SYMBOL(write_cache_pages);

/*
 * Function used by generic_writepages to call the real writepage
 * function and set the mapping flags on error
 */
static int __writepage(struct page *page, struct writeback_control *wbc,
		       void *data)
{
	struct address_space *mapping = data;
	int ret = mapping->a_ops->writepage(page, wbc);
	mapping_set_error(mapping, ret);
	return ret;
}

/**
 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 * @mapping: address space structure to write
 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 *
 * This is a library function, which implements the writepages()
 * address_space_operation.
 */
int generic_writepages(struct address_space *mapping,
		       struct writeback_control *wbc)
{
2334 2335 2336
	struct blk_plug plug;
	int ret;

2337 2338 2339 2340
	/* deal with chardevs and other special file */
	if (!mapping->a_ops->writepage)
		return 0;

2341 2342 2343 2344
	blk_start_plug(&plug);
	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
	blk_finish_plug(&plug);
	return ret;
2345
}
2346 2347 2348

EXPORT_SYMBOL(generic_writepages);

L
Linus Torvalds 已提交
2349 2350
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
2351 2352
	int ret;

L
Linus Torvalds 已提交
2353 2354 2355
	if (wbc->nr_to_write <= 0)
		return 0;
	if (mapping->a_ops->writepages)
2356
		ret = mapping->a_ops->writepages(mapping, wbc);
2357 2358 2359
	else
		ret = generic_writepages(mapping, wbc);
	return ret;
L
Linus Torvalds 已提交
2360 2361 2362 2363
}

/**
 * write_one_page - write out a single page and optionally wait on I/O
2364 2365
 * @page: the page to write
 * @wait: if true, wait on writeout
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
 *
 * The page must be locked by the caller and will be unlocked upon return.
 *
 * write_one_page() returns a negative error code if I/O failed.
 */
int write_one_page(struct page *page, int wait)
{
	struct address_space *mapping = page->mapping;
	int ret = 0;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = 1,
	};

	BUG_ON(!PageLocked(page));

	if (wait)
		wait_on_page_writeback(page);

	if (clear_page_dirty_for_io(page)) {
2386
		get_page(page);
L
Linus Torvalds 已提交
2387 2388 2389 2390 2391 2392
		ret = mapping->a_ops->writepage(page, &wbc);
		if (ret == 0 && wait) {
			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
2393
		put_page(page);
L
Linus Torvalds 已提交
2394 2395 2396 2397 2398 2399 2400
	} else {
		unlock_page(page);
	}
	return ret;
}
EXPORT_SYMBOL(write_one_page);

2401 2402 2403 2404 2405 2406
/*
 * For address_spaces which do not use buffers nor write back.
 */
int __set_page_dirty_no_writeback(struct page *page)
{
	if (!PageDirty(page))
2407
		return !TestSetPageDirty(page);
2408 2409 2410
	return 0;
}

2411 2412
/*
 * Helper function for set_page_dirty family.
2413
 *
2414
 * Caller must hold lock_page_memcg().
2415
 *
2416 2417
 * NOTE: This relies on being atomic wrt interrupts.
 */
J
Johannes Weiner 已提交
2418
void account_page_dirtied(struct page *page, struct address_space *mapping)
2419
{
2420 2421
	struct inode *inode = mapping->host;

T
Tejun Heo 已提交
2422 2423
	trace_writeback_dirty_page(page, mapping);

2424
	if (mapping_cap_account_dirty(mapping)) {
2425
		struct bdi_writeback *wb;
2426

2427 2428
		inode_attach_wb(inode, page);
		wb = inode_to_wb(inode);
2429

J
Johannes Weiner 已提交
2430
		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2431
		__inc_node_page_state(page, NR_FILE_DIRTY);
2432
		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2433
		__inc_node_page_state(page, NR_DIRTIED);
2434 2435
		__inc_wb_stat(wb, WB_RECLAIMABLE);
		__inc_wb_stat(wb, WB_DIRTIED);
2436
		task_io_account_write(PAGE_SIZE);
2437 2438
		current->nr_dirtied++;
		this_cpu_inc(bdp_ratelimits);
2439 2440
	}
}
M
Michael Rubin 已提交
2441
EXPORT_SYMBOL(account_page_dirtied);
2442

2443 2444 2445
/*
 * Helper function for deaccounting dirty page without writeback.
 *
2446
 * Caller must hold lock_page_memcg().
2447
 */
2448
void account_page_cleaned(struct page *page, struct address_space *mapping,
J
Johannes Weiner 已提交
2449
			  struct bdi_writeback *wb)
2450 2451
{
	if (mapping_cap_account_dirty(mapping)) {
J
Johannes Weiner 已提交
2452
		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2453
		dec_node_page_state(page, NR_FILE_DIRTY);
2454
		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2455
		dec_wb_stat(wb, WB_RECLAIMABLE);
2456
		task_io_account_cancelled_write(PAGE_SIZE);
2457 2458 2459
	}
}

L
Linus Torvalds 已提交
2460 2461 2462 2463 2464 2465 2466 2467
/*
 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 * its radix tree.
 *
 * This is also used when a single buffer is being dirtied: we want to set the
 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 *
2468 2469 2470
 * The caller must ensure this doesn't race with truncation.  Most will simply
 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
 * the pte lock held, which also locks out truncation.
L
Linus Torvalds 已提交
2471 2472 2473
 */
int __set_page_dirty_nobuffers(struct page *page)
{
J
Johannes Weiner 已提交
2474
	lock_page_memcg(page);
L
Linus Torvalds 已提交
2475 2476
	if (!TestSetPageDirty(page)) {
		struct address_space *mapping = page_mapping(page);
2477
		unsigned long flags;
L
Linus Torvalds 已提交
2478

2479
		if (!mapping) {
J
Johannes Weiner 已提交
2480
			unlock_page_memcg(page);
2481
			return 1;
2482
		}
2483

2484
		spin_lock_irqsave(&mapping->tree_lock, flags);
2485 2486
		BUG_ON(page_mapping(page) != mapping);
		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
J
Johannes Weiner 已提交
2487
		account_page_dirtied(page, mapping);
2488 2489
		radix_tree_tag_set(&mapping->page_tree, page_index(page),
				   PAGECACHE_TAG_DIRTY);
2490
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
J
Johannes Weiner 已提交
2491
		unlock_page_memcg(page);
2492

2493 2494 2495
		if (mapping->host) {
			/* !PageAnon && !swapper_space */
			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
L
Linus Torvalds 已提交
2496
		}
2497
		return 1;
L
Linus Torvalds 已提交
2498
	}
J
Johannes Weiner 已提交
2499
	unlock_page_memcg(page);
2500
	return 0;
L
Linus Torvalds 已提交
2501 2502 2503
}
EXPORT_SYMBOL(__set_page_dirty_nobuffers);

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
/*
 * Call this whenever redirtying a page, to de-account the dirty counters
 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
 * control.
 */
void account_page_redirty(struct page *page)
{
	struct address_space *mapping = page->mapping;
2514

2515
	if (mapping && mapping_cap_account_dirty(mapping)) {
2516 2517 2518
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2519

2520
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2521
		current->nr_dirtied--;
2522
		dec_node_page_state(page, NR_DIRTIED);
2523
		dec_wb_stat(wb, WB_DIRTIED);
2524
		unlocked_inode_to_wb_end(inode, locked);
2525 2526 2527 2528
	}
}
EXPORT_SYMBOL(account_page_redirty);

L
Linus Torvalds 已提交
2529 2530 2531 2532 2533 2534 2535
/*
 * When a writepage implementation decides that it doesn't want to write this
 * page for some reason, it should redirty the locked page via
 * redirty_page_for_writepage() and it should then unlock the page and return 0
 */
int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
{
2536 2537
	int ret;

L
Linus Torvalds 已提交
2538
	wbc->pages_skipped++;
2539
	ret = __set_page_dirty_nobuffers(page);
2540
	account_page_redirty(page);
2541
	return ret;
L
Linus Torvalds 已提交
2542 2543 2544 2545
}
EXPORT_SYMBOL(redirty_page_for_writepage);

/*
2546 2547 2548 2549 2550 2551 2552
 * Dirty a page.
 *
 * For pages with a mapping this should be done under the page lock
 * for the benefit of asynchronous memory errors who prefer a consistent
 * dirty state. This rule can be broken in some special cases,
 * but should be better not to.
 *
L
Linus Torvalds 已提交
2553 2554 2555
 * If the mapping doesn't provide a set_page_dirty a_op, then
 * just fall through and assume that it wants buffer_heads.
 */
N
Nick Piggin 已提交
2556
int set_page_dirty(struct page *page)
L
Linus Torvalds 已提交
2557 2558 2559
{
	struct address_space *mapping = page_mapping(page);

2560
	page = compound_head(page);
L
Linus Torvalds 已提交
2561 2562
	if (likely(mapping)) {
		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
M
Minchan Kim 已提交
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		/*
		 * readahead/lru_deactivate_page could remain
		 * PG_readahead/PG_reclaim due to race with end_page_writeback
		 * About readahead, if the page is written, the flags would be
		 * reset. So no problem.
		 * About lru_deactivate_page, if the page is redirty, the flag
		 * will be reset. So no problem. but if the page is used by readahead
		 * it will confuse readahead and make it restart the size rampup
		 * process. But it's a trivial problem.
		 */
2573 2574
		if (PageReclaim(page))
			ClearPageReclaim(page);
2575 2576 2577 2578 2579
#ifdef CONFIG_BLOCK
		if (!spd)
			spd = __set_page_dirty_buffers;
#endif
		return (*spd)(page);
L
Linus Torvalds 已提交
2580
	}
2581 2582 2583 2584
	if (!PageDirty(page)) {
		if (!TestSetPageDirty(page))
			return 1;
	}
L
Linus Torvalds 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	return 0;
}
EXPORT_SYMBOL(set_page_dirty);

/*
 * set_page_dirty() is racy if the caller has no reference against
 * page->mapping->host, and if the page is unlocked.  This is because another
 * CPU could truncate the page off the mapping and then free the mapping.
 *
 * Usually, the page _is_ locked, or the caller is a user-space process which
 * holds a reference on the inode by having an open file.
 *
 * In other cases, the page should be locked before running set_page_dirty().
 */
int set_page_dirty_lock(struct page *page)
{
	int ret;

J
Jens Axboe 已提交
2603
	lock_page(page);
L
Linus Torvalds 已提交
2604 2605 2606 2607 2608 2609
	ret = set_page_dirty(page);
	unlock_page(page);
	return ret;
}
EXPORT_SYMBOL(set_page_dirty_lock);

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/*
 * This cancels just the dirty bit on the kernel page itself, it does NOT
 * actually remove dirty bits on any mmap's that may be around. It also
 * leaves the page tagged dirty, so any sync activity will still find it on
 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
 * look at the dirty bits in the VM.
 *
 * Doing this should *normally* only ever be done when a page is truncated,
 * and is not actually mapped anywhere at all. However, fs/buffer.c does
 * this when it notices that somebody has cleaned out all the buffers on a
 * page without actually doing it through the VM. Can you say "ext3 is
 * horribly ugly"? Thought you could.
 */
void cancel_dirty_page(struct page *page)
{
2625 2626 2627
	struct address_space *mapping = page_mapping(page);

	if (mapping_cap_account_dirty(mapping)) {
2628 2629 2630
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;
2631

J
Johannes Weiner 已提交
2632
		lock_page_memcg(page);
2633
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2634 2635

		if (TestClearPageDirty(page))
J
Johannes Weiner 已提交
2636
			account_page_cleaned(page, mapping, wb);
2637

2638
		unlocked_inode_to_wb_end(inode, locked);
J
Johannes Weiner 已提交
2639
		unlock_page_memcg(page);
2640 2641 2642
	} else {
		ClearPageDirty(page);
	}
2643 2644 2645
}
EXPORT_SYMBOL(cancel_dirty_page);

L
Linus Torvalds 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/*
 * Clear a page's dirty flag, while caring for dirty memory accounting.
 * Returns true if the page was previously dirty.
 *
 * This is for preparing to put the page under writeout.  We leave the page
 * tagged as dirty in the radix tree so that a concurrent write-for-sync
 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
 * implementation will run either set_page_writeback() or set_page_dirty(),
 * at which stage we bring the page's dirty flag and radix-tree dirty tag
 * back into sync.
 *
 * This incoherency between the page's dirty flag and radix-tree tag is
 * unfortunate, but it only exists while the page is locked.
 */
int clear_page_dirty_for_io(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2663
	int ret = 0;
L
Linus Torvalds 已提交
2664

2665 2666
	BUG_ON(!PageLocked(page));

2667
	if (mapping && mapping_cap_account_dirty(mapping)) {
2668 2669 2670 2671
		struct inode *inode = mapping->host;
		struct bdi_writeback *wb;
		bool locked;

2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
		/*
		 * Yes, Virginia, this is indeed insane.
		 *
		 * We use this sequence to make sure that
		 *  (a) we account for dirty stats properly
		 *  (b) we tell the low-level filesystem to
		 *      mark the whole page dirty if it was
		 *      dirty in a pagetable. Only to then
		 *  (c) clean the page again and return 1 to
		 *      cause the writeback.
		 *
		 * This way we avoid all nasty races with the
		 * dirty bit in multiple places and clearing
		 * them concurrently from different threads.
		 *
		 * Note! Normally the "set_page_dirty(page)"
		 * has no effect on the actual dirty bit - since
		 * that will already usually be set. But we
		 * need the side effects, and it can help us
		 * avoid races.
		 *
		 * We basically use the page "master dirty bit"
		 * as a serialization point for all the different
		 * threads doing their things.
		 */
		if (page_mkclean(page))
			set_page_dirty(page);
2699 2700 2701
		/*
		 * We carefully synchronise fault handlers against
		 * installing a dirty pte and marking the page dirty
2702 2703 2704 2705
		 * at this point.  We do this by having them hold the
		 * page lock while dirtying the page, and pages are
		 * always locked coming in here, so we get the desired
		 * exclusion.
2706
		 */
2707
		wb = unlocked_inode_to_wb_begin(inode, &locked);
2708
		if (TestClearPageDirty(page)) {
J
Johannes Weiner 已提交
2709
			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2710
			dec_node_page_state(page, NR_FILE_DIRTY);
2711
			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2712
			dec_wb_stat(wb, WB_RECLAIMABLE);
2713
			ret = 1;
L
Linus Torvalds 已提交
2714
		}
2715
		unlocked_inode_to_wb_end(inode, locked);
2716
		return ret;
L
Linus Torvalds 已提交
2717
	}
2718
	return TestClearPageDirty(page);
L
Linus Torvalds 已提交
2719
}
2720
EXPORT_SYMBOL(clear_page_dirty_for_io);
L
Linus Torvalds 已提交
2721 2722 2723 2724

int test_clear_page_writeback(struct page *page)
{
	struct address_space *mapping = page_mapping(page);
2725
	int ret;
L
Linus Torvalds 已提交
2726

J
Johannes Weiner 已提交
2727
	lock_page_memcg(page);
2728
	if (mapping && mapping_use_writeback_tags(mapping)) {
2729 2730
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2731 2732
		unsigned long flags;

N
Nick Piggin 已提交
2733
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2734
		ret = TestClearPageWriteback(page);
P
Peter Zijlstra 已提交
2735
		if (ret) {
L
Linus Torvalds 已提交
2736 2737 2738
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2739
			if (bdi_cap_account_writeback(bdi)) {
2740 2741 2742 2743
				struct bdi_writeback *wb = inode_to_wb(inode);

				__dec_wb_stat(wb, WB_WRITEBACK);
				__wb_writeout_inc(wb);
P
Peter Zijlstra 已提交
2744
			}
P
Peter Zijlstra 已提交
2745
		}
2746 2747 2748 2749 2750

		if (mapping->host && !mapping_tagged(mapping,
						     PAGECACHE_TAG_WRITEBACK))
			sb_clear_inode_writeback(mapping->host);

N
Nick Piggin 已提交
2751
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2752 2753 2754
	} else {
		ret = TestClearPageWriteback(page);
	}
2755
	if (ret) {
J
Johannes Weiner 已提交
2756
		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2757
		dec_node_page_state(page, NR_WRITEBACK);
2758
		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2759
		inc_node_page_state(page, NR_WRITTEN);
2760
	}
J
Johannes Weiner 已提交
2761
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2762 2763 2764
	return ret;
}

2765
int __test_set_page_writeback(struct page *page, bool keep_write)
L
Linus Torvalds 已提交
2766 2767
{
	struct address_space *mapping = page_mapping(page);
2768
	int ret;
L
Linus Torvalds 已提交
2769

J
Johannes Weiner 已提交
2770
	lock_page_memcg(page);
2771
	if (mapping && mapping_use_writeback_tags(mapping)) {
2772 2773
		struct inode *inode = mapping->host;
		struct backing_dev_info *bdi = inode_to_bdi(inode);
L
Linus Torvalds 已提交
2774 2775
		unsigned long flags;

N
Nick Piggin 已提交
2776
		spin_lock_irqsave(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2777
		ret = TestSetPageWriteback(page);
P
Peter Zijlstra 已提交
2778
		if (!ret) {
2779 2780 2781 2782 2783
			bool on_wblist;

			on_wblist = mapping_tagged(mapping,
						   PAGECACHE_TAG_WRITEBACK);

L
Linus Torvalds 已提交
2784 2785 2786
			radix_tree_tag_set(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_WRITEBACK);
2787
			if (bdi_cap_account_writeback(bdi))
2788
				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2789 2790 2791 2792 2793 2794 2795 2796

			/*
			 * We can come through here when swapping anonymous
			 * pages, so we don't necessarily have an inode to track
			 * for sync.
			 */
			if (mapping->host && !on_wblist)
				sb_mark_inode_writeback(mapping->host);
P
Peter Zijlstra 已提交
2797
		}
L
Linus Torvalds 已提交
2798 2799 2800 2801
		if (!PageDirty(page))
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_DIRTY);
2802 2803 2804 2805
		if (!keep_write)
			radix_tree_tag_clear(&mapping->page_tree,
						page_index(page),
						PAGECACHE_TAG_TOWRITE);
N
Nick Piggin 已提交
2806
		spin_unlock_irqrestore(&mapping->tree_lock, flags);
L
Linus Torvalds 已提交
2807 2808 2809
	} else {
		ret = TestSetPageWriteback(page);
	}
2810
	if (!ret) {
J
Johannes Weiner 已提交
2811
		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2812
		inc_node_page_state(page, NR_WRITEBACK);
2813
		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2814
	}
J
Johannes Weiner 已提交
2815
	unlock_page_memcg(page);
L
Linus Torvalds 已提交
2816 2817 2818
	return ret;

}
2819
EXPORT_SYMBOL(__test_set_page_writeback);
L
Linus Torvalds 已提交
2820 2821

/*
N
Nick Piggin 已提交
2822
 * Return true if any of the pages in the mapping are marked with the
L
Linus Torvalds 已提交
2823 2824 2825 2826
 * passed tag.
 */
int mapping_tagged(struct address_space *mapping, int tag)
{
2827
	return radix_tree_tagged(&mapping->page_tree, tag);
L
Linus Torvalds 已提交
2828 2829
}
EXPORT_SYMBOL(mapping_tagged);
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840

/**
 * wait_for_stable_page() - wait for writeback to finish, if necessary.
 * @page:	The page to wait on.
 *
 * This function determines if the given page is related to a backing device
 * that requires page contents to be held stable during writeback.  If so, then
 * it will wait for any pending writeback to complete.
 */
void wait_for_stable_page(struct page *page)
{
2841 2842
	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
		wait_on_page_writeback(page);
2843 2844
}
EXPORT_SYMBOL_GPL(wait_for_stable_page);