- 06 8月, 2019 11 次提交
-
-
由 Dave Chinner 提交于
commit 64081362e8ff4587b4554087f3cfc73d3e0a4cd7 upstream. We've recently seen a workload on XFS filesystems with a repeatable deadlock between background writeback and a multi-process application doing concurrent writes and fsyncs to a small range of a file. range_cyclic writeback Process 1 Process 2 xfs_vm_writepages write_cache_pages writeback_index = 2 cycled = 0 .... find page 2 dirty lock Page 2 ->writepage page 2 writeback page 2 clean page 2 added to bio no more pages write() locks page 1 dirties page 1 locks page 2 dirties page 1 fsync() .... xfs_vm_writepages write_cache_pages start index 0 find page 1 towrite lock Page 1 ->writepage page 1 writeback page 1 clean page 1 added to bio find page 2 towrite lock Page 2 page 2 is writeback <blocks> write() locks page 1 dirties page 1 fsync() .... xfs_vm_writepages write_cache_pages start index 0 !done && !cycled sets index to 0, restarts lookup find page 1 dirty find page 1 towrite lock Page 1 page 1 is writeback <blocks> lock Page 1 <blocks> DEADLOCK because: - process 1 needs page 2 writeback to complete to make enough progress to issue IO pending for page 1 - writeback needs page 1 writeback to complete so process 2 can progress and unlock the page it is blocked on, then it can issue the IO pending for page 2 - process 2 can't make progress until process 1 issues IO for page 1 The underlying cause of the problem here is that range_cyclic writeback is processing pages in descending index order as we hold higher index pages in a structure controlled from above write_cache_pages(). The write_cache_pages() caller needs to be able to submit these pages for IO before write_cache_pages restarts writeback at mapping index 0 to avoid wcp inverting the page lock/writeback wait order. generic_writepages() is not susceptible to this bug as it has no private context held across write_cache_pages() - filesystems using this infrastructure always submit pages in ->writepage immediately and so there is no problem with range_cyclic going back to mapping index 0. However: mpage_writepages() has a private bio context, exofs_writepages() has page_collect fuse_writepages() has fuse_fill_wb_data nfs_writepages() has nfs_pageio_descriptor xfs_vm_writepages() has xfs_writepage_ctx All of these ->writepages implementations can hold pages under writeback in their private structures until write_cache_pages() returns, and hence they are all susceptible to this deadlock. Also worth noting is that ext4 has it's own bastardised version of write_cache_pages() and so it /may/ have an equivalent deadlock. I looked at the code long enough to understand that it has a similar retry loop for range_cyclic writeback reaching the end of the file and then promptly ran away before my eyes bled too much. I'll leave it for the ext4 developers to determine if their code is actually has this deadlock and how to fix it if it has. There's a few ways I can see avoid this deadlock. There's probably more, but these are the first I've though of: 1. get rid of range_cyclic altogether 2. range_cyclic always stops at EOF, and we start again from writeback index 0 on the next call into write_cache_pages() 2a. wcp also returns EAGAIN to ->writepages implementations to indicate range cyclic has hit EOF. writepages implementations can then flush the current context and call wpc again to continue. i.e. lift the retry into the ->writepages implementation 3. range_cyclic uses trylock_page() rather than lock_page(), and it skips pages it can't lock without blocking. It will already do this for pages under writeback, so this seems like a no-brainer 3a. all non-WB_SYNC_ALL writeback uses trylock_page() to avoid blocking as per pages under writeback. I don't think #1 is an option - range_cyclic prevents frequently dirtied lower file offset from starving background writeback of rarely touched higher file offsets. performance as going back to the start of the file implies an immediate seek. We'll have exactly the same number of seeks if we switch writeback to another inode, and then come back to this one later and restart from index 0. retry loop up into the wcp caller means we can issue IO on the pending pages before calling wcp again, and so avoid locking or waiting on pages in the wrong order. I'm not convinced we need to do this given that we get the same thing from #2 on the next writeback call from the writeback infrastructure. inversion problem, just prevents it from becoming a deadlock situation. I'd prefer we fix the inversion, not sweep it under the carpet like this. band-aid fix of #3. So it seems that the simplest way to fix this issue is to implement solution #2 Link: http://lkml.kernel.org/r/20181005054526.21507-1-david@fromorbit.comSigned-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NJan Kara <jack@suse.de> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Ming Lei 提交于
commit 2a5cf35cd6c56b2924bce103413ad3381bdc31fa upstream. There are actually two kinds of discard merge: - one is the normal discard merge, just like normal read/write request, and call it single-range discard - another is the multi-range discard, queue_max_discard_segments(rq->q) > 1 For the former case, queue_max_discard_segments(rq->q) is 1, and we should handle this kind of discard merge like the normal read/write request. This patch fixes the following kernel panic issue[1], which is caused by not removing the single-range discard request from elevator queue. Guangwu has one raid discard test case, in which this issue is a bit easier to trigger, and I verified that this patch can fix the kernel panic issue in Guangwu's test case. [1] kernel panic log from Jens's report BUG: unable to handle kernel NULL pointer dereference at 0000000000000148 PGD 0 P4D 0. Oops: 0000 [#1] SMP PTI CPU: 37 PID: 763 Comm: kworker/37:1H Not tainted \ 4.20.0-rc3-00649-ge64d9a554a91-dirty #14 Hardware name: Wiwynn \ Leopard-Orv2/Leopard-DDR BW, BIOS LBM08 03/03/2017 Workqueue: kblockd \ blk_mq_run_work_fn RIP: \ 0010:blk_mq_get_driver_tag+0x81/0x120 Code: 24 \ 10 48 89 7c 24 20 74 21 83 fa ff 0f 95 c0 48 8b 4c 24 28 65 48 33 0c 25 28 00 00 00 \ 0f 85 96 00 00 00 48 83 c4 30 5b 5d c3 <48> 8b 87 48 01 00 00 8b 40 04 39 43 20 72 37 \ f6 87 b0 00 00 00 02 RSP: 0018:ffffc90004aabd30 EFLAGS: 00010246 \ RAX: 0000000000000003 RBX: ffff888465ea1300 RCX: ffffc90004aabde8 RDX: 00000000ffffffff RSI: ffffc90004aabde8 RDI: 0000000000000000 RBP: 0000000000000000 R08: ffff888465ea1348 R09: 0000000000000000 R10: 0000000000001000 R11: 00000000ffffffff R12: ffff888465ea1300 R13: 0000000000000000 R14: ffff888465ea1348 R15: ffff888465d10000 FS: 0000000000000000(0000) GS:ffff88846f9c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000148 CR3: 000000000220a003 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: blk_mq_dispatch_rq_list+0xec/0x480 ? elv_rb_del+0x11/0x30 blk_mq_do_dispatch_sched+0x6e/0xf0 blk_mq_sched_dispatch_requests+0xfa/0x170 __blk_mq_run_hw_queue+0x5f/0xe0 process_one_work+0x154/0x350 worker_thread+0x46/0x3c0 kthread+0xf5/0x130 ? process_one_work+0x350/0x350 ? kthread_destroy_worker+0x50/0x50 ret_from_fork+0x1f/0x30 Modules linked in: sb_edac x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel \ kvm switchtec irqbypass iTCO_wdt iTCO_vendor_support efivars cdc_ether usbnet mii \ cdc_acm i2c_i801 lpc_ich mfd_core ipmi_si ipmi_devintf ipmi_msghandler acpi_cpufreq \ button sch_fq_codel nfsd nfs_acl lockd grace auth_rpcgss oid_registry sunrpc nvme \ nvme_core fuse sg loop efivarfs autofs4 CR2: 0000000000000148 \ ---[ end trace 340a1fb996df1b9b ]--- RIP: 0010:blk_mq_get_driver_tag+0x81/0x120 Code: 24 10 48 89 7c 24 20 74 21 83 fa ff 0f 95 c0 48 8b 4c 24 28 65 48 33 0c 25 28 \ 00 00 00 0f 85 96 00 00 00 48 83 c4 30 5b 5d c3 <48> 8b 87 48 01 00 00 8b 40 04 39 43 \ 20 72 37 f6 87 b0 00 00 00 02 Fixes: 445251d0 ("blk-mq: fix discard merge with scheduler attached") Reported-by: NJens Axboe <axboe@kernel.dk> Cc: Guangwu Zhang <guazhang@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jianchao Wang <jianchao.w.wang@oracle.com> Signed-off-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Olga Kornievskaia 提交于
commit 44f411c353bf6d98d5a34f8f1b8605d43b2e50b8 upstream. Running "./nfstest_delegation --runtest recall26" uncovers that client doesn't recover the lock when we have an appending open, where the initial open got a write delegation. Instead of checking for the passed in open context against the file lock's open context. Check that the state is the same. Signed-off-by: NOlga Kornievskaia <kolga@netapp.com> Signed-off-by: NTrond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Jianchao Wang 提交于
commit 69840466086d2248898020a08dda52732686c4e6 upstream. There are two cases when handle DISCARD merge. If max_discard_segments == 1, the bios/requests need to be contiguous to merge. If max_discard_segments > 1, it takes every bio as a range and different range needn't to be contiguous. But now, attempt_merge screws this up. It always consider contiguity for DISCARD for the case max_discard_segments > 1 and cannot merge contiguous DISCARD for the case max_discard_segments == 1, because rq_attempt_discard_merge always returns false in this case. This patch fixes both of the two cases above. Reviewed-by: NChristoph Hellwig <hch@lst.de> Reviewed-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NJianchao Wang <jianchao.w.wang@oracle.com> Signed-off-by: NJens Axboe <axboe@kernel.dk> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Heinz Mauelshagen 提交于
commit 74694bcbdf7e28a5ad548cdda9ac56d30be00d13 upstream. Sending a check/repair message infrequently leads to -EBUSY instead of properly identifying an active resync. This occurs because raid_message() is testing recovery bits in a racy way. Fix by calling decipher_sync_action() from raid_message() to properly identify the idle state of the RAID device. Signed-off-by: NHeinz Mauelshagen <heinzm@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Dave Chinner 提交于
commit 37fd1678245f7a5898c1b05128bc481fb403c290 upstream. When looking at a 4.18 based KASAN use after free report, I noticed that racing xfs_buf_rele() may race on dropping the last reference to the buffer and taking the buffer lock. This was the symptom displayed by the KASAN report, but the actual issue that was reported had already been fixed in 4.19-rc1 by commit e339dd8d ("xfs: use sync buffer I/O for sync delwri queue submission"). Despite this, I think there is still an issue with xfs_buf_rele() in this code: release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); spin_lock(&bp->b_lock); if (!release) { ..... If two threads race on the b_lock after both dropping a reference and one getting dropping the last reference so release = true, we end up with: CPU 0 CPU 1 atomic_dec_and_lock() atomic_dec_and_lock() spin_lock(&bp->b_lock) spin_lock(&bp->b_lock) <spins> <release = true bp->b_lru_ref = 0> <remove from lists> freebuf = true spin_unlock(&bp->b_lock) xfs_buf_free(bp) <gets lock, reading and writing freed memory> <accesses freed memory> spin_unlock(&bp->b_lock) <reads/writes freed memory> IOWs, we can't safely take bp->b_lock after dropping the hold reference because the buffer may go away at any time after we drop that reference. However, this can be fixed simply by taking the bp->b_lock before we drop the reference. It is safe to nest the pag_buf_lock inside bp->b_lock as the pag_buf_lock is only used to serialise against lookup in xfs_buf_find() and no other locks are held over or under the pag_buf_lock there. Make this clear by documenting the buffer lock orders at the top of the file. Signed-off-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com Signed-off-by: NDave Chinner <david@fromorbit.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Will Deacon 提交于
commit 6e693b3ffecb0b478c7050b44a4842854154f715 upstream. Commit 594cc251fdd0 ("make 'user_access_begin()' do 'access_ok()'") makes the access_ok() check part of the user_access_begin() preceding a series of 'unsafe' accesses. This has the desirable effect of ensuring that all 'unsafe' accesses have been range-checked, without having to pick through all of the callsites to verify whether the appropriate checking has been made. However, the consolidated range check does not inhibit speculation, so it is still up to the caller to ensure that they are not susceptible to any speculative side-channel attacks for user addresses that ultimately fail the access_ok() check. This is an oversight, so use __uaccess_begin_nospec() to ensure that speculation is inhibited until the access_ok() check has passed. Reported-by: NJulien Thierry <julien.thierry@arm.com> Signed-off-by: NWill Deacon <will.deacon@arm.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Linus Torvalds 提交于
commit 594cc251fdd0d231d342d88b2fdff4bc42fb0690 upstream. Originally, the rule used to be that you'd have to do access_ok() separately, and then user_access_begin() before actually doing the direct (optimized) user access. But experience has shown that people then decide not to do access_ok() at all, and instead rely on it being implied by other operations or similar. Which makes it very hard to verify that the access has actually been range-checked. If you use the unsafe direct user accesses, hardware features (either SMAP - Supervisor Mode Access Protection - on x86, or PAN - Privileged Access Never - on ARM) do force you to use user_access_begin(). But nothing really forces the range check. By putting the range check into user_access_begin(), we actually force people to do the right thing (tm), and the range check vill be visible near the actual accesses. We have way too long a history of people trying to avoid them. Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> [ Shile: fix following conflicts by adding a dummy arguments ] Conflicts: kernel/compat.c kernel/exit.c Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com>
-
由 Linus Torvalds 提交于
commit 0b2c8f8b6b0c7530e2866c95862546d0da2057b0 upstream. When commit fddcd00a49e9 ("drm/i915: Force the slow path after a user-write error") unified the error handling for various user access problems, it didn't do the user_access_end() that is needed for the unsafe_put_user() case. It's not a huge deal: a missed user_access_end() will only mean that SMAP protection isn't active afterwards, and for the error case we'll be returning to user mode soon enough anyway. But it's wrong, and adding the proper user_access_end() is trivial enough (and doing it for the other error cases where it isn't needed doesn't hurt). I noticed it while doing the same prep-work for changing user_access_begin() that precipitated the access_ok() changes in commit 96d4f267e40f ("Remove 'type' argument from access_ok() function"). Fixes: fddcd00a49e9 ("drm/i915: Force the slow path after a user-write error") Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: stable@kernel.org # v4.20 Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Chris Wilson 提交于
commit fddcd00a49e9122a3579247151e9cb3ce5a1a36e upstream. If we fail to write the user relocation back when it is changed, force ourselves to take the slow relocation path where we can handle faults in the write path. There is still an element of dubiousness as having patched up the batch to use the correct offset, it no longer matches the presumed_offset in the relocation, so a second pass may miss any changes in layout. Signed-off-by: NChris Wilson <chris@chris-wilson.co.uk> Reviewed-by: NJoonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20180903083337.13134-3-chris@chris-wilson.co.ukSigned-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Andrea Arcangeli 提交于
commit 3b9aadf7278d16d7bed4d5d808501065f70898d8 upstream. get_mempolicy(MPOL_F_NODE|MPOL_F_ADDR) called a get_user_pages that would not be waiting for userfaults before failing and it would hit on a SIGBUS instead. Using get_user_pages_locked/unlocked instead will allow get_mempolicy to allow userfaults to resolve the fault and fill the hole, before grabbing the node id of the page. If the user calls get_mempolicy() with MPOL_F_ADDR | MPOL_F_NODE for an address inside an area managed by uffd and there is no page at that address, the page allocation from within get_mempolicy() will fail because get_user_pages() does not allow for page fault retry required for uffd; the user will get SIGBUS. With this patch, the page fault will be resolved by the uffd and the get_mempolicy() will continue normally. Background: Via code review, previously the syscall would have returned -EFAULT (vm_fault_to_errno), now it will block and wait for an userfault (if it's waken before the fault is resolved it'll still -EFAULT). This way get_mempolicy will give a chance to an "unaware" app to be compliant with userfaults. The reason this visible change is that becoming "userfault compliant" cannot regress anything: all other syscalls including read(2)/write(2) had to become "userfault compliant" long time ago (that's one of the things userfaultfd can do that PROT_NONE and trapping segfaults can't). So this is just one more syscall that become "userfault compliant" like all other major ones already were. This has been happening on virtio-bridge dpdk process which just called get_mempolicy on the guest space post live migration, but before the memory had a chance to be migrated to destination. I didn't run an strace to be able to show the -EFAULT going away, but I've the confirmation of the below debug aid information (only visible with CONFIG_DEBUG_VM=y) going away with the patch: [20116.371461] FAULT_FLAG_ALLOW_RETRY missing 0 [20116.371464] CPU: 1 PID: 13381 Comm: vhost-events Not tainted 4.17.12-200.fc28.x86_64 #1 [20116.371465] Hardware name: LENOVO 20FAS2BN0A/20FAS2BN0A, BIOS N1CET54W (1.22 ) 02/10/2017 [20116.371466] Call Trace: [20116.371473] dump_stack+0x5c/0x80 [20116.371476] handle_userfault.cold.37+0x1b/0x22 [20116.371479] ? remove_wait_queue+0x20/0x60 [20116.371481] ? poll_freewait+0x45/0xa0 [20116.371483] ? do_sys_poll+0x31c/0x520 [20116.371485] ? radix_tree_lookup_slot+0x1e/0x50 [20116.371488] shmem_getpage_gfp+0xce7/0xe50 [20116.371491] ? page_add_file_rmap+0x1a/0x2c0 [20116.371493] shmem_fault+0x78/0x1e0 [20116.371495] ? filemap_map_pages+0x3a1/0x450 [20116.371498] __do_fault+0x1f/0xc0 [20116.371500] __handle_mm_fault+0xe2e/0x12f0 [20116.371502] handle_mm_fault+0xda/0x200 [20116.371504] __get_user_pages+0x238/0x790 [20116.371506] get_user_pages+0x3e/0x50 [20116.371510] kernel_get_mempolicy+0x40b/0x700 [20116.371512] ? vfs_write+0x170/0x1a0 [20116.371515] __x64_sys_get_mempolicy+0x21/0x30 [20116.371517] do_syscall_64+0x5b/0x160 [20116.371520] entry_SYSCALL_64_after_hwframe+0x44/0xa9 The above harmless debug message (not a kernel crash, just a dump_stack()) is shown with CONFIG_DEBUG_VM=y to more quickly identify and improve kernel spots that may have to become "userfaultfd compliant" like this one (without having to run an strace and search for syscall misbehavior). Spots like the above are more closer to a kernel bug for the non-cooperative usages that Mike focuses on, than for for dpdk qemu-cooperative usages that reproduced it, but it's still nicer to get this fixed for dpdk too. The part of the patch that caused me to think is only the implementation issue of mpol_get, but it looks like it should work safe no matter the kind of mempolicy structure that is (the default static policy also starts at 1 so it'll go to 2 and back to 1 without crashing everything at 0). [rppt@linux.vnet.ibm.com: changelog addition] http://lkml.kernel.org/r/20180904073718.GA26916@rapoport-lnx Link: http://lkml.kernel.org/r/20180831214848.23676-1-aarcange@redhat.comSigned-off-by: NAndrea Arcangeli <aarcange@redhat.com> Reported-by: NMaxime Coquelin <maxime.coquelin@redhat.com> Tested-by: NDr. David Alan Gilbert <dgilbert@redhat.com> Reviewed-by: NMike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 01 8月, 2019 2 次提交
-
-
由 Xingjun Liu 提交于
During the module initialization phase, entropy will be added to entropy pool for every interrupt, the change should speed up initialization of the random module. Before optimization: [ 22.180236] random: crng init done After optimization: [ 1.474832] random: crng init done Signed-off-by: NXingjun Liu <xingjun.lxj@alibaba-inc.com> Reviewed-by: NLiu Jiang <gerry@linux.alibaba.com> Reviewed-by: NCaspar Zhang <caspar@linux.alibaba.com> Reviewed-by: Jia Zhang <zhang.jia@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NLiu Bo <bo.liu@linux.alibaba.com>
-
由 Xingjun Liu 提交于
Add random entropy with the module parameter as the initialization seed when the kernel startup. For guest OS working in VM, the random entropy will be less, it cause the random module to initialize very slowly, and if the application which running in guest os gets a certain amount of random numbers in the initialization phase, it will be blocked. This patch allows the VMM to provide a certain amount of random seed when starting guest OS, speeding up the initialization of the entire guest OS random module. Before optimization: [ 22.180236] random: crng init done After optimization: [ 1.553362] random: crng init done Signed-off-by: NXingjun Liu <xingjun.lxj@alibaba-inc.com> Reviewed-by: NLiu Jiang <gerry@linux.alibaba.com> Reviewed-by: NCaspar Zhang <caspar@linux.alibaba.com> Reviewed-by: Jia Zhang <zhang.jia@linux.alibaba.com> Reviewed-by: NYang Shi <yang.shi@linux.alibaba.com> Reviewed-by: NLiu Bo <bo.liu@linux.alibaba.com>
-
- 29 7月, 2019 3 次提交
-
-
由 Shanpei Chen 提交于
commit 4ab526468344c11d2d1807ae95feb1f5305dc014 upstream. This driver is Intel-only so loading on anything which is not Intel is pointless. Prevent it from doing so. While at it, correct the "not supported" print statement to say CPU "model" which is what that test does. Fixes: 076b862c7e44 (cpufreq: intel_pstate: Add reasons for failure and debug messages) Suggested-by: NErwan Velu <e.velu@criteo.com> Signed-off-by: NBorislav Petkov <bp@suse.de> Reviewed-by: NThomas Renninger <trenn@suse.de> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NShanpei Chen <shanpeic@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Shanpei Chen 提交于
commit 076b862c7e4409d2dcacfda19f7eaf8d07ab9200 upstream. The init code path has several exceptions where the driver can decide not to load. As CONFIG_X86_INTEL_PSTATE is generally set to Y, the return code is not reachable. The initialization code is neither verbose of the reason why it did choose to prematurely exit, so it is difficult for a user to determine, on a given platform, why the driver didn't load properly. This patch is about reporting to the user the reason/context of why the driver failed to load. That is a precious hint when debugging a platform. Signed-off-by: NErwan Velu <e.velu@criteo.com> [ rjw: Subject & changelog, minor fixups ] Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NShanpei Chen <shanpeic@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
由 Shanpei Chen 提交于
commit af3b7379e2d709f2d7c6966b8a6f5ec6bd134241 upstream. Force HWP Request MAX = HWP Request MIN = HWP Capability MIN and EPP to 0xFF. In this way the performance limits on the offlined CPU will not influence performance limits on its sibling CPU, which is still online. If the sibling CPU is calling for higher performance, it will impact the max core performance. Here core performance will follow higher of the performance requests from each sibling. Reported-and-tested-by: NChen Yu <yu.c.chen@intel.com> Signed-off-by: NSrinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: NRafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: NShanpei Chen <shanpeic@linux.alibaba.com> Acked-by: NMichael Wang <yun.wang@linux.alibaba.com>
-
- 25 7月, 2019 1 次提交
-
-
由 Jann Horn 提交于
commit 6994eefb0053799d2e07cd140df6c2ea106c41ee upstream. This fixes CVE-2019-13272. Fix two issues: When called for PTRACE_TRACEME, ptrace_link() would obtain an RCU reference to the parent's objective credentials, then give that pointer to get_cred(). However, the object lifetime rules for things like struct cred do not permit unconditionally turning an RCU reference into a stable reference. PTRACE_TRACEME records the parent's credentials as if the parent was acting as the subject, but that's not the case. If a malicious unprivileged child uses PTRACE_TRACEME and the parent is privileged, and at a later point, the parent process becomes attacker-controlled (because it drops privileges and calls execve()), the attacker ends up with control over two processes with a privileged ptrace relationship, which can be abused to ptrace a suid binary and obtain root privileges. Fix both of these by always recording the credentials of the process that is requesting the creation of the ptrace relationship: current_cred() can't change under us, and current is the proper subject for access control. This change is theoretically userspace-visible, but I am not aware of any code that it will actually break. Fixes: 64b875f7 ("ptrace: Capture the ptracer's creds not PT_PTRACE_CAP") Signed-off-by: NJann Horn <jannh@google.com> Acked-by: NOleg Nesterov <oleg@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
- 24 7月, 2019 5 次提交
-
-
由 Mike Snitzer 提交于
commit 075c18c3e124a1511ebc10a89f1858c8a77dcb01 upstream. Provides useful context about bio splits in blktrace. Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Mike Snitzer 提交于
commit 6548c7c538e5658cbce686c2dd1a9b4f5398bf34 upstream. Otherwise targets that don't support/expect IO splitting could resubmit bios using code paths with unnecessary IO splitting complexity. Depends-on: 24113d487843 ("dm: avoid indirect call in __dm_make_request") Fixes: 978e51ba ("dm: optimize bio-based NVMe IO submission") Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Mikulas Patocka 提交于
commit 24113d4878439baf1f23c1a33dfcc340fba66e97 upstream. Indirect calls are inefficient because of retpolines that are used for spectre workaround. This patch replaces an indirect call with a condition (that can be predicted by the branch predictor). Signed-off-by: NMikulas Patocka <mpatocka@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Mike Snitzer 提交于
commit a1e1cb72d96491277ede8d257ce6b48a381dd336 upstream. [Joseph] cherry-pick part_stat_get() from commit 1226b8dd0e91 ("block: switch to per-cpu in-flight counters") since we don't want the whole patch series get involved. The risk of redundant IO accounting was not taken into consideration when commit 18a25da8 ("dm: ensure bio submission follows a depth-first tree walk") introduced IO splitting in terms of recursion via generic_make_request(). Fix this by subtracting the split bio's payload from the IO stats that were already accounted for by start_io_acct() upon dm_make_request() entry. This repeat oscillation of the IO accounting, up then down, isn't ideal but refactoring DM core's IO splitting to pre-split bios _before_ they are accounted turned out to be an excessive amount of change that will need a full development cycle to refine and verify. Before this fix: /dev/mapper/stripe_dev is a 4-way stripe using a 32k chunksize, so bios are split on 32k boundaries. # fio --name=16M --filename=/dev/mapper/stripe_dev --rw=write --bs=64k --size=16M \ --iodepth=1 --ioengine=libaio --direct=1 --refill_buffers with debugging added: [103898.310264] device-mapper: core: start_io_acct: dm-2 WRITE bio->bi_iter.bi_sector=0 len=128 [103898.318704] device-mapper: core: __split_and_process_bio: recursing for following split bio: [103898.329136] device-mapper: core: start_io_acct: dm-2 WRITE bio->bi_iter.bi_sector=64 len=64 ... 16M written yet 136M (278528 * 512b) accounted: # cat /sys/block/dm-2/stat | awk '{ print $7 }' 278528 After this fix: 16M written and 16M (32768 * 512b) accounted: # cat /sys/block/dm-2/stat | awk '{ print $7 }' 32768 Fixes: 18a25da8 ("dm: ensure bio submission follows a depth-first tree walk") Cc: stable@vger.kernel.org # 4.16+ Reported-by: NBryan Gurney <bgurney@redhat.com> Reviewed-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Mike Snitzer 提交于
commit 57c36519e4b949f89381053f7283f5d605595b42 upstream. DM's clone_bio() now benefits from using bio_trim() by fixing the fact that clone_bio() wasn't clearing BIO_SEG_VALID like bio_trim() does; which triggers blk_recount_segments() via bio_phys_segments(). Reviewed-by: NMing Lei <ming.lei@redhat.com> Signed-off-by: NMike Snitzer <snitzer@redhat.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Signed-off-by: NShile Zhang <shile.zhang@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
- 20 7月, 2019 1 次提交
-
-
由 Trond Myklebust 提交于
commit be189f7e7f03de35887e5a85ddcf39b91b5d7fc1 upstream. We need to ensure that inode and dentry revalidation occurs correctly on reopen of a file that is already open. Currently, we can end up not revalidating either in the case of NFSv4.0, due to the 'cached open' path. Let's fix that by ensuring that we only do cached open for the special cases of open recovery and delegation return. Reported-by: NStan Hu <stanhu@gmail.com> Signed-off-by: NTrond Myklebust <trond.myklebust@hammerspace.com> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Reviewed-by: NYihao Wu <wuyihao@linux.alibaba.com>
-
- 18 7月, 2019 1 次提交
-
-
由 Xiaoguang Wang 提交于
commit a297b2fcee461e40df763e179cbbfba5a9e572d2 upstream. In mpage_add_bh_to_extent(), when accumulated extents length is greater than MAX_WRITEPAGES_EXTENT_LEN or buffer head's b_stat is not equal, we will not continue to search unmapped area for this page, but note this page is locked, and will only be unlocked in mpage_release_unused_pages() after ext4_io_submit, if io also is throttled by blk-throttle or similar io qos, we will hold this page locked for a while, it's unnecessary. I think the best fix is to refactor mpage_add_bh_to_extent() to let it return some hints whether to unlock this page, but given that we will improve dioread_nolock later, we can let it done later, so currently the simple fix would just call mpage_release_unused_pages() before ext4_io_submit(). Signed-off-by: NXiaoguang Wang <xiaoguang.wang@linux.alibaba.com> Signed-off-by: NTheodore Ts'o <tytso@mit.edu> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Reviewed-by: NLiu Bo <bo.liu@linux.alibaba.com>
-
- 10 7月, 2019 1 次提交
-
-
由 Pavel Tatashin 提交于
commit b5179ec4187251a751832193693d6e474d3445ac upstream VMs may show incorrect uptime and dmesg printk offsets on hypervisors with unstable clock. The problem is produced when VM is rebooted without exiting from qemu. The fix is to calculate clock offset not only for stable clock but for unstable clock as well, and use kvm_sched_clock_read() which substracts the offset for both clocks. This is safe, because pvclock_clocksource_read() does the right thing and makes sure that clock always goes forward, so once offset is calculated with unstable clock, we won't get new reads that are smaller than offset, and thus won't get negative results. Thank you Jon DeVree for helping to reproduce this issue. Fixes: 857baa87 ("sched/clock: Enable sched clock early") Cc: stable@vger.kernel.org Reported-by: NDominique Martinet <asmadeus@codewreck.org> Signed-off-by: NPavel Tatashin <pasha.tatashin@soleen.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Signed-off-by: NXingjun Liu <xingjun.liu@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
- 05 7月, 2019 15 次提交
-
-
由 Brian Foster 提交于
commit 2032a8a27b5cc0f578d37fa16fa2494b80a0d00a upstream. XFS applies more strict serialization constraints to unaligned direct writes to accommodate things like direct I/O layer zeroing, unwritten extent conversion, etc. Unaligned submissions acquire the exclusive iolock and wait for in-flight dio to complete to ensure multiple submissions do not race on the same block and cause data corruption. This generally works in the case of an aligned dio followed by an unaligned dio, but the serialization is lost if I/Os occur in the opposite order. If an unaligned write is submitted first and immediately followed by an overlapping, aligned write, the latter submits without the typical unaligned serialization barriers because there is no indication of an unaligned dio still in-flight. This can lead to unpredictable results. To provide proper unaligned dio serialization, require that such direct writes are always the only dio allowed in-flight at one time for a particular inode. We already acquire the exclusive iolock and drain pending dio before submitting the unaligned dio. Wait once more after the dio submission to hold the iolock across the I/O and prevent further submissions until the unaligned I/O completes. This is heavy handed, but consistent with the current pre-submission serialization for unaligned direct writes. Signed-off-by: NBrian Foster <bfoster@redhat.com> Reviewed-by: NAllison Henderson <allison.henderson@oracle.com> Reviewed-by: NDave Chinner <dchinner@redhat.com> Reviewed-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NDarrick J. Wong <darrick.wong@oracle.com> Signed-off-by: NAlvin Zheng <Alvin@linux.alibaba.com> Acked-by: NJoseph Qi <joseph.qi@linux.alibaba.com>
-
由 Shanpei Chen 提交于
Autogroup feature is used to improve interactivity for desktop application. Since our kernel runs on server, just like RHEL8, disable it by default to avoid unnecessary computing. More details, please refer https://lwn.net/Articles/416641/Signed-off-by: NShanpei Chen <shanpeic@linux.alibaba.com> Reviewed-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Dan Schatzberg 提交于
commit df5ba5be7425e1df296d40c5f37a39d98ec666a2 upstream. Pressure metrics are already recorded and exposed in procfs for the entire system, but any tool which monitors cgroup pressure has to special case the root cgroup to read from procfs. This patch exposes the already recorded pressure metrics on the root cgroup. Link: http://lkml.kernel.org/r/20190510174938.3361741-1-dschatzberg@fb.comSigned-off-by: NDan Schatzberg <dschatzberg@fb.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Suren Baghdasaryan 提交于
commit 0e94682b73bfa6c44c98af7a26771c9c08c055d5 upstream. Psi monitor aims to provide a low-latency short-term pressure detection mechanism configurable by users. It allows users to monitor psi metrics growth and trigger events whenever a metric raises above user-defined threshold within user-defined time window. Time window and threshold are both expressed in usecs. Multiple psi resources with different thresholds and window sizes can be monitored concurrently. Psi monitors activate when system enters stall state for the monitored psi metric and deactivate upon exit from the stall state. While system is in the stall state psi signal growth is monitored at a rate of 10 times per tracking window. Min window size is 500ms, therefore the min monitoring interval is 50ms. Max window size is 10s with monitoring interval of 1s. When activated psi monitor stays active for at least the duration of one tracking window to avoid repeated activations/deactivations when psi signal is bouncing. Notifications to the users are rate-limited to one per tracking window. Link: http://lkml.kernel.org/r/20190319235619.260832-8-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Johannes Weiner 提交于
commit dc50537bdd1a0804fa2cbc990565ee9a944e66fa upstream. Cgroup has a standardized poll/notification mechanism for waking all pollers on all fds when a filesystem node changes. To allow polling for custom events, add a .poll callback that can override the default. This is in preparation for pollable cgroup pressure files which have per-fd trigger configurations. Link: http://lkml.kernel.org/r/20190124211518.244221-3-surenb@google.comSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NSuren Baghdasaryan <surenb@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Johannes Weiner 提交于
commit 147e1a97c4a0bdd43f55a582a9416bb9092563a9 upstream. Patch series "psi: pressure stall monitors", v3. Android is adopting psi to detect and remedy memory pressure that results in stuttering and decreased responsiveness on mobile devices. Psi gives us the stall information, but because we're dealing with latencies in the millisecond range, periodically reading the pressure files to detect stalls in a timely fashion is not feasible. Psi also doesn't aggregate its averages at a high enough frequency right now. This patch series extends the psi interface such that users can configure sensitive latency thresholds and use poll() and friends to be notified when these are breached. As high-frequency aggregation is costly, it implements an aggregation method that is optimized for fast, short-interval averaging, and makes the aggregation frequency adaptive, such that high-frequency updates only happen while monitored stall events are actively occurring. With these patches applied, Android can monitor for, and ward off, mounting memory shortages before they cause problems for the user. For example, using memory stall monitors in userspace low memory killer daemon (lmkd) we can detect mounting pressure and kill less important processes before device becomes visibly sluggish. In our memory stress testing psi memory monitors produce roughly 10x less false positives compared to vmpressure signals. Having ability to specify multiple triggers for the same psi metric allows other parts of Android framework to monitor memory state of the device and act accordingly. The new interface is straightforward. The user opens one of the pressure files for writing and writes a trigger description into the file descriptor that defines the stall state - some or full, and the maximum stall time over a given window of time. E.g.: /* Signal when stall time exceeds 100ms of a 1s window */ char trigger[] = "full 100000 1000000"; fd = open("/proc/pressure/memory"); write(fd, trigger, sizeof(trigger)); while (poll() >= 0) { ... } close(fd); When the monitored stall state is entered, psi adapts its aggregation frequency according to what the configured time window requires in order to emit event signals in a timely fashion. Once the stalling subsides, aggregation reverts back to normal. The trigger is associated with the open file descriptor. To stop monitoring, the user only needs to close the file descriptor and the trigger is discarded. Patches 1-4 prepare the psi code for polling support. Patch 5 implements the adaptive polling logic, the pressure growth detection optimized for short intervals, and hooks up write() and poll() on the pressure files. The patches were developed in collaboration with Johannes Weiner. This patch (of 5): Kernfs has a standardized poll/notification mechanism for waking all pollers on all fds when a filesystem node changes. To allow polling for custom events, add a .poll callback that can override the default. This is in preparation for pollable cgroup pressure files which have per-fd trigger configurations. Link: http://lkml.kernel.org/r/20190124211518.244221-2-surenb@google.comSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NSuren Baghdasaryan <surenb@google.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Suren Baghdasaryan 提交于
commit 8af0c18af1425fc70686c0fdcfc0072cd8431aa0 upstream. kthread.h can't be included in psi_types.h because it creates a circular inclusion with kthread.h eventually including psi_types.h and complaining on kthread structures not being defined because they are defined further in the kthread.h. Resolve this by removing psi_types.h inclusion from the headers included from kthread.h. Link: http://lkml.kernel.org/r/20190319235619.260832-7-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Suren Baghdasaryan 提交于
commit 333f3017c5a893b000b2b4a3529814ce93fa83d7 upstream. Introduce changed_states parameter into collect_percpu_times to track the states changed since the last update. This will be needed to detect whether polled states activated in the monitor patch. Link: http://lkml.kernel.org/r/20190319235619.260832-6-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Suren Baghdasaryan 提交于
commit 7fc70a3999366560ad1d4f2389a78360300c2c6a upstream. Split update_stats into collect_percpu_times and update_averages for collect_percpu_times to be reused later inside psi monitor. Link: http://lkml.kernel.org/r/20190319235619.260832-5-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Suren Baghdasaryan 提交于
commit bcc78db64168eb6dede056fed2999f75f7ace309 upstream. Rename psi_group structure member fields used for calculating psi totals and averages for clear distinction between them and for trigger-related fields that will be added by "psi: introduce psi monitor". [surenb@google.com: v6] Link: http://lkml.kernel.org/r/20190319235619.260832-4-surenb@google.com Link: http://lkml.kernel.org/r/20190124211518.244221-5-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Suren Baghdasaryan 提交于
commit 9289c5e6a78a5a9397df5fa60eb82b105abcfecf upstream. psi_enable is not used outside of psi.c, make it static. Link: http://lkml.kernel.org/r/20190319235619.260832-3-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Suggested-by: NAndrew Morton <akpm@linux-foundation.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Suren Baghdasaryan 提交于
commit 33b2d6302abc4ccea1d9b3f095e2e27b02ca264e upstream. Patch series "psi: pressure stall monitors", v6. This is a respin of: https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/ Android is adopting psi to detect and remedy memory pressure that results in stuttering and decreased responsiveness on mobile devices. Psi gives us the stall information, but because we're dealing with latencies in the millisecond range, periodically reading the pressure files to detect stalls in a timely fashion is not feasible. Psi also doesn't aggregate its averages at a high-enough frequency right now. This patch series extends the psi interface such that users can configure sensitive latency thresholds and use poll() and friends to be notified when these are breached. As high-frequency aggregation is costly, it implements an aggregation method that is optimized for fast, short-interval averaging, and makes the aggregation frequency adaptive, such that high-frequency updates only happen while monitored stall events are actively occurring. With these patches applied, Android can monitor for, and ward off, mounting memory shortages before they cause problems for the user. For example, using memory stall monitors in userspace low memory killer daemon (lmkd) we can detect mounting pressure and kill less important processes before device becomes visibly sluggish. In our memory stress testing psi memory monitors produce roughly 10x less false positives compared to vmpressure signals. Having ability to specify multiple triggers for the same psi metric allows other parts of Android framework to monitor memory state of the device and act accordingly. The new interface is straight-forward. The user opens one of the pressure files for writing and writes a trigger description into the file descriptor that defines the stall state - some or full, and the maximum stall time over a given window of time. E.g.: /* Signal when stall time exceeds 100ms of a 1s window */ char trigger[] = "full 100000 1000000" fd = open("/proc/pressure/memory") write(fd, trigger, sizeof(trigger)) while (poll() >= 0) { ... }; close(fd); When the monitored stall state is entered, psi adapts its aggregation frequency according to what the configured time window requires in order to emit event signals in a timely fashion. Once the stalling subsides, aggregation reverts back to normal. The trigger is associated with the open file descriptor. To stop monitoring, the user only needs to close the file descriptor and the trigger is discarded. Patches 1-6 prepare the psi code for polling support. Patch 7 implements the adaptive polling logic, the pressure growth detection optimized for short intervals, and hooks up write() and poll() on the pressure files. The patches were developed in collaboration with Johannes Weiner. This patch (of 7): The psi monitoring patches will need to determine the same states as record_times(). To avoid calculating them twice, maintain a state mask that can be consulted cheaply. Do this in a separate patch to keep the churn in the main feature patch at a minimum. This adds 4-byte state_mask member into psi_group_cpu struct which results in its first cacheline-aligned part becoming 52 bytes long. Add explicit values to enumeration element counters that affect psi_group_cpu struct size. Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.comSigned-off-by: NSuren Baghdasaryan <surenb@google.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Waiman Long 提交于
commit be87ab0afd680ac35486d16c0963c56d9be1d8a0 upstream. The output of the PSI files show a bunch of numbers with no unit. The psi.txt documentation file also does not indicate what units are used. One can only find out by looking at the source code. The units are percentage for the averages and useconds for the total. Make the information easier to find by documenting the units in psi.txt. Link: http://lkml.kernel.org/r/20190402193810.3450-1-longman@redhat.comSigned-off-by: NWaiman Long <longman@redhat.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Johannes Weiner 提交于
commit 4e37504d1c49eec6434d0cc97278d2b51c9e8763 upstream. We've been seeing hard-to-trigger psi crashes when running inside VM instances: divide error: 0000 [#1] SMP PTI Modules linked in: [...] CPU: 0 PID: 212 Comm: kworker/0:2 Not tainted 4.16.18-119_fbk9_3817_gfe944c98d695 #119 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015 Workqueue: events psi_clock RIP: 0010:psi_update_stats+0x270/0x490 RSP: 0018:ffffc90001117e10 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff8800a35a13f8 RDX: 0000000000000000 RSI: ffff8800a35a1340 RDI: 0000000000000000 RBP: 0000000000000658 R08: ffff8800a35a1470 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 00000000000f8502 FS: 0000000000000000(0000) GS:ffff88023fc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fbe370fa000 CR3: 00000000b1e3a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: psi_clock+0x12/0x50 process_one_work+0x1e0/0x390 worker_thread+0x2b/0x3c0 ? rescuer_thread+0x330/0x330 kthread+0x113/0x130 ? kthread_create_worker_on_cpu+0x40/0x40 ? SyS_exit_group+0x10/0x10 ret_from_fork+0x35/0x40 Code: 48 0f 47 c7 48 01 c2 45 85 e4 48 89 16 0f 85 e6 00 00 00 4c 8b 49 10 4c 8b 51 08 49 69 d9 f2 07 00 00 48 6b c0 64 4c 8b 29 31 d2 <48> f7 f7 49 69 d5 8d 06 00 00 48 89 c5 4c 69 f0 00 98 0b 00 48 The Code-line points to `period` being 0 inside update_stats(), and we divide by that when calculating that period's pressure percentage. The elapsed period should never be 0. The reason this can happen is due to an off-by-one in the idle time / missing period calculation combined with a coarse sched_clock() in the virtual machine. The target time for aggregation is advanced into the future on a fixed grid to prevent clock drift. So when an aggregation runs after some idle period, we can not just set it to "now + psi_period", but have to calculate the downtime and advance the target time relative to itself. However, if the aggregator was disabled exactly one psi_period (ns), we drop one idle period in the calculation due to a > when we should do >=. In that case, next_update will be advanced from 'now - psi_period' to 'now' when it should be moved to 'now + psi_period'. The run finishes with last_update == next_update == sched_clock(). With hardware clocks, this exact nanosecond match isn't likely in the first place; but if it does happen, the clock will still have moved on and the period non-zero by the time the worker runs. A pointlessly short period, but besides the extra work, no harm no foul. However, a slow sched_clock() like we have on VMs might not have advanced either by the time the worker runs again. And when we calculate the elapsed period, the result, our pressure divisor, will be 0. Ouch. Fix this by correctly handling the situation when the elapsed time between aggregation runs is precisely two periods, and advance the expiration timestamp correctly to period into the future. Link: http://lkml.kernel.org/r/20190214193157.15788-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reported-by: Łukasz Siudut <lsiudut@fb.com Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-
由 Johannes Weiner 提交于
commit 7b2489d37e1e355228f7c55724f77580e1dec22a upstream. The current help text caused some confusion in online forums about whether or not to default-enable or default-disable psi in vendor kernels. This is because it doesn't communicate the reason for why we made this setting configurable in the first place: that the overhead is non-zero in an artificial scheduler stress test. Since this isn't representative of real workloads, and the effect was not measurable in scheduler-heavy real world applications such as the webservers and memcache installations at Facebook, it's fair to point out that this is a pretty cautious option to select. Link: http://lkml.kernel.org/r/20190129233617.16767-1-hannes@cmpxchg.orgSigned-off-by: NJohannes Weiner <hannes@cmpxchg.org> Reviewed-by: NAndrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NJoseph Qi <joseph.qi@linux.alibaba.com> Acked-by: NCaspar Zhang <caspar@linux.alibaba.com>
-